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Abstract 

A number of shipwreck archaeological sites worldwide have 
underlined the importance of shipwreck localization and detection. 
Accidents that led to sinking are one of the possible causes of those 
shipwrecks. The shipwreck of MV Bahuga Jaya, which is located in 
the Sunda Strait, Indonesia could be such an example. A multibeam 
swath survey is a suitable technique to map the wreck location since 
it can produce high-resolution Digital Elevation Model (DEM) and 
backscatter imagery. Both the analysis of the bathymetry DEM and 
backscatter use visual examination. However, morphometric 
analysis of the DEM and texture analysis of the backscatter, 
subsequently combined with the machine learning classification, 
could give a preferable result in shipwreck detection and monitoring. 
In this paper, slope analysis of DEM bathymetry and texture analysis 
of multibeam backscatter imagery are presented. Those first-order 
textural features are used to carry out a Support Vector Machine 
(SVM) classification to separate between the wreck and non-wreck 
objects. A combination of SVM classification and slope analysis is 
investigated to detect the wreck location. Following that, K-means 
clustering is also performed to obtain the seabed characterization. 
Results indicate that the combination of machine learning and 
morphometric analysis can give a promising outcome in shipwreck 
detection. In addition, the result of K-means clustering reveals that 
soft seabed is more dominant than the hard seabed in the study 
area with 56.4% and 43.6% respectively. This study could play a 
role as a complementary tool to monitor and manage the shipwreck 
archaeological site location. 

Keywords: archaeological site, wreck, multibeam backscatter, 
slope and texture analysis, SVM classification, K-means clustering, 
Indonesia 

Rezumat. Detectarea și caracterizarea unui sit 
arheologic cu epave în Strâmtoarea Sonde, Indonezia 

O serie de situri arheologice subacvatice din întreaga lume au 
evidențiat importanța localizării și detectării epavelor. Accidentele sunt 
o posibilă cauză a scufundării acestor nave. Naufragiul vasului MV 
Bahuga Jaya, situat în Strâmtoarea Sonde, Indonezia, ar putea fi un 
astfel de exemplu. Sondajul multi-fascicular reprezintă o tehnică 
adecvată pentru cartografierea locației epavei, deoarece poate 
produce un model digital (DEM) de înaltă rezoluție, cât și imagistică 
de radioreflectie. Pentru ambele se utilizează examinarea vizuală. Cu 
toate acestea, analiza morfometrică a DEM și analiza texturii obținute 
prin retrodifuzie, combinate ulterior cu clasificarea automată, ar putea 
oferi un rezultat mai bun în detectarea și monitorizarea epavelor. 
Lucrarea de față prezintă analiza pantelor pe baza batimetriei DEM și 
analizei texturii pe baza imaginilor de radioreflectie. Aceste 
caracteristici texturale de prim ordin sunt folosite pentru a efectua o 
clasificare SVM (Support Vector Machine), cu scopul de a distinge între 
epavă și elementele ce nu aparțin acesteia. Pentru a detecta locației 
epavei, se folosește o combinație între clasificarea SVM și analiza 
pantelor. Ulterior, un algoritm de grupare (K-means clustering) este 
utilizat pentru a caracteriza fundul mării. Rezultatele indică faptul că o 
combinație între învățarea automată și analiza morfometrică poate 
oferi rezultate promițătoare în detectarea epavelor. În plus, rezultatul 
aplicării algoritmului de grupare menționat relevă faptul că în arealul 
în studiu domină fundul marin cu duritate scăzută, care deține 56,4%, 
față de 43,6%, cât revine celui dur. Acest studiu ar putea juca rol de 
instrument complementar în monitorizarea și gestionarea locației 
sitului arheologic subacvatic. 

Cuvinte-cheie: sit arheologic, epavă, analiza pantelor și a 
texturii, clasificare SVM, Indonezia 

Introduction 

On the early morning of the 26th of September 

2012, there was a marine accident, following the 

collision of two vessels in Sunda Strait, Indonesia 
along the traffic route, involving Indonesian Ro-ro 

Passenger Ferry MV Bahuga Jaya and Singapore 
tanker MT Norgas Cathinka. MV Bahuga Jaya was 

92.30 m long and 16.20 m wide, with a draft of 5.23 

m (National Transportation Safety Committee 
(KNKT), 2013). Paroka et al. (2014) explained that 

the accident, resulting in more than 7 casualties and 
10 serious injuries of passengers, was caused by 

poor maneuvering of both vessels due to the wind 
and wave condition. The MV Bahuga Jaya finally 

sank 40 minutes after the collision. The body of this 

vessel remains in the location and becomes a 
shipwreck archaeological site in Sunda Strait. 

According to UNESCO, there are over three million 

wrecks as archaeological heritage on the seafloors 

around the world. However, those shipwreck sites are 
vulnerable by the threat of damage due to human 

activities such as mobile fishing, trawling, and dredging 
and the quantifying of this damage has not been 

finished recently (Brennan et al., 2012). Additionally, 

Masetti & Calder (2012) also asserted that shipwrecks 
could contribute to marine pollution by releasing toxic 

materials from their corrosive body and could harm the 
environment. As a result, several projects have been 

carried out to map and diagnose the underwater 
archaeological site (Reggiannini & Salvetti, 2016). 

Thus, Bahuga Jaya wreck as one of that archaeological 

wreck sites also needs to be mapped and investigated.  
Marine surveying and mapping of the wreck site 

aim to examine the texture and stratigraphy of the 
wreck location and the seafloor surroundings. The 

distinction between areas of wreck archaeological 
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interest and its surroundings can be useful for 

determining archaeological prospection (Thabeng et 

al., 2019). Moreover, the result then could be used to 
monitor and to manage the site, particularly related 

to morphological alteration and anthropological 
impacts (Geraga et al., 2017). Depicting and 

analyzing the environmental condition of a wreck-site 

is an essential action in examining the quality of 
remaining wreck debris. 

To date, underwater acoustic and imaging 
technologies have been used widely in underwater 

sea wreck studies. The multibeam echosounder and 
side-scan sonar become two major technologies to 

investigate the wreck sites for decades and can be 

found in several studies (Brennan et al., 2012; 
Roberts et al., 2017; Delgado et al., 2018; Ødegård 

et al., 2018). A shallow seismic survey such as sub-
bottom profiling also could perform the estimation of 

the thickness of the seafloor sediment layers in the 

wreck location (Geraga et al., 2017). In addition, 
photographic and video imaging also have been 

predominant techniques either for direct investigation 
or as complementary ground truth data for the 

multibeam and side-scan sonar system. Due to its 
popularity, the multibeam swath system was chosen 

for landscape mapping in a wreck site investigation in 

this study. It is due to its capabilities to not only 
produce a dense and high-resolution bathymetric 

digital terrain model (DTM), but also the intensity of 
returned pulse (backscatter) that can be used for 

wreck investigation. 

The bathymetric digital terrain model (DTM) 
analysis is well-known as “geomorphometry” or 

“morphometric analysis” (Brown et al., 2011). This 
model as a representation of the seabed topography 

could be derived to several terrain attributes (e.g. 

slope, aspect, curvature) and could contribute for 
several purposes such as seafloor classification and 

object detection (Lecours et al., 2016). Several 
comprehensive literatures regarding marine 

geomorphometry can be found in Lecours et al. 
(2016) and Lucieer et al. (2018). Micle et al. (2010) 

argued that marine geomorphometry becomes a 

promising technique to analyse the shipwreck 
archaeological sites.  

On the other hand, the backscatter intensity usually 
builds up an acoustic grayscale image of the seafloor. 

Parnum & Gavrilov (2011) asserted that the backscatter 

data could represent the composition and 
morphological characteristics of the seabed. In general, 

the low backscatter values in the image represent soft 
and smooth surfaces, whereas high backscatter values 

depict hard and/or rough objects (Febriawan et al., 
2019). Brown et al. (2011) explain that the backscatter 

imagery resulted from multibeam system has generally 

a lower quality to the side-scan backscatter imagery. 
However, the analysis of both backscatter imageries is 

relatively the same. Image-based segmentation is the 

most popular method for multibeam backscatter image 

analysis. They also stated that several backscatter 

characteristics such as textural features and surface 
features (shape) could be used in image segmentation. 

The textural features are then used as parameter inputs 
for classification and detection. 

The growth of machine learning techniques has 

led to various research of its technology in seabed 
classification and object detection. Support Vector 

Machine (SVM) is one of the supervised machine 
learning methods in classification and object 

detection of multibeam and side-scan sonar. 
Febriawan et al. (2019) have demonstrated that this 

method has predominance in the classification of 

side-scan sonar mosaics using small numbers of 
training samples. Application of SVM classification in 

archaeological fields can be found in Gu et al. (2018) 
and Thabeng et al. (2019). In addition, unsupervised 

classification such as cluster analysis also could be an 

additional supporting tool in helping to characterize 
the general morphology of the wreck site.  Parnum & 

Gavrilov (2011) explained that cluster analysis of 
similar regions of backscatter data could reveal its 

relationship to seabed morphology 
(phenomenological approach). In studies without 

adequate ground-truth sample data, cluster analysis 

can be a beneficial method for understanding the 
environmental surroundings of the wreck location 

especially for site securing prediction.   
However, there are few studies of morphometric 

and textural features analysis and SVM application for 

underwater archaeological wreck site investigation. K-
means clustering method in predicting site 

morphology also could be an interesting approach to 
characterize the seabed with an absence of field 
samples. Thus, this study attempts to undertake 

several morphometry parameters of the DTM and 

textural analysis of the backscatter to locate the 
Bahuga Jaya wreck location and to depict the 

peripheral seabed covers. While the Support Vector 

Machine classification was used to detect wreck 
archaeological debris, the K-means clustering 

technique was examined to characterize the seabed 
morphology. The combination of wreck localization 

and seafloor morphology could be an alternative 

solution for monitoring wreck location and managing 
the archaeological site location. 

Methodology 

Study area and data acquisition 

The multibeam swath survey was carried out by 

the Technology Center for Marine Survey, Agency 
for the Assessment and Application of Technology 

(BPPT), Indonesia on 28th of November 2017, using 
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RV. Baruna Jaya I in the location of Bahuga Jaya 

wreck site (Figure 1). 

The study area covers approximately 696,766.93 
m2, the depth varying between 59 and 110 m. 

 

Fig. 1: Study location 

A Teledyne HydroSweep DS full-depth multibeam 

system, which was mounted in RV Baruna Jaya I, 

was used for data acquisition. This multibeam 
system was operated in the frequency of 14 kHz and 

has a beam resolution of 2° x 2°.  
In addition, this system also has 140° swath 

coverage and 320 beams in both sides (port and 

starboard). The multibeam system was equipped with 
a Hemisphere R330 DGPS system (± 20 cm of 

horizontal accuracy) (Jensen et al., 2017) and a TSS 
Saturn 10 Fiber Optic Gyrocompass (heading 

accuracy: 0.1°, pitch/roll accuracy: 0.01°, and heave 
accuracy: 5 cm) (TeledyneMarine, 2020b) for 

positioning and inertial motion system. A surface 

Sound Velocity Keel Sensor AML Micro and a Sound 
Velocity Profile AML Minos X (accuracy: ± 0.025 m/s, 

precision: ± 0.006 m/s) (AML Oceanographic, 2020) 
were also used to perform sound velocity correction 

both in the water surface and through the water 

column.  

 

 

Fig. 2: Flowchart of the study 
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Both bathymetric raw data and backscatter data 

were recorded during the acquisition using a PDS 

2000 software (TeledyneMarine, 2020a). By default, 
this software records the raw data in *.pds format but 

has options to record in other formats (e.g. *.s7k, 
*.all, etc.), too. Overall, the flowchart of the study can 

be seen in Figure 2. 

Data processing 

The raw MBES data was processed using PDS 

2000 software with a standard processing workflow 
as conducted by Junior & Jeck (2009). A sound 

velocity profile acquired with AML Minos was used in 
the data processing. The manual editing technique by 

the human operator was performed to remove data 
outliers that can lead to inaccurate digital elevation 

model (DEM). After that, a DEM with a grid cell size 

of 1 m was produced from the bathymetry data.  
The backscatter data—resulted from relationship 

calculation of backscatter intensity value and 
angular response—was also processed using PDS 

2000 software. The processing of backscatter data 

yielded the amplitude value of each point in the 
survey area. This method is called mosaicking of 
backscatter data and could give information of 
sediment characteristics of the seabed. Thus, as the 

focus of this study, the backscatter mosaic of 
Bahuga Jaya wreck provided some distinct amplitude 

values to distinguish from its surroundings.  

The processing of backscatter data was carried out 
by integrating beam swath coverage and backscatter 

swath volume. Subsequently, magnitude calibration 
was performed using coverage of beam survey area, 

backscatter swath volume, and calculation of 

absorption coefficient. Finally, the mosaicking process 
was carried out to create a backscatter base-surface, 

which then can be exported in XYZ format or geoTIFF 
imagery in 1 m of cell size. 

Wreck detection  

Feature extraction 

Feature extraction is aimed to determine the 
properties of the image that represents the objects 

and can be used as parameters for classification 
(Solomon & Breckon, 2011). The two common 

features used in underwater mapping and 

classification are Terrain Features and Texture 
Features. While Terrain Features are based on a 

number of terrain parameters which is derived from a 
digital terrain model (DTM) and including in 

morphometric domain (Di Stefano & Mayer, 2018), 

textural features (patterns segmentation) are based 
on the group pixels of the image and then be derived 

to several textural features (images) which could 
reveal seafloor characteristics (Reggiannini & Salvetti, 

2016).   

In archaeological studies, slope analysis could be 

an effective instrument for archaeologists to detect 

the wreck location and analyze its location with the 
surroundings (Micle et al., 2010). Thus, this study 

tried to examine the slope as a feature derived from 
the DTM using the Benthic Terrain Modeller (BTM). 

BTM is an add-on plug-in in ArcGIS well-recognized 

for geomorphometry features extraction. Then, the 
slope was reclassified in ArcGIS into two different 

classes: wreck (slope > 55 ͦ) and non-wreck (slope < 
55 ͦ).  Based on the interpretation of the Slope image, 

the wreck location produced a high sloping feature of 
its surroundings. Subsequently, the wreck of slope > 

55 ͦ was used for the final detection of wreck location.  

In regards to the backscatter imagery, several first-
order textures (Variance, Skewness, Kurtosis, 

Standard Deviation) have been tested to segment and 
detect the wreck location. Febriawan et al. (2019) 

stated that the first-order textures are based on a 

statistical calculation of the pixel’s grey values. Those 
features calculations are based on the following 

formulas: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
|∑(𝐵𝑉𝑖𝑗−µ)|3

(𝑛−1)(𝑉)3/2     (1) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
∑(𝐵𝑉𝑖𝑗− µ)

4

(𝑛−1)(𝑉)2     (2) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑉) =  
∑(𝐵𝑉𝑖𝑗− µ)

2

(𝑛−1)
   (3) 

µ =  
(∑𝐵𝑉𝑖𝑗)

𝑛
     (4) 

where:  
𝑛 = number of pixels in the window 

𝐵𝑉𝑖𝑗 = brightness value of pixel (i,j) 
µ = mean grey values in the moving window 

Implemented in Matlab, a moving window 
method, which usually has an odd number of window 

size, was used to produce the textural images 
mentioned above. A 19 x 19 pixels of the moving 

window dimension was chosen to derive the textural 

images as it was suggested by Hamilton (2017).  
The new pixel value of the textural images was 

calculated from the central pixel of the window. After 
that, visual interpretation was carried out to 

examine the most suitable textural features in wreck 

detection. Brown et al. (2011) also asserted that an 
expert (visual) interpretation is commonly used. This 

method is involving “expert’s eye” and “expert’s 
knowledge” to delineate the imagery based on 

similar texture and usually be used as training 
samples in case the ground-truth data is not possible 

as was conducted in this study.  

Support Vector Machine for textural classification 

Support Vector Machine (SVM) represents one of 

the machine learning techniques in supervised 
classification. It works by fitting an optimal 

hyperplane in the feature space to split the data into 
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different classes (Liu et al., 2015). Foody & Mathur 

(2006) explained that the hyperplane is determined 

by using data points (support vectors) that are 
located close to the hyperplane. The optimal 

hyperplane with the maximum margin would be 
selected if there were several numbers of hyperplanes 

exist. Although there are some options in tuning the 

parameters (e.g. using non-linear kernels), this study 
used a linear kernel in defining the hyperplane.  

Febriawan et al. (2019) have demonstrated that 
the linear kernel is more suitable for side-scan sonar 

classification using texture features than the 
Gaussian kernel. The SVM model is created to store 

the information of hyperplane after the hyperplane 

has been determined by training the sample data.  
Initially, the training data set of a number of 

images that represent each class (wreck and non-
wreck) were obtained by clipping the backscatter 

image based on each class. After that, those images 

were set up in order and labelled accordingly. Then, 
the data set was trained to fit the multiclass model 

for SVM (fitcecoc). Only then does the classification 
of an image recall the model to check on which class 

of the data (pixel) is located.  
In the present study, two different classes 

(wreck and non-wreck) were established in the 

classification based on sample data that trained 
previously. This method then resulted in a textural 

SVM classified image of the wreck and non-wreck. 
In order to get the result of a binary image of the 

wreck and non-wreck objects, the result of SVM 

classification then was combined with the slope 
analysis result using Boolean logic “And” operator 

in ArcGIS. This operator has proven to be an 
effective tool in raster operation to overlay spatial 

layers and removing all unnecessary objects in the 

image (Cheng & Thompson, 2016). The final result 
was the map of the wreck location.  

Seabed morphology characterization  

K-means unsupervised classification 

K-means unsupervised classification is a clustering 
method that divides the data into clusters (classes) 

and produces an index of the cluster that has been 

assigned to each data (Matlab, 2019). In multibeam 
backscatter data analysis, k-means clustering has 

demonstrated its capability for seabed classification 
particularly with the lack of ground-truth data.  

Some research in using k-means clustering for 

seabed classification can be found in Fonseca & 
Calder (2007), Fakiris et al. (2012), and Samsudin & 

Hasan (2013). Initially after the number of classes 
has been defined, the centroid of each cluster will be 

created randomly.  
After that, the distance of each data (point) to 

each centroid is calculated. By default, K-means 

uses Euclidean distance to calculate the distance of 

each point. The distance calculation could be based 

on either the closest distance of each point to the 
closest centroid or assign points to a different 

centroid individually.  
Then, the centroid locations are up-dated based 

on the average of the data to each cluster. The 

iteration is repeated until all of the centroids are 
stable and converge (below the user’s tolerance) or it 

reaches the maximum number of iterations.  
As a result, points in a cluster will be as close to 

each other as possible and will be far from points in 
other clusters. In the application of K-means for 

image clustering, the algorithm of K-means requires 

converting the image into a vector before assigning 
this vector along with the number of clusters into the 

algorithm. After the class index of each point has 
been created, it needs to reshape back into an image 

to get the classified image.  

Results 

Bathymetry and backscatter image 

Bathymetry processing resulted in a Digital 

Elevation Model (DEM) of the seabed in an 8-bit 
georeferenced image (*.tif) as shown in Figure 3(a). 

It can be seen that the depth of the study area 
varies between 59.14 meters and 110.41 meters. 

Visually, the wreck location can be detected from the 
colour contrast that represents the depth of 59 

meters to 70 meters.  

There is an underwater seabed channel at 350 
meters, northwest of the wreck location. This channel 

is approximately 240 meters wide, the depth ranging 
from 90 meters to 110.41 meters. It can be noticed 

that the north-west side of the study area shows a 

shallower depth and goes deeper through the 
southeast of the area. 

Figure 3(b) depicts the backscatter image of the 
study area that has backscatter values ranging from -

18.94 dB to -37.62 dB. The wreck itself has 
backscatter values between an approximately -35 dB 

and -37.62 dB. One interesting thing that can be 

noticed is that although both DEM bathymetry and 
backscatter images cover the same area, it shows a 

different pattern of features.  
While in bathymetry DEM, the seabed 

topography relief can be easily distinguished (e.g. 

shallow area, channel, or wreck), the backscatter 
image only depicts clear features of the wreck and 

the southeast side of the channel. The wreck, as it 
is a man-made structure, reflects different 

backscatter signals than the surroundings and 

resulting noticeable backscatter values.  
However, the notably backscatter values at the 

southeast side of the channel do not represent the 
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morphology type and are probably due to the 

incidence angle of the location during the acquisition 

since the vessel sailed in the northwest–southeast 
direction. This resulted in the southeast side of the 

channel reflected the backscatter signal stronger 

than the opposite side and created different 

backscatter values.  

 

Fig. 3: Results of: Digital Elevation Model (DEM) bathymetry (a), Backscatter imagery (b) 

Feature extraction 

Initially, the slope feature was created as a 

terrain derivation feature and the result can be seen 
in Figure 4(a). The result shows clearly that only 

wreck feature and the edge of the channel that has 

a high degree of slope since the elevation difference 

is high than its surroundings.  

 

However, for the wreck detection purpose, slope 
> 55 ͦ was classified to remove the flat terrain (Figure 

4(b)). The result of classification indicates that there 

are some terrains at the edge of the channel that has 
slope over than 55 ͦ. 

 
 

 

Fig. 4: Slope in degree (a), slope reclassified into wreck and non-wreck classes (b) 
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In addition to the slope feature, the textural 

feature extraction also shows a good result. Of the 

four first-order textures tested, variance and 
skewness seemed to be the most suitable features for 

the classification (Figure 5). In visual, the wreck 

location can be well noticed in both textures and 

differentiate with the surroundings. 

 

Fig. 5: Results of textural features: Variance (a), Skewness (b), Kurtosis (c), Standard Deviation (d) 

Classification and wreck detection 

There were six training samples of wreck location 

and 12 training samples of the non-wreck locations 

taken from the backscatter image and covered the 
entire image. Those samples were then trained in 

SVM to get the model that will be used for the 
classification. Afterward, the SVM model was used in 

the classification of a backscatter image. The result 

of the classification can be seen in Figure 6.  
It can be inferred that the result of classification 

still contains several non-wreck features (terrain) 
that were classified as a wreck. It is assumed that 

the texture features used in the classification did not 
work quite well to detect the wreck. Thus, it needs 

another feature for the final detection. For that 

reason, the slope feature became a suitable 

combination feature for wreck detection. The 

classified image and slope feature were then 
overlapped using “Boolean And” tool in ArcGIS 

(result in Figure 7). 
The result of wreck detection indicates that the 

wreck position can be accurately recognized. 

Although there are still a few issues of miss-
detection of channel edge, however, the number 

was significantly reduced compared to the 
previous input features (slope, as well as Support 

Vector Machine/SVM results). 

The result of segmentation (Figure 8(b) revealed 
that the soft seabed is more dominant than the hard 
seabed (56.4% and 43.6% respectively). 
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Fig. 6: Result of SVM classification 

 

Fig.7: Result of wreck location detection 

Morphology characterization 

In order to get a general overview of the seabed 
morphology of the study area, the backscatter 

image was segmented using K-means clustering into 
two classes (hard and soft seabed). The result can 

be seen in Figure 8(a). 

 
 

 

 

Fig. 8: K-means result of seabed morphology 

(a), percentage of seabed composition (b) 

The study area is the northern slope of the 

Sunda Strait channel and lies closer to Sumatra 
Island. Astawa & Wayan (2014) reported that this 

seabed area covered by igneous rock (interpreted 
as andesite and diorite), volcanic rock, and 

sedimentary rock. In addition, Novico et al. (2015) 

conducted numerical modelling of the current 
condition at Sunda Strait and was found that the 

current velocity was up to 4.6 m/s, which possibly 
could cause sub-aerial erosion.  

These conditions are also represented by seabed 

morphology in this research. Based on the 
segmentation result, the distribution of seabed 

geomorphology could be classified as igneous rock 
and volcanic rock for hard seabed and sedimentary 

rock and tuff for the soft seabed. Furthermore, the 

composition of soft seabed slightly dominant that 
controlled by current velocity.  

Discussion 

This study investigates two applications in the use 
of multibeam products (bathymetry and backscatter) 

for underwater wreck detection (study case: MV 

Bahuga Jaya) and seabed morphology depiction. 
Features extraction was carried out of bathymetry 

(slope feature) and backscatter (textural features). 
Support Vector Machine then was examined to classify 

the textural features and with combination with the 

slope, it used to detect the wreck location. In addition, 
a K-means clustering was also used to characterize 

Seabed Composition 

 
 

 
 

 

 
 
(b) 
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the seabed morphology by segmenting the 

backscatter image into two classes (hard and soft). 

The result of bathymetry depicts a clear seabed 
topography with some interesting features (wreck 

location and seabed channel) that are clearly 
portrayed. Although in visual, the wreck is easily 

detected, however, the visual interpretation would be 

rather helpless in detecting many seabed features 
(e.g. man-made debris, outcropped rocks etc.). Thus, 

a more automatic method, such as the one that has 
been tried in this study is required. The resulted 

backscatter image has a noise at the nadir of the 
image (bright line in the centre of the image). This is 

because the near-vertical angles of incidence (nadir) 

have a strong variation of backscatter value and need 
to be removed for further analysis. Detailed 

explanation of methods in removing angular 
dependence can be found in several papers (Kloser et 

al., 2010; Parnum & Gavrilov, 2011). 

In this study, the slope feature generally is 
adequate for detecting the wreck location. However, 

since there is a steep edge of the channel, it can mix 
with the detected wreck itself and therefore requires 

additional features. Vector Ruggedness Measure 
(VRM) is another morphometric feature that could be 

examined. The VRM represents seafloor ruggedness 

(3D orientation variation of grid cells within neighbour 
pixels) and could depict the variety of slope and 

aspect (SAPPINGTON et al., 2007). For instance, 
Pirtle et al. (2015) demonstrated the use of Vector 

Ruggedness Measure (VRM) to classify the trawlable 

and untrawlable seabed regions.  
The two resulted textures (Variance and 

Skewness) were chosen for the classification due to 
their capability to distinguish between the wreck and 

non-wreck features (terrain). It seems that the 

Kurtosis feature cannot depict a clear feature of the 
wreck and it tends to mix with the surroundings. In 

addition, the brighter tone at the nadir in the 
Standard Deviation feature is probably due to the 

effect of non-removed angular dependence in the 
backscatter image. This effect could lead to non-

optimal results in the classification, though the wreck 

tends to have a noticeable visual appearance with 
surroundings. However, this study has not tried to 

examine the use of second-order texture analysis. 
The second-order texture such as Grey Level Co-

occurrence Matrix (GLCM) could be a promising 

subject. This method has been successfully 
demonstrated in backscatter classification as proven 

by Hamilton (2017), Buscombe (2017), and Hamill et 
al. (2018). Febriawan et al. (2019) also argues that 

the combination of both first-order and second-order 
GLCM textures can give a promising result. As 

alternative to the feature selection above, a Principle 

Component Analysis of all features is interesting to 
investigate. However, it was not a part of this study 

and could be a direction for future research.  

Angular dependence also leads to the nadir effect 

in the SVM classified image. Although the textural 

features used in the classification could predict the 
wreck location quite well, a number of miss-classified 

wreck features exist in the nadir and reduce its 
accuracy. Removing angular dependence could lead 

to a smoother result and improve the accuracy 

assessment. The final detection map shows that the 
combination of SVM classified image and slope 

feature has demonstrated that it can lead to a good 
performance in wreck detection. This research has also 

verified that SVM could be a promising method in 
shipwreck detection and classification with limited 

numbers of training samples with a clear margin of 

separation between classes (e.g. wreck and non-
wreck). However, this method cannot perform 

conveniently with the noisy data (e.g. side-scan sonar 
and backscatter imagery) and could lead to some miss-

classifications as proven in this study. Thus, other 

machine learning techniques need to be investigated. 
Some machine learning methods in archaeological 

studies such as fuzzy K-means for site maintenance 
(Malinverni & Fangi, 2009), neural network for 

archaeological sites formation study (Sharafi et al., 
2016), and random forest classification for prospecting 

archaeological sites (Thabeng et al., 2019). Further 

study could use those other machine-learning methods 
in underwater shipwreck investigation. 

In general, K-means segmentation used in this 
study also showed an adequate result to depict the 

distribution of seabed covers. However, field data 

samples are mandatory to achieve more reliable 
results and to reveal other information. For instance, 

Richards et al. (2016) carried out the in-situ 
preservation and long-term monitoring for the 

archaeological shipwreck site. They found that 

biogeochemistry is an important factor for that 
process since it could control the degradation of the 

shipwreck. Thus, further research regarding this topic 
is required. Richards et al. (2016) also argued that 

seabed morphology analysis could correlate to 
shipwreck preservation methods. Seabed features 

that can be found in the study area consist of a 

channel, slightly slope, hard and soft seabed 
characteristics. In general, seabed morphology is 

controlled by geological activities (e.g. earthquake, 
fault zone, erosion, and Krakatau eruption). They are 

implied to sediment grain size and transportation 

process (e.g. gravity mass flow and suspended 
sediment). In this study, the wreck site itself lays on 

the soft seabed and low-medium slope, but is 
surrounded by both seabed type and low-high slope. 

Thus, the wreck site may be affected by covered 
sediment and/or partly moved. This site is also closed 

to a deep valley and has regional seabed landslide 

potential (Yudhicara & Budiono, 2008). For that 
reasons, regular monitoring of the shipwreck site 
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using the same method in this study is required to get 

comprehensive and continued results.  

Conclusion 

This study attempted to investigate the use of 
bathymetry DEM and backscatter image resulted from 

multibeam swath survey. The combination of Support 
Vector Machine classification and Slope analysis of 

the data was carried out to detect the Bahuga Jaya 

wreck location. Derived from the backscatter image, 
first-order textural features were used as parameters 

for the SVM. Based on the texture analysis, the most 
suitable ones were variance and skewness textures. 

The backscatter image then was classified into two 
classes (wreck and non-wreck). Slope analysis was 

conducted using bathymetry DEM and successfully 

removed almost all of the non-wreck objects (terrain 
seafloor) using a slope threshold of 55˚. The 

combination of SVM classification and Slope analysis 
has been demonstrated as a promising tool for 

detecting the wreck location. 

Additionally, K-means clustering of the backscatter 
image was conducted to characterize the region into 

two classes: hard and soft seabed. According to the 
segmentation result and other research, 56.4% of the 

area consists of the soft seabed (there were 
presumably sedimentary rock and tuff), which was 

influenced by current velocity and sub-aerial erosion. 

Conversely, 43.6% of the area was hard seabed, 
probably igneous rock and volcanic rock. Since the 

wreck was surrounded by the soft seabed and low-high 
slope, sediment could potentially cover the wreck or 

could move the wreck’s body. Although the K-means 

clustering showed a potential result, a more accurate 
outcome could be achieved by applying ground 

reference samples. 
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