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Abstract: A lightweight, compact, inconspicuous gadget that provides extra oxygen when 

traveling is called a portable oxygen breathing apparatus. Cells rely on oxygen to drive the 

oxidative phosphorylation process within mitochondria, where adenosine triphosphate (ATP) 

is synthesized. Adequate ATP is essential for maintaining the muscle contraction and cell 

motility. With these portable devices, patients can maintain their oxygen therapy while going 

about their daily lives, enhancing their quality of life (QoL) and encouraging more mobility. 

An incorrect assessment could result in a low oxygen supply during exercise. Hypoxia-

induced changes can also trigger intracellular signaling pathways that may lead to cell 

damage and, in the long term, contribute to the progression of various pathologies. Promising 

resolution to the difficulties can be discovered by incorporating machine learning (ML) 

algorithms and sophisticated monitoring systems into portable oxygen delivery devices. In 

this study, we propose a novel intelligent portable oxygen breathing apparatus integrated with 

biosensors (IPOBAB) that has revolutionized the treatment of long-term respiratory 

disorders, particularly severe hypoxemia and chronic obstructive pulmonary disease (COPD). 

IPOBAB system deployed with the Dynamic Gradient Boosting Machine (DGBM) classifier 

to classify the physical activities into low, moderate, and high exertion levels to ensure 

oxygen delivery is repeatedly adjusted based on the patient’s current requirements. Inertial 

Measurement Unit (IMU) sensor data, blood oxygen saturation (SpO2), and cardiovascular 

rate are just a few of the vital physiological features that biological sensors continuously 

monitor. This data lets doctors perform real-time assessments of a patient’s health status. To 

eliminate noise, the information was processed using a median filter. The Fast Fourier 

Transform (FFT), which displays dominating frequency components, divides the electrical 

signal into individual frequencies to extract features. The results demonstrated that the 

IPOBAB model exhibits a high weighted accuracy of 98.4% in mechanically adjusting 

oxygen flow according to medical criteria compared to existing algorithms. This indicates 

that the system is effective in optimizing oxygen delivery, which is essential for maintaining 

the proper cell and molecular biomechanical functions in patients with long-term respiratory 

disorders. In conclusion, the IPOBAB represents a significant advancement in portable 

oxygen therapy as it combines adaptive oxygen delivery and comprehensive monitoring, 

thereby optimizing the care for patients with long-term respiratory conditions and 

safeguarding the integrity and functionality of cells and tissues at the molecular level. 

Keywords: portable oxygen breathing apparatus; biosensors; inertial measurement unit 

(IMU); oxygen supply; dynamic gradient boosting machine (DGBM) 

1. Introduction 

Oxygen therapy has been shown to increase patients’ survival rates in cases of 

severe hypoxemia and chronic obstructive pulmonary disease (COPD) since the 
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1980s. For COPD patients, long-term supplemental oxygen therapy (LTOT) is 

especially important because 47% of them have desaturation during exercise when 

their SpO2 levels fall below 88%. By increasing O2 saturation values above 90%, 

enhancing tissue oxygenation, postponing exacerbation and dyspnea, and boosting 

capacity for activity in COPD patients, LTOT seeks to prevent hypoxemia [1]. 

Children with pulmonary fibrosis also have a better quality of life (QoL) when 

exercise oxygen therapy is used. For doctors, caregivers, service providers, and 

individuals, however, the accompanying technology can be difficult, especially when 

it comes to prescription, titration, and equipment installation and administration. 

Closed-loop oxygen delivery methods haven’t been adopted into normal scientific 

medical performance, despite worldwide recommendations demanding an effort and 

stress assessment for oxygen deprivation diagnosis at activity and calibration of 

blood oxygen levels needed for correction [2]. The Coronavirus Disease 2019 

(COVID-19) pandemic has raised the need for medical oxygen supplies 

dramatically; yet, oxygen is lost greatly when oxygen cylinders and concentrating 

systems are used continuously for breathing. The four stages of the human breathing 

cycle are inhalation, breathing out, and exhalation pause [3]. About 25% of the 

breathing cycle is devoted to inhalation, with the rest 75% being made up of 

exhalation, inhalation pause, and exhale. Because humans only breathe in, there is a 

75% loss of oxygen in the surrounding air. It is crucial to limit the oxygen delivery 

to subjects to inhalation exclusively to preserve medically necessary oxygen 

throughout the pandemic. One tactic to support the effective use of oxygen is the 

delivery of breathable air bolus via pulse mode [4]. The rise in healthcare demands 

for convenience and accessibility has led to funding initiatives for urban hospitals to 

address medical needs. The IoT has shown promise in the medical sector by 

enhancing technology and reducing costs. Biomedical IoT helps monitor, control, 

recognize, and act on systems, reducing medical costs. IoT-enabled wearables, 

embedded in the body, worn with additional devices, painted or affixed to the skin, 

or incorporated into clothes and accessories, have become essential components of 

IoT technology [5]. The use of technology in biomedical has grown essential due to 

the rise in demand for real-time monitoring of health, disease prediction, and fitness 

tracking. A market for wearable, adaptable sensors that can instantly identify and 

record physiological signs without the need for bulky, connected gear has resulted 

from this. By alerting users to aberrant health, these continual human information 

indicators enable preventive action. Nonetheless, there is little chance of qualitative 

gains in bio-functionality for many sensors intended for real-world use [6]. Signal 

processing is a field of the field of electrical engineering that deals with sound and 

pictures. Typical healthcare imaging methods that include processing signals are 

Magnetic Resonance Imaging (MRI), Computed Tomography (CT) scans, and X-

rays. Speech noise is decreased by the use of digital signal processing. Bio-signals 

can be measured using numerous methods such as electrooculograms (EOG), 

electroencephalograms (EEG), electrocardiograms (ECG), and Electromyography 

(EMG). Sensors or biological markers, such as those based on sweat, tears, saliva, 

implants, arm adjustments, mouth cavity police officers, or foot mountings, are used 

in wearable biosensors to track health [7]. Although there have been considerable 

advancements in medical wearable devices, the range and caliber of vital signs they 
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offer are still limited. Respiration is a critical sign of a patient’s decline, yet the 

miniaturization of respiration-sensing devices has been sluggish. In 2020, COVID-

19 was the main cause of early mortality. Wearable technology in conjunction with a 

conducive setting for ongoing, remote monitoring of respiratory parameters can 

enable early symptom identification and prompt medical care, thereby lowering 

mortality. Ventilation and oxygenation are examples of respiratory functions, and 

assessing respiratory efficiency and oxygenation necessitates a thorough examination 

of numerous factors [8]. 

The objective of this research is to create an intelligent portable oxygen 

breathing apparatus that is integrated with biosensors (IPOBAB) to optimize the 

delivery of oxygen through adaptive monitoring. The device classifies degrees of 

physical activity and modifies oxygen flow based on the results using machine 

learning techniques, notably Dynamic Gradient Boosting Machine (DGBM). By 

guaranteeing a sufficient supply of oxygen at different levels of effort, this 

innovation improves the standard of care for individuals with chronic respiratory 

disorders. 

Contributions of the study 

⚫ Innovative Device Design: Real-time monitoring and adaptive oxygen delivery 

systems are two features that the Intelligent Portable Oxygen Breathing 

Apparatus Integrated with Biosensors (IPOBAB) offers to recover portable 

oxygen therapy. 

⚫ Advanced Monitoring Capabilities: The incorporation of biological sensors 

provides the ongoing monitoring of vital physiological indicators, including 

heart rate and saturation of oxygen in the blood (SpO2), enabling immediate 

evaluations of the patient’s circumstance. 

⚫ ML Application: When influencing physical activity levels, the Dynamic 

Gradient Boosting Machine (DGBM) improves treatment outcomes for patients 

with chronic respiratory illnesses. This is so that oxygen administration can be 

adjusted automatically according to the patient’s current level of effort. 

⚫ Enhanced Patient Safety and QoL: The IPOBAB greatly lowers the risk of 

hypoxemia and encourages greater independence among individuals by making 

sure they receive enough oxygen during various activities. This improves the 

overall QoL for people with persistent respiratory conditions. 

⚫ Data Processing Techniques: The use of advanced data preprocessing methods, 

such as median filtering and Fast Fourier Transform (FFT) for feature 

extraction, enhances the accuracy of physiological monitoring and supports the 

effectiveness of the device in clinical settings. 

The next portions of this article are Portion 2: a literature review of this work, 

Portion 3: material and methodology, Portion 4: result with discussion, and Portion 

5: conclusion. 

2. Literature review 

Concerning [9] suggested a system that will prevent hypoxia in patients by 

giving them extra oxygen during the COVID-19 pandemic. The patient’s oxygen 
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consumption is monitored by the system through a cardiac sensor, which can result 

in hypoxia. The Arduino Uno uses a sensor that senses temperature to measure body 

temperature and a relay to control the necessary oxygen supply to operate a solenoid 

valve. Intranasal oxygen supply is accomplished via portable oxygen cylinders, and 

data is shown on a liquid crystal display. In addition, the system has a buzzer to 

notify the user in the event of a disaster and utilizes Global System for Mobile 

Communication (GSM) for non-emergency communication. This technology allows 

for flexible movement, is portable, and does not interfere with patients’ lifestyles. 

Patients with less serious diseases can utilize the device at home or in hospitals. The 

work of [10] utilized machine learning (ML) and the Internet of Things (IoT) to 

monitor smart health to prevent these premature deaths. The suggested system has 

blood pressure sensing modules, temperature sensor sensors, pulse oxygen sensors, 

and a Thing Speak cloud for emergency communication with clinicians. 

Microcontrollers such as the Arduino Uno and Raspberry Pi are interfaced with these 

sensors. Using the IoT, the system continuously watches patients’ data and updates it 

on Liquid Crystal Display (LCD) and doctor web pages. Both common and serious 

illnesses, such as lung disease and hypertension, can be predicted by a trained ML 

model. Patients with lung illness and heart attacks can’t die suddenly from this 

method. In real-time circumstances, this method’s accuracy is about 86%. 

Additionally, the work helps physicians follow patients remotely during pandemics 

like COVID-19. A noninvasive wearable gadget that leverages IoT to continuously 

monitor the health of a person was recommended by the research [11]. In addition to 

patient fall detection, the gadget measures arterial pressure, respiration rate, glucose 

levels, oxygen saturation, and temperature of the body, ECG, and location 

parameters. Moreover, it consumes a breath analyzer that measures the quantities of 

ammonia, dioxide of carbon, alcohol, sulfate of hydrogen, and transient organic 

compounds (TVOC) in breath. The system makes use of sensors and an 8-bit 

microcontroller that is connected through wifi to an internet-based information 

system. During surveillance from afar, the system also has a smartphone app called 

Role-based having access and an online dashboard. This innovative remote patient 

monitoring device is highly valuable for persistent illness patients in particular 

during the pandemic. A single system for controlling COVID-19 patients utilizing 

Long Range Wide Area Network (LoRaWAN) infrastructure for communication has 

been described in the publication [12]. For people who are confined or secluded, the 

technology enables remote surveillance of their health and symptoms without 

requiring external assistance. In addition to tracking the patient’s present position, 

the IoT wearable measures vital signs like body temperature, the saturation level of 

oxygen, and pulse. After monitoring the two quarantined patients for 14 days, an 

actual Polymerase Chain Reaction (RT-PCR) test was achieved to confirm Severe 

Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV2) contagion in cases where 

detected values were abnormal. Numerous patients can be monitored at once on the 

customizable nature of the suggested approach. Local authorities can successfully 

apply this system to improve monitoring capabilities and prevent fatalities. The IoT 

has changed the field of medicine by enabling remote monitoring of patients’ health 

problems, as demonstrated by the article [13]. It allows sharing of information and 

storage by connecting built-in gadgets to the internet. Home automation systems, 
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automatic door locks, and thief detection are a few examples of applications. IoT 

facilitates the detection of life-threatening circumstances and the start of appropriate 

care. In this regard, ESP32 is creating a method for tracking complicated patients. 

After processing data, the IoT platform shows the data uptake from neighboring 

devices in real time. This analytics solution improves remote monitoring, lowers 

hospitalization rates, and allows for accurate and efficient treatment. Article [14] 

utilized cloud computing and the IoT to create a remote health surveillance system. 

Patients can check their illnesses from home because of this system’s continuous 

health data collection through a variety of connected sensors and gadgets. By 

promoting real-time contact between patients and medical professionals, the system 

intends to improve the quality of care, minimize stays in hospitals, and avoid re-

admissions. Incorporating IoT into electronic healthcare systems (EHS) not only 

enhances treatment results but also gives customers the ability to actively manage 

their health. In the end, this work advances innovations in digital health that lead to 

improved patient management and healthcare delivery. Study [15] investigated the 

application of the commercial optoelectronic biosensing module MAX30102 in the 

monitoring of peripheral oxygen saturation and heart rates in the medical field. 

Continuous monitoring can be performed because of the device’s IoT capabilities 

and ESP32 system-on-a-chip. An intuitive user interface and 3D printable anatomic 

enclosure were also designed. The gadget is an attractive choice for creating 

biological sensing medical devices because of its dependability and accessibility. 

The author of [16] assessed the Wireless Body Area Network (WBAN) protocol-

based VySys wireless vital sign monitoring system’s accuracy, effectiveness, and 

clinical value. The device is small, light, and low-power. Two ubiquitous wireless 

biosensor sensors and a gateway are part of VySys, which transmits vital signs 

continuously to the cloud, whereupon apps for clients retrieve and display the 

information. The five vital signs of heart rate, respiration rate, body temperature, 

saturation of oxygen, and systolic blood pressure were examined in contradiction of 

a commercial medical-grade device in clinical trials involving fourteen participants. 

Findings confirmed that VySys is a credible option for ongoing health monitoring, 

with enhanced accuracy and limits of convergence over current systems, as well as 

significant statistical correlation. The developments in wearable and implantable 

technologies, such as wearable biosensing, biosensing, and Artificial Intelligence 

(AI)-biosensing, have been collected [17]. Material innovation, bio-recognition 

components, signal gathering and conveyance, data processing, and intelligent 

decision systems are the key areas of concentration. The report also covers the 

limitations and prospects of AI biosensors afterward medicinal devices. An IoT-

based remote monitoring system for arterial pressure, respiration rate, and oxygen 

saturation in the blood was developed and put into use with the article [18]. The 

sensor gathers, assesses, forecasts, and interprets medical information that is kept on 

the “ThinkSpeak” IoT platform. The gadget derives and measures the 

photoplethysmography (PPG) signal using a physiological sensor with an 

incorporated signal conditioning unit and an identical PPG signal. The PPG signal’s 

advantageous parameters are factored in using a computer-based algorithm. For 

remote health monitoring, the sensor can be connected to the Arduino 1010 WIFI 

MKR and worn as a ring sensor. The calculated SpO2 readings are tracked remotely, 
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and a graphical depiction is created. The sensor’s accuracy was assessed against two 

common commercially available measurement equipment. The application of 

wearable electromechanical displacement sensors based on laser-induced graphene 

(LIG) for the real-time monitoring of pulmonary signals in patients experiencing 

shock or respiratory distress was investigated in research [19]. A database of 

respiration signals, spanning from 86% to 100%, is created once the sensors are 

fastened to the subject’s chest. An artificial neural network (ANN) framework is 

created for SpO2 estimation using the database. In biosensing, incorporating 

mechanical respiration sensors and neural networks creates new opportunities for 

transparent SpO2 surveillance. Surface electromyography (sEMG) data are used in 

the study [20] to automatically recognize instances of inhaling and exhalation, hence 

conserving medicinal oxygen. The device, called “RESPIPulse,” is an intelligent 

pulse-based respiration device that does not require user intervention. By using ML 

techniques, the device seeks to reduce oxygen waste during the process of the 

exhalation phase and increase oxygen supply efficiency. It has been established that 

k-nearest neighbor (kNN) is the most accurate method for identifying respiratory 

occurrences. Extensive oxygen savings over current pulse-operated devices have 

been demonstrated in trials including both healthy volunteers as well as patients with 

dyspnea. 

3. Methodology 

In this research, we proposed a novel Intelligent Portable Oxygen Breathing 

Apparatus Integrated with Biosensors (IPOBAB) revolutionary system that 

integrates biosensors to provide oxygen therapy with optimized efficiency based on 

the user’s oxygen needs in real-time, as depicted in Figure 1. 

 

Figure 1. IPOBAB revolutionary system. 

Initialization involves the system performing self-checks, utilizing Serial 

Peripheral Interface (SPI) pins to connect the Microprocessor Unit (MPU) 9250 

Inertial Measurement Unit (IMU), pressure sensor, pulse oximeter sensor, and flow 
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sensor to the Microcontroller Unit (MCU) for measuring blood oxygen saturation 

(SpO2) and pulse rate, which are key indicators for controlling the oxygen flow. A 

push-button pin connected to the General-Purpose Input / Output (GPIO) pins 

ensures accurate oxygen delivery based on the patient’s activity level and health 

conditions. The IPOBAB hardware components include the oxygen concentrator 

unit, which filters and provides medical-grade oxygen from ambient air; a 

compressor that compresses and delivers air into the system; limestone filters that 

absorb nitrogen; and an oxygen tank that stores the separated oxygen for the user to 

inhale. The IPOBAB device features a 6-pin connector for personalized oxygen flow 

levels, with pins P1–P6 assigned for patient requirements, and a manageable O2 

concentrator interface for controlling oxygen flow and powering the control unit. 

The MCU, based on the ARM Cortex-M0 architecture, processes sensor input 

signals via a Tensor Processor Unit (TPU) to detect the patient’s physical activity 

and movement patterns, using a Dynamic Gradient Boosting Machine (DGBM) to 

adjust the flow rate based on the user’s SpO2 levels and physical exertion. Initially, a 

median filter is utilized to remove noise from the input signals, and features 

extracted from the denoised signals are accomplished using Digital Signal 

Processing (DSP) techniques such as Fast Fourier Transform (FFT) to control 

oxygen delivery. It also includes built-in memory and supports an external µSD card 

for data storage; the overall functionality of this study is illustrated in Figure 2. 

 

Figure 2. An overview of processes for methodology. 
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The IPOBAB is powered by a rechargeable 700 mAh lithium-ion battery, 

designed for several hours of continuous use, or can be powered through an external 

AC supply for long-term use at home. The IPOBAB runs using a Real-Time 

Operating System (RTOS) such as Linux Embedded C++, with an oxygen flow 

control algorithm implemented on the tensor processor model operating the overall 

IPOBAB system. A Bluetooth Low Energy (BLE) module connected to the 

Universal Asynchronous Receiver-Transmitter (UART) provides wireless 

connectivity for data transmission and allows remote monitoring through mobile 

applications, employing the Message Queuing Telemetry Transport (MQTT) 

protocol for oxygen flow control feed messaging in the User Interface (UI) port. If 

the user is exercising or if SpO2 levels drop below a predefined threshold, the system 

boosts oxygen delivery, conversely, if the user’s SpO2 is within the normal range and 

they are resting, it reduces the flow rate to conserve battery power and oxygen. User 

feedback is provided through the mobile app, displaying current oxygen delivery, 

pulse rate, battery status, and system health. Alerts and notifications are issued via 

MQTT if SpO2 levels fall below safe limits or if there is a malfunction with the 

concentrator. The IPOBAB system configuration modes are illustrated in Figure 3. 

 

Figure 3. The configuration of the IPOBAB system. 

3.1. Study design and participants 

An outline of 25 research participants, including their demographics and other 

pertinent health-related data. It shows that 24% of the population is female and 76% 

of the population is male. Additionally, the age range of the group is 50–89 years 

old. The severity of dyspnea was indicated by the mean BMI of 26.8 ± 4.0 and the 

baseline degree of dyspnea as determined by the Modified Medical Research 

Council, which was 2.4 ± 0.6. Lower lung function is indicated by a FEV1/FVC ratio 

in the range of 0.52 ± 0.18. 

In Table 1, activity level: 32% are low, 56% are medium, and 12% are high. 

SpO2 level: 28% fall into the 85%–70% range, 24% fall below 70%, and 48% fall 

into the 86%–90% range. It varied between 81–90 bpm (8%), and less than 50 bpm 
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(32%). Three-quarters of patients are lowly active, fifty-six percent are medium 

active, and twelve percent are highly active. 48% of patients had SpO₂ values 

between 86 and 90%, 28% have levels between 85%–70%, and 24% have levels 

below 70%. The heart rate reflects the variety in cardiovascular response, ranging 

from less than 50 bpm (32%) to 81 bpm–90 bpm (8%). 52% of patients need 3 

L/min–6 L/min of oxygen, whereas 48% of patients need 1 L/min–3 L/min. 

Furthermore, the LTOT history is 24.3 ± 15.8 months, and the average daily POC 

usage duration is 2.5 h ± 1.2 h. 

Table 1. Demographic characteristics of the COPD patients. 

Characteristics data Value 

Number of Patients N = 25 

Gender 
Male 19 (76.0%) 

Female 6 (24.0%) 

Age 

50–59 3 (12%) 

60–69 8 (32%) 

70–79 5 (20%) 

80–89 9 (36%) 

Body Mass Index (Kg/m2) 26.8 ± 4.0 

Modified Medical Research Council dyspnoea baseline level 2.4 ± 0.6 

Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio 0.52 ± 0.18 

Daily hours using the POC 2.5 ± 1.2 

LTOT history (months) 24.3 ± 15.8 

Activity Level 

Low 8 (32%) 

Medium 14 (56%) 

High 3 (12%) 

SpO2 Level  

86–90 12 (48%) 

85–70 7 (28%) 

Below 70 6 (24%) 

Heart Rate (bpm) 

81–90 2 (8%) 

80–71 4 (16%) 

70–61 7 (28%) 

60–51 4 (16%) 

Below 50 8 (32%) 

Oxygen Flow Rate (L/min) 
1–3 12 (48%) 

3–6 13 (52%) 

Then to gather data from actual activities, participants were asked to walk and 

climb stairs. The length of the exercise, the use of POC, oxygen flow levels, the 

saturation of oxygen, heart rate, and distance taken to walk were among the variables 

that the researchers noted. The energy cost of physical activity was measured using 

the metabolic intensity of operations (MIO). Because COPD patients rarely engage 

in high-intensity exercise, the study concentrated on low- to moderate-intensity 

activities are illustrated in Table 2. It represents the various activities that COPD 



Molecular & Cellular Biomechanics 2024, 21(4), 535.  

10 

patients are engaged in, categorized by intensity. The intensity is sedentary, light, 

moderate, and vigorous. MIO values and the corresponding number of cases are also 

given. The table is used to estimate energy expenditure in different physical tasks 

and helps guide oxygen adjustments based on activity levels. To make sure patients 

received the appropriate amount of oxygen, medical professionals modified the 

amount of oxygen required from the POC according to each patient’s activity 

intensity. 

Table 2. Presents the classification of activity intensity. 

Performance Activities MIO Quantity of cases 

Sedentary 

Sitting 1.3 2160 

Standing 1.5 1389 

Lying 1.0 1592 

Light 
Walking 2.1 3115 

Light housework 2.5 1505 

Moderate 

Walking upstairs 3.5 809 

Walking downstairs 3.9 763 

Gardening 4.1 502 

Vigorous 

Running 7.0 382  

Cycling (fast pace) 8.0 201 

Aerobic exercises 6.5 490 

Total 12,908 

IMU sensor captures data about analyzing COPD patients’ SpO2 levels, heart 

rate, and oxygen flow rates during daily activities. This study includes activities like 

eating that require moving your hands or walking. Mobile devices such as wrist 

straps and elastic waistbands can be paired with smartphones. The three directions of 

the accelerometer, magnetometers, and gyroscope data from the device that is worn 

are used to calculate x, y, and z (see Figure 4). 

 

Figure 4. Displays raw IMU signal data before processing. 
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3.2. Data preprocessing using median filter 

The median filter is applied to remove unwanted noise from the IMU sensor 

data collected from the patient’s activity, specifically in the x, y, and z-axis signals. 

The IMU captures accelerometer, magnetometer, and gyroscope data, which could 

include signal distortions due to the patient’s movements or environmental factors. 

By using the median filter, each data point in the sliding window is replaced with the 

average value of the bordering points, successfully pressing the signal though 

retaining essential details, such as rapid changes in motion that indicate activity 

transitions are illustrated in Figure 5. 

 

Figure 5. Demonstrates the noise removal mechanism applied to IMU data. 

This method helps preserve critical features of the patient’s movements and 

ensures more accurate detection of activity patterns without losing important signal 

details during noise suppression. 

We refine the transmittance optimization process for improved patient activity 

recognition by integrating median filtering into the IMU data analysis. Let the 

window size 𝛺(𝑤, 𝑧) 𝑏𝑒 𝑀 × 𝑀, where 𝑋(𝑤, 𝑧) is calculated using the minimum and 

maximum values of 𝐽𝑚𝑖𝑛, as shown in Equation (1): 

𝑋(𝑤,𝑧) = [
min

(𝑤,𝑧) ∈Ω(𝑤,𝑧)
𝐽𝑚𝑖𝑛(𝑤, 𝑧)

max
(𝑤,𝑧) ∈Ω(𝑤,𝑧)

𝐽𝑚𝑖𝑛(𝑤, 𝑧)
] (1) 

here, (𝑤, 𝑧)  denotes the pixel coordinates, and 𝐽𝑚𝑖𝑛  represents the minimum 

frequency value. The minimum and maximum values within the window are denoted 

as 𝑋(𝑤,𝑧)(𝑀2 − 1) respectively. The dark channel prior (DCP) value 𝐼𝑑𝑎𝑟𝑘(𝑤, 𝑧), for 

noise reduction in signal processing, is expressed in Equation (2): 

𝐼𝑝𝑒𝑎𝑘(𝑤, 𝑧) = 𝑋(𝑤,𝑧)(0) (2) 

The DCP calculation can be modified by applying a median filter, as described 

in Equation (3): 
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𝐼𝑝𝑒𝑎𝑘(𝑤, 𝑧) = med
(𝑤,𝑧)∈Ω(𝑤,𝑧)

( min
𝑑∈(𝑞,ℎ,𝑎)

𝐼𝑑(𝑤, 𝑧)) (3) 

Given that the vector 𝑋(𝑤,𝑧) is ordered from smallest to largest, the refined peak 

values of the signal are computed by Equation (4): 

𝐼𝑝𝑒𝑎𝑘(𝑤, 𝑧) = 𝑋(𝑤,𝑧) (
𝑀2 − 1

2
) (4) 

Replacing the original minimum filter with the median filter transforms the 

transmittance calculation into Equation (5): 

𝑠′(𝑤) = 1 − 𝜔 med
(𝑤,𝑧)∈Ω(𝑤,𝑧)

(min
𝑑

𝐽𝑑(𝑤, 𝑧

𝐵𝑑 ) (5) 

Finally, the denoised IMU signal for accurate patient activity recognition is 

derived through Equation (6): 

𝐼(𝑤) =
𝐽(𝑤) − 𝐵

max(𝑠′(𝑤), 𝑠0) + 𝐵
 (6) 

By integrating median filtering into the signal processing workflow, we 

enhance noise removal in the IMU data, yielding clearer and more accurate activity 

recognition for optimal oxygen flow control. At an average sampling rate of 25 Hz, 

both the accelerometer and gyroscope’s (X, Y, and Z) data were gathered. It was 

thought that this division of the acceleration signals into periods of 3 s with no 

overlap would prove enough for recording the important aspects of the signal. 

Annotated labels allowed for the identification of processes at varying intensities. 

3.3. Fast fourier transform (FFT) employed to feature extracting the 

IMU signal 

The Fourier Transform is used to extract features after the median filter has 

been applied to eliminate noise in the IMU signal data (x, y, and z axes) and enable 

activity in patients’ identification are depicted in Figure 6. Researchers can examine 

the recurrent frequency pattern that corresponds to the patient’s activities by 

breaking down the filtered IMU signal into each of its frequency elements using the 

Fast Fourier Transform (FFT). 

 

Figure 6. The refinement of activity patterns for feature extraction. 

Consider that 𝑦𝑗,represents a discrete signal that is output with a magnitude 𝑛 

and𝑚 = 0, 1, 2, 3, . . , 𝑀 − 1. Following the FFT alteration, the result will be 𝑦𝑗,𝑙  for 
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𝑗 = 1, 2, 3, . . . . . . . . . . . . , 𝑛  and  𝑙 =  0, 1, 2, 3, . . . . . . . . , 𝑎 − 1, where 𝑛 the size of the 

samples is used for training and 𝑎 is the unchanged harmonic size. The FFT can be 

obtained by: 

𝑊(𝑙) = ∑ 𝑤(𝑚)

𝑀−1

𝑚=0

𝑋𝑀
𝑙𝑚, 

(7) 

𝑙 = 0,1, … . , 𝑀 − 1 

𝑋𝑀 = 𝑓
−𝑖2𝜋

𝑀  (8) 

𝑊(𝑙) = ∑ 𝑤(𝑚)

𝑚 𝑒𝑣𝑒𝑛

𝑋𝑀
𝑙𝑚 + ∑ 𝑤(𝑚)

𝑚 𝑜𝑑𝑑

𝑋𝑀
𝑙𝑚 (9) 

𝑊(𝑙) = ∑ 𝑤(2𝑁)

𝑀
2

−1

𝑛=0

𝑋𝑀
2𝑙𝑚 + ∑ 𝑤(2𝑁)

𝑀
2

−1

𝑛=0

𝑋𝑀
2𝑙𝑚 (10) 

With 𝑋𝑀
2 = 𝑋𝑀/2 substitution, the Equations (11) and (12) can be expressed as 

𝑊(𝑙) = ∑ 𝑔1(𝑛)

𝑀
2

−1

𝑛=0

𝑋𝑀
2 + ∑ 𝑔1(𝑛)

𝑀
2

−1

𝑛=0

𝑋𝑀/2
2  (11) 

𝑋(𝑙) = 𝐺1(𝑙) + 𝑋𝑀/2
𝑙 𝐺2(𝑙) 𝑙 = 0,1, … . , 𝑀 − 1 (12) 

The 
𝑀

2
 position DFTs of the patterns 𝑔1(𝑛)  and  𝑔2(𝑛) , accordingly, are 

represented by the values 𝐺1(𝑙) and 𝐺2(𝑙) Period 
𝑀

2
 characterizes 𝐺1(𝑙) and 𝐺2(𝑙) 

consequently 𝐺1 (𝑙 +
𝑀

2
) = 𝐺1(𝑙)  and 𝐺2 (𝑙 +

𝑀

2
) = 𝐺2(𝑙) . In addition, the 

formula 𝑋𝑀
𝑙+𝑀 2⁄

, the equation can therefore be expressed as Equations (13) and (14). 

𝑊(𝑙) = 𝐺1(𝑙) + 𝑋𝑀
𝑙 𝐺2(𝑙), 𝑙 = 0,1, … ,

𝑀

2
 (13) 

𝑊 (𝑙 +
𝑀

2
) = 𝐺1(𝑙) − 𝑋𝑀

𝑙 𝐺2(𝑙) , 𝑙 = 0,1, … . . ,
𝑀

2
 (14) 

where 𝑁 is the output discontinuous signal total number of points for sampling, these 

equations will be used to compute the input signal’s FFT transform, which will 

demonstrate the activity signature in the domain of frequency. 

3.4. Physical activity classification model using dynamic gradient 

boosting machine (DGBM) 

Gradient Boosting Machine (GBM) is a form of assembly learning that builds 

uninterrupted decision trees to exploit prediction accuracy. It combines the 

consequences of weak learners to optimize. An improved form of GBM called 

Dynamic Gradient Boosting Machine (DGBM) animatedly modifies its learning in 
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reaction to broken-up patterns in the input data, mounting its receptiveness to time-

dependent fluctuations such as physical activity. Its most important benefit is its 

capability to adapt the model in real-time situations, guaranteeing precise and 

appointed time forecasts under changing conditions such as enduring health 

monitoring. To successfully deal with the difficulties of disturbed signal data in 

patient activity level classification, we developing the DGBM method in this study. 

The approach uses a Bayesian model for hyperparameter optimization and the Fuzzy 

C-Means (FCM) method for sampling data sets with imbalances. We improve the 

signal data collection’s quality and enable more accurate activity classification by 

adding a clustering algorithm. Moreover, feature selection aids in removing 

redundant attributes, which lowers the process of learning the algorithm’s 

sophistication. The following are the DGBM approach’s facilitates accurate 

classification of patient activity levels, ensuring that the model effectively 

distinguishes between various exertion levels for optimal oxygen delivery, the 

DGBM method’s primary stages are depicted in Algorithm 1. 

Algorithm 1 DGBM 

1: Input: IMU Signal 

2: Output: Classification results for patient activity levels (low (f < 1), moderate (2 < f < 5) and high (F > 5)) 

3: Step 1: Read original IMU signal data, frequency node, and standardize data features; 

4: Step 2: Partition pre-processed signal data into Maximum frequency node B and Minimum frequency node A; 

5: Step 3: Execute fuzzy C-mean for Maximum frequency node B, return the sampling signal data node D; 

6: Step 4: Merge frequency mode C and Minimum frequency mode B into IMU signal data balance; 

7: Step 5: Use gradient boosting algorithm for feature frequencies of IMU signal data balancing; 

8: Step 6: Use GBM algorithm for construction tree based-classifier; 

9: Step 7: Bayesian hyperparameter optimization; 

10: Step 8: Operate optimal hyperparameter model to obtain classification results; 

11: Return Classification patient activity levels (low (f < 1), moderate (2 < f < 5), and high (F > 5)). 

Figure 7 depicts the iterative process of a DGBM in classifying physical 

activities based on feature frequencies into different levels of exertion. This process 

is crucial for regulating oxygen delivery in response to a patient’s current exertion 

level. In each iteration, the trees progressively adjust the boundaries, improving the 

classification of activities into low (𝑓 < 1), moderate (2 < 𝑓 < 5), and high (𝐹 >

5). As more trees are added, the DGBM refines the output, providing more accurate 

predictions of exertion levels, and ensuring oxygen delivery is more precisely 

adjusted to meet a patient’s needs. In algorithm 2 C denotes the values of the signal 

frame, and B and D are the activity status of the patients. In Figure 7 the circle share 

represents the activity state and the square shape illustrates the inactivity status of the 

patient. 

 

Figure 7. Introduces the DGBM activity identification model for accurate activity classification. 
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4. Result and discussion 

Python 3.11 platform was used for the outcome research. A laptop running 

Windows 10 with an Intel i7 CPU and 32 GB of RAM is used to analyze the 

physical activity status of 25 COPD patients using DGBM. with three separate trees 

through 3276 nodes of low exertion, 3413 nodes of moderate exertion, and 550 

nodes of high exertion made up the data set used in this study phase. Figure 8 

illustrates a test and the signals obtained over sometime during various activities. 

The experiment involved collecting signals from a patient while walking through a 

hospital test circuit. The IMU measured three types of signals; they are 3-axis 

accelerometer signals in Figure 8a, gyroscope signals in Figure 8b, and barometer 

signals in Figure 8c. The accelerometer signals measured the patient’s movement in 

three directions, the gyroscope signals detected their body rotation, and the 

barometer signals measured air pressure changes. The red vertical lines in the signal 

plots indicated changes in activity, such as transitioning from level ground to stairs. 

 

Figure 8. IMU Signal data includes three key components for activity tracking (a) accelerometer signals; (b) 

gyroscope signals for rotational motion; (c) barometer signals. 

The IPOBAB integrated with a DGBM has demonstrated high performance and 

efficiency in managing oxygen delivery. The system’s Weighted Accuracy was 

98.4%, indicating its reliability in identifying patient activities and adjusting oxygen 

flow accordingly. SpO2 levels averaged 94.5%, indicating healthy oxygen levels and 

preventing hypoxemia during physical activity. Heart rate was stable, with 78.3 beats 

per minute, ensuring patient safety. The Oxygen Flow Rate Adjustment ranged from 

0.5 L/min to 6.0 L/min, dynamically adjusted based on real-time physiological data. 

Activity levels were divided into low, moderate, and high-intensity categories, 

allowing the DGBM to fine-tune oxygen delivery according to the patient’s specific 
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needs; Figure 9 depicts the DGBM classifier predicting the activity level of the 

COPD patients. 

 

Figure 9. Visualizes the predicted outcomes from the classifier mode. 

Patient satisfaction was high, with an average of 4.7, indicating comfort and 

effectiveness. The system led to a 40% Mobility Improvement, enhancing patients’ 

ability to perform daily tasks compared to their baseline mobility before using the 

apparatus. Overall, the IPOBAB system effectively manages oxygen delivery, 

improves patient mobility, and maintains health standards during its use. The device 

attended a high accuracy performance level is influenced by inaccuracies in 

categorizing activities upstairs and downstairs, due to inherent difficulties and 

variations in patient walking patterns. Long flights of stairs are typically avoided by 

COPD and respiratory failure patients receiving LTOT, making these mistakes less 

critical in real-world situations. Table 3 compares blood oxygen saturation 

variations for 7 COPD patients in traditional portable oxygen breathing apparatus 

integrated with biosensors (POBAB) and automatic IPOBAB tests. When comparing 

average oxygen saturation in the blood readings to standard testing, four out of seven 

COPD patients exhibited a decrease in desaturation occurrences and an 

improvement. When POBAB was utilized, the total amount of time spent without 

SpO2 between 90% and 85% demonstrated improved responsiveness. Because of 

backache worsening, seven people with COPD reported decreased mobility, which 

could have an impact on the test outcomes. Reduced saturation in the time leading up 

to intensification has been seen by certain writers, which can indicate distortion in 

the examination’s findings. 
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Table 3. Presents the response data of seven COPD patients. 

Modes Traditional method IPOBAB 

𝐏𝐚𝐭𝐢𝐞𝐧𝐭𝐬 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑷𝟓 𝑷𝟔 𝑷𝟕 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑷𝟓 𝑷𝟔 𝑷𝟕 

SpO2 events 2 4 3 6 4 2 4 2 1 1 3 2 1 1 

Mean SpO2 (%) 92.4 89.7 93.1 89.9 90.5 91.6 87.9 89.5 91.5 86.1 90.4 88.6 87.1 94.2 

CT90 (%) 73.8 68.3 17.9 7.4 9.3 67 50.4 91.7  49.3 97.5 29.5 31.4 64.6 23.6 

Max SpO2 (%) 93 91 85 90 78 92 86 95 98 92 94 96 92 90 

Oxygen Flow Rate (L/min) 2.0 2.4 2.1 2.7 2.3 2.2 2.5 3.7 3.2 2.9 3.8 3.0 3.5 3.9 

CT85 (%) 32.6 12.6 0.00 0.00 0.00 29.4 0.00 9.6 0.00 7.2 12.8 0.00 32.6 14.6 

Min SpO2 (%) 77.9 76.9 73.9 89.4 85.7 88.7 84.6 80.9 69.7 79.6 81.0 95.9 97.4 89.7 

One participant’s change in their saturation of blood oxygen pattern throughout 

exertion is shown in Figure 10. It is evident that using the suggested method 

increased the mean value, stabilized SpO2 levels, and decreased the amount of 

desaturation occurrences. A participant’s SpO2 patterns throughout the scientific 

experiment are shown in Figure 10. When utilizing a handheld oxygen concentrator 

in the suggested automated mode, the SpO2 values are indicated by the yellow line. 

The SpO2 readings measured with the IPOBAB in traditional mode are indicated by 

the green line. 

 

Figure 10. Shows patterns in SpO2 readings over time. 

The area under the curve is called the Area under the Curve (AUC), and it 

displays the True Positive Rate (Recall) versus the False Positive Rate (1-

Specificity) on the Receiver Operating Characteristic (ROC) curve. It shows how 

well the model can discriminate across classes. A higher AUC indicates improved 

activity classification accuracy and a decrease in false positives across thresholds. 

The AUC values of the DGBM model are depicted in Figure 11. 
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Figure 11. Presents the AUC performance metric of the DGBM model. 

Performance analysis with existing methodologies 

Accuracy is defined as the relation of appropriately predicted events to all 

instances. Equation (15) illustrates how well the DGBM model does overall in 

classifying activities, albeit imbalanced data may make it untrustworthy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (15) 

The proposed model is 98.4% higher in accurately detecting the patient’s 

physical activities compared to Random Forest with 1000 trees (RF) [21], Adaboost 

[21], and gradient boost tree (GBT) [21] are depicted in Table 4. The existing RF is 

95 % accurately detects patients’ activities the adaboost is 94.32% accurately 

recognizes the patient’s physical activities and then the GBT of 95.5 % accurately 

detects the patient’s activities are depicted in Figure 12a. Table 4 compares the 

performances of four different classification methods in the experiments by taking 

into account the accuracy, precision, recall, and F1 score. The proposed DGBM 

method outperformed the rest of the compared methods since it achieved the highest 

accuracy, precision, recall, and F1 score: 98.4%, 97.9%, 93.1%, and 90.8%, 

correspondingly. 

Table 4. Provides a performance analysis of the system. 

Classification methods Accuracy (%) Precision (%) Recall (%) F1 score (%) 

RF 95 94.55 77.45 86.1 

Adaboost 94.32 87.72 78.91 83.81 

GBT 95.5 94.64 81.87 87.96 

DGBM [Proposed] 98.4 97.9 93.1 90.8 

The Precision metric quantifies the proportion of correctly anticipated positive 

cases. It displays the predictive accuracy of the model (e.g., identifying “walking 

upstairs”) when it comes to a particular action or circumstance in Equation (16). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
TP

TP + FP
) (16) 



Molecular & Cellular Biomechanics 2024, 21(4), 535.  

19 

The proposed model is 97.9 % positive in predicting the patient’s activities 

compared to the existing RF 94.55% positive predict patients’ activities, the 

AdaBoost is 87.72% positive predict the patient’s activities, and the GBT model 

94.64 % positive predict the patient’s activities in are shown in Figure 12b. 

 

Figure 12. Comparative analysis (a) accuracy; (b) precision. 

The percentage of real positive cases that the model correctly predicted is 

measured by recall. It shows how well the model can identify all pertinent 

circumstances or activities (for example, making sure it recognizes the majority of 

“going downstairs” incidents) depicted in Equation (17). 

𝑅𝑒𝑐𝑎𝑙𝑙 = (
TP

TP + FN
) (17) 

The proposed DGMB model is 93.1% higher in sensitively recognizing the 

patient’s activities compared to the existing RF is 77.45%, the AdaBoost is 78.91% 

and the GBT model to 81.87% sensitively recognizes the patient’s activities are 

shown in Figure 13a. 

F1 Score is mainly useful when there is an inequity in classes, is the harmonic 

mean of Precision and Recall, it guarantees high accuracy as well as a recall for the 

model, striking a balance between the necessity to locate all pertinent actions and the 

avoidance of an excessive number of false alarms are illustrated in Equation (18). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (
Precision × Recall

Precision + Recall
) (18) 

The proposed DGBM model is 90.8% highly optimal balancing the patient’s 

activities compared to the existing RF is 86.1 %, the adaboost is 83.81% and the 

GBT model to 87.96% optimal balance of the patient activities are shown in Figure 

13b. 
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Figure 13. Comparative analysis (a) recall; (b) f1 score. 

5. Discussion 

Improving the quality of life of individuals with COPD is one of the best ways 

to provide them with oxygen as they engage in physical activity. Either Random 

Forest (RF), Adaboost, or Gradient Boosted Trees (GBT) are the most often used 

techniques for classifying patient activities and, consequently, regulating oxygen 

flow. However, there are certain disadvantages to these methods. Adaboost 

demonstrated somewhat lower accuracy at 94.32% and 87.72%, whereas GBT 

obtained an accuracy of 95.5% with a precision of 94.64%. The accuracy was 95% 

with a precision of 94.55%. Notwithstanding the aforementioned impacts of 

approaches, they seem to fail when it comes to sensitively predicting different ranges 

of activity levels, adaptability, and particularly when it comes to subtle behaviors 

like stair climbing. To solve these issues, we suggested incorporating biosensors into 

the IPOBAB system, which is protected by our Dynamic Gradient Boosted Model 

(DGBM), which attains a 98.4% classification accuracy and a 97.9% precision. 

Additionally, DGBM to have superior recall (93.1%) and F1 score (90.8%), whereas 

other techniques were not consistently reported to be able to detect activity levels 

and dynamically regulate oxygen flow with respect to needs. By reducing hypoxemia 

and stabilizing SpO₂ readings, improvements in the DGBM system enable a 40% 

increase in patient mobility. As the DGBM method’s sensitivity and precision rise, it 

becomes a more practical tool for individualized, real-time oxygen level monitoring. 

6. Conclusion 

This research introduces an alternate method for creating uninterrupted 

IPOBAB that without human intervention alters oxygen deliverance in confidence on 

physical activity level. The device can wirelessly link to the IPOBAB for self-

adjustment to a sensor unit that has been formed and weathered to measure the 

patient’s physical activity in real-time. In a methodical experimentation connecting 7 

COPD patients, a subjective accuracy of 98.4 %, was reached, patterned blood 

oxygen saturation readings, and diminishing decompression episodes. Potential 
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compensation for the not compulsory IPOBAB includes better oxygenation, better 

patient monitoring, and therapy prescription compliance. Closed-loop oxygen 

delivery systems can lower healthcare expenses, morbidity and mortality, and 

medical errors. The median filter reduced noise while maintaining the features of 

movement. The signal became smoother when the filter eliminated spikes caused by 

impulse noise. This enhanced patient activity analysis while preserving important 

data. The improved signal also improved oxygen flow optimization system 

performance and activity recognition algorithms, leading to more accurate and 

responsive oxygen therapy based on patient needs as they change in real time. FFT 

offers advantages such as providing key activity characteristic signals, simplifying 

physical activity identification, and improving computational efficiency due to its 

faster computation than traditional methods. The study presents the IPOBAB, which 

enhances oxygen management during treatment for patients with chronic respiratory 

illnesses, including COPD, through the use of DGMB algorithms and modern 

systems for monitoring. To increase the saturation of oxygen and satisfaction with 

patients, the POBAB employs the DGBM to identify levels of exercise and modify 

oxygen flow rates depending on real-time SpO2 values. This is an important 

achievement in the field of portable oxygen therapy technology. The IPOBAB is a 

revolutionary system that uses advanced DGBM techniques to monitor and deliver 

oxygen in real-time. It uses biosensors like SpO2, pulse rate, and motion sensors to 

adjust oxygen flow rates based on physical exertion and oxygen saturation levels. 

The organization optimizes oxygen supply, enhances effectiveness, and improves 

enduring mobility. It is prepared with medical-grade oxygen concentrators, 

compressors, and a sophisticated MCU processor. The IPOBAB supports wireless 

connectivity through BLE and uses MQTT for real-time monitoring and feedback 

through mobile applications. It can conserve energy while ensuring critical oxygen 

deliverance during exertion or hypoxemic episodes. Advanced ML methods, such as 

deep learning (DL) models, could be added to the IPOBAB system to increase the 

accuracy of its real-time oxygen need forecast. Additionally, it could offer 

customized patient profiles that could allow tailored treatment. The integration of 

IoT technologies with the system might enable smooth contact with healthcare 

providers. Raising the dataset’s diversity to encompass more patient demographics 

might improve the accuracy of the algorithm. Optimizing battery efficiency and 

downsizing could result in a lighter and more user-friendly system. Clinical trials 

would offer important insights into the mechanism’s long-term safety, effectiveness, 

and effect on patients’ overall QoL. 
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