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Abstract: The combination of future changes in sea levels and wave climate in coastal areas
represents one of the greatest threats to the preservation of underwater cultural heritage
(UCH). This study presents a new methodology to assess climate change’s impacts on UCH
preservation in shallow waters, focusing on wave-induced hazards like decontextualization,
scouring, and wear erosion. The approach uses hybrid downscaling of bias-corrected wave
fields from the RCP4.5 and RCP8.5 CMIP5 scenarios. The methodology was applied in the
Bay of Cadiz, where an overall reduction in wave energy flux was observed. However,
local increases were detected in rocky outcrops and coastal areas with high UCH density.
As a result, the shallow zones exhibited significant changes in decontextualization and
scouring hazards. However, the most relevant risk changes were linked to wear erosion,
particularly at sites on rocky outcrops near Cadiz. The methodology proposed in this study
is essential for identifying areas with higher risk and for evaluating UCH preservation
under future climate conditions. It offers an effective tool for discriminating sites at risk
and for conducting a long-term assessment of these risks in coastal environments affected
by climate change.

Keywords: underwater cultural heritage; climate change; hybrid downscaling;
decontextualization risk; scouring risk; wear erosion risk, numerical modelling, ocean waves

1. Introduction
The alterations in wave climate attributable to global warming are of vital importance

in coastal areas given the fundamental role of waves in shaping coastal dynamics and
coastal hazards. These modifications have the potential to change coastal morphology [1]
and significantly impact human activities. Assessing the impacts resulting from climate
change (CC) in littoral areas is of great interest as these regions not only represent the
most densely populated areas but also holds high value in terms of underwater cultural
heritage (UCH).

The preservation of UCH is crucial for local communities, and it is necessary to
recognize and properly appreciate its value [2] as its degradation not only implies a loss of
cultural capital but also reductions in tourism and recreational, educational, and scientific
activities, as well as a decline in local ecological knowledge [3]. In this regard, within
the framework of the European Green Deal, it is anticipated that the preservation of
cultural heritage will serve as a powerful driver of economic recovery [4]. Littoral UCH
is continuously subjected to the impact of marine agents that accelerate its degradation.
Among these, waves stand out as one of the main factors affecting the preservation and

J. Mar. Sci. Eng. 2025, 13, 136 https://doi.org/10.3390/jmse13010136

https://doi.org/10.3390/jmse13010136
https://doi.org/10.3390/jmse13010136
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0000-4108-1191
https://orcid.org/0000-0003-3842-1460
https://orcid.org/0000-0002-0488-7097
https://orcid.org/0000-0001-6910-448X
https://doi.org/10.3390/jmse13010136
https://www.mdpi.com/article/10.3390/jmse13010136?type=check_update&version=1


J. Mar. Sci. Eng. 2025, 13, 136 2 of 23

evolution of UCH in shallow water areas exposed to wave action [5,6]. Wave energy
is released on the coast, generating three fundamental hazards for submerged cultural
heritage: decontextualization, scouring, and wear erosion [7].

The complex interaction among archeological sites, suspended sediment transport, and
hydrodynamic processes has been recognized and extensively investigated in the context of
the in situ preservation of underwater archeological sites [5,6,8–13]. Changes in sediment
budgets can compromise the stability of shipwrecks, leading to the exposure and/or
burial of valuable artifacts. Additionally, scouring influences chemical and biological
processes affecting the composition of the benthic community. This has effects on metallic
materials [14], the corrosion rates of metal [15], and the degradation of stone materials [16]
and wood [17].

CC will affect atmospheric and marine conditions, thereby impacting the conservation
of coastal and underwater archeological sites. However, despite the relevance and high
density of UCH in coastal areas, studies analyzing wave-induced hazards [7,18] have not
considered long-term changes in environmental conditions.

Long-term changes in large-scale atmospheric circulation and in local wind patterns,
coupled with changes in the occurrence and characteristics of tropical and extra-tropical
cyclones, indicate long-term changes in wind wave statistics [19]. Reguero et al. [20] indi-
cated that upper-ocean warming is altering the global wave climate, suggesting that global
wave energy has increased by 0.4% per year since 1948. Global-scale studies have assessed
projected changes in wave climate under different CC scenarios [21–23], finding a robust
increase in the annual mean significant wave height in the Southern Hemisphere, while a
reduction has been observed in the Northern Hemisphere. In the case of the North Atlantic,
a reduction in significant wave height is expected by the end of the century, with greater
decreases under the RCP8.5 scenario (~10%) compared to RCP4.5 (~5%) [24]. Furthermore,
the extreme wave height is also projected to decrease in the northeast Atlantic [25–27], with
the largest decrease being more than 1 m (12%) occurring south of 45◦ N [28].

These potential changes in global wave climate, along with sea level rise, underscore
the need for further studies to downscale global trends regionally, analyze changes in wave
climate in coastal shallow waters, and to evaluate how these changes will affect UCH
preservation. Therefore, this study aims to develop a methodology to assess UCH-related
risk associated with wave-induced hazards in current and future climates under climate
change conditions. This methodology is tested in the Bay of Cadiz, a region characterized
by a large number of UCH sites with great diversity. To achieve this, an assessment of wave
climate and changes in the main hazards affecting UCH is carried out for the RCP 4.5 and
RCP 8.5 scenarios. To attain the spatial resolution demanded by coastal applications and to
reduce the uncertainties inherent in using global models for local-scale studies, a hybrid
downscaling approach is employed to propagate waves from deep to shallow waters.

The remainder of this paper is structured as follows: The next section introduces the
study area; the Methods Section describes the methodology developed and the datasets
used for validation; the Results Section presents the downscaled wave climate and the
assessment of CC’s impact on UCH risks and hazards; the Discussion Section analyzes
the applicability, limitations, and potential of the methodology based on the results; and,
finally, the main findings of this study are summarized.

Study Area

The Bay of Cadiz is located in the southwest of Spain, extending from Punta Candor
to the Sancti Petri estuary (Figure 1A). The seabed mainly consists of unconsolidated
sediments, with a mean grain size ranging from very fine quartz sand to very fine gravel.
Exceptions to this general pattern are localized rocky outcrops in the study area. The
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bay is a mesotidal shallow estuary with a maximum depth of 20 m at its seaward edge,
and it is characterized by dominantly semidiurnal co-oscillating tides with amplitudes of
~1 m for the M2 component and ~0.4 m for the S2 component [29]. The typical waves in
the Bay of Cadiz are wind waves with periods below 7 s and significant heights around
0.5 m in summer and 1.0 m in winter, increasing during storm events. The longer swell
components of the wave spectrum have periods of 12–15 s and a height of about 1.5 m [30].
The predominant wave direction is from the west, while the most energetic waves (wave
heights exceeding the 95th percentile) originate from the west-southwest (Figure 1B). Winds
in the Bay of Cadiz show significant seasonality with dominant Atlantic winds from the W
and WNW, and less frequent but more intense Mediterranean winds from the ESE. S-SSW
winds reaching speeds of 10–20 m·s−1 are associated with typical storm event conditions,
occurring when low-pressure systems move along a SW-NE trajectory [6].
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Figure 1. (A) Study area with overlaid bathymetry. (B) Location of the study area, Bay of Cadiz,
Andalusia, Spain (C) A wave rose diagram of the significant wave height for a directional wave buoy.

The coastline stretching from the mouth of the Guadalquivir River to the Bay of Cadiz
is one of the areas with the highest density of shipwrecks in the world owing to the presence
of maritime trade routes since ancient times and the navigational hazards characteristic of
this zone. The great archeological significance of Cadiz Bay drove their inclusion under the
figure of maximum archeological protection of Andalusia in 2008 (BOJA nº48 of 03/10/2008,
Resolution of 17 January 2008).

2. Methods
The proposed methodology for assessing the impact of climate change on the risk

of UCH due to wave-induced hazards is structured into four phases (Figure 2). To better
assess the temporal evolution of the risk, three time slices are considered: the baseline
(1981–2005), the mid-century period (2036–2060), and the end-of-century (2075–2099) pe-
riod. For each of these time slices, we create two climate change scenarios corresponding
to the Representative Concentration Pathways (RCPs) defined in the Fifth Assessment
Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC): RCP4.5 and
RCP8.5. RCP4.5 represents a moderate emission mitigation scenario, while RCP8.5 reflects
a high-end, business-as-usual scenario.
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UCH risk due to wave-induced hazards.

In the first phase, time series of wave parameters and mean global sea level rise are
extracted from the output of different global climate models corresponding to the historical
runs and RCP4.5 and RCP8.5 climate change scenarios [31]. The second phase involves the
treatment of RCP4.5 and RCP8.5 wave projections. This includes applying bias correction
procedure, followed by propagating the bias-corrected wave field into shallow coastal
waters using the hybrid downscaling method while considering sea level perturbation
(tide + SLR). In the third phase, a risk assessment is performed for each of the considered
hazards: decontextualization, scouring, and wear erosion. Finally, an ensemble mean is
calculated using the variables and indices obtained for each of the global climate models,
and the impacts of climate change on the risk are analyzed.

2.1. Datasets Collection
Wave Data and Sea Level Rise Projections

The historical wave data used in this study are detailed in Table 1. Given the temporal
limitation of available data at the coastal buoy of Cadiz (6.33◦ W, 36.50◦ N, 21 m water
depth), the buoy data are used to correct the longer timeseries from Med-Wav reanalysis [32]
(maintained and distributed by the Copernicus Marine Service). The corrected Med-Wav
reanalysis is then utilized for bias adjustment of the global climate model wave projection
data (Table 2).

Table 1. Summary of wave data.

Name of Product Spatial Resolution Temporal Resolution Available Period Obser-Model Bias Adjust Institution

Coastal buoy
of Cadiz - 3 h (1996–1997)/

1 h (1998–2014)

Scalar data: 1996–2019;
directional data:

2001–2014
Obser. none Puertos del Estado

SIMAR 2.8 km 1 h From 13-12-2005 to
the present Model none Puertos del Estado

MEDSEA-Wav ~4.6 km (1/24◦) 1 h 1993–2016 Model EQM by buoy Copernicus Marine
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Table 2. Wave and sea level rise projections. The table includes spatial and temporal atmospheric
resolution, bias adjust applied, and affiliated institution.

Model Atm. Spatial
Resolution

Atm. Temporal
Resolution Bias Adjust Institution

ACCESS 1.0 1.25◦ × 1.9◦, L38 3 h EQM by MEDSEA-WAVE CSIRO and Bureau of Meteorology

CSIRO-Mk3.6.0 1.9◦ × 1.9◦, L18 6 h EQM by MEDSEA-WAVE CSIRO, Industrial Research
Organization & QCCCE

EC-EARTH 1.1◦ × 1.1◦, L62 3 h EQM by MEDSEA-WAVE EC-EARTH consortium

GFDL-ESM2G 2◦ × 2.5◦, L48 3 h EQM by MEDSEA-WAVE NOAA Geophysical Fluid
Dynamics Laboratory

GFDL-ESM2M 2◦ × 2.5◦, L48 3 h EQM by MEDSEA-WAVE NOAA Geophysical Fluid
Dynamics Laboratory

The SIMAR reanalysis dataset (provided by Puertos del Estado) is used to validate
the wave propagation methodology to shallow waters (downscaling) in the study area.
The SIMAR dataset was generated by concatenating two simulated datasets, SIMAR-44
and WANA. To model wave fields over time, two third-generation models, WAM and
WaveWatch III, are used with a nested grid scheme. These models are fed with wind
data obtained from the HARMONIE-AROME mesoscale model provided by the State
Meteorological Agency (AEMET, Spain). First, SIMAR point data (315047108) are used
to propagate the wave time series into the Bay of Cadiz. The propagated wave field is
then validated using data from SIMAR points located in intermediate waters at eight
different locations within the study area (see Figure 1A). The validation period from
13 December 2005 to 1 May 2003 was selected based on the availability of SIMAR data.

The global wave projection data used in this study (Table 2) were generated using
the spectral wave model WaveWatch III (version 4.18, [33]) forced by 10 m wind extracted
from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models ACCESS 1.0
(CSIRO-BOM, Australia), CSIRO-Mk3.6.0 (CSIRO-QCCCE, Australia), EC-EARTH (EC-
EARTH consortium), GFDL-ESM2G, and GFDL-ESM2M (NOAA Geophysical Fluid Dy-
namics Laboratory USA). These models attain a horizontal resolution of 0.5◦ and a temporal
resolution of 6 h [23]. The selection of these models is based on their high performance in
reproducing synoptic situations and inter-annual variability across Europe [34]. CMIP5
models have a typical resolution of around 1◦, which means they do not resolve tropical
cyclones and poorly represent midlatitude storms [35].

In our analysis, sea level perturbation considers both tides and mean sea level. In CMIP
models, ocean dynamic sea level (DSL) is diagnosed as ZOS [36]. However, DSL simulations
from global climate models (GCMs) do not include the effect of sea level pressure on sea
level (inverted barometer effect). ZOS varies locally due to ocean circulation and horizontal
gradients, with its global mean being zero at every time step. As a result, ZOS excludes
global mean sea level rise (GMSLR). The mean sea level, due to thermal expansion, changes
in salinity affecting density, and water flows from the atmosphere, land, and glaciers, while
always maintaining a constant total volume, is represented by ZOSGA. For this reason,
as an approximation to sea level, we use the “adjusted ZOS,” which is the sum of ZOS
and ZOSGA. These variables were retrieved from the Earth System Grid (ESG) for the five
global models previously mentioned. For the CSIRO-Mk360 model, ZOSTOGA (global
mean thermosteric sea level rise; GMTSLR) is used instead of ZOSGA. Meanwhile, for the
EC-EARTH model, only ZOS data are available. These are monthly data, so we interpolate
them every 6 h and incorporate the tidal effect in order to later integrate them into the
reconstruction of wave patterns within the bay. Furthermore, by using 3 h and 6 h wind
fields to force wave models, much of the high-frequency nature of the wind climate is not
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captured, which could lead to substantial errors when estimating the wave energy resource
in a region [37].

2.2. Wave Climate Reconstruction

Global wave models are the most comprehensive tools available for simulating past
and future wave climate on a global scale. However, they are unable to accurately simulate
wave transformation processes in intermediate and shallow waters due to their limited
spatial resolution. This limitation prevents the proper representation of bathymetric and
coastal features, leading to systematic biases in the coastal zone.

2.2.1. Bias Adjustment of Global Wave Model

To mitigate these uncertainties, outputs from global wave models are corrected in
two stages using wave buoy measurement and high-resolution wave reanalysis data (Med-
WAV), involving both scalar and directional corrections. Since directional data from the
buoy are limited and only available from 2001 onwards, we are unable to use directly
observational data to correct the data from the global wave model, so the correction process
is performed in two phases. First, the observational data (1983–2014) are used for the
correction of the Med-WAV reanalysis at the location closest to the coastal buoy of Cadiz.
Subsequently, in a second phase, the corrected Med-WAV model output (1993–2005) is used
to adjust the bias in the global wave projections. The correction in both phases involves a
scalar correction using the Empirical Quantile Mapping (EQM) method to address biases
across different quantiles [38]. Subsequently, directional adjustment is carried out by
dividing wave directions into 22.5◦ sectors. Within each sector, the difference between
the mean directions of Med-WAV and global wave projections is calculated and applied
as a correction [39]. The bias adjustment process is applied to the entire analysis period
(baseline: 1981–2005; projections: 2006–2099), assuming that model biases and correction
functions remain stationary over time.

2.2.2. Hybrid Downscaling

The adjusted global wave model time series are downscaled from deep water to
shallow water using the hybrid downscaling methodology proposed by Camus et al. [40].
This approach combines a numerical wave model with statistical techniques and involves
selecting a limited number of cases, within the range of 189 to 254 cases, based on the slide
period and model. These cases ensure a proper representation of the possible sea states
through bulk wave parameters (Hs, Tp, and Dir) and sea level (SL) in deep waters using
a maximum dissimilarity selection algorithm. SL accounts for the tide and sea level rise
associated with each period and model.

The selected sea states are propagated in the Bay of Cadiz using the third-generation
wave model SWAN (“Simulating Waves Nearshore”; [41]). The spatial domain is dis-
cretized in a regular mesh with 37.5 m resolution. The mesh resolution is selected to
balance the computational cost and the accurate representation of the bathymetric fea-
tures (i.e., rocky outcrops, rocky shoals, and navigation channels) in the study area. We
employ 36 directional bins (∆θ = 10◦) and 24 frequencies, with logarithmic spacing from
0.05 to 1.00 Hz. The range of the frequency is representative of the wave condition mea-
sured in the study area provided by the wave buoy used for the correction of MEDSEA-
WAV reanalysis (2001–2014), where most of the data exhibit peak periods shorter than 20 s
(see Figure 1 and [7]). The Battjes and Janssen [42] formula represents the depth-limited
wave breaking. Then, the time series of the parameters of the propagated sea states are
reconstructed at each node of the grid using an interpolation technique based on radial
basis functions [40].
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The effectiveness and accuracy of the EQM correction procedure and the wave propaga-
tion method are evaluated according to the following statistical indicators for scalar quantities:

• The correlation coefficient ro = ∑N
i=1

(
Si − S

)(
Ri − R

)
/σSσR, where N denotes the

number of data, Si and Ri are simulations and reference data, σS and σR are their
corresponding standard deviations, and the over bar denotes time averaging.

• The symmetrically normalized root mean square error, HH, introduced by Hanna and

Heinold [43], HH =
√

∑N
i=1 (S i − Ri)2/∑(SiRi). This indicator combines information

on the components of average error and dispersion and is characterized by not being
biased towards simulations that underestimate the average [44].

• The root mean square error (RMSE), RMSE =

√
1
N

[
∑N

i=1(Si − Ri

)
)]2.

• The normalized root mean square error (NRMSE):

NRMSE =

√
∑N

i=1 (S i − Ri)2

∑N
i=1(Ri)2

• The bias (BIAS), BIAS = S − R.
• The normalized bias (NBI), NBI= ∑N

i=1 (S i − Ri)/∑N
i=1 (R i).

• The scatter index (SI), SI =
√

1
N

[
∑N

i=1 (S i−S
)(

Ri − R
)
]2/R2

i .

For the circular direction (θ), the normalized bias (NBIθ) and the normalized root
mean square error (NRMSEθ) are normalized by employing a 2π radians angle [45]:

• NRMSEθ =

√
∑N

i=1 mod−π,π

(
θSi−θRi)]

2/N
2π

• NBIASθ= ∑N
i=1 mod−π,π(θSi − θRi

)
/2πN where the modulo operator mod-π, π in-

dicates that if (θSi − θOi) > π, a 2π angle is subtracted from the difference, and if
(θSi − θOi) < −π, a 2 π angle is added to the difference.

The skill scores are computed for the whole time series but also for the upper tail
(>99th) in order to specifically evaluate the capability of the global wave model and
downscaling methods to reproduce extreme wave conditions because of their large potential
to damage UCH.

2.2.3. Bathymetry and Sediment Characterization

The bathymetry and seabed slope required for wave modeling were derived from
multibeam echosounder data obtained during a comprehensive eco-cartographic study
conducted in 2011 [46]. Additionally, seafloor mapping using multibeam backscatter
data allowed for the classification of seafloor types, distinguishing between rocky and
unconsolidated sediments. Sediment grain size was determined using 460 samples collected
using a Van Veen grab.

2.2.4. Archeological Datasets

The archeological database, compiled by Fernández-Montblanc et al. [7], provides
information about the main characteristics of UCH sites. This dataset includes attributes
such as provenance and chronology; material composition (organized into five categories:
metallic, stone, glass, ceramic, and wood/organic materials) and dominant material; meta-
data, including data source; and basic environmental characteristics of the sites, such depth
and seabed type (when available). The archeological database comprises 56 sites of different
chronologies spanning from 500 BC to AD 1820.
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2.3. Risk Assessment

The risk assessment methodology evaluates UCH vulnerability to wave-induced
hazards by calculating a risk index specific to each archeological site [7]. Each UCH site is
treated as an asset susceptible to wave-induced damage.

The risk index is calculated as a function of vulnerability (determined by archeological
materials, seabed slope, and type) and hazard. The analysis focuses on three primary
wave-induced hazards that influence the long-term preservation of UCH: archeological
decontextualization (DCR), scouring (SC), and erosive wear (EW). Each of these hazards is
assessed independently without considering interactions between them. A response-based
approach [47] is used, where hazard probability is directly calculated without presupposing
underlying drivers or governing variables.

An indicator is defined for each hazard, and its assessment follows three sequential
steps [48,49]. First, the time series of the hazard indicator are calculated based on the
depth, seabed, grain size, wave characteristics, and sea level perturbation (tide + sea level
rise). Second, extreme hazard probabilities are modeled using a transformed-stationary
methodology. In this case, storm events are decluttered using a 72 h time window, and
a constant threshold (97th percentile) is applied to select extreme events. The selected
extreme events are fitted to a generalized Pareto distribution (see [50] for further details).
For the case of archeological decontextualization and scour hazard, values corresponding
to a 10-year return period are used as intermediate values in the extreme distribution.
However, for the case of erosive wear hazard, a 1-year return period is selected to account
for the continuous impact of wear on UCH materials. This reflects the high-frequency,
cumulative damage of wear rather than isolated extreme events. Hazard indicators for
each return period are ranked, and hazard scores (0 to 5) are assigned (see Table 3).

Table 3. Hazard indicator scores for decontextualization, scouring, and wear erosion.

Critical Size of
Decontextualized Object,

DCR (m) RT10

Scouring
Volume,

SV (m3) RT10

Erosive Wear
Potential,

EWP (J/m3) RT1
Scores Level of

Hazard

Dcr < 0.02 SV < 0.05 −20 ≥ EWP < −18 0 None
0.02 ≥ Dcr < 0.04 0.05 ≥ SV < 0.1 −18 ≥ EWP <−16 1 Low
0.04 ≥ Dcr < 0.08 0.1 ≥ SV < 0.15 −16 ≥ EWP < −13.5 2 Low/medium
0.08 ≥ Dcr < 0.12 0.15 ≥ SV <0.3 −13.5 ≥ EWP < −12.5 3 High/medium
0.12 ≥ Dcr < 0.16 0.3 ≥ SV < 0.4 −12.5 ≥ EWP < −11.5 4 High

Dcr ≥ 0.16 SV ≥ 0.4 EWP ≥ −11.5 5 Very high

RT10 corresponds to the value of a 10-year return period and RT1 to a 1-year return period.

Given the limited amount of information about UCH sites, we assume that all of them
have the same exposure value. The risk index is calculated as the geometric square root
of the product of the hazard and the vulnerability scores [48,51]. The vulnerability index
ranges from 1 to 5 and is determined by the material composition of the UCH site and the
specific hazard considered (refer to Table 4).

UCHrisk =
√

Hazard·Vulnerability (1)

Table 4. Vulnerability scores in common material in underwater cultural heritage sites for decontex-
tualization, scouring, and wear erosion hazard.

Material Category Material Type Vulnerability Score

Metallic Gray iron 1
Stone Marble 2

Decontextualization Glass Glass 3
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Table 4. Cont.

Material Category Material Type Vulnerability Score

Ceramics Coarse ware 4
Wood/organic material Oak 5

Glass Glass 1
Metallic Gray iron 2

Scouring Ceramics Coarse ware 3
Stone Marble 4

Wood/organic material Oak 5
Stone Marble 1

Metallic Gray iron 2
Wear erosion Ceramics Coarse ware 3

Glass Glass 4
Wood/organic material Oak 5

Sites are classified as “at risk” when UCHRisk > 3.2, a threshold derived as the rounded
geometric mean of “low” (2) and “very high” (5) classes. Higher UCHRisk values indicate a
combination of medium to very high vulnerability and hazard classes.

2.4. Wave Energy Flux

Wave energy flux (WEF) serves as comprehensive indicator of wave climate within
the study area.

To account for water depth effects, the WEF calculation follows the methodology
outlined by Liang et al. [52]:

WEF =
πρghH2

s
16Te

[
1 +

2kh
sinh(2kh)

]
(2)

where ρ is the water density, g is the gravitational acceleration, h is the water depth taking
into account the sea level perturbation (tide and sea level rise), and Hs and Te are the
significant wave height and energy period, respectively, where Te can be approximated as
Te = Tp. Tp denotes the peak period, while k = 2π/L represents the wave number, and L is
the wavelength. An extreme value analysis of the WEF time series is conducted for each
grid node using the methodology in Section 2.3, focusing on a 10-year return period.

2.5. Variations in WEF and UCH Risk Induced by Climate Change

From the 5-member model ensemble, and for each considered period and scenario,
we calculate the ensemble mean and standard deviation of WEF, hazard indices, and risk.

Model agreement is evaluated based on the coefficient of variation (CV) [53–55]. The
CV is defined as the ratio of the standard deviation of the model ensemble, σ, to the
ensemble mean value:

CV =
σα

α
(3)

where σα is the standard deviation of the model ensemble and α is the ensemble mean. CV
decreases as intra-model variability becomes a smaller fraction of the ensemble mean value,
implying greater agreement among models and statistical significance of the ensemble mean
value. To reduce uncertainty, values with |CV| > 0.8 are not considered, corresponding
approximately to an average agreement of four out of five models (i.e., 80% probability).
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Finally, WEF or UCHrisk variation induced by climate change is assessed by means of ab-
solute changes (∆α) for each period (mid-century and end-of-century periods) corresponding
to the RCP 4.5 and RCP 8.5 scenarios (αRCP) with respect to baseline values (αbaseline):

∆α = αRCP − αbaseline (4)

3. Results
3.1. Wave Climate
3.1.1. EQM Correction

Global wave model outputs, with and without correction, were compared with cor-
rected Med-WAV (Figure 3). The uncorrected global models underestimate significant wave
height (Hs) values and extreme Hs values. This is particularly noticeable for ACCESS 1.0,
GFDL-ESM2G, and GFDL-ESM2M (Figure 3A,D,E; also, see Table S1 in SM) where the
EQM largely improves the Hs NBI index. CSIRO-Mk3.6.0 and EC-EARTH show better
performance (HH ~0.8; Table S1 in SM) with an EQM improvement of ~5% in HH.
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Figure 3. Q-Q plot of significant wave height (Hs) (A–E) peak period (Tp) (F–J). Polar plot for wave
heights exceeding 99th percentile (K–O). Uncorrected global wave model (red), corrected global wave
model (blue), and Med-WAV reanalysis (black) are represented.

The uncorrected global wave model outputs overestimate, in general, the peak period
(Tp) (NRMSE ~0.6), with EQM correction improving ~10% for CSIRO-Mk3.6.0 and EC-
EARTH models (Figure 3G,H) and ~18% for the rest of the models (Figure 3F,I,J).

For the case of wave directions with an Hs greater than or equal to the 99th per-
centile (P99), the uncorrected models show a deviation of approximately 25◦ (NRMSEθ ~39◦;
Figure 3K,L,N,O). After applying the EQM correction, this improves by 63% (NRMSEθ ~ 20◦),
except for the case of EC-EARTH, where the bias increases by 66% (Figure 3M). Overall, in
the study area, EC-EARTH and CSIRO-Mk3.6.0 show the best agreement with the Med-WAV
reanalysis, both with and without correction. Specifically, CSIRO shows better alignment for
Hs, especially for extreme values. On the other hand, EC-EARTH performs better in capturing
extreme Tp values compared to the other models. Regarding wave direction, EC-EARTH
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shows the best agreement among the uncorrected models. However, after applying the EQM
correction, CSIRO achieves the most accurate alignment with the observed data.

3.1.2. The Validation of the Wave Propagation Method

This section summarizes the performance of the wave propagation method to re-
produce average and extreme wave conditions (>99th). This step is crucial for reducing
the uncertainties associated with global models, which do not accurately represent wave
transformation processes in intermediate and shallow waters due to their limited spatial res-
olution. Due to the lack of observational data within the bay, SIMAR points were selected to
assess the model’s performance within the bay. SIMAR reanalysis was selected as the best
alternative due to its wide spatial distribution in the region, good temporal coverage, and
frequent use in wave studies conducted across the Iberian Peninsula (e.g., [56,57]). Table 5
shows the average values of skill scores for Hs, Tp, and Dir calculated in the eight SIMAR
locations in the Bay of Cadiz. The validation indicates a good performance, especially for
extreme wave conditions, for Hs (ro = 0.95; HH = 0.07) and Tp (ro = 0.82; HH = 0.18). The
biases related to Hs are practically zero, while Tp is generally affected by a negative bias.
However, the results are quite adequate. The wave direction shows also good agreement,
although performance worsens in extreme events.

Table 5. Statistical scores for mean and extreme significant wave height, peak period, and mean
direction between propagated series and SIMAR points.

ro HH NRMSE NBI

Hs (m) 0.96 0.18 0.18 0.05
P99 Hs 0.95 0.07 0.07 −0.02
Tp (s) 0.82 0.28 0.26 −0.14

P99 Tp (s) 0.83 0.18 0.17 −0.11
Dir (◦) - - 2.60 −1.72

P99 Dir (◦) - - 13.42 38.39

3.2. Changes in WEF
Scalar and Direction Climate

The WEF associated with a 10-year return period (RT10) shows maxima (around
15 × 104 Wm−1) in the outer domain and by the rocky outcrops outside the bay. Minima
appear by the coast, where shallow depths and the wave breaking limit reduce the WEF,
and inside the bay due to the protective effect of the Cadiz tombolo against wave front
propagation (Figure 4A). Under RCP4.5, the WEF associated with RT10 shows a general
decrease, slightly increasing only by some coastal stretches, over rocky outcrops and inside
the bay (Figure 4B,C). The general WEF decrease is weaker in the end-of-century period
than in the mid-century period as a result of the larger SLR. The mid-century RCP8.5 WEF
change pattern replicates that of the RCP4.5 WEF, but with a weaker general decrease and
slightly larger increments located in the shallower areas (Figure 4E). By the end-of-century
period in RCP8.5, there is a general WEF increase, with maxima located at shallow waters
and rocky outcrops (Figure 4F). Additionally, a southward shift in the WEF direction is
evident in all cases except for RCP4.5 in the mid-future period.
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Figure 4. (A) The wave energy flux corresponding to the 10-year return period and the mean direction
associated with the 99th percentile or greater of the WEF (black arrow). The absolute change and
mean direction associated with the 99th percentile of the WEF for each simulation (red arrow): (B) the
2036–2060 period of the RCP 4.5 scenario, (C) the 2075–2099 period of the RCP 4.5 scenario, (E) the
2036–2060 period of the RCP 8.5 scenario, and (F) the 2075–2099 period of the RCP 8.5 scenario. The
sea level rise (SLR) for each period is shown in the bottom left corner and represents the average
increase calculated from the five global models used. (D) The mean direction associated with the
99th percentile or greater of the WEF for the historical period (black arrow), the end-of-century
period of the RCP 4.5 scenario (blue arrow), and the end-of-century period of the RCP 8.5 scenario
(red arrow).

Such a direction shift also takes place for the most energetic waves. Figure 4D shows
the average of the directions of the extreme waves (>99th) for the historical period and for
the end-of-century period in the RCP 4.5 and RCP 8.5 scenarios. While the most energetic
waves impact the bay from the west (ca. 263◦) during the historical period, they come
from 250◦ in the RCP 4.5 scenario and from 240◦ in RCP 8.5. This change in the direction
of incident waves in the bay leads to an alteration in their propagation within the Bay of
Cadiz, resulting in a greater impact on the areas of Rota, Cadiz, and the surrounding areas.

To determine how the increase in sea level affects wave propagation, the method-
ology is repeated without considering the SLR (Figure 5). These results show a larger
WEF decrease than when considering SLR, which is particularly notable over the shallow
coastal areas and rocky outcrops, where the depth increase due to SLR makes a substantial
contribution to the WEF.
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object (we assume sphericity) susceptible to be displaced due to wave action over a 10-
year return period (Figure 6). All projections present a slight general reduction in the 
value of DCR, except for the bay’s interior and shallower areas, where local significant 
increases (up to 25%) are observed compared to the historical period. This result aligns 
with the projected general reduction in the WEF and its local increase in shallower areas. 
In shallow areas, the wave-induced bottom stress is larger, but as wave orbital velocity 
strongly attenuates with an increasing depth (Figure S1), DCR is reduced throughout the 
rest of the bay. The mid-century RCP4.5 and the end-of-century RCP8.5 scenarios exhibit 
the most substantial hazard changes. However, the result of these changes reflects only as 
a decrease in the bay area under a hazard score of 3 and an increase in the bay area as a 

Figure 5. The absolute changes in wave energy flux (WEF) with and without sea level rise are shown
for the following: (A) the 2036–2060 period of the RCP 4.5 scenario, (B) the 2075–2099 period of the
RCP 4.5 scenario, (C) the 2036–2060 period of the RCP8.5 scenario, and (D) the 2075–2099 period of
the RCP 8.5 scenario. The mean direction associated with the 99th percentile or greater of the WEF for
the historical period (black arrow) is shown with sea level rise (red arrow) and without SLR (orange
arrow) projections.

3.3. Hazard Assessment
3.3.1. Decontextualization Hazard

We relate decontextualization hazard (DCR) to the maximum critical diameter of an
object (we assume sphericity) susceptible to be displaced due to wave action over a 10-year
return period (Figure 6). All projections present a slight general reduction in the value of
DCR, except for the bay’s interior and shallower areas, where local significant increases (up
to 25%) are observed compared to the historical period. This result aligns with the projected
general reduction in the WEF and its local increase in shallower areas. In shallow areas,
the wave-induced bottom stress is larger, but as wave orbital velocity strongly attenuates
with an increasing depth (Figure S1), DCR is reduced throughout the rest of the bay. The
mid-century RCP4.5 and the end-of-century RCP8.5 scenarios exhibit the most substantial
hazard changes. However, the result of these changes reflects only as a decrease in the
bay area under a hazard score of 3 and an increase in the bay area as a hazard score of 2.
The percentages of the bay area classified as high and very high hazards (scores of 4 and 5;
Figure 6D) remain nearly unchanged.
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sponding to a 10-year return period (Figure 7). In general, no significant changes in the 
scouring hazard are observed in the Bay of Cadiz for all the scenarios and periods consid-
ered. However, locally significant variations are identified in the shallower areas of the 
bay (less than 5 m) and in some rocky outcrops, such as those located off Rota and Cadiz. 
In these areas, the RCP 4.5 scenario for the mid-century period and the RCP 8.5 scenario 
for the end-of-century period show mostly positive anomalies, while the RCP 4.5 scenario 
for the end-of-century period and the RCP 8.5 scenario for the mid-century period exhibit 
mostly negative anomalies. These changes result in an increase in the percentage of the 
bay area classified as a high hazard level (4), accompanied by a decrease in the very high 
hazard level (5; Figure 7D). The percentage change is very similar across all periods; how-
ever, it is at the end of the century for the RCP 4.5 scenario where the greatest reduction 
in the percentage of the bay area classified as having a very high hazard level is observed. 

Figure 6. (A) A map of decontextualization hazard (the critical diameter of an object moved under
wave action) for the historical period. The absolute change in this hazard for (B) the 2036–2060 period
of the RCP 4.5 scenario, (C) the 2075–2099 period of the RCP 4.5 scenario, (E) the 2036–2060 period
of the RCP 8.5 scenario, and (F) the 2075–2099 period of the RCP 8.5 scenario compared with the
historical period. The black points indicate the locations of UCH sites. (D) A histogram of the hazard
at UCH sites and hazard classes. The sea level rise (SLR) for each period is shown in the bottom left
corner and represents the average increase calculated from the five global models used.

3.3.2. Scour Hazard

The scour hazard indicator is represented by the potential volume of scouring cor-
responding to a 10-year return period (Figure 7). In general, no significant changes in
the scouring hazard are observed in the Bay of Cadiz for all the scenarios and periods
considered. However, locally significant variations are identified in the shallower areas of
the bay (less than 5 m) and in some rocky outcrops, such as those located off Rota and Cadiz.
In these areas, the RCP 4.5 scenario for the mid-century period and the RCP 8.5 scenario
for the end-of-century period show mostly positive anomalies, while the RCP 4.5 scenario
for the end-of-century period and the RCP 8.5 scenario for the mid-century period exhibit
mostly negative anomalies. These changes result in an increase in the percentage of the bay
area classified as a high hazard level (4), accompanied by a decrease in the very high hazard
level (5; Figure 7D). The percentage change is very similar across all periods; however, it
is at the end of the century for the RCP 4.5 scenario where the greatest reduction in the
percentage of the bay area classified as having a very high hazard level is observed.
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3.3.3. Wear Erosion Hazard 

The indicator erosive wear hazard is analyzed by means of the erosion potential (Fig-
ure 8). This hazard exhibits the most significant future changes compared to the historical 
period. The changes for both scenarios are predominantly positive, indicating an increase 
in the magnitude of the hazard. These changes are more intense near the southern en-
trance of the bay, where most UCH sites are located. However, significant negative anom-
alies are also recorded at the rocky outcrops off the city of Cadiz, being more pronounced 
in the RCP 8.5 scenario, particularly towards the end of the century. As a result, there is 
an increase in the percentage of the bay area that will be affected by a very high hazard 
level (5) for erosive wear hazard (Figure 8D). 

Figure 7. (A) A map of the scour hazard (scour volume) for the historical period. The absolute change
in this hazard for (B) the 2036–2060 period of the RCP 4.5 scenario, (C) the 2075–2099 period of the
RCP 4.5 scenario, (E) the 2036–2060 period of the RCP 8.5 scenario, and (F) the 2075–2099 period of
the RCP 8.5 scenario compared with the historical period. The black points indicate the locations of
UCH sites. (D) A histogram of the hazard at UCH sites and hazard classes. The sea level rise (SLR)
for each period is shown in the bottom left corner and represents the average increase calculated
from the five global models used.

3.3.3. Wear Erosion Hazard

The indicator erosive wear hazard is analyzed by means of the erosion potential
(Figure 8). This hazard exhibits the most significant future changes compared to the
historical period. The changes for both scenarios are predominantly positive, indicating
an increase in the magnitude of the hazard. These changes are more intense near the
southern entrance of the bay, where most UCH sites are located. However, significant
negative anomalies are also recorded at the rocky outcrops off the city of Cadiz, being more
pronounced in the RCP 8.5 scenario, particularly towards the end of the century. As a result,
there is an increase in the percentage of the bay area that will be affected by a very high
hazard level (5) for erosive wear hazard (Figure 8D).
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values associated with erosion wear. In the historical period, the distribution of risks is 
skewed towards low values for UCHRDE, centered near 3.2 for UCHSC, and it presents a 
bimodal distribution with a narrow peak at 3.8 for UCHWE. In the future scenarios, the 
number of UCH sites at risk (>3.2) remains unchanged for the risks of decontextualization 
and scouring. However, for wear erosion under the RCP 4.5 scenario, the number of sites 
at risk increases from 21 to 23 at the mid-century period and to 22 at the end of the century 
(Figure 10). The sites turning under risk are located at the rocky outcrops off the city of 
Cadiz and are related to strong and very local changes in erosion wear hazard (see Figure 
8). 

Figure 8. (A) A map of the erosive wear hazard (log of erosive wear potential) for the historical
period. The absolute change in this hazard for (B) the 2036–2060 period of the RCP 4.5 scenario,
(C) the 2075–2099 period of the RCP 4.5 scenario, (E) the 2036–2060 period of the RCP 8.5 scenario,
and (F) the 2075–2099 period of the RCP 8.5 scenario compared with the historical period. The black
points indicate the locations of UCH sites. (D) A histogram of the hazard at UCH sites and hazard
classes. The sea level rise (SLR) for each period is shown in the bottom left corner and represents the
average increase calculated from the five global models used.

3.4. UCH Risk Assessment

Figure 9 shows the underwater cultural heritage risks (UCHRs) at the studied sites
in the Bay of Cadiz. During the historical period, there are 7 UCH sites under decontex-
tualization risk, 19 under scour risk, and 21 under wear erosion risk (UCHRDE, UCHRSC,
and UCHREW > 3.2). The sites under risk are mainly located around the city of Cadiz, with
the exception of two located by the eastern coast of the Bay of Cadiz (Valdelagrana). In
general, the sites present lower risk values associated with decontextualization and larger
risk values associated with erosion wear. In the historical period, the distribution of risks
is skewed towards low values for UCHRDE, centered near 3.2 for UCHSC, and it presents
a bimodal distribution with a narrow peak at 3.8 for UCHWE. In the future scenarios, the
number of UCH sites at risk (>3.2) remains unchanged for the risks of decontextualization
and scouring. However, for wear erosion under the RCP 4.5 scenario, the number of sites
at risk increases from 21 to 23 at the mid-century period and to 22 at the end of the century
(Figure 10). The sites turning under risk are located at the rocky outcrops off the city of
Cadiz and are related to strong and very local changes in erosion wear hazard (see Figure 8).
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Figure 10. The erosive wear risk (UCHREW) for UCH sites located in the Bay of Cadiz. The abso-
lute change for (A) the 2036–2060 period of the RCP 4.5 scenario, (B) the 2075–2099 period of the
RCP 4.5 scenario, (C) the 2036–2060 period of the RCP 8.5 scenario, and (D) the 2075–2099 period of the
RCP 8.5 scenario compared with the historical period. The sea level rise (SLR) for each period is shown
in the bottom left corner and represents the average increase calculated from the five global models used.
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4. Discussion
This study outlines a methodology to evaluate the impacts of climate change on UCH

through wave-induced hazards. It is based on a hybrid downscaling [33] of the bias-
corrected wave fields [31,32] corresponding to the CMIP5 RCP4.5 and RCP8.5 scenarios.
Both scenarios show a robust reduction in significant wave height in the North Atlantic
(see also Wang et al. [58] and Lemos et al. [59]). However, most UCH is placed in shallow
coastal areas, where the wave fields will be affected by shallow water processes, coastline
orientation and bathymetric relief, and by the concurrent SLR; therefore, downscaling the
global wave fields is necessary. Our results show that the use of the EQM method and
the directional adjustment improved the global wave model outputs (see Table S1). This
correction is key for obtaining accurate high-resolution wave propagated fields. This is
corroborated by the validation of the wave downscaled fields against SIMAR reanalysis
points (Table 3). The validation presented very good results for both mean wave climate
and for extreme P99 waves.

Changes in the future WEF are the result of the combination of changes in projected
significant wave height, energy (~peak) period, and depth changes (Equation (2)). As
changes in peak period are small, the resulting WEF changes result from the opposite
contribution of significant wave height diminution and sea level rise. The result is a general
reduction in the WEF in the Bay of Cadiz, with local increases in shallow rocky outcrops
and coastal areas, where the depth increase by SLR allows for the higher waves to appear
without breaking. These results are consistent with the findings of Aarns et al. [25] and
Chaigneau et al. [28], who demonstrated that changes in depth induced by sea level rise
can lead to higher wave amplitudes near the coast. The impact of sea level variations is
substantially more important on extreme significant wave heights over the wide continental
shelf where shallow water dynamics prevail, particularly in large tidal range areas [28].
However, our results show the important contribution of SLR to changes in the WEF in
a mesotidal bay (see Figure 5). This demonstrates that accurate high-resolution wave
propagation fields enable better capture of the nonlinear interactions between sea level and
waves. Additionally, there is a shift in the direction of incident waves, increasing the wave
exposure in certain areas of Cadiz and Rota. Along with these changes in the WEF, there is
a reduction in wave orbital velocity (Figure S1; increased depth and decreased Hs), which
is a fundamental parameter for UCH risk assessment, either by direct impact of orbital
velocity on object decontextualization or scour and wear erosion impact.

Our assessment of the impact of wave climate changes on UCH hazards shows limited
consequences. For decontextualization and scour hazard, the changes in the critical diame-
ter of the moved object and in scour volume are, in general, small. There are considerable
changes only in those locations (shallows and coastal areas), where the hazard indicators
already had maximum values and had very high hazard levels (>0.16 m and > 0.4 m3

for decontextualization and scour indicators, respectively (Table 3; Fernández-Montblanc
et al. [7])). Therefore, it is not surprising that remarkable increases, such as the 0.2 m in-
crease in the decontextualization hazard indicator, have no clear impact on the distribution
of hazard levels within the bay. Indeed, there is a strong sensitivity of the hazard change
assessment to the definition of the hazard level classes.

Hazard and vulnerability thresholds are mainly determined through the likelihood of
exceeding certain predefined thresholds [60] and active participation from local users and
stakeholders responsible for the management and conservation of cultural heritage [61,62].
The reliance on hazard categories based on historical data assumes that future conditions
will follow probability distributions similar to those of the past. However, climate change is
significantly altering these distributions, increasing the frequency and intensity of extreme
events, which shifts hazard thresholds toward higher categories. This could explain
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why there are not important changes in UCH risk under the considered climate change
scenarios; however, this does not imply that such changes are not occurring. The lack
of quantitative data on observed and projected impacts under different climate scenarios
limits the ability to establish acceptable risk thresholds and develop effective adaptation
and mitigation strategies [63].

The proposed methodology represents the first attempt, to our knowledge, for ad-
dressing UCH risk assessment for wave-induced hazards under climate change projections,
and it is not free of shortcomings and limitations. Some of the methodological limitations
related to the simplifications applied to hazard quantification are exposed in [7]. Here, it is
necessary to add the assumption used in the EQ bias correction that the wave parameter
distributions (period, height, and direction) will remain unchanged in the future. Clearly,
this may not be the case in real life, but it is the simplest and best choice we have. It is
important to note that our study did not include the contribution of storm surge to the
water level, as it was initially omitted due to the predominant influence of tides on the total
water level in the study area. Additionally, the lack of consideration for possible changes
in morphodynamic processes, such as those related to depth and the interaction between
waves and currents, represents a significant limitation in our analysis. It is crucial to rec-
ognize that the relative rise in sea level could be mitigated by sediment accommodation
depending on the sediment budget, which would have a substantial impact on coastal
dynamics. Furthermore, the impact of waves on sea level was not included; if this factor
was incorporated into the ocean model, it would result in a higher sea level, which, in turn,
would have a greater effect on wave propagation and the hazards affecting underwater
cultural heritage. For future research, it would be valuable to conduct a multiple-hazard
analysis to assess whether risky events occur simultaneously in a cascading or cumulative
manner over time. In risk assessment studies, multidisciplinary approaches and the use
of precise data are of utmost importance for managing the impacts of climate change
in coastal contexts [64]. Furthermore, the proposed methodology must be expanded to
other environmental factors influencing UCH preservation (i.e., water temperature, salinity,
and pH) to provide a holistic methodology to assess the evolution of the natural hazards
affecting the in situ preservation of UCH in the context of CC.

5. Conclusions
Future changes in sea levels and wave climate in coastal areas represent one of the

major threats to the preservation and conservation of underwater cultural heritage (UCH).
However, understanding how these changes will unfold in the long term and the associated
hazards remains a challenge due to the complexity and interaction between the processes
involved. In this study, we propose an innovative methodology to assess the risk to
UCH in shallow waters based on hybrid downscaling using an ensemble derived from
CMIP5 wave projections. This methodology applies downscaling to bias-corrected wave
fields corresponding to the RCP4.5 and RCP8.5 scenarios from CMIP5. The approach
focuses on the primary wave-induced hazards, considering their impact on the long-term
preservation of UCH: archeological decontextualization, scouring, and wear erosion. To
evaluate the effects of climate change, we compare the historical period (1981–2005) with
two future periods, the mid-century (2036–2060) and end-of-century (2075–2099) periods,
for both scenarios.

First, we present and validate the methodology for wave correction and propagation.
Our results show that the use of the EQM method and directional adjustment improved the
global wave model outputs, which is essential for obtaining high-resolution and accurate
propagated wave fields. Second, we assessed changes in wave climate, observing a general
reduction in the wave energy flux in the Bay of Cadiz, with local increases in rocky outcrops
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and coastal areas, where the increased depth due to SLR allows higher waves to appear
without breaking. This finding highlights the importance of high-resolution wave fields in
capturing the nonlinear interactions between sea level and waves. Additionally, a shift in
the direction of incident waves was identified, increasing wave exposure in certain areas of
Cadiz and Rota.

In the bay, a general reduction in wave orbital velocity is observed due to increased
depth and decreased significant wave height. This parameter is crucial for assessing UCH
risk, as most UCH sites lie on the seafloor. However, in shallow areas, where the highest
density of UCH is concentrated, significant changes in decontextualization and scouring
hazards are observed. The only relevant changes in risk (UCHrisk > 3.2) are associated
with wear erosion, particularly in the sites located on rocky outcrops off the city of Cadiz,
where local changes in this hazard are marked. However, the strict definitions of hazard
level classes, which shift thresholds toward higher categories, do not adequately reflect the
changes in hazard classes. This factor could explain why significant changes in UCH risk
are not observed under the considered climate change scenarios, although this does not
imply that such changes are not occurring.

In conclusion, this study emphasizes the importance of conducting local-scale studies
that incorporate the nonlinear interactions between sea level and waves in extreme wave
studies, as these interactions could lead to local trends in wave energy that are different
to those indicated in the global projections. This could result in variations in the impact
on UCH risk in specific areas. It is also crucial to consider the high sensitivity in defining
hazard level classes, as inadequate definitions may mask significant changes in UCH risk.
The obtained results offer the possibility to iteratively redefine the hazard level and/or
hazard classes accounting for future changes. The proposed methodology offers a tool
to perform a quantitative analysis on the impact of CC on UCH rather than the existing
state-of-the-art qualitative approach and method. The methodology developed in this
study therefore represents a crucial step toward a more accurate understanding and more
effective management of UCH risk in the face of climate change, an area that has been
relatively overlooked until now. This tool provides innovative approaches for decision
making in the protection and conservation of this invaluable heritage.
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