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Abstract: Water transportation is a critical component of the overall transportation system.
However, the gradual increase in traffic density has led to a corresponding rise in accident
occurrences. This study proposes a quantitative framework for analyzing the evolutionary
paths of maritime traffic accident risks by integrating complex network theory and link
prediction methods. First, 371 maritime accident investigation reports were analyzed to
identify the underlying risk factors associated with such incidents. A risk evolution net-
work model was then constructed, within which the importance of each risk factor node
was evaluated. Subsequently, several node similarity indices based on node importance
were proposed. The performance of these indices was compared, and the optimal indicator
was selected. This indicator was then integrated into the risk evolution network model to
assess the interdependence between risk factors and accident types, ultimately identifying
the most probable evolution paths from various risk factors to specific accident outcomes.
The results show that the risk evolution path shows obvious characteristics: “lookout
negligence” is highly correlated with collision accidents; “improper route selection” plays a
critical role in the risk evolution of grounding and stranding incidents; “improper on-duty”
is closely linked to sinking accidents; and “illegal operation” show a strong association
with fire and explosion events. Additionally, the average risk evolution paths for collisions,
groundings, and sinking accidents are relatively short, suggesting higher frequencies of
occurrence for these accident types. This research provides crucial insights for manag-
ing water transportation systems and offers practical guidance for accident prevention
and mitigation.

Keywords: link prediction; risk evolution; complex network; accident risk path

1. Introduction

The global economy depends significantly on maritime transportation [1]. In recent
years, the implementation of China’s maritime power strategy has driven the rapid growth
of the waterborne transport sector [2]. However, water traffic accidents continue to occur
with alarming frequency. The sustainable development of inland water transport hinges
on safety as a fundamental prerequisite. Accidents in inland waterways often result in
casualties, substantial property damage, and environmental pollution [3,4]. In particular,
fuel leakage from vessels can severely contaminate aquatic ecosystems, compromise the
safety of local water supplies, and trigger widespread public concern. The overall safety
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outlook for water traffic remains concerning [5,6]. Inland waterway transportation sys-
tems exhibit high fragility [7], with risk evolution characterized by superposition, rapid
escalation, and abrupt transitions. Therefore, a comprehensive analysis of risk evolution
patterns in accidents, along with the development of methodologies for identifying risk
evolution pathways, is imperative. This analytical framework forms the foundation for
implementing dynamic risk prevention and control strategies, thereby enabling a more
proactive and effective response to emerging hazards.

At present, while water traffic accidents have attracted attention from all walks of
life, many scholars have conducted research on water traffic risk analysis. Wan et al. [8]
combined the “2—4” model and complex network theory to analyze the key causes of water
traffic accidents from different stages such as accident latent, diffusion, and occurrence.
Ziaul et al. [9] trained various machine learning algorithms using historical accident data
to develop a decision support system for accident risk assessment. Hu et al. [10] used
model simulation to analyze the coupling effect and degree of influence of the risk causes
of the maritime transportation system. Liu et al. [11] used machine learning methods to
establish a data-driven Bayesian network to analyze the causes of accidents in China’s
coastal waters. Bye et al. [12] utilized statistical analysis of historical accident data and
AIS data, integrating these with a multivariate logistic regression model to predict the
correlation between accidents and navigation. Yan et al. [13] developed a maritime accident
analysis model based on a content-aware corpus to explore and analyze the potential
relationships between maritime accident hazards.

The analysis of water traffic risks currently focuses on risk causes, risk coupling,
and risk evolution. In the study of accident risk evolution, complex network theory is
widely used in many fields such as power accidents [14], aviation accidents [15], railway
accidents [16-18], coal mine accidents [19] and road traffic accident [20]. For example,
Yang et al. [21] combined complex network and human factors analysis and classification
systems to identify key risk causes of chemical accidents. Cao et al. [22] combined complex
networks and risk matrices and proposed quantitative indicators for network node risk
levels to quantitatively assess node risks. Wang [23] established a dynamic risk analysis
and system protection method based on the importance of complex networks and node
structures, and combined cases to verify the effectiveness of the method. Sui et al. [24] used
complex network theory to analyze the practical sequence characteristics and dynamic
changes in maritime accidents in the Yangtze River. Deng et al. [25] used complex networks
to study the evolution law of accident risks of larger and higher levels along China’s coast.
Currently, link prediction theory is relatively underutilized in accident risk research. Ma
et al. [26] established a network topology diagram depicting the relationships between
events and factors, and, drawing on link prediction principles, devised a comprehensive
method for assessing human error factors. Ma et al. [27] devised an algorithm for comput-
ing factor correlation and importance, integrating link prediction technology to analyze
multifactor relationship issues pertaining to the index system. At the same time, complex
networks have also been used to some extent in waterway traffic accidents.

Opverall, current research on accident risk evolution primarily focuses on the character-
istics of risk evolution and the key causes of accidents [28,29]. However, there are still gaps
in the analysis of risk evolution paths. To address this issue, this study integrates complex
network theory with link prediction to propose a quantitative framework for analyzing
the risk evolution paths of water traffic accidents. This framework enables an in-depth
examination of the evolution of risk, explores the interdependencies between various risk
factors and accident types, and identifies the most probable evolution pathways from risk
factors to accidents.
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In this article, Section 2 provides an overview of the investigation reports on water
traffic accident cases. Section 3 introduces the complex network model and link prediction
methods and presents the framework of the proposed risk evolution path prediction model.
In Section 4, the risk evolution paths of water traffic accidents are analyzed and solved
following the proposed framework. Finally, Section 5 concludes this paper by summarizing
the research findings.

2. Accident Sample

The accident data analyzed in this study are derived from investigation reports pub-
lished on the official websites of the China Maritime Safety Administration and its affiliated
local maritime safety administrations under the Ministry of Transport. A total of 371 rep-
resentative investigation reports on inland waterway traffic accidents in China, spanning
the period from 2012 to 2023, were systematically compiled and analyzed to provide a
comprehensive overview of inland navigation accidents.

2.1. Accident Location

These reports cover major inland waterways in China, including the Yangtze River,
Pearl River, and Xijiang River, among others, offering a broad and representative sample
of inland waterway incidents. Based on the geographical information contained in the
investigation reports, a heat map illustrating the spatial distribution of the accidents was
generated, as shown in Figure 1. The figure reveals that inland water traffic accidents are
most concentrated in the lower reaches of the Yangtze River and the Pearl River system.
A notable number of incidents also occur in the upper and middle reaches of the Yangtze
River. Additionally, a smaller number of accidents are distributed across other waterways
such as the Xijiang River, Huangpu River, Daliao River, and Songhua River. Overall, the
spatial coverage of the cases indicates that the dataset analyzed in this study is broadly
representative of inland waterway accidents across China.

Figure 1. Accident location heat map.
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2.2. Accident Level

Among the 371 investigation reports analyzed, there were no particularly significant
accidents, 8 were classified as major accidents, 37 as larger accidents, 290 as general
accidents, and 36 as small accidents. Overall, the majority of inland waterway traffic
accidents in China fall into the general and minor categories, collectively accounting for
87.9% of the total. Notably, general-level accidents comprise the largest share, representing
78.2% of all incidents. A detailed breakdown is presented in Figure 2.

small accident
general accident

0,
8(2.2 A)). larger accident
37 (10%) I ajor accident
290 (78.2%)
36 (9.7%)

Figure 2. Distribution of accident levels.

2.3. Type of Accident and Number of Casualties

According to the statistical analysis, the types of accidents documented in this study
include 152 collisions, 66 sinkings, 30 contacts, 15 wind damage accidents, 9 fire/explosion,
10 grounding, 4 stranding, and 85 classified as other types. The distribution of these
accident types is illustrated in Figure 3. Among them, collision accidents constitute the
largest proportion at 40.97%, followed by other types (22.91%) and sinking accidents
(17.79%). Due to the high frequency of collision incidents, they also account for a relatively
large number of fatalities and missing persons, totaling 164. However, sinking accidents
exhibit the highest average fatality /missing rate per incident, exceeding two individuals
per case. This indicates that, although less frequent, sinking accidents have the most
significant impact on the incremental mortality rate [30,31].

Number of accidents
Number of injured
Number of death/missing
Average death/missing
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140
120
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Figure 3. Type of accident and number of casualties.
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3. Methods

This paper constructs an accident risk network, identifies the importance of network
nodes, and introduces a novel approach for calculating node similarity by integrating node
importance with traditional link prediction techniques. Section 3.1 details the method
for calculating node importance. Section 3.2 reviews the traditional node similarity index
calculation methods. Finally, Section 3.3 presents the methodological innovation proposed
in this paper: a node similarity index calculation method based on node importance.

3.1. Node Importance Calculation Method
(1) Node degree

The node degree value represents the number of edges connected to this node. For
any node i in the network, its degree value is calculated as shown in (1):

N
Di=) 1l 1)
=1

Among them, [;; represents the edge between node i and node j; N represents the
number of nodes in the network.

(2) Betweenness centrality

Betweenness centrality is a measure used to quantify how often the shortest paths
within a network pass through a specific node, denoted as node i. It reflects the frequency
with which node i lies on the shortest paths between all other pairs of nodes in the network,
thereby indicating the centrality and influence of the node within the network structure [32].
At the same time, it can also show the degree to which the node controls other nodes in the
network. The calculation method is as follows:

Qi(s t)
B = 2
L 061 ()

Among them, Q(s, t) represents the number of shortest paths between node s and
node t; Q;(s, t) represents the number of shortest paths passing through node i.

(8) Closeness centrality

Closeness centrality reflects the proximity of any given node to all other nodes in the
network [33]. It is expressed as the reciprocal of the sum of the shortest path lengths from
that node to all other nodes. This metric can be used to assess the importance of a node
within the network. For any node i, its closeness centrality is calculated as follows:

1
CC; = L 3)
1 N
Li=5— 1}; L (4)

Among them, L; represents the average distance from any node i in the network to
other points in the network; L;; represents the distance from any node i in the network to
node j in the network.

(4) PageRank value
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PageRank value is an important basis for analyzing key nodes in complex net-
works [34]. If a network contains N nodes, for node i, its PageRank value is as follows:

N 1-d Wi, j) x PR(j)
PR(i) = — +dje§(i)[ D) } (5)

Among them, M(i) is the point connected to i; W(i, j) is the weight of edge (i, j). Here,
the product of the degree values of node i and node j is calculated as the weight of edge
(i, j); D(j) is the degree of vertex j; d is the attenuation factor, usually d = 0.85.

3.2. Traditional Similarity Index Calculation Method

The node similarity index has the advantages of simplicity, interpretability, low oper-
ation time, strong scalability, and competitive prediction accuracy. Therefore, this article
combines three local similarity indicators: Common Neighbor (CN), Resource Allocation
(RA), and Jaccard coefficient (Jaccard) to carry out relevant calculations. The calculation
method is as follows:

(1) CN index

The CN index [35] utilizes the number of common neighbors between two nodes as an
index to assess the likelihood of edges connecting the two nodes. In other words, a higher
number of common neighbors between two nodes indicates a greater probability of the
existence of an edge between the connection points. For node i and node j, their neighbor
node sets are I'(7) and I'(j), respectively; then, the set of common neighbors of nodes i and
jis |T(i) NT(j)|, then the CN index is defined for

CN = |T(i)NT(j)| (6)

(2) RAindex

The RA index [36] originates from the perspective of resource allocation, positing that
each node in the network possesses a certain amount of resources. When considering a pair
of nodes i and j, even if they are not directly connected, node i can allocate some resources
to node j. In this scenario, the common nodes between them serve as intermediaries for
resource transfer. Thus, the RA index can be defined as follows:

RA =

1 %
k

keT (i)nr(j) d

(3)  Jaccard index

The Jaccard index [37] is used to compare the similarities and differences between
limited sample sets. The greater the Jaccard similarity index value, the higher the similarity
between samples. In complex networks, the proportion of the intersection of adjacent nodes
of node i and node j in the union of adjacent nodes becomes the Jaccard similarity index
between node i and node j. The calculation method is as follows:

L@ NI
Jaccard = - - 8)
INOX 0]
Among them, |I'(i) N I'(j)| represents the intersection of adjacent nodes of node i and
node j; |T'(i) UT(j)| represents the union of adjacent points of node i and node j.
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3.3. Node Similarity Index of Node Importance

This paper combines the similarity index and node importance and innovatively
proposes a similarity index calculation method based on node importance. The AUC
index is used to compare the advantages and disadvantages of the methods. The relevant
calculations are as follows:

(1) CN index based on node importance

To avoid the situation where the number of common neighbors is the same but the
node importance is different, resulting in the same possibility of linking between the
calculated nodes. Therefore, in the calculation process of the CN index, the importance of
the node is also considered, and the following CN index calculation method considering
the node importance attribute is obtained:

MCN= Y M )
keI (i)NT(j)

Among them, M, represents the importance value of node k, including degree, be-
tweenness centrality, closeness centrality, and PageRank value.

(2) RA index based on node importance

Based on the RA index, this paper uses the importance attribute as the resource
allocation ratio parameter and allocates resources according to the ratio of the importance
of adjacent nodes to the sum of the importance of all adjacent nodes. Therefore, the
RA index calculation method considering the node importance attribute in this article is

as follows:
My
kT (i)NT(j) heTH) h

Among them, Sj, represents the sum of the importance values of the adjacent nodes
of node h. This part of the importance includes degree, betweenness centrality, closeness
centrality, and PageRank value, which correspond to My; I'(k) represents the set of adjacent
nodes of node k.

(8) Jaccard index based on node importance

For the Jaccard indicator based on node importance, this article considers two sce-
narios: the first scenario involves calculating the Jaccard index by considering the sum
of the importance values of the common neighbors of the two nodes, as described by
Equation (11). In the second scenario, the calculation incorporates the ratio of the sum of
the importance values of the common neighbors of the two nodes to the sum of the union
importance values of the neighbor nodes of both nodes. This modified Jaccard index is
calculated using Equation (12). The specific calculation methods for these scenarios are
M;.Jaccard = m Y My (11)

keI (i)Nr(j)

. . Y Mg
L) NI ()| ker@nr()

TOHULGH Y My
heT (i)UL'(j)

outlined below.

M. Jaccard = (12)
(4) Area Under Curve (AUC) indicator

The ROC curve can better reflect the accuracy of the node similarity index [38], and
the AUC value represents the area under the ROC curve, which can more intuitively reflect
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the accuracy difference in the shape similarity index. The calculation method of the AUC
value is as follows:
AUC — n1+(1)1.5*n2 (13)

Among them, n1 represents the number of times the test set Ep test value is large; n2
represents the number of times that the two test values are equal; n represents the total
number of experiments.

3.4. Risk Evolution Path Analysis Framework

Based on a large volume of historical accident data, this study proposes a framework
for analyzing the risk evolution paths of inland waterway traffic accidents. The framework
integrates a complex network model, node importance analysis, and a novel node similarity
index calculation method that incorporates node importance. The four main steps of the
proposed research framework are illustrated in Figure 4. Among them, the calculation
of the shortest path of risk evolution is to construct a risk evolution directed network by
combining the accident risk evolution matrix and the node similarity index matrix. Then,
the risk trigger point and accident type are selected, and the shortest path of risk evolution
is calculated with the shortest distance as the weight. Details are shown in Figure 5.

Step 1: Identification of Accident Risk Factors

| I
| I
I Risk Factors :
| = - Human  Environmental | I
I Official accident — |
| investigation Ship Management |
| report
| I
I
: Accident types » Risk evolution paths —— |
| I

Step 2: Risk Evolution Network Modeling and Node
Importance Evaluation

Analysis of risk

— — accident risk — f
node importance

|

|

|

|

: model Inland waterway
: evolution network
|

I
I
I
I
Complex network |
I
I
I
I
I

Step 3: Node similarity index analysis based on node

| |
I .
| importance I
| Node similarity index I |
l Commor Node similarity :
: NEZLo(EN) —> index based on Oi;I)lt(;r;a] |
| Resource Jaccard node importance I
Allocation : |
I RA) coefficient AUC
| evaluation :
I

Step 4: Accident Risk Evolution Path Analysis

Shortest path of risk
Directed network evolution
“— model for risk

L. Key risk factors
Objective: shortest Y

evolution distance

—_—_———ee— e e e — o

I
I
I
I
I evolution
I
I
I

Figure 4. Framework for analyzing the risk evolution paths of water traffic accidents.
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Stepl : Similarity index matrix embedded in accident risk matrix
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Figure 5. Risk evolution shortest path solution process.

4. Risk Evolution Path Analysis
4.1. Accident Risk Factors and Accident Chain Extraction

The occurrence of inland waterway traffic accidents is often the result of the interaction
of multiple risk factors. This paper systematically extracts both the direct and indirect
causes of these accidents from investigation reports and categorizes them into four main
groups: people, ships, environment, and management. The identified risk factors for inland
waterway accidents are summarized in Table 1.

Table 1. Risk factors.

TP Number Node Number Node
1 Weak safety awareness 11 Drowsy driving
2 Improper operation 12 Lookout negligence
3 Captain’s failure to perform 13 Illegal operation
4 Unfamiliar hydrological environment 14 No early avoidance
5 Underestimation of risk 15 Driving without caution
Human factors .
6 Improper route selection 16 Unused safe speed
7 Insufficient skill level 17 Improper on-duty
8 Inexperienced 18 Poor communication
9 Drunk driving 19 Improper avoidance measures
10 Improper anchoring method 20 Improper emergency response
21 Not displaying the AIS signal 27 Improper cargo stowage
22 Overload 28 Lack of maintenance
Ship factors 23 Unairworthiness 29 Equipment' fa'ilure
24 Unballasted 30 Device missing
25 Insufficient watertightness of the cabin 31 Unsealed cabin trimming
26 Ship compartment flooding 32 No signal type shown
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Table 1. Cont.

Node Node

Type Number Node Number Node
33 Heavy wind and waves 36 Poor visibility
Environmental L . .
factors 34 Complex navigation environment 37 Rainstorm
35 Unfavorable water flow 38 Lack of warnings and lighting
39 Failure to implement main responsibility 43 Lack of training
Management 40 Insufficient shore-based support 44 Understaffed
factors 41 Incompetent crew 45 Lack of management
42 Lack of rules and regulations 46 Lack of emergency drills
47 Grounding 51 Collision
Accident type 48 Stranding 52 . Sinking
49 Contact 53 Wind damage
50 Fire/ Explosion 54 Other

The occurrence of accidents can also be understood through the evolution of risk
factors over time. This paper integrates the detailed accident processes and causes from the
investigation reports to determine the sequence in which risk factors emerge, linking them
in series to form what is referred to as an “accident chain”. Each accident’s risk evolution
process is represented by its corresponding accident chain, providing a systematic way
to illustrate the progression of events leading to an incident. Sample accident chains are
presented in Table 2.

Table 2. Some accident chain samples.

Serial Number

Time Type Accident Chain

B~ WN -

10

Insufficient watertightness of the cabin—Ship

2 April 2015 Sinking compartment flooding—Sinking
11 June 2015 Collision Lookout negligence—No early avoidance—Collision
24 July 2015 Other Weak safety awareness—Other
. . . Equipment failure—Underestimation of
17 April 2016 Fire /Explosion risk—Fire/Explosion
5 October 2016 Contact Driving without caution — Weak safety
awareness—Contact
31 December 2017 Collision Unused safe speed—Driving w1’Fhout cautlor{—@ookout
negligence—No early avoidance—Collision
29 July 2018 Grounding Incompetent crew—Device m1551pg—1nsuff1c1ent skill
level—Grounding
9 April 2019 Stranding Lookout negligence—Complex navigation

environment—Underestimation of risk—Stranding

5 July 2020 Fire/Explosion Equipment failure—Improper on-duty—Fire/Explosion

2 June 2021 Sinking Lack of managerpent—Underes’amgtlgn of risk—Heavy
wind and waves—Sinking

4.2. Construction of Accident Risk Evolution Model

Leveraging complex network theory, the risk factors within the accident chain were
utilized as network nodes, and the relationships between these factors were employed
as network edges. By integrating the accident chains from 371 accidents, an inland river
accident risk evolution network model was constructed, as depicted in Figure 6.
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Figure 6. Inland river accident risk evolution network model.

The network comprises 54 nodes and 394 edges. It has a diameter of 3, an average path
length of 1.774, a network density of 0.275, and a clustering coefficient of 0.547. This shows
that the average path of the inland river accident risk evolution network is short, and on
average every two nodes passing through can lead to an accident. Moreover, the network
demonstrates a relatively high density and a large clustering coefficient, indicating that the
nodes within the network are highly interconnected. This suggests that any node can be
reached from another through a small number of key nodes, highlighting the network’s
tightly knit structure.

4.3. Network Node Importance

Combined with the previous node importance calculation method, calculate the degree
value, betweenness, closeness centrality, and PageRank value of each node. Some results
are shown in Table 3:

Table 3. Node importance ranking.

Serial Degree Betweenness Centrality Closeness Centrality Pagerank Value
eria
Node Node Node Node

Number Number Value number Value Number Value Number Value
1 12 33 12 0.084867 12 0.726027 12 0.059338
2 1 33 1 0.08364 1 0.726027 1 0.058595
3 13 32 13 0.068689 13 0.716216 13 0.056326
4 2 30 17 0.054446 2 0.697368 2 0.051428
5 5 28 5 0.046187 5 0.679487 5 0.045726
6 17 26 33 0.045794 17 0.6625 17 0.037438
7 33 24 2 0.042661 33 0.638554 33 0.032926
8 29 23 6 0.039557 6 0.630952 29 0.032111
9 20 23 23 0.034172 20 0.630952 20 0.03137
10 7 22 45 0.026698 29 0.630952 45 0.029854

4.4. Accident Risk Evolution Directed Network Construction
4.4.1. Node Similarity Index Accuracy Comparison

To verify the superiority of the proposed similarity index calculation method, a com-
parative analysis was conducted using the basic CN, RA, and Jaccard similarity indices as
benchmarks. The effectiveness of each method was evaluated based on their respective
AUC values. The AUC results for each method are presented in Table 4. Furthermore, the
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ranking of each method in terms of improvement ratio and effectiveness is illustrated in

Figure 7.

Table 4. Model accuracy comparison.

N D.CN PR.CN BC.CN CC.CN
Degree PR Betweenness Centrality Closeness Centrality
AUC 0.7785 0.7707 0.7589 0.7301 0.7813
Optimize ratio (%) / —0.78 —1.96 —4.84 0.28
M.RA
RA
Degree PR Betweenness Centrality Closeness Centrality
AUC 0.7956 0.8176 0.8170 0.7641 0.7749
Optimize ratio (%) / 2.20 2.14 -3.15 —2.07
M; Jaccard
Jac
Degree PR Betweenness Centrality Closeness Centrality
AUC 0.6542 0.6888 0.6486 0.6230 0.6967
Optimize ratio (%) - 3.46 —0.56 —-3.12 4.25
] M, Jaccard
ac
Degree PR Betweenness Centrality Closeness Centrality
AUC 0.6542 0.6661 0.6521 0.6344 0.6651
Optimize ratio (%) / —0.78 1.19 —0.21 —1.98
D.RA | 12.2%
PR.RA i 12.14%
RA Benchmark
C.CN | 10.28%
CN i Benchmark
-g C.RA 12.07%
5 D.CN 1 0.78%
S BRA 13.15%
= PR.CN 1 1.96%
€ BCN | 4.84%
= C1JAC 1 4.25%
L; D1.JAC 13.46%
O D2.JAC 1 1.19%
C2.JAC 1 1.09%
JAC i Benchmark
PR2.JAC i 10.21%
PRLJAC | 1 0.56%
B2.JAC | 1 1.98%
BL.JAC | 13.02%
1 1 1 1 1 1 1 1 1

00 01 02 03 04 05 06 07 08 09 1.0
AUC Value

Figure 7. Comparison of AUC value of similarity index of node importance.
As shown in Table 4, the AUC values of the three similarity indices that incorporate

different node importance measures exhibit either increases or decreases when compared
with the baseline similarity indices.
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Through comparative analysis, it was found that among the Common Neighbor (CN)
indicators, the prediction accuracy of the CN indicator that incorporates closeness centrality
is the highest, showing an improvement of 0.28% compared to the standard CN algorithm.
Among the Resource Allocation (RA) indicators, the accuracy of the RA indicator that
considers the degree value and the RA indicator that incorporates the PageRank (PR) value
of nodes increased by 2.20% and 2.14%, respectively. In terms of AUC (Area Under the
Curve) values for the Jaccard index, the M1.Jaccard index showed improved prediction
accuracy when node degree value and closeness centrality were taken into account, with
increases of 3.46% and 4.25%, respectively. For the M2.Jaccard index, the AUC value also
indicated better prediction accuracy when considering node degree value and closeness
centrality, with improvements of 1.19% and 1.09%, respectively.

Furthermore, as illustrated in Figure 7, among all evaluated indices based on the AUC
value ranking, the RA index incorporating node degree yields the highest AUC value,
indicating superior accuracy. Therefore, in the subsequent analysis, the RA index that
considers node degree is adopted for calculating risk evolution paths.

4.4.2. Risk Evolution Directed Network Matrix

The node similarity index with the highest predictive accuracy is selected to construct
the similarity index matrix, which is subsequently embedded into the inland water traffic
accident risk network. This matrix, in conjunction with a shortest path algorithm, is
employed to predict the shortest risk evolution paths originating from various risk trigger
points. In the similarity index matrix, each element denotes the probability of a connection
between a pair of nodes. This similarity index is transformed into an adjacency matrix
within the risk evolution network model, which is then utilized to compute inter-node
distances. By integrating the derived adjacency matrix with the existing edges in the inland
water traffic accident risk network, a directed graph is formed. This graph facilitates the
calculation of shortest paths from different initial risk factors to specific accident types. The
resulting directed risk evolution network is represented in matrix form in Figure 8. In this
matrix, risk evolution flows from column nodes to row nodes, with the asymmetry of the
matrix reflecting the inherent directionality of the network’s edges.

Source Node Target Node Evolutionary distance
1 2 3 4 5 51 52 53 54
1 / 0.2487 / / / 0.5330 | 0.3927| / 0.4663
2 / / / / / -10.7303 | 0.5381| 0.6390
3 |05576|0.6133| / / Il / /[ 1.1500
4 / 0.6571 / / / / 1.0376/ / /
5 ]0.3037 | 0.3341 / / / 0.7159 | 0.5275| 2.5058 | 0.6264

51 / / / / / / / / /

52 / / / / / / / / /

53 / / / / / / / / /

54 / / / / / / / / /

Figure 8. Risk evolution directed network matrix.
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4.5. Analysis of Accident Risk Evolution Path Characteristics

Based on the constructed risk evolution-directed network, the shortest evolution
distances from each risk factor to different types of accidents are calculated using the
shortest risk propagation distance as the weight. Additionally, the average path length for
all evolution paths leading to each type of accident is computed. The top 10 shortest paths
for each accident type are statistically analyzed and presented in Table 4.

From Table 5, it can be observed that the average paths for collision, sinking, and other
types of accidents are relatively short, measuring 1.8001, 1.6600, and 1.7439, respectively.
This suggests that the risk evolution speed for these types of accidents is faster, indicating a
higher probability of occurrence with fewer intermediate nodes. On average, an accident
can occur with just two nodes in between. Additionally, the risk paths for various accidents
show a strong correlation with specific risk factor nodes.

(1) In the risk evolution path of grounding accidents, the two risk factors—"improper
operation” and “improper route selection”—are directly associated with the occurrence
of grounding accidents, with relatively short evolution distances of 1.4605 and 1.5195,
respectively. Moreover, over 95% of all identified risk paths pass through the “improper
operation” node. These findings indicate that enhancing the operational proficiency of
crew members can effectively reduce the likelihood of grounding accidents.

(2) In the case of stranding accidents, the risk factors “improper route selection” and
“underestimation of risk” exhibit relatively short evolution distances to the accident
node, at 1.6705 and 1.7727, respectively. This suggests that insufficient anticipation of
stranding risks and course deviations during navigation are key contributors to such
incidents. Therefore, maintaining accurate vessel positioning and avoiding deviations
during navigation are essential measures for mitigating stranding accidents.

(3)  For collision accidents, multiple risk nodes are directly connected to the collision node
with short evolution distances, indicating the diversity of risk factors contributing
to such events. This complexity increases the difficulty of prevention and control.
Additionally, most risk nodes require only two evolutionary steps to lead to a collision
incident, highlighting the rapid progression of risk evolution in such scenarios and
the likelihood of swift accident occurrence following risk activation.

(4) In the risk evolution path of fire/explosion accidents, “illegal operation” and “im-
proper on-duty” are associated with relatively short evolution distances to the accident
node, measured at 2.0413 and 2.3089, respectively. Furthermore, in other risk paths,
the evolution towards fire and explosion incidents often passes through these two risk
nodes. Although “lack of management” and “equipment failure” frequently appear in
the paths, they are not directly connected to the accident node. This is likely because
poor management often induces the emergence of other risk factors, and the coupling
of these risks amplifies the overall hazard, eventually leading to fire or explosion
events. Consequently, improving ship and crew management practices, as well as
refining operational and watchkeeping protocols, are effective approaches to reducing
the occurrence of fire and explosion accidents.

(5) Intherisk evolution path of collision accidents, the risk nodes “weak safety awareness”
and “lookout negligence” exhibit relatively short evolution distances to the collision
accident node, measured at 0.533 and 0.5372, respectively. Moreover, negligent lookout
is present in the vast majority of collision incidents. Therefore, enhancing crew
members’ safety awareness and maintaining proper lookout during navigation are
critical measures for reducing the occurrence of collision accidents.

(6) In the case of sinking accidents, ship factors appear with high frequency across the
risk paths. The overall evolution distances in sinking accident paths are relatively
short, with an average path length of 1.66—the shortest among all accident types.
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Furthermore, sinking accidents result in the highest fatality rates per incident. Conse-
quently, daily management should prioritize the maintenance of ship structures and
the proper stowage and securing of onboard cargo. These measures can effectively
prevent scenarios such as unseaworthiness and flooding, which may compromise ves-
sel stability. Simultaneously, improving crew safety awareness and ensuring vigilant
watchkeeping can facilitate the early detection of anomalies and interruption of risk
propagation, thereby reducing the likelihood of sinking incidents.

In the risk evolution path of wind damage accidents, the “heavy wind and waves”
factor shows a relatively short evolution distance to the accident node, at 2.3853. Due
to the inherent nature of such accidents, the risk evolution paths are relatively simple
and concentrated, with the vast majority of paths passing through the “heavy wind
and waves” node before leading to a storm-related accident. From the perspective of
risk evolution, storm-related accidents are comparatively easier to prevent. Timely
forecasting and early warning of extreme weather, along with avoiding navigation
under heavy sea and strong wind conditions, are effective strategies to mitigate the
occurrence of such incidents.

For other accidents, the risk factor “weak safety awareness” has the shortest evolution
distance to the accident node, measured at 0.4663. This is closely related to the nature
of these accidents, which typically involve injuries or fatalities during crew operations.
Such incidents are often directly linked to insufficient safety awareness and inadequate
use of protective measures. Therefore, strengthening safety awareness training for
crew members is an effective approach to preventing these types of accidents.

Table 5. Evolution paths of various types of accident risks.

Grounding Stranding Contact Fire/Explosion
Serial Number
Path Distance Path Distance Path Distance Path Distance

1 2-47 1.4605 5-48 1.6705 1 1-49 13-50 2.0413

2 647 1.5195 648 1.7727 12 12-49 12-13-50 2.2763

3 1-2-47 1.7093 12-5-48 1.9391 13 13-49 17-50 2.3089

4 12-2-47 1.7112 23-5-48 2.0714 5 5-49 5-13-50 2.3545

5 13-2-47 1.7327 45-5-48 2.0964 2 2-49 23-13-50 2.3921

6 33-2-47 1.7786 29-5-48 2.1439 6 6-49 45-13-50 2.4139

7 5-2-47 1.7946 1-12-5-48 2.1652 17 17-1-49 43-13-50 2.4884

8 23-2-47 1.8347 16-5-48 2.1896 23 23-12-49 16-13-50 2.4955

9 45-2-47 1.858 35-5-48 22116 45 45-1-49 1-12-13-50 2.5024

10 7-47 1.882 17-12-5-48 2219 20 2049 41-13-50 2.5721
Average path distance 2.8780 3.3376 1.8511 3.6577
Collision Sinking Wind damage Other

Serial number
Path Distance Path Distance Path Distance Path Distance

1 1-51 0.533 13-52 0.4298 33-53 2.3853 1-54 0.4663

2 12-51 0.5372 17-52 0.4861 5-53 2.5058 13-54 0.5103

3 13-51 0.5832 33-52 0.5022 1-33-53 2.6962 33-54 0.5963

4 5-51 0.7159 1-52 0.5265 17-33-53 2.7701 5-54 0.6264

5 2-51 0.7303 5-52 0.5275 12-5-53 2.7744 2-54 0.639

6 17-1-51 0.8128 2-52 0.5381 23-33-53 2.853 12-13-54 0.7453

7 6-12-51 0.8595 23-52 0.5908 45-5-53 2.9316 17-1-54 0.7462

8 23-12-51 0.8773 20-52 0.6638 13-1-33-53 2.9436 20-54 0.7883

9 45-1-51 0.8943 12-13-52 0.6648 29-5-53 2.9792 7-54 0.8234

10 20-51 0.9009 7-52 0.6934 16-5-53 3.0249 45-1-54 0.8277
Average path distance 1.8001 1.6600 3.9360 1.7439
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5. Conclusions

Based on the analysis of water traffic accident investigation reports, this study iden-
tifies key risk factors and, by integrating complex network theory with link prediction
methods, proposes a quantitative framework for analyzing the risk evolution paths of
waterborne traffic accidents. The proposed framework quantifies the importance of risk
factors and the dynamics of risk propagation, offering a more intuitive representation of
the interdependencies between various risk factors and accident types.

Results show that collision (1.8001), sinking (1.6600), and other accidents (1.7439) have
the shortest average path lengths, indicating faster risk evolution and higher accident
likelihood with fewer intermediate nodes. In particular, for different accident types, certain
risk factors exhibit a high degree of correlation with the corresponding risk evolution
paths, playing a pivotal role as critical connectors. For instance, the risk factor “lookout
negligence” is strongly associated with collision accidents, while “improper route selec-
tion” emerges as a key intermediate factor in the evolution of grounding and stranding
accidents. Sinking incidents are closely linked to “improper on-duty”. Additionally, over
90% of all identified risk evolution paths involve human-related factors, underscoring the
dominant role of human error in the occurrence of water traffic accidents. Moreover, this
quantitative analysis reveals that risk factors with shorter evolution distances play a more
pivotal role in the causation of accidents. Consequently, disrupting key short-distance
pathways—particularly those related to human and managerial errors—can significantly
enhance accident prevention capabilities. These findings provide a data-driven founda-
tion for targeted safety interventions and dynamic risk management within waterborne
transportation systems.

In addition, this study presents several aspects that warrant further investigation
and refinement in future research. For instance, considering the limitations of accident
data from a single water area, a comparative analysis incorporating accident data from
multiple countries could be conducted to enhance the generalizability of the proposed
model. Moreover, as the risk factors identified in accident investigation reports are typically
static, integrating dynamic elements—such as real-time changes in weather and water
conditions—by introducing dynamic nodes or adaptively adjusting edge weights, could
further improve the accuracy and robustness of the model framework.
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