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Modeling Crane-Induced Ship
Motion Using the Moving Frame
Method

A decline in oil-related revenues challenges Norway to focus on new types of offshore
installations. Often, ship-mounted crane systems transfer cargo or crew onto offshore
installations such as floating windmills. This project analyzes the motion of a ship
induced by an onboard crane in operation using a new theoretical approach to dynamics:
the moving frame method (MFM). The MFM draws upon Lie group theory and Cartan’s
moving frames. This, together with a compact notation from geometrical physics, makes
it possible to extract the equations of motion, expeditiously. While others have applied
aspects of these mathematical tools, the notation presented here brings these methods
together; it is accessible, programmable, and simple. In the MFM, the notation for multi-
body dynamics and single body dynamics is the same; for two-dimensional (2D) and
three-dimensional (3D), the same. Most importantly, this paper presents a restricted vari-
ation of the angular velocity to use in Hamilton’s principle. This work accounts for the
masses and geometry of all components, interactive motor couples and prepares for
buoyancy forces and added mass. This research solves the equations numerically using a
relatively simple numerical integration scheme. Then, the Cayley—Hamilton theorem and
Rodriguez’s formula reconstruct the rotation matrix for the ship. Furthermore, this work
displays the rotating ship in 3D, viewable on mobile devices. This paper presents the
results qualitatively as a 3D simulation. This research demonstrates that the MFM is suit-
able for the analysis of “smart ships,” as the next step in this work.
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Introduction

Norway faces a decrease in revenues from the petroleum indus-
try. Therefore, it is important to look for other means of develop-
ing and exploiting renewable energy sources, such as wind and
wave energy. To harness wind energy, windmill farms are placed
offshore. To service these installations, a ship-mounted crane is
used to transfer cargo and engineers. In this kind of operation,
precise and accurate crane maneuvering is critical. The crane-
induced ship movements, influenced by various weather condi-
tions and waves, lead to difficulties in positioning the load. Many
companies solve these problems by using pilots with the skills to
compensate for the yaw, pitch, roll, and heave of the ship. Newer
cranes are equipped with advanced sensors and inertial devices to
analyze and compensate for the movements of the ship. These
“smart cranes” can be controlled through software, such as Mac-
Gregors three-dimensional (3D)-compensated cranes [1]. Another
company, Rolls Royce Marine, designs and manufactures cranes
with active heave compensation [2], illustrations are given in
Figs. 1 and 2.
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The previous research on this topic have been conducted by
Maczyniski and Wojciech [3] and Xu et al. [4]. The work demon-
strates two methods for stabilizing the load of an offshore crane,
by determining the drive functions of the cranes boom and winch.
Although the paper does prove quantitative results through
numeric simulation, it does not present any qualitative visualiza-
tion and it does not validate them through numerical simulation.
Furthermore, their approach relies on commercial/legacy software
that is not amenable to infusion with artificial intelligence mod-
ules. A method is needed that can be easily coded.

In addition, there is the advent of automated ships. For exam-
ple, the electrical containership YARA Birkeland will sail fully
autonomous between three ports in southern Norway by 2020 [5].
The authors present a dynamic simulation scheme to analyze an
active roll reduction system consisting of free-flooding tanks and
vacuum pumps. However, while this paper only accounts for the
roll of the ship, our paper additionally accounts for the pitch and
yaw.

Autonomous ships have several advantages compared to tradi-
tional ships. They will be able to sail without any crew onboard.
This will increase the safety when sailing under demanding condi-
tions. Such efficiency can also reduce emissions. Some autono-
mous ships will even be fully electric, supplied with power from
onboard battery packages. A fully automated crane needs a

OCTOBER 2019, Vol. 141 / 051103-1

Copyright © 2019 by ASME

9BWO/60Z0SZ9/E0 L G0/G/L L /APd-OjoIE/SOlUBOBIIOYSHO/BI0"BLUSE" UOI0B]|00[eNBIpaWSE)/:dny woly

S0 Lyl ¢

d'€01 150

=USY0) BSEI; Jp!

q0J00 | | Uo Jasn Aysieaiun ejeis obeiq ues Aq piAIdTBSIAIAXMOILBNWNNBYY 4dHEXFMEZEINNDEIGAGONRO £2SBXASPH NGB TIMOS: VVYYYVYONIU-XILEAV:


https://crossmark.crossref.org/dialog/?doi=10.1115/1.4042536&domain=pdf&date_stamp=2019-02-18

comprehensive suite of software to be able to analyze and process
the information from all the sensors. It needs to conduct motion
analysis of the ship movements in real time to be able to operate
as efficiently as possible.

The research reports on the current work to analyze crane-
induced ship motion. The work in this paper expands upon the
previous work by Nordvik et al. [6] by including motor torques,
full 3D analysis, numerical integration, and masses of all
elements.

As pedagogy, this paper continues its introduction of the mov-
ing frame method (MFM). The MFM obviates complexities intro-
duced by an injudicious use of vector algebra in 3D dynamics.
Three undergraduate students conducted this work and this dem-
onstrates the power of the MFM.

However, the MFM is not merely pedagogical, for it also inves-
tigates the power of Lie Group Theory, Cartan’s moving frames,
and a new mathematical approach. By itself, this is research.

Finally, this work demonstrates how the 3D web can supple-
ment engineering analyses with visualization on mobile devices.

The one caveat we extend is that the mathematics, while funda-
mentally simple is extensive heavy with notation. Thus, we will
summarize salient mathematical aspects to encourage readers,
programmers, and analysts to see the power of this method.

While this paper also presents a software tool, we do not desire
that analysts use this tool. Rather, this paper demonstrates how the
MFM can enable analysts and designers to rapidly construct their
own software tools and avoid expensive simulation software.

Finally, this work demonstrates how the 3D web can supple-
ment engineering analyses.

Should the reader desire, he or she may find a detailed introduc-
tion to the MFM in Refs. [7] and [8], along with pedagogical
assessment of student learning. Allow us to bullet point the funda-
mental points of the MFM:

e We exploit the algebra and group theory of Sophus Lie.
However, we reduce it to simple matrix methods to enable a
rapid transition to programming.

e We exploit the notion of Elie Cartan, that each object has its
own moving frame; we use this to formulate the principles of
dynamics from the viewpoint of a moving observer—the
crane and ship at sea.

e We exploit a new notation developed in Geometrical
Physics. This notation enables us to view rotation matrices as
operators on columns of vector components.

e We exploit a restriction of the variation of the angular veloc-
ity. This enables us to formulate the proper form of the Prin-
ciple of Virtual Work so as to extract the differential
equations of motion using analytical mechanics.

e We apply all of this to the study of crane induced ship
motion.

e We visualize the results on the 3D web using WebGL. The
reader can move the crane on the ship to study its effect on
pitch, roll and yaw in order to design a ship/crane system
more efficiently.

The Moving Frame Method

The Norwegian mathematician Marius  Sophus Lie
(1842-1899) developed Lie Group theory to study the symmetric
properties of differential equations. However, the smoothness and
continuous nature of such groups make them ideal to model con-
tinuous rotations. The MFM exploits Lie Group theory and the
Special Orthogonal Group to model rotations. The MFM also
makes use of the Special Euclidean group that is a group of math-
ematical structures that include the position and orientation of
bundled into one structure.

The MFM also makes use of the work of Elie Joseph Cartan
(1869-1951). Cartan [9] suggested modeling the change of a
frame in terms of the frame itself. In this project, we place a mov-
ing frame on the ship, the crane tower and the distal crane arm.
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Fig. 1 Dual Drag Link crane, Rolls Royce Marine

Fig.2 Close-up of Dual Drag Link crane, Rolls Royce Marine

Finally, the MFM uses a new compact notation from the Geom-
etry of Physics, espoused by the American mathematician
Theodore Frankel (1929-2017) [10]. This notation enables us to
view rotation matrices as operators on components of vectors.

Murray et al. [11] suggested this use aspects of Lie Algebra and
Group Theory. However, while their approach is sometimes diffi-
cult for graduate students, the MFM is readily comprehensible to
undergraduates [7,8]. Thus, this current work extends their efforts
by also proposing a restriction on the variation of the angular
velocity. By exploiting the algebra of se(3) and ensuring the

(2)
SR
2 e.[; (t)

Fig. 3 Model and frames
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commutativity of mixed partials in the variational process, this
work delivers a natural restriction on the variation of the angular
velocity to be used in Hamilton’s principle and its associated prin-
ciple of virtual work [12].

Absolute Ship Rotation. The analysis commences with the
first body, the ship itself, presented in Fig. 3. From the ship, there
is a systematic progression to the column of the crane (colored
gray) and then the remote arm (colored green). We supply each
body with a Cartesian frame (four frames when also including the
inertial frame). We number the frames in ascending order, starting
with the ship and up to the second, distal, arm as the third frame.

The multibody system consists of three linked bodies. The ship
is body 1, the tower of the crane is body 2, and the distal manipu-
lator arm is body 3. Each individual body is endowed with its own

moving Cartesian coordinate system: so” (1) = {s(,“) st s_(f)} T,
where the superscript o =1, 2, or 3.
Next, we define a body frame by partial derivatives of the coor-

dinate functions, wherein each basis vector is tangent to the coor-
dinate function

T T

() &0 ) = (/a5 ojas ajos?)
)]

Here, e® (1) = <e§°‘)(t) el (1) el (t)) is a time-dependent moving

frame, associated with the moving body.
We deposit an inertial frame from the first body, at the start of
the analysis (t = 0)

T
(e & &) = (0 0 ) @

The inertial frame does not rotate or accelerate. This frame is
fixed. Using a superposed dot to indicate time differentiation, this
implies ¢/ = 0.

The ship will rotate (pitch, yaw, and roll). The moving ship
frame rotates from the inertial frame as

e(r) =eRW(r) A3)
In full matrix from, Eq. (3) represents

Ri1(f) Rix(r) Riz(1)

(eg”(z) eV (1) eg”(z)):(e{ ) el)|Ru(t) Rn(r) Ras(1)
R31(f) Ra(r) Rss(1)

“4)

The rotation matrix for the ship is a full matrix and we will find
its components during the numerical integration process. The time
rate of the ship frame rotation is

e =R (1) )
Rotation matrices are members of the special orthogonal group,
SO(3). As such, their inverse is their transpose. Thus, we assert
the inverse of Eq. (3)

el =e(r) (R“)(z)> (6)

5 (1)
R (1) @)
The algebra of so(3) is such that (R(l)(t))Tlé(l)(t) is a skew sym-

metric matrix. We define this product as the angular velocity
matrix and it is of the following form:

Journal of Offshore Mechanics and Arctic Engineering

. 0 —(ugl) co(zl)
~ - (1
V0= (RV0) R0 =] o) 0 | ®
7w(21) co(ll> 0

Thus, the time rate of change of the first frame becomes
V() =eV (a0 ©)

We define the expression in Eq. (9) as the angular velocity matrix.
By formulating these terms as a skew symmetric matrix, the direct
results of the algebra of se(3), we can apply all operations as mat-
rices without resorting to the cross product. However, if desired,
we may take the elements of the skew symmetric matric, construct
a column of coordinates (“unskewing” the components), and asso-
ciate it with the same moving frame

0)(1)([) :e(')(t) CO(l)(t) (10)

Dynamics was constructed and deployed vectors to model rota-
tions. However, vectors cannot model rotations out of the plane
without severe notational interventions that confound students and
complicate coding. Furthermore, we see that the frame for the
angular velocity vector is time dependent. It relates to other
frames through rotation matrices.

Relative Rotation. Orthogonal rotation matrices also relate the
orientation of two moving frames. In the following, for relative
motion of one frame from another moving frame, we will adopt a
superscript notation: (o + 1/o). While this may appear ambigu-
ous, it is less disconcerting that the more burdensome notation:
((oc +1)/ oc). We ask the reader’s indulgence to use this shortened
form and its inverse

e‘””(z) _ e(a()(l)R(Dc+1/1)([) (11)

e (1) = D (1) (RET) (1) (12)

By utilizing the closure property of the SO(3) group (the product
of two rotation matrices is a rotation matrix), this can also be
expressed in the inertial frame

e(a+l)(t) — eIR(ac)(t)R(1+l/ac) (t) _ eIR(oc-H)(t) (13)

Ship Translation. We represent absolute position coordinates
from an inertial frame with “x.” The subscript “c” designates that
we are locating the center of mass of the boat

(
1
r = (e e )|l [ = a4
(
3

Translational velocity coordinates from an inertial frame are
ve!(0) = V() = i (1) (15)

We continue to place the frame as a row vector before the compo-
nents. With this notation, we view the rotation matrices as matrix
operators on columns of components.

Crane Translation. We represent relative translational posi-
tion coordinates from a moving frame with “s” and an appropriate
superscript.
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The vector sc/V) represents the distance between the center of
mass of the crane tower and the center of mass of the ship (hence
the subscript “c”); it is formulated in the moving body-1 frame.
We express this vector in the moving boat frame. Furthermore,
the coordinates to locate the crane, from the body-1 frame, are not
time-dependent

(2/1)
Sic

s = (V) &) ) | 2 | = eV

2/1
@

16)

Finally, to locate the absolute location of a center of mass on a
child body, we first proceed to the parent in the inertial frame and
then accumulate the distance to the child, in the parent frame

r () = v (1) + eV (05" a7

Absolute Frame Connections Matrices and SE(3). This sec-
tion presents the structuring of both the rotation and displacement
in one expression. By structuring rotation and translations
together, one obtains a homogeneous transformation matrix.
Denavit and Hartenberg [13] were the first to use homogeneous
transformation matrices, but they did not recognize at the time
that such transformations were members of the special Euclidean
group, denoted as SE(3). The reader may find a more thorough
development of the following theory in Ref. [14].

We define a frame connection as a bundle of a frame and the
frame’s position. Below, we present two frame connections. The
first one defines the inertial origin

('0)= (e ¢ ¢ 0) (18)

The second one represents a frame connection for a moving
frame: the frame and its position from the inertial origin

(e(“)(t)r(g)(t)> :( g“)(t) eé“)(t) egi)(l‘) l'(g)(f)) (19)

We define a frame connection matrix E(*) () to relate these two
expressions in one structure. This matrix accounts for rotation and
translation. Let O3 represent a 3 X 1 column zero vector. Let
x(g ) (t) denote the column coordinates with respect to the inertial
frame. Thus

E(“) ([) -

RO®&) (1)
0} C1 20)

With this frame connection matrix, we relate the moving and iner-
tial frame connections

(e (1) = ( 0E (1) @1

This expanded matrix exploits the power of the SE(3) group and
is what enables the rapid extraction of the equations of motion.

The element in Eq. (20) is a member of the special Euclidean
group and its inverse is known

E(a)(t)—l _ R(“)(t)71 —R(“)(t)lx(g)(t)] (22)
of 1
(' 0) = (™) el (1)) E® (1) 23)

051103-4 / Vol. 141, OCTOBER 2019

Relative Frame Connections Matrices and SE(3). We now
set aside how SE(3) is used to relate moving and inertial frames
and turn to relations between two moving frames, e.g., crane arm
and ship.

The relation between the child (o4 1)-frame and the parent
body-a-frame is expressed using the relative frame connection
matrix E@1/%) (where, once again, we resort to “s” for a coordi-
nate that will be expressed in a moving frame)

E(a-%—l/oz)(t) _ |:R(0<+(1);1)([) s(g‘*ll/a)(l):| (24)
3

Thus, we can assert

(e(””(z) r(gﬂ)m) _ <e(a)(;) r<c“>(t)) E#YA (1) (25)

Again, the closure property of SE(3) informs us that the absolute
frame connection matrix of the («+ 1)-body—the product of the
absolute frame connection matrix of body-o and the relative frame
connection matrix for the two bodies—is also a member of SE(3)
E (1) = EP ()EC17(1) (26)

Rates of Frame Connections Matrices and SE(3).
Continuing, we take the time derivative of Eq. (21)

<e~(a<) (t) I;Eff) (t)) = (¢! O)E‘-(“)([) (27)

We use the orthogonality relationship in Eq. (27)

(€02 w) = (@) E WEY () @®)
We define
Q1) = EO-1()E® (1) (29a)

When multiplied out, this provides an equation for the angular
and translational velocity of each body

o (o) W
8 :| (29b)

We will see that when multiplying, these terms provide the angu-
lar velocity and translational velocity of each body or link, more
efficiently.

Kinematics of Ship/Crane System

Now that we have presented the fundamentals, allow us to
revisit them in the context of the ship mechanics in this problem
as we setup all the kinematic equations.

Kinematics of Body—1: The Ship. As a result of the power of
SE(3) and its associated algebra, we can obtain the angular veloc-
ity matrix for the ship by multiplying out the terms in Eq. (29).
Admittedly, for this first link of the tree, the terms are obvious,
but the power of SE(3) manifests itself with later links in this tree

w(‘)(t) _ <R<1)(Z)>TR<1)(t) 30)

In addition, we obtain the linear velocity for the ship in the inertial
frame

V() = e () 31
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Kinematics of Body 2—Tower. We attach a coordinate frame
¢ (1) to the center of mass C?) of the crane tower

e?(1) = <e(12)(z) e;2>(,) e<32> (;)) (32)

We find the relative position from e!)(¢) to e (¢) by first translat-
ing from the center of mass C (D) of the ship, to the joint where the
rotation happens, then rotating with the crane tower’s operation,
to obtain the new orlentatlon and finally, translating from the
joint to the center of mass c? of the link.

The first translation from C'V) to the joint J; is obtained by
moving in the three-direction and the one-direction

p
si, =eW (s, =V o (33)
dW

At the first joint, the rotation happens about the second axis,
which gives the following frame rotation relation:

cosp(t) 0 sing(r)
e?(t) = eV RV () =eV(r)| 0 10
—sing(t) 0 cos¢(r)
(34)

Finally, the last translation from the joint J; to the center of mass
of the second body is obtained by moving in the two-direction,
half the total length of the tower. This translation is expressed
using the e@-frame

0

sc, = e (0)sc, =P (@) | 12 (35)
0

With this information, we may build the frame connection rela-

tionships as “do not rotate, but translate, rotate but do not trans-
late, finally translate, but do not rotate”

(2P () = (e () £
) | I s; | |[R¥Y o|| 1 sc,
S CROEE0) [OT IH 0 IHOT f}

This provides E?/V). This in turn with Eq. (28), the group proper-
ties of SE(3), and then Eq. (29b) enables us to extract

() = R°M(0) 0V (0) + e (36)
0 = KR ol10 + K057 o)
+x51><>

(37)

Reference [11] provides all details.

Kinematics of Body 3—Arm. The second link of the crane is
the third body of the system. The frame e (3 is attached to the cen-
ter of mass C*%)

e<3>(r):<e§3)(t) (1) e<33>(t)) (38)

To reach this frame, from the body-2 (tower) frame, we must first
translate up the tower. The translation from the center of mass of
the second body to the joint connecting the second and third body
is sy,

Journal of Offshore Mechanics and Arctic Engineering

0
s, =e2(0)sy, =@ (@) | 1@ (39)
0

Next, we must rotate with the distal arm as it lifts and lowers.
Here, R®/?) is the rotation matrix for the relative rotation of the
third frame, from the second frame, which happens about the one-
axis only

1 0 0
RO ()= |0 cosé(t) —sin&(r) (40)
0 siné(r) cosé(r)

Finally, we must translate from the joint to reach the center of
mass of the distal arm

se, = e (D)5, = e () (41a)

=N

~

Again, we combine these as

(20 0) = (@ 0re' >)E*/2)

vl

(41b)

As previously, Ref. [14] provides the details, but we would then
extract

R(3/2)T(t)R(2/1)T(t)w(l)(t) n (R(3/2>(t))TqZ)(2)e2 n &(3)61
42)

/M (NRECD (1) (5c7) @
590 =R" ( R R 05 ) o >+xc<“<z>

(1) =

REV () (5;7) 0 + (5¢7) !

43)

We have now obtained all equations needed for the kinematics
analysis: Egs. (30), (31), (36), (37), (42), and (43).
Generalized Coordinates

The velocities and angular velocities for all three bodies are
gathered in an 18 x 1 matrix {X } We refer to the terms on left
in Eq. (44a) as the Cartesian coordinate rates.

2 (44a)

{X(n)}

gy =| . (z)E (44b)

We wish to reduce this problem to the minimum number of rates
of essential generalized coordinates that describe the configura-
tion. These coordinates will be the possible translational and
angular velocities of the boat; they also include the angular rate of
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the turning of the tower (body-2) and arm (body-3). The essential
generalized velocities, on the right in Eq. (44b), are contained in
the 8 x 1 matrix {¢(#)}. These express the essential velocities—
three rates and angular velocities for the ship and the essential
angles for the crane.

The Cartesian velocities and essential generalized velocities are
related linearly through the 18 x 8 matrix [B(¢)]

X0} = BOHq0} (45)

Thus, the cells of matrix [B(#)] are constructed from the velocities
and angular velocities from all three elements

A 0 0 0 ]
3x3 3x1 3x1
I
3x3 3x1 3x1
(2/1) !
) ( )
[B(r)] = Lo R0 se 2, 2 (46a)
e/mmT
393 (R (I>) €2 3x1
I Bs, Bs3 Bsg4
Os  (ROV@) (REA0) e, o

(46b)

Kinetics of Ship/Crane System

Kinetic Energy. The kinetic energy of the system consists of
expressions for the angular and translational kinetic energy for the
ship, tower, and arm (bodies 1-3)

1 o o o 1 - (o
K@ =3 (+9LE 4 0B ) = 2 {m (2 402 ()2}
47

Let us define [M] as a 18 x 18 block matrix with mass and

moment of inertia of the bodies, diagonally partitioned

_m(l)l3 03 03 03 03 03 ]
0 JY 05 05 05 05
0 0; m@?1; 0 0 0

[M] _ 3 3 3 (;) 3 3 (48)
03 03 03 J c 03 03

06 05 05 05 05 J¥

Thus, we may write the total kinetic energy in matrix form

K= %{X}T[M] {x} 49)

Hamilton’s Principle. Define a Lagrangian L as the following
difference between the kinetic energy K and the potential energy
U:

L=K-U (50)

051103-6 / Vol. 141, OCTOBER 2019

We must obtain a minimization of the action in accordance with
Hamilton’s Principle. We must express the variation of the func-
tional and then set the variation to zero. Let us symbolize the pro-
cess as

3] Llato).at0ai =0 51)

Ji

Finally, we will use the principle of virtual work in terms of the
essential generalized variables.

Variations. Before proceeding, we will need to take deriva-
tives in the “direction” of the variation to minimize the action.
The directional derivatives with ¢ are called the Gateaux-
derivatives in the functional space theory.

The commutativity of mixed partials readily holds for transla-
tional velocity and one must ensure

o d o
50 = (Sax0)) 2

However, the variation of the angular velocity is restricted in 3D
space. This actually mimics the difficulty of using vectors to
model 3D rotations. First, we define the following term:

—>

on® = (R®)T6R® (53)

Equation (53) term does not exist in its unvaried form. It defines
the virtual frame-rotation vector on'®, in the same way as the
angular velocity matrix defined the angular velocity in Eq. (9)

on® = e®on® (54)

By ensuring the commutativity of mixed partials (time and varia-
tion with regard to the directional derivative of the variation
parameter), we arrive at a restriction. We find that the variation of
the angular velocity depends on the virtual frame rotation, referred
to as restricted variation of virtual angular velocity

d PN
do® = E(R(méR(“)) + @ () (RDTOR™) jpkewea  (55)

These (one for each body) are expressed with the body frame.
They are conjugate to the moment M expressed with the body
frame. Moment versus virtual rotation is a natural pair in the prin-
ciple of virtual work and yields Euler’s equation. This was the
weakest point in the classical multibody dynamics. Wittenburg
[15,16] postulated the principle of virtual power to use the
weighted form of Euler’s equation by the virtual angular velocity.

Moment and Omega Define the Power, Not the Work. These
results were found by Murakami [12] and independently by Holm
[17]. Before continuing, note the similarity between Egs. (9) and
(54). This was the weakest point in the classical multibody
dynamics. To take the variation of the Lagrangian in Eq. (50), we

collate the unrestricted virtual generalized displacements {ox}

1
1

2

ox)
(1)
()
@) (56)
3)
3)

ISZcY
= 3

{ox} =

>
N

3
3

<

X
on

The next step is to simplify the relationships in Egs. (52) and (55).
To accomplish this, we first define a term. This term might appear
to be a waste of computational space. However, the form of this
term enables one to obtain the equations of motion
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Table 1 List of coordinates and their relationships

Variation of generalized velocity Virtual generalized displacement

Virtual generalized velocity Essential generalized velocities

530 5:0() 0 (o)
s an(r) oV (1) @) oW (1)
. 5X(CZ) B ()V*(cz)(f) . x(cz)(t) ¢<2) (1)
{(0X}={ 5@ {oxX(N} =1 5.0 ) {X(n)} = 0@ ) 5(3)0)
5l 538(r) &
o S (r) oL
Relating column 2 and variations of column 4: {3X (r)} = [B(1)]{dq(r) }
Relating column 3 and rates in column 4: X} = [B(t)] {a(n}
Restriction on column 1: {ox} = % {ox} + [Dl{ox}
0 0 0 0 0 Allow us to interpret the terms
3x3 3x3 3x3 3x3 3x3 3x3
(1) 0 ()1
t Wil _
iy @ (1) 103 33 303 3 F")" = force from waves
[
3x3 393 3x3 393 3x3 3x3 F, = force from buoyance
D] = YN (57) (1) _ . .
0 w?() m*"’ ge; = force form gravity on the ship
3x3 3x3 3x3 3x3 3x3 ,
0 0 M™)(t) = moment from waves
3x3 3x3 3x3 3x3 3x3 3x3
0 0 0 0 0 W) —M(t)e; = reverse moment on ship from tower
L3>3 3 3 33 33 J —m? ge, = force from gravity on the tower

Continuing, we combine Eqs. (52) and (55) into one equation as
follows:

{ox} = {s6x} + [D]{oX} (58)

The only difficult issue is the nature of the four coordinates used
in the analysis. Table 1 presents a summary or the reader may
consult Ref. [11].

We formulate the work done in terms of the second column
since it contains the proper conjugate to the applied moments.
However, the first equation in the bottom rows relates these to the
variations of the essential generalized coordinates (whose rates
appear in the last column).

We structure the kinetic energy in terms of the third column.
However, the second equation at the bottom relates these to the
virtual generalized velocities.

Finally, the last equation in the bottom row represents the
restriction on the variations of the generalized velocities that must
also be included when applying the principle of virtual work.

Principle of Virtual Work. Physicists developed Hamilton’s
principle for a system with conservative forces. However, engi-
neers developed the principle of virtual work to account for non-
conservative forces (viscous damping, applied loads, etc.). To use
it, we drop the potential energy and absorb all applied forces
(including gravity, despite it being conservative) into the work
done on the system.

We list all forces applied to the system

I
F (1) FON (1) 4 Fl — mWge,
M) MO)(6) = M) (1)ex
o] | e )
{on} = S Y (59)
b (t) m €2 m (l)el
FO (1) -mges
M(g)(l‘) Mﬁ,‘:)(t)el
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M"Y (1)e, = moment that turns the tower
()e; = reverse moment on tower from arm

_ Mﬁ,‘:) )
—m® ge, = force from gravity on the arm

M9 (f)e; = moment on crane that turns the arm
The superscript 7 in F)/ and F ! indicates that the components of
the forces are expressed in the inertial frame.

Equation of Motion. By making the substitutions and carrying
out the calculus of variations, one obtains the following:

[M*(1)] = [B(1)] " [M][B(1)] (60a)
IV (0] = [B(0)] (IM][B(1)] + [D())[M][B(1)]) (60b)
{F ()} = BOI"{F(} (60c)

For arbitrary, virtual essential-displacements, we obtain the sys-
tem equations of motion

M ()G} + IN'(D{q()} = {F"} (61)

The result is a series of five coupled homogeneous differential
equations. In fact, the power of this method is that one need not
reformulate the analysis for a more complex multibody cranes sys-
tem. One needs to only expand the dimensionality of the system.
The mathematics remains in block matrix form, ready for computa-
tion in software.

Updating the Ship’s Rotation Matrix

The rotation matrices for the tower and arm are standard due to
their derivation from revolute joint mechanics. However, we must
know the rotation matrix of the ship for several reasons. First, it is
required in the updating of the B matrix. Second, it is required to
apply added mass forces. Finally, we need it for visualization.

We must reconstruct the rotation matrix of the ship from the
angular velocity. We must compute the rotation matrix R(l)(t) by
solving the following equation:
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Table 2 Parameters used in this study

Variable Applied constant
Mass of ship mY) = 10,000kg
Mass of tower m? = 500kg
Mass of arm m® = 500kg
Mass of crane load m® = 1000kg
Tower position in the z-axis dV = —10m
Tower position in the x-axis b = —5m
Half the height of tower I® =35m
Half the length of arm ¥ =35m
Radius of tower r® =0.5m
Radius of arm r® =0.5m
Width of ship Lps = 10m
Length of ship Lsb =20m
Height of ship Lh=5m

Torque applied to tower
Torque applied to arm
Dampening factor

MY = 100,000 N-m
M® =70,000N-m
See results

Metor 1.
Motor 2,

(2 Damping

Port to Starboard:

Fig.4 Control box

Fig.5 Motor 1 checked

Fig. 6 Motor 2 checked

051103-8 / Vol. 141, OCTOBER 2019

Fig. 7 Motor 1 and motor 2 checked

Fig. 8 Motor 1 and motor 2 checked

BV = ROG (1)) (62)

Let us assume for a moment that @ (1)(r) is constant and is desig-
nated as @,. Then, with initial value R(0), the solution is

RW (1) = R(0)exp(r®,y) (63)

There does exist a known analytical, closed-form solution to Eq.
(63), but only for cases in which <c_o>0 is constant. It derives from
the Cayley Hamilton theorem and is known as the Rodrigues’
rotation formula to obtain a series expansion of the exponential of
a matrix [18].

Computation

Simplification of the Model. To simplify the calculations, we
neglect wave forces and moments. We also ignore gravity and
buoyancy in this first pass. We assume the ship is stationary and
will only rotate about its mass center due to the motion of the
crane arms. Despite this, we have developed the theory to account
for all of these in the next phase.

We assume the shape of the ship to be a solid cuboid. We repre-
sent the tower and arm as cylinders.

Numerical Integration. In this paper, as a first pass, we use a
very primitive numerical integration scheme since the goal is edi-
fication, visualization, and a first pass. We used a one-step for-
ward Euler integration that, admittedly, becomes unstable
relatively early in the computation. We will rectify this in future
work by comparing Runge-Kutta and Newmark-Beta. However,
the primary goal here is also the full 3D analysis and display on
mobile devices with qualitative results.

Damping. In this paper, we used a fictitious viscous damping
for all the variables to simulate buoyancy. The moving frame
method is new. We desire to show the power of this method which
was implemented here by undergraduate students. Since we are
keeping it simple, we desire to keep the algorithm simple with
regard to hydrostatic effects on the boat. Had we included those
effects been precisely included, the numerical integration would
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Fig. 9 Pitch, yaw, and roll, with various damping with the tower motor activated

have become unstable, sooner, and voided even these qualitative
results. We have shown that the placeholder is present. We will
account for these effects in the next phase. In this paper, we will
apply a fictitious damping parameter to each of the essential gen-
eralized coordinates.

Updating the Rotation Matrix. As stated, the Cayley Hamil-
ton theorem and the resulting Rodriguez equation for updating the
rotation matrix are valid only for a constant angular velocity. We
can circumvent this by assuming a central difference approxima-
tion and a constant angular velocity between time steps. Time lim-
itations in this current work precluded that. Since we were already
using a simple numerical integration scheme, there was no loss in
assuming a constant angular velocity at the start of each time-step.
This will be addressed in the next phase.

Visualization

WebGL is a JavaScript interface for rendering interactive two-
dimensional (2D) and 3D computer graphics [19]. WebGL is com-
patible with the major web browsers such as Chrome, Firefox,
Safari, and Opera. It is free and can be used without the need for
plugins. It introduces an API which closely conforms to OpenGL
ES 2.0, thus being compatible with HTMLS.

The webpage was designed with checkboxes for motorl,
motor2, damping, and sliders for placement of the crane. This is
so the user can control which parameters that are influencing the
ship. The ship has full 3D-rotation, hence, a movement made by
the crane will affect the behavior of the ship in all axes.

Each motor has been checked to observe qualitative responses.
The qualitative responses were in accordance with what would be
expected from a physical model, thus the 3D-simulation seems
realistic.

It is critical to note that the authors are not pushing a software
system. The MFM makes dynamics easy to code. The computa-
tions run on cell phones. The reader may proceed to this link on a
laptop or mobile device and experiment in the website link."

Parameters Used. Table 2 presents all parameters used in the
online simulation.

Results

Qualitative. It has been demonstrated elsewhere [6-8,12,
14,18,20-22] that the moving frame method produces the same
equations of motion as the traditional approaches to dynamics.

The purpose of this paper is to introduce this MFM to a new
community, in the context of a challenging problem. Our only
limitation is that we did not encumber and drastically lengthen
this presentation with all required details for a physically realistic

'http://home.hib.no/prosjekter/dynamics/2018/crane/
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simulation: wave moments, hydrostatics, wave radiation, and
added mass.

Separately, WebGL beckons the arrival of the 3D web. In fact,
we are currently working up the MFM to be the first fully interac-
tive, 3D textbook. We envision a future where 3D interactive ani-
mations instead of static figures will accompany research papers.
This paper calls out to that future by presenting the 3D anima-
tions, viewable on cell phones. We feel that, in this case, with a
new MFM method, qualitative results are sufficient until the next
phase of the work.

Thus, we suggest that the reader to view the animations and
interact with them (on laptops or cell phones). To visualize the
3D-motion, click the check-boxes, motor 1, motor 2, and damp-
ing (see Fig. 2). As default, the crane is placed in the stern cor-
ner. However, the crane can be placed in different positions to
see how this affects the ship motion. Then click start. To
change the position of the crane, or turn on/off the motors or
damping, click reset. Make the changes and click start. Figures
5 and 6 show the animation when only motor 1 is checked. Fig-
ures 7 and 8 show the animation when motors 1 and 2 are
checked.

Quantitative. This paper regards a new approach to engineer-
ing dynamics and presents new research results. We point out,
however, that the pedagogical aspects, themselves, present
research in a new mathematical approach to dynamics.

There are two approaches to such validation. First, we can focus
on numerical validation by comparing the results to an existing
software tool. The group will shortly have the funds for this
endeavor. Second, we have now commenced the experimental
analysis in the HVL wave tank and this is more significant. How-
ever, both of those tasks are in themselves ambitious undertak-
ings. A paper that would include that information would border
on a textbook. By presenting the theoretical results in a stand-
alone paper, supplemented with some minimal numerical results
for the sake of discussion, we feel we can proceed to the next step
of combined numerical experimental validation by referring to
this work. With that in mind, we present minimal results in Figs.
9-11.

In all figures, the torque of motor 1 rotates the crane tower and
the torque of motor 2 rotates the distal crane boom. Table 1
presents the values for the driving torques.

In all figures, damping parameters for the angular velocities of
the ship are {; = 500,000 Nms, {, = 25,000 Nms, and {; = 0.0.

In all figures, the crane was placed at the center of the boat.

In all figures, reading left to right, wl is the pitch, w2 is the
yaw, and w2 is the roll.

We ask the reader to keep in mind that the incipient numerical
noise in all figures was due to the relatively large time-step, the
poor choice of one-step Euler, and the abrupt and unnatural
change in the motor (enabled by the nature of programming, but
not entirely realistic).

Figure 9 presents the results when the crane tower rotates. It is
to be expected that, in this case, the yaw w2 is most significant.

OCTOBER 2019, Vol. 141 / 051103-9

9BWO/60Z05Z9/E0} L S0/G/L ¥ L/4Pd-0loILE/SOIUBLOBWAIOYSHO/BI0"aLISE"UONO8]|00[E)BIPaWSE//dRY WOy POPEO

GO Ll

d'€01 150

=USY0) BSEI; Jp!

q0J00 | | Uo Jasn Aysieaiun ejeis obeiq ues Aq piAIdTBSIAIAXMOILBNWNNBYY 4dHEXFMEZEINNDEIGAGONRO £2SBXASPH NGB TIMOS: VVYYYVYONIU-XILEAV:


http://home.hib.no/prosjekter/dynamics/2018/crane/

w1, with motor2

angular velocity (rad/s)
angular velocity (radls)
i X 5 )
=

0 5 10 15 20 0 5
Time (s)

w2, with motor1

w3, with motor1

angular veloci

10 15 20 ] 5 10 15 20

Time (s) Time (s)

Fig. 10 Pitch, yaw, and roll, with various damping with the distal arm motor activated
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Fig. 11 Pitch, yaw, and roll, with various damping with both motors activated

However, the rotating boom does induce a pitch and roll. In all
cases, the damping significantly reduces the magnitudes of the
angular velocities.

Figure 10 presents the results when the distal crane arm is lift-
ing. It is to be expected that, in this case, the pitch w1 is most sig-
nificant. In all cases, the damping significantly reduces the
magnitudes of the angular velocities.

Figure 11 presents the results when both motors operate. Here,
there is limited ability to distinguish the role of each motor. How-
ever, it is clear that damping can sufficiently eliminate all motion.
The zero-damping case evinces the complex relationships
between the two motors.

Finally, we point out that the application of the torques was not
entirely realistic. In a real situation, there is a ramp up and a ramp
down of the motor. In these cases, there were abrupt changes
made possible by the nature of coding. Despite this, during the
constant moment phases, the angular velocities are relatively con-
stant. Ongoing work addresses these challenges.

We are already aware that the moving frame method produces
the same equations of motion as the traditional method. However,
the MFM uses the same notation for 2D, 3D, single bodies, and
multibodies; and it obtains the same equations expeditiously, as
stated in the references in the Qualitative section [6-8,12,
14,18,20-22].

The MFM method has been validated elsewhere for the analysis
of the tennis racket flip [18], flexible robotics [23], and caudal fin
analyses [24]. This paper presents the first step in the application
of ocean engineering and the analyses of cranes on ships.

Future Work

There are several immediate next steps in this work.

First, future work will involve two alternative and improved
numerical integration schemes. We are currently working on
using Newmark-Beta methods and a Runge-Kutta method. We

051103-10 / Vol. 141, OCTOBER 2019

will supply both methods with a predictor/corrector algorithm.
Then, we will compare both schemes for energy loss. The MFM
produces one generalized form of the equations of motion (Egs.
60(a)-60(c)). This suite holds for other ongoing projects, such as
a gyroscopic wave energy converter (20), ROV motion (21), and
ship stability (22). Thus, we are leveraging all such projects to dis-
cover the most efficient numerical integration scheme.

We will implement the Rodriguez formula by assuming a con-
stant angular velocity, not at the time steps in question, but use a
midpoint rule [18].

In addition, we will include wave moments and added mass.

We will prescribe functions to ramp up and ramp down the
motor torques, more naturally.

Indeed, these are qualitative results. An additional next step is
to assess the model in a wave tank at HVL. This work has
commenced.

In the next phase, we will plot the angular momentum sphere
and the kinetic energy ellipsoids to show that there exist restric-
tions (polhodes) on the trace of the angular velocity vector on
these surfaces.

In the next pass, we will allow for deformation of the crane
arms. This can be done by applying the MFM to the modeling of
beams [23].

This brings us to the long-term goals.

Next, one must realize that a qualitative visual analysis is not
sufficient. The group has already commenced developing physical
models in the HVL wave tank in order to conduct experimental
validations.

Al is the study of “intelligent agents”—the study of any device
that perceives its environment and takes actions that maximize its
chance of success at some goal. At this time, “device” is restricted
to mean “computers.” However, today’s mechanical machines
think (with onboard CPUs) and communicate (with IP addresses).
Soon, with biologically inspired neural networks, machines will
learn. In anticipation of this, simulations of mechanical systems
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(dynamics) will enhance adaptive machine learning. The moving
frame method is unique in that it is eminently programmable and
rapidly deployed in new settings, obviating the need for legacy
implementations of multibody dynamics codes extant today.

Thus, the next step in this work is to add learning modules to
the evolving software so that ships with onboard sensors can take
action depending on conditions or expected conditions from
learned behavior.

Conclusions

This work demonstrates the power of the moving frame method
for offshore mechanics. This work demonstrates the power of the
3D web to visualize ship mechanics on mobile devices. This paper
focused on qualitative results. We emphasize that the achievement
here is not simply the analysis in and of itself. Rather, it is also
the use of a new method in dynamics and confirmation on 3D web
pages. Undergraduate students conducted this work—the math,
the coding, and the visualization—and this is testimony to the
power of a new method in dynamics.

There are other means to extract the equations of motion for
ship mechanics, but none as efficient as the MFM and not as read-
ily programmable.

Nomenclature

[B] = B-matrix
combined angular velocity matrix
force and moment list
generalized force

:;;,Aﬁ
SN
Il [l

H = angular momentum
Jl(,l) = 3 x 3 mass moment of inertia matrix
[M] = mass matrix
[M*] = reduced mass matrix
[N*] = reduced nonlinear velocity matrix

generalized position
generalized velocity variable list
generalized acceleration variable list

o)
_:Q.
e
([l

{X = velocity list

{X} = virtual displacements

OW = virtual work

(5_}1’[ = variation of frame connection matrix

o = virtual rotational displacement
Q = time rate of the frame connection matrix
o = angular velocity vector
@ = skew-symmetric angular velocity matrix
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