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Abstract— This paper is based on a comprehensive dynamic
mathematical model (Copernicus) of vascular bubble formation
and growth during and after decompression from a dive. The
model describes the underlying relationship between Venous
Gas Emboli (VGE) and risk of severe Decompression Sickness
(DCS). By using the Copernicus model the diving decom-
pression problem can be formulated as a nonlinear optimal
control problem, where the objective is to minimize the total
ascend time subject to constraints on the maximum number
of bubbles in the pulmonary artery (also referred to as the
decompression stress). A recent study reveals that the optimal
solution can be obtained by solving the optimization problem
with some equality constraints. Inspired by which, a simpler
approach using barrier function is proposed in this paper,
through which we achieve a more efficient and robust numerical
implementation. The paper also studies the effect of ascent
profile parameterization.

Keywords: nonlinear model predictive control; decompression
sickness; barrier function; dynamic decompression model.

I. INTRODUCTION

One of the major causes of decompression sickness (DCS)
is the accumulated inert gas during a dive and the ambient
pressure reduction during ascent after the dive. To prevent
this and safely ascend a diver, many models and decompres-
sion schedules have been proposed. Most of them are based
on the principles described in [1], i.e., set up a sufficiently
large gradient for gas elimination and assume that substantial
supersaturation can be tolerated without significant bubble
formation. An alternative model was proposed in 1970 by
Hills [2], where bubble formation would happen as soon as
supersaturation was present, suggesting that bubble forma-
tion would occur early in the Haldanean type models and
that long decompressions from severe dives would be needed
to allow their elimination.

One limitation of these procedures is that they are evalu-
ated using clinical symptoms of DCS as an endpoint, while
the underlying mechanisms have been ignored. However the
symptomatology of DCS is diffuse and there are ethical
concerns evaluating procedures through provoking DCS on
the test subjects. In 2008, Gutvik et. al. proposed a dynamic
2-phase model for vascular bubble formation [3]. This model
assumes that there is a close relationship between VGE
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and risk of severe DCS and VGE can be detected using
ultrasonic Doppler and imaging. Later a statistical correlation
between VGE and DCS has been reported [4] where it is
also shown that existing decompression algorithms (standard
diving tables and protocols) are not consistent in terms of
controlling the VGE formation and consequently the risk of
DCS.

With the proposed dynamic mathematical model we can
numerically optimize the decompression profile by mini-
mizing the total ascend time subject to constraints on the
maximum peak decompression stress. Intuitively the optimal
solution is on the boundary of the feasible region, i.e., when
the decompression stress constraints are activated. Therefore
in a recent study [5], [6], Gutvik et al. solves the optimization
problem by minimizing the total ascend time subject to an
equality constraint (the maximum stress during ascent equals
the pre-defined threshold). There are some limitations in
this approach. For example, decompression stress of some
“simple dives” is always less than the threshold hence will
not provoke the equality constraint. Secondly after extreme
dives it may be impossible to avoid that the stress exceeds
the threshold. Consequently the method will rely on some
extra logic to handle such cases. Furthermore, there are some
numerical challenges to implement the optimization since we
do not know in advance the point in time when the maximum
stress is reached. Considering these limitations we propose
a barrier function nonlinear optimization approach [11] in
this paper through which an efficient and numerically more
robust implementation is achieved.

A further objective in this paper is to systematically study
what is the effect and performance loss by various ascend
trajectory parameterizations. Generally the theoretically opti-
mal solution is a continuous time-depth function which is not
only computationally inefficient for numerical implementa-
tion in a low-cost diving computer but also not practical for
a diver to follow. Thus different parameterization methods
are studied to address such problems.

In the following sections we will demonstrate how op-
timal decompression profiles are calculated using optimal
control. Since the physiological state of the diver changes
continuously, the dynamic model should be updated based
on present measurements, and the ascend profile should
be re-optimized at regular intervals in a receding horizon
fashion in a diving computer. Although we adopted sev-
eral methodologies to reduce the complexity, the current
dynamic model-based optimal diving decompression strategy
is still preliminary and of more conceptual nature. The main
obstacle prevents it from direct implementation on a low-



cost diving computer is the prohibitive amount of floating
point numerical computations compared to the limited CPU
capacity and power consumption requirements. Therefore
an (approximate) explicit solution of nonlinear constrained
optimization using multi-parametric nonlinear programming
[7], [8] is promising and suited for this type of problem.
This direction is taken in [5], [9] and pursued further in our
ongoing work.

The paper is organized as follows: after introduction a
brief description of the dynamic model is given in Section
II. The optimal decompression problem is formulated and
solved in Section III followed by numerical results presented
in Section IV. Conclusions are given in Section V.

II. MODEL DESCRIPTION

A. Nomenclature ( [3], [4])

Param. Description Value Unit

nt Number of tissues. 2 -
D Bubble barrier diffusivity. 20 μm2/min
αb Blood solubility. 0.0158 msw−1

h Bubble barrier thickness. 0.1 μm
γ Surface tension. 17.890 μm msw
Pmeta Partial pressure of the metabolic

gases.
0.1773 atm

cs Coefficient. 0.9479 μm3 atm
ετ,1 Time constant correction of mus-

cles.
0.2868 -

ετ,2 Time constant correction of fat. 0.8115 -
αt,1 Tissue solubility of muscles. 0.0278 atm−1

αt,2 Tissue solubility of fat. 0.0640 atm−1

δ Bubble nuclei density. 0.0000005 #/μm3

km Measurement gain. 200 -
V0 Dead volume for detection. 0.005 #bubbles

/cm2/min
V1 Tissues volume of muscles. 28.4 dm3

V2 Tissues volume of fat. 11.7 dm3

ri Bubble radius in tissue i. μm
pt,i Gas tension in tissue i. msw
Pamb Ambient pressure. msw
Ṗamb Rate of descent. msw/min
fN2 Fraction of nitrogen in inspired

gas.
0.78 -

ω1,dive Blood perfusion of muscles (dive). 0.16 L/min/dm3

ω1,surf Blood perfusion of muscles (sur-
face).

0.091 L/min/dm3

ω2,dive Blood perfusion of fat (dive). 0.047 L/min/dm3

ω2,surf Blood perfusion of fat (surface). 0.043 L/min/dm3

y Measurement of the number of
bubbles in the pulmonary artery.

#bubbles
/cm2/min

B. Dynamic model

The dynamic model introduced in [3] and [4] is presented
here for ease of reading. The diver can be regarded as a
dynamic system where the state vector x is influenced by
the input vector u. Copernicus is a nonlinear model giving
the bubble dynamics:

ẋ = f(x, u) (1a)

y = hm(x, u) (1b)

where

f(x, u)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dαb
h

(
x2i−x2nt+1− 2γ

x2i−1
+Pmeta+ cs

x3
2i−1

)
− x2i−1

3 u1

x2nt+1+
4γ

3x2i−1
−Pmeta

ετ,i
αb

αt,i
(u2x2nt+1 − x2i)u2+i + ṗr,i(x)

...

...
u1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1c)

hm(x,u)=
4π

3
δkm

nt∑
i=1

r3
i Viωi − V0, (1d)

x= [r1 pt,1 r2 pt,2 . . . rnt pt,nt Pamb]
T

, (1e)

u=
[
Ṗamb fN2 ω1 ω2

]T
, (1f)

ṗri(x) = − 4πDαbδ

hαt,i
x2

2i−1

(
x2i − x2nt+1 − 2γ

x2i−1

+Pmeta + cs
1

x3
2i−1

)
.

(1g)

Please note that ṗri(x) ≈ 0 referring to [4], since the
amount of gas molecules dissolved in the tissues is believed
to be much larger than in free gas phase. Equation (1d) gives
the measurement of the number of bubbles detected in the
pulmonary using ultrasonic image scanning [10].

The model is constituted of nt tissues. Theoretically nt

can be chosen as large as we want therefore the model can
approximate a human body as precisely as needed. On the
other hand it’s convenient to keep nt as small as possible
considering the size of the resulting optimization problem. In
this paper we use two tissues (i = {1, 2}), i.e., the muscles
and fat tissues, which represents the dynamics of fast and
slow tissues, respectively [4], [5].

III. OPTIMAL DECOMPRESSION PROBLEM

A. Parameterization of the decompression profile

The main purpose of the optimal decompression is to
ascend a diver as fast as possible while the number of bubbles
in the pulmonary y (also referred to as the decompression
stress) does not exceed a pre-defined threshold. Theoretically
the optimal solution is a continuous time-depth profile, which
in practice has some limitation to implement. For example,
it’s hard to numerically solve the optimal continuous time-
depth profile [5] and it’s also hard for a diver to follow such
a continuous ascending profile. Therefore in [5], [6], [9] a
stepwise decompression formulation is proposed, illustrated
in Figure 1.

Common diving protocols assume a fixed number of
stopping depths (ρ1, ρ2, . . . , ρns). Assuming the ascending
speed of the diver (a) is constant, the time for ascending
Δta,1 + Δta,2 + . . . + Δta,surf is a constant. Suppose
Δt1, Δt2, . . . , Δtns are the stopping times on each stopping



Fig. 1. Stepwise decompression profile

depth. Considering the main objective of optimal ascent, our
goal is to

min
ns∑
i=1

Δti. (2)

With such parameterization there are ns parameters to be
optimized subject to Δti � 0. However in some cases, e.g.,
a long deep dive, there shall be quite many stopping depths
to safely ascend a diver. In other words, ns can still be large
and the computational effort can still be huge. In addition,
this parameterization tends to give a “flat minimum” with
associated numerical challenges. This motivated another pa-
rameterization method used in [5] and studied in this paper,
illustrated in Figure 2.

Fig. 2. Curve decompression profile

The idea is to first define a curve function with two param-
eters d and t (illustrated in Figure 2). For a given d and t, the
curve can be quantized and generate the stepwise formulation
and also a total ascend time according to stopping depths
(ρ1, ρ2, . . . , ρns). Then instead of optimizing ns parameters
in the original formulation, now only two parameters need
to be optimized. Obviously this parameterization and quan-
tization method leads to a simplified optimization problem
but may also introduces some conservatism, that is, the total
ascending time (t) may be longer and/or the stress threshold
may be exceeded. The benefit and performance loss of this
parameterization method will be studied by simulations in

Section IV. For detailed information of the curve function
please refer to [5].

B. Cost function

First we will give the cost function for the stepwise
parameterization method. The optimization variable vector
is defined as

z = [Δt1, Δt2, . . . , Δtns ]. (3)

Then the cost function is

V (z) = cT z, (4)

where c = [1, 1, . . . , 1].
Please note that for curve parameterization method the cost

function is the same but z is not the optimizer. Instead, only d
and t are the optimizers. From a pre-defined curve function
(z = qt(d, t)) and a set of pre-defined possible stopping
depths (ρ1, ρ2, . . . , ρns), z can be calculated and used in the
cost function.

C. Constraints

The two parameterization methods share same constraints,
which is nonlinear and in a receding horizon manner. That
is, the output y (decompression stress) at not only current
time but also during the predicted horizon shall not exceed
the limits. Mathematically, the nonlinear constraints can be
written as

H(z) =

⎡
⎢⎢⎢⎣

y(x1) − ylimit

y(x2) − ylimit

...
y(xnk

) − ylimit

⎤
⎥⎥⎥⎦ � 0. (5)

where the future state xi is predicted through numerical
integration of the model and i ∈ {1, 2, . . . , nk} are the
discretization times.

D. Model discretization and integration

We use Euler integration to implement the model dis-
cretization and integration, that is:

xk+1 = xk + ΔTif(xk, uk). (6)

Note that ΔTi is the integration step size where the subscript
i means the integration step size is not constant over the
prediction horizon. The reason for this is to obtain a con-
tinuously differentiable constraint function. The optimization
vector z contains the time of the decompression stops, hence
the integration step size will be dependent of z. If we keep
the integration step size constant, the number of integration
steps nk will be a function of z. This would have made the
constraint function discontinuous in z. As described in [9],
we have the following integration step sizes.

During the ascents:

ΔTa,i =
ρi − ρi−1

a · nascent,i
, i = 1, 2, · · ·ns + 1 (7)

where nascent,i is the number of integration steps from
bottom to the first decompression stop, between the stops
and from the last stop to the surface.



During the decompression stops:

ΔTs,i =
zi

nstop
, i = 1, 2, · · ·ns (8)

where nstop is the number of integration steps during the
decompression stops.

After reaching the surface:

ΔTsurf =
Δtsurf

nsurf
(9)

where ΔTsurf is the stopping time at the surface and nsurf

is the number of integration steps at the surface.

E. Barrier function

In constrained optimization, a barrier function is a contin-
uous function whose value on a point increases to infinity as
the point approaches the boundary of the feasible region. It
is used as a penalizing term for violations of constraints [11].
The two most popular types of barrier functions are inverse
barrier functions and logarithmic barrier functions. Generally
constrained nonlinear optimization is computational expen-
sive. Usage of barrier functions can reduce the computational
complexity. The cost functions with the two types of barrier
functions are given below

inverse :
ns∑
i=1

Δti +
nk∑
i=1

μ
ylimit−y(xi)

logarithmic :
ns∑
i=1

Δti − μ
nk∑
i=1

log (ylimit − y(xi))

(10)
where μ is called barrier parameter.
In typical barrier function algorithms [11], the sequence

of barrier parameters {μ1, μ2, . . .} must converge to zero
so that, as more and more iterations are made, we recover
the solution of the original nonlinear programming problem.
If μ is decreased too slowly, a large number of iterations
will be required for convergence; but if it is decreased too
quickly, the progress of the iterations may be slowed down
[11]. In this paper we use a fixed barrier parameter, that is,
μ1 = μ2 = · · · = μ.

The motivation for this simplification is that the model
is uncertain and the threshold ylimit is uncertain, such that
an approximate solution is sufficient. It is considered more
important to reduce computation time as long as the errors
are within safety margins.

F. Optimization problem

We can see that the optimal decompression problem can
be expressed as follows. For stepwise formulation:

min
z

ns∑
i=1

Δti (11a)

s.t.
−z � 0

H(z) � 0
(11b)

For curve formulation:

min
t,d

ns∑
i=1

Δti (12a)

s.t. −z � 0
H(z) � 0

(12b)

For inverse barrier function:

min
t,d

(
ns∑
i=1

Δti +
nk∑
i=1

μ

ylimit − y(xi)

)
(13a)

s.t.
−z � 0. (13b)

For logarithmic barrier function:

min
t,d

(
ns∑
i=1

Δti − μ

nk∑
i=1

log (ylimit − y(xi)

)
(14a)

s.t.
−z � 0. (14b)

The optimization problem is solved as follows. The diving
computer first measures the ambient pressure Pamb and heart
rate; then estimates a current state of the diver based on this
measurement, manual input, and a mathematical model; uses
this information to generate an optimal ascending profile
for the diver (implemented in Matlab with the TOMLAB
‘ucsolve’ algorithm using a Quasi-Newton method BFGS).
The diver tries to follow the command he received and
ascend to a stopping depth as suggested (which might not be
very precise). The diving computer measures a new ambient
pressure Pamb and heart rate and solves the optimization
problem repetitively at this new time step.

IV. RESULTS

In this section a two-tissue model is adopted, namely,
muscle tissue and fat tissue. Based on this model we will
demonstrate the benefits of the barrier function implemen-
tation and also study the effect of the parameterization
methods.

Four dives are simulated to evaluate the four approaches,
namely, equality constrained stepwise optimization,
equality constrained curve optimization [5], logarithm
barrier function optimization and inverse barrier function
optimization. We noticed that an accurate initialization
of the solver has much more impact on the stepwise
optimization than on the curve optimization. Therefore we
can initialize the stepwise optimization with the solution of
the the curve optimization. The possible stopping depths
are pre-defined to be [21, 18, 15, 12, 9, 6, 3] with ns = 7.
Then the prediction horizon nk can be calculated by
nk = ns · nstop + nsurf +

∑ns+1
i=1 nascend,i. The dive

schedule is given in a vector form: the first element means
the diving depth, the second element is bottom time while
the third is heart rate and fourth element means the fraction
of nitrogen in the inspired gas. The simulation results are
given in the following tables where topt is the optimal



ascending time and dopt is the other optimizer in Figure 2,
tcpu is the computational time which is obtained on an Intel
Due 2.53G laptop (unit for time is minute).

TABLE I

EQUALITY CONSTRAINED STEPWISE OPTIMIZATION

Schedule Equality constrained stepwise optimization

topt tcpu

[45, 25, 95, 0.78] 55.0201 4.8846
[35, 25, 95, 0.78] 24.4727 2.6281
[55, 20, 90, 0.78] 47.9364 4.0528
[55, 20, 95, 0.78] 60.4171 5.9422

TABLE II

EQUALITY CONSTRAINED CURVE OPTIMIZATION

Schedule Equality constrained curve optimization

topt dopt tcpu

[45, 25, 95, 0.78] 62.7012 18.8343 0.5245
[35, 25, 95, 0.78] 27.0753 12.2132 0.5091
[55, 20, 90, 0.78] 54.7797 17.0896 0.5205
[55, 20, 95, 0.78] 69.6830 20.0976 0.5133

TABLE III

LOGARITHM BARRIER FUNCTION

Schedule Logarithm barrier function

μ = 0.1 μ = 0.01

topt dopt tcpu topt dopt tcpu

[45, 25, 95, 0.78] 62.80 18.84 0.46 62.71 18.83 1.78
[35, 25, 95, 0.78] 27.18 12.23 0.18 27.09 12.21 1.04
[55, 20, 90, 0.78] 54.88 17.10 0.27 54.79 17.09 2.70
[55, 20, 95, 0.78] 69.78 20.10 0.10 69.69 20.10 1.50

TABLE IV

INVERSE BARRIER FUNCTION

Schedule Inverse barrier function

μ = 0.001 μ = 0.01

topt dopt tcpu topt dopt tcpu

[45, 25, 95, 0.78] 62.95 18.85 0.18 63.49 18.88 0.13
[35, 25, 95, 0.78] 27.31 12.24 0.16 27.81 12.31 0.15
[55, 20, 90, 0.78] 55.03 17.11 0.18 55.56 17.14 0.13
[55, 20, 95, 0.78] 69.94 20.11 0.14 70.49 20.14 0.13

From Table I and II we can see the effect of input
trajectory parameterization. The stepwise parameterization
gives shorter ascending time (from 10.49% to 15.35%) at
a cost of much longer computational time (from 516% to
1158% ).

From II to IV we can see that the barrier function approach
may lead to conservatism, i.e., the optimal ascending time
is slightly longer, depending on μ and barrier function.
However such conservatism with respect to the constraint
is not always a bad thing. Since the value of y limit and

model parameters are uncertain, barrier function method adds
a safety margin. Using inverse barrier function can reduce
the computational time by more than 80%. We shall also
notice that for logarithm barrier function, a too small value
of μ can cause too much computational time.

In the following the simulation results are given in Figure
3 to Figure 6. The sub-figure on the top of each figure
gives the time-depth decompression profile while the bottom
one is the output y (measurement of the number of bubbles
in the pulmonary artery). The black solid line corresponds
to the equality constrained curve optimization method. The
black dash-dotted lines correspond to the proposed loga-
rithm/inverse barrier function methods (μ = 0.01). However
the results are very close to the equality constrained curve
optimization method which makes them not distinguishable
in the figures. The blue dashed line describes the equality
constrained stepwise optimization method while the red
dotted line in the bottom sub-figure is the stress threshold
which is designed not to be violated during simulations.
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Fig. 3. Decompression profiles of diving schedule [45, 25, 95, 0.78]
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Fig. 4. Decompression profiles of diving schedule [35, 25, 95, 0.78]
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Fig. 5. Decompression profiles of diving schedule [55, 20, 90, 0.78]
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Fig. 6. Decompression profiles of diving schedule [55, 20, 95, 0.78]

From these figures one may conclude that all these four
methods respect the stress constraint. The stepwise solution
gives shortest ascending time but at a high computational
cost. Curve parameterization significantly reduces the com-
putational cost with an acceptable performance degradation
and has proven to be much less sensitive to an accurate
initialization of the solver, as the stepwise parameterization
is more prone to local minima. Using barrier function to
substitute the equality constraint leads to a more efficient
numerical implementation and the associated conservatism
is neglectable according to the simulation results.

V. CONCLUSION AND FUTURE WORK

In this paper we applied a new dynamic model on bubble
formulation and evolution in human body. The model is

based on Venous Gas Emboli (VGE) other than decompres-
sion sickness (DCS). Based on this model the decompres-
sion problem is formulated as an optimal control problem,
i.e., minimizing the total ascending time subject to safety
constraints. Inverse barrier function and logarithmic barrier
function are adopted in the nonlinear optimization problem.
Simulation is carried on a two tissue model and the results
are promising.

The optimization requires a large amount of floating point
numerical computations. This is considered prohibitive for
implementation in a low-cost diving computer with limited
CPU capacity and power consumption requirements. There-
fore in the future it is planned to work towards explicit
solutions, using methods described in [7]–[9]. Another work
in the future is to apply quadratic barrier function which can
handle infeasibility problem during optimization.
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