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PREFACE

This book presents the theory of a recently developed method of
statistical inference, that of sequential analysis. An effort has been
made to keep the exposition on a level that will make most of the book,
with the exception of the Appendix, understandable to readers whose
mathematical background does not go beyond college algebra and a
first course in calculus. Some knowledge of probability and statistics
is desirable for the understanding of the book, although not essential,
for a brief review is given of the fundamental concepts, such as random
variables, probability distributions, and statistical hypotheses.

To facilitate the reading of the book for those who have no advanced
mathematical training, some concessions are made to generality and
occasionally even to rigor. Furthermore, mathematical derivations
of somewhat intricate nature are put into the Appendix, the reading
of which may be omitted without impairing the understanding of the
rest of the book.

This book contains an expanded exposition of the ideas and results
I published in two technical papers on this subject, one of which
appeared in 1944 and the other in 1945, as well as some further develop-
ments. Such developments, for example, are: the discussion of multi-
valued decisions and estimation in Part III; improvements in the
lirnits for the average number of observations required by a sequential
test; and limits for the effect of grouping in the binomial case. Some
recent results of M. A. Girshick are included and, in the discussion of
certain applications in Part II, use E made of some simplifications con-
tained in a publication of the Statistical Research Group of Colurnbia
University dealing with these applications.

Nearly all tables in the book were computed by the Statistical
Research Group of Columbia University while I was a consultant to
the group. A few sections of my two forementioned publications have
been incorporated in this book, mostly in the Appendix, without sub-
stantial changes.

I wish to express my indebtedness to l'vIilton Friedman and VJ. Allen
Waflis, who proposed the problem of sequential analysis to me in
March, 1943. It was their clear formulation of the problem that gave
me the incentive to start the investigations leading to the present
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developments. I also wish to express my thanks to the Social Science
Research Council for their help, which facilitated the publication of
this book. I am indebted to Mr. Mortimer Spiegelman of the Metro-
politan Life Insurance Company for his careful reading of the manu-
script and for making several valuable suggestions. Thanks are due
also to Mrs. E. Bowker who prepared the manuscript with particular
care. r

A. W.
Columbia University
March, 194?’
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INTRODUCTION

Sequential analysis is a method of statistical inference whose charac-
teristic feature is that the number of observations required by the
procedure is not determined in advance of the experiment. The deci-
sion to terminate the experiment depends, at each stage, on the results
of the observations previously made. A merit of the sequential method,
as applied to testing statistical hypotheses, is that test procedures can
be constructed which require, on the average, a substantially smaller
number of observations than equally reliable test procedures based on
a predetermined number of observations.

This book presents the theory of a particular method of sequential
analysis, the so-called sequential probability ratio test, which was de-
vised by the author in 1943 mainly for the purpose of testing statistical
hypotheses. A comparison of this particular sequential test procedure
with any other (sequential or non-sequential) is shown, in Section A.7,
to effect the greatest possible saving in the average number of observa-
tions, when used for testing a simple hypothesis against a single alter-
native. The sequential probability ratio test frequently results in a
saving of about 50 per cent in the number of observations over the
most eflicient test procedure based on a fixed number of observations.

The first idea of a sequential test procedure, i.e., a test for which the
number of observations is not determined in advance but is dependent
on the outcome of the observations as they are made, goes back to
H. F. Dodge and H. G. Romig 1 who constructed a double sampling
procedure. According to this scheme the decision whether or not a
second sample should be drawn depends on the outcome of the obser-
vations in the first sample. Vlfhereas this method allows for only two
samples, Walter Bartky devised a multiple sampling scheme for the
particular case of testing the mean of a binomial distribution.“ His
scheme is closely related to the test procedure that results from the
application of the sequential probability ratio test to this particular
case. The reason that Dodge and Romig introduced their double

1H- F- Dfldge flfld H. G. Romig, “A Method of Sampling Inspection," The
Bel! System Technical Journal, Vol. 8 (1929), pp. 613-631.

2 Walter Eiartky, "Multiple Sampling with Constant Probability," The Annals
of Mathernatzcal Statistics, Vol. 14 (1943), pp. 363-377.

1



2 INTRODUCTION

sampling method, and Bartky his multiple sampling scheme was, of
course, the recognition of the fact that they require, on the average,
a smaller number of observations than “single” sampling.

The occasional practice of designing a large scale experiment in suc-
cessive stages may be regarded as a forerunner of sequential analysis-
The idea of such chain experiments was briefly discussed by Harold
Hotellingfi A very interesting example of this type is the series of
sample censuses of area of jute in Bengal carried out under the direc-
tion of P. C. Mahalanobis.* Sample censuses, steadily increasing in
size, were taken primarily for the purpose of obtaining preliminary in-
formation about the parameters to be estimated. This information
was then used for designing the final sampling of the whole lII1II1BI1S8
jute area in Bengal.

The problem of sequential analysis arose in the Statistical Research
Group of Columbia University 5 in connection with some comments
made by Captain G. L. Schuyler of the Bureau of Ordnance, Navy
Department. Milton Friedman and W. Allen Wallis recognized the
great potentialities and the far-reaching consequences that sequential
analysis might have for the further development of theoretical sta-
tistics. In particular, they conjectured that a sequential test proce-
dure might be constructed which would control the possible errors
committed by wrong decisions exactly to the same extent as the best
current procedure based on a predetermined number of observations,
and at the same time would require, on the average, a substantially
smaller number of observations than the fixed number of observations
needed for the current procedure.“ Friedman and Wallis also exhib-
ited a few examples of sequential modifications of current test pro-
cedures resulting, in some cases, in an increase of efliciency. It was
at this stage that they proposed the problem of sequential analysis to
the author. This gave the incentive for the author’s investigations
which then led to the development of the sequential probability ratio
‘best.

3 Harold Hotclling, “Experimental De_termination of the Maximum of a Func-
tion," The Annals of flfathematicat Statistics, Vol. 12 (1941), pp. 20-45.

" P. C. Mahalanobis, “A Sample Survey of the Acreage under Jute in Bengal,
with Discussion on Planning of Experiments,” Proceedings of the 2nd Indian Sta-
tistical Conference, Calcutta, Statistical Publishing Society (1940).

5 During World “Tar II the Statistical Research Group operated under a con-
tract with the Officc of Scientific Research and Development and was directed
by the Applied Pvlathematics Panel of the National Defense Research Committee.

'5 B.-:irt.ky’s multiple sampling scheme for testing the mean of a binomial distribu-
tion provides an example of such a sequential test. His results were not known to
Friedman and Wallis at that time, since they were published nearly a year later.



INTRODUCTION 3
Because of the usefulness of the sequential probability ratio test 111

development work on military and naval equipment, it was classified
Restricted within the meaning of the Espionage Act. The author was
requested to submit his findings in a restricted report’ dated Sep-
tember, 1943.i' In this report the sequential probability ratio test IS
devised and the basic theory is given. To facilitate the use of this
new technique by the Army and the Navy, the Statistical Research
Group issued a second report in July, 1944, which gives an elementary
non-mathematical exposition of the applications of the sequential prob-
ability ratio test and contains a considerable number of tables, charts,
and computational simplifications to facilitate applications.“

Further advances in the theory of the sequential probability ratio
test were made in 1944. The operating characteristic (OC) curve of
the sequential probability ratio test for the case of a binomial distri-
bution was found by Milton Friedman and George W. Brown (inde-
pendently of each other), and slightly earlier by C. M. Stockman in
England.“ The author then obtained the general OC curve for any
sequential probability ratio test." A few months later a general
theory of cumulative sums was developed 12 which gives not only the
OC curve of any sequential probability ratio test but also the charac-
teristic function of the number of observations required by the test
and various other results.

The material in the author’s report together with the new advances
made in 1944 were published by him in a paper, “Sequential Tests of
Statistical Hypotheses,” in The Annals of Mathematical Statistics, June,
1945. The Statistical Research Group issued a revised edition 13 of its

‘Abraham Wald, “Sequential Analysis of Statistical Data: Theory,” a report
submitted by the Statistical Research Group, Columbia University, to the Applied
Mathematics Panel, National Defense Research Committee, Sept., 1943.

“ The restricted classification was removed in May, 1945.
° Harold Freeman, “Sequential Analysis of Statistical Data: Applications," a

report submitted by the Statistical Research Group, Columbia University, to the
Applied Mathematics Panel, National Defense Research Comlnittee, July, 1944.

1° C. M. Stockman, “A Method of Obtaining an Approximation for the Operating
Characteristic of a Wald Sequential Probability Ratio Test Applied to a Binomial
Distribution,” (British) Ministry of Supply, Advisory Service on Statistical
Method and Quality Control, Technical Report, Series “R,” No. Q.C./R/19.

11 Abraham Wald, “A General Method of Deriving the Operating Characteristics
of any Sequential Probability Ratio Test,“ unpublished memorandum submitted
to the Statistical Research Group, Columbia University, April, 1944.

1-‘Abraham Wald, “On Cumulative Sums of Random Variables,” The Annals
of Mathefliatical Statistics, Vol. 15 (Sept., 1944).

If The authorship of the revised edition, which was published by the Columbia
University Press, Sept., 1945, is ascribed to the group as a whole.



4 INTRODUCTION

original report. The revised edition includes a discussion of the oper-
ating characteristic and average sample number curves for various
applications of the sequential probability ratio test.

Independently of the development in this country and about the
same tiine, G. A. Barnard recognized the merits of a sequential method
of testing.“ He treated the problem of double dichotomies, using a
sequential method of testing Which, however, differs from the one that
results from the application of the sequential probability ratio test.

This book consists of three parts and an Appendix. Part I contains
a discussion of the general theory of the sequential probability ratio
test. Part II discusses applications of the general theory given in
Part I. These applications are given prirnarily to illustrate the gen-
eral theory and to bring out some points of theoretical interest which
are specific to these applications. Accordingly, computational si1npli-
fications are not stressed much and hardly any tables are given.“
Part III outlines briefly a possible approach to the problem of sequen-
tial multi-valued decisions and estimation. This field is largely un-
explored and further progress is still a matter of future developments.
To facilitate the use of the book by readers with no advanced mathe-
matical training, mathematical derivations of somewhat intricate na-
ture are included in the Appendix.

1‘ G. A. Barnard, “Economy in Sampling with Reference to Engineering Experi-
mentation,” (British) Ministry of Supply, Advisory Service on Statistical Method
and Quality Control, Technical Report, Series “R,” No. Q.C./R/7.

15 For a more complete and detailed discussion of these applications the reader
is referred to the revised edition of the publication of the Statistical Research
Group mentioned before.



PART I. GENERAL THEORY

Chapter 1. ELEMENTS or THE CURRENT THEORY or-*
TESTING STATISTICAL I-IYPOTHIESES

1.1 Random Variables and Probability Distributions

1.1.1 Notion of a Random Variable
The outcome of an experiinent or the reading of a measurement is

usually a variable quantity or, more briefly, a variable, since generally
it can take different values. For example, repeated measurements on
the length of a bar will yield, in general, diliferent values. Frequently,
it will be possible to make probability statements concerning the out-
come of an experiment or the reading of a measurement. Consider,
for example, the experiment consisting of the throw of a die whose sides
are numbered from 1 to 6. Here the outcome of the experiment may be
any integral number from 1 to 6. Various probability statements regard-
ing the outcome of the experiment can be made. For example, the prob-
ability that the outcome will be equal to 5 is equal to %, or the prob-
ability that the outcome will be less than +1. is equal to 3/"5, and so forth.
Probability statements can also be made about the outcome of the
following experiment: Suppose that an individual is selected at random
from a group of 1000 individuals and that his height is then measured.
The probability that the height of the selected individual will be less
than 68 inches is equal to ,1/{O00 times the number of individuals in the
group whose heights are less than 68 inches.

A variable :1: is called a random variable if for any given value c a
definite probability can be ascribed to the event that .1: will take a value
less than c. A general class of experiments wliere the outcome is a
random variable in the sense of the above definition may be described
as follows. Consider a class of N objects (or individuals) and some
measurable characteristic of these objects, such as weight, diameter, or
hardness. Suppose that the value x of this characteristic varies from
object to object in the class. The experiment consists in selecting at
random one object from the class of N objects, and then measuring
the value :1: of the characteristic of the selected object. Random selec-
tion is selection of an object in such a way that each object, in the
class of N objects has an equal chance of being chosen. The outcome

5



6 CURRENT THEORY OF TESTING HYPOTHESES

:1: of such an experiment. is a random variable, since a probability can
be ascribed to the event that :1: tvill take a value less than c, for any
given value c. This probability is, in fact, equal to N.,/N, where NZ,
is the number of objects in the class for which the characteristic under
consideration has a value less than c. An interesting special case is
that in which the characteristic under consideration can take only two
values. Such a situation arises, for instance, in the case of a manufac-
tured product where each unit is classified in one of two categories:
defective or non-defective. We shall ascribe the value O to a non-
defective unit and the value 1 to a defective unit. Then the charac-
teristic under consideration, i.e., the characteristic of being defective
or non-defective, can take only the values 0 and 1. Consider a lot
consisting of N units and let Nd be the number of defectives in the lot.
If the experiment consists in inspecting a single unit drawn at random
from the lot, the outcome :1: of the experiment is a random variable
which can take only the values O and 1. The probability that :1: = 0
is equal to (N -- N,1)/N, and the probability that :1: = 1 is equal to
Nd/N. -

1.1.2 Cumulative Distribution Function (c.d.f.) of a Random Vari-
able

Let sc be a random variable and denote by F(t) the probability that
:11 will take a value less than a given value t. Then F(t) is a function
of t which is called the cumulative distribution function of 1:. Since

F(t)

....__-» e —---—-—-—-—-an
0 I

FIG. 1

any probability must lie between 0 and 1, we must have 0 é F(t) é. 1
for all values of 8. If £1 and £2 are two values such that £1 < £2, then the
probability that x < £2 is greater than or equal to the probability that
2: < £1, i.e., F(t2) 1'; F(t1). In other words, F(t) cannot decrease as
t increases. A typical form of a c.d.f. F(t) is shown in Fig. 1 wheret
is measured along the horizontal axis and F(t) along the vertical axis.
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For any given values a. and b (a <1 b) we can easily derlve the Value
of the probability that a é :1: < b from the c.d.f. F(t). In fact, the
event that :2: < a and the event that 0: § :1: < b are mutually exclu-
sive. Hence, the probability that one of these events will occur is
equal to the sum of the two probabilities: the probability that :1: < a
and the probability that a é :1: < b. Thus, we have

(1:1) (probability that either :1: < a. or 0. 15 cc < b)

= (probability that :1: < a) + (probability that a 5 :1: < b)

Since the probability that either :1: <2 a or a 5 at <1 b is the same as
the probability that :1: <1 b, we obtain, from (1:1),

(1;2) F(b) = F(a) + (probability that a g 2: < b)

Hence, the probability that a 5 .1: <2 b is equal to F(b) — F(a).
A simple interpretation of the c.d.f. F(t) can be given if the random

variable 2: is the value of a measurement on an object selected at ran-
dom from a given group of N objects. As mentioned in Section 1.1.1,
in this case the probability that the observed value of 2: satisfies some
equality or inequality relationship, such as :1: = c, or :2: <.' c, or a < :1:
< b, is equal to the proportion of objects in the group of N objects
for which the value of :2: satisfies the equality or inequality in question.
Thus, F(t) is simply equal to the proportion of objects in the group
for which a: < t. W'ith this interpretation of probability, the validity
of (1 :2) becomes self-evident. It merely says this: The proportion of
objects for which :r: <1 b is equal to the proportion of objects for which
x < a plus the proportion of objects for which a g :2: < b. The group
of N objects is frequently called population or universe. So far we have
considered only populations which contain a finite number of objects.
Such populations are called finite populations.

The interpretation of the probability that a certain relation (equality
or inequality) holds as the proportion of objects in the population for
which the value of :1: satisfies that relation proves useful in many
instances and we shall employ it frequently. However, if we restrict
ourselves to finite populations, such an interpretation is not always
possible. In fact, the c.d.f.’s which arise from finite populations are
of a special nature. Suppose that N is the number of objects in the
population. Then the random variable :1: can take at most N different
values. Let 0.1, - - -, a_»,; be the different values zr can take, arranged in
ascending order of magnitude, i.e., <11 < a2 < - - - < (1,.-‘pf. Clearly,
ll! 15, N. If the value of 1: is the same for several objects, then 11! < N,



_.

8 CURRENT THEORY OF TESTING HYPOTHESES

The c.d.f. of :1: will be a step function of the type shown in Fig. 2. The
distribution function makes exactly M jumps and the magnitude of
each jump is equal to 1/N or an integral multiple of 1/N. A c.d.f.
represented by a continuous curve, as shown in Fig. 1, is certainly not
of this type. Thus, if the c.d.f. is given by a continuous curve, the
interpretation of probabilities as proportions of a finite population is
not possible. However, any c.d.f. can be approximated arbitrarily
closely by a c.d.f. arising from a finite population, if the number N of
objects in the population is sufliciently large. Thus, any c.d.f. can be

F“)
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regarded as a limiting form of a c.d.f. arising from a finite population
when the number of objects in the population is increased indefinitely.
This means that if we admit infinite populations 1 (populations with
infinitely many objects), the interpretation of any probability as a
certain proportion of an underlying population is always possible. Of
course, the notion of an infinite population is only an abstraction con-
structed merely for the purpose of simplifying the theory. To give an
example of an underlying infinite population, consider a measurement
on the length of a bar, the outcome of which is regarded as a random
variable :2: having a c.d.f. F(z). Then the underlying infinite popula-
tion may be thought of as an infinite sequence of repeated measure-
ments on the length of the bar, and the -actually observed measurement
is considered an element drawn from this population. Sometimes the
underlying population is finite, but the number N of objects in the

1 By an infinite population we mean an ordered infinite sequence of objects,
O1, O2, - - - , ad inf. A certain measurable characteristic of these objects is considered
and the value 1: of this characteristic is assumed to vary from object to object.
By the proportion of objects in the infinite population for which 1: satisfies a given
relation (equality or inequality) we mean the limiting value of the corresponding
proportion in the finite population (O1, - - -, ON) as N increases indefinitely-
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population is so large that we may find it more convenient to treat
the problem as if N were infinity, i.e., as if the population were infinite.
Suppose, for example, that we are interested in the height distribution
of all male individuals of age 20 and above living in the United S ates.
The number of such individuals is so large that considerable mathe-
matical simplification may be achieved by treating the population of
such individuals as if it were infinite.

1.1.3 Probability Density Function
Let F(t) be the c.d.f. of a random variable :i:. As we have seen in

Section 1.1.2, the probability thatt -— g g 2: < Z + -lg (A > O) is given

by F (1! + — F (t —- The liiniting value f(t) of the ratio

»»~<~.a>-»~<~;>
iting value exists,’ is called the probability density of the random vari-
able as at the value x = t. The probability density f(t) is a function of
t and is called the probability density function of the random variable
:c. It follows from the definition of the probability density f(t) that
for small positive values A the product f(t)A is a good approximation

as A approaches 0, provided that such a lim-

to the probability that 2: will lie in the interval t :1: A probability

density function does not always exist. If the random variable .1: is
discrete, i.e., if sc can take only discrete values, the c.d.f. is a step func-
tion and no probability density function exists.

The probability that x will take a value within the interval from
£1 to £2 (£1 < £2) can be obtained by integrating the probability density
function f(t) from £1 to £2; i.e., the probability in question is given by

J;31¢) dz
. , _ , F t — F _‘The existence of the limiting value of ( +(-E ~ (0 is required, where

A may be positive or negative and may approach 0 in any arbitrary mariner.
The existence of this limiting value implies the existence of the limiting value of

F'(:+%)-F(i-g)
 _

£1
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‘One of the most important probability density functions is the so-

called normal probability density function, which is given by

(1:3) rs) = 11e"§i““"”'\/ 21ro'

where ,u. and 0' are some constant values. If a random variable :2: has
a probability density function f(t) given by (1:3), we say that :1: is
normally distributed, or :1: has a normal distribution. The shape of a
norlnal curve is shown in Fig. 3, where t is measured along the hori-
zontal axis and f(t) along the vertical axis.

{U}

Normal curve
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1.1.4 Discrete Random Variables
A random variable 2: is called discrete if it can take only discrete

values. Any variable which can take only a finite number of different
values is, of course, a discrete variable. A variable which can take
infinitely many values may still be discrete. For example, if the vari-
able x is restricted to integral values, :1: is discrete. The c.d.f. of a dis-
crete random variable is a step function, as shown in Fig. 2. Thus, a
discrete random variable has no probability density function, but
admits an elementary probability law f(t), where f(t) denotes the
probability that :1: = t.

In what follows we shall consider only random variables which
either admit a probability density function or have a discrete distri-
bution. By the probability distribution, or more briefly distribution,
f(t), of a random variable zr, we shall always mean the probability
density function of as, if a probability density function exists. If .2: is
a discrete random variable, f(t) will denote the probability that ac == t.
We shall sometirnes refer to the distribution f(t) of :c also as the popu-
lation distribution of zr, or the distribution of :1: in the population.
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1.1.5 Expected Value and Higher Moments of a Random Variable
Suppose that :1: is a random variable which has a discrete distribu-

tion. Let f(t) denote the distribution of rr, i.e., f(t) is the probability
that .2: = t. Then the expected value of zr, in syinbols E(:r), is de-
fined by

<1;-4) Ea) = 2:-cc)
where the sulnmation is to be taken over all possible values t of :r.
Interpreting the probability f(t) as the proportion of objects in the
population for which :1: = t, we see from (1:4) that the expected value
E(x) of :0 is the same as the mean value of a: in the population. If :1:
is a continuous variable which admits a probability density function
f(t), then the expected value of :r is given by

(1:5) E(:r) =J:_+mw£f(£) def

The expected value of :1: is often called also the population mean, or
mean of zr.

A function ¢(:r) of a random variable .1: is itself a random variable.
For any positive integer r and for any constant 0, the expected value
of (:1: -— c)" is called the rth population moment of 2: referred to the
value c. Of special interest is the case in which c = E(:z:). The ex-
pected value of [x — E(x)]" is called the rth moment of :1: referred to
the mean. The second moment referred to the mean, i.e., the expected
value of [x — E(:c)]2_, is also called the variance of x. The square root
of the variance is called the standard deviation.

Consider the normal probability density function

_ 1 - $ (I-:02(1 .6) j'(t) \/Em e

where p and 0' are constants (0 > 0). Let :2: be a random variable
whose distribution is given by (1:6). That the expected value of zr
is then equal to a and the variance of :1: is equal to 02 can easily be
verified.

1.2 Notion of a Statistical Hypothesis

1.2.1 Unknown Parameters of a Distribution
_Let :1: be a random variable. A statistical problem arises when the

distnbutlon of :1: is not known and we want to draw some inference
concernmg the unknown distribution of 1: on the basis of a limited
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number of observations on :12. Frequently, the distribution of :1: is not
entirely unknown, i.e., some partial knowledge of the distribution of
sc is available a priori. To illustrate this we shall consider the two
following examples.

Example 1. Consider a lot consisting of N units of a certain manufactured
product. Suppose that each unit is classified in one of the two categories, defective
and non-defective. The value 0 is assigned to each non-defective unit and the
value 1 to each defective unit. One unit is drawn at random from the lot and is
inspected. The outcome :1: of this experiment is a random variable which can take
only the values 0 and 1. Denote by gp the proportion of defectives in the lot.
Then the probability that 1: = 1 is equal to go and the probability that 2 = O is
equal to 1 — go. Thus, if the value of p were known, the distribution of :1: would be
completely known. Usually p is unknown and we want. to make some inference
regarding the value of p by inspecting a limited number of units drawn from the lot.
If p is unknown, we have only partial knowledge of the distribution of 2; we know
merely that :1: is restricted to the values (J and 1- In this case p is considered an
unknown parameter which can have any value between 0 and 1. \Ve shall also
say that the distribution of :1: involves an unknown parameter p. Thus in this
example the distribution of as is known except for the value of an unknown para-
meter p.

Example 2. Suppose that the length of a bar is measured with an instrument
for which the error of measurement is known to be normally distributed. The
out-come :1: of such a measurement is t.hen a normally distributed random variable,
i.e., the distribution of 1: is given by the normal density function

1
11- 8-gi (I'—,[-I):

“\/21ra'

Usually the mean a and the variance J2 of the distribution are unknown. These
quantities are also called the parameters of the normal distribution. The mean ,u
can take any real value and 0'2 can take any positive value. Thus, in this example
too, the distribution function is known except for the values of the parameters
n and 02 involved in the distribution function.

A general situation similar to that given in Examples 1 and 2 may
be described as follows: The functional form of the distribution function
is known and -merely the values of a finite number of parameters involved
in the dz'sz‘ribu.tion function are unknown; i.e., the distribution function
is known e.rcr?pt for the values of a finite number of parameters. In Ex-
ample 1 the only unknown parameter is the proportion p of defectives
in the lot. In lfixample 2 there are two unknown parameters, the mean
}1. and the variance 02.

In what follows we shall assume that the distribution of the random
variable .1: is known except for the values of a finite number of param-
cters.
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1.2.2 Simple and Composite Hypotheses
Let 61, - - - , 6;, be the unknown parameters of the distribution of the

random variable :1: under consideration. A statement about the values
of 61, - - -, 6;. is called a simple hypothesais if it determines uniquely the
values of all ic parameters. It is called a composite hypotizesis if it is
consistent with more than one value for some parameter. For ex-
ample, it there are two unknown parameters, 61 and 62, involved in
the distribution of 1:, the hypothesis that 91 = 2 and 62 = 4 is a simple
hypothesis, since it specifies completely the values of the unknown
parameters. On the other hand, the hypothesis that 9; = 62 is com-
posite. In Example 1 the statement that the unknown proportion p
of defectives is equal to .2 is a simple hypothesis. On the other hand,
the statement that p lies between .1 and .3 is a composite hypothesis.
In Example 2 the statement that ,u = 3 would be a composite hypoth-
esis, since it does not specify the value of the unknownvariance <12.

In general, the parameters 61, -- -, 6;, will not be subject to any
a priori restrictions; i.e., they may take any values. However, the
parameters may in some cases be restricted to certain intervals. For
instance, if one of the unknown parameters is the standard deviation,
this parameter is restricted to positive values. In other cases, the
parameter may be able to take only a finite number of discrete values.

1.3 Outline of the Current Procedure for Testing Statistical Hypoth-
eses

1.3.1 The Sample
Let x be a random variable and suppose that we wish to test a

hypothesis concerning the unknown parameters of t-he distribution of
1:. The decision to accept or reject the hypothesis in question is always
made on the basis of a finite number of observations on 1+. A set of a
finite number of observations on .1: is called a sample- The number of
observations contained in the sample is called the size of the sample.

VVe shall be concerned mostly with the case in which the successive
observations on 2: are independent in the probability sense. The suc-
cessive observations :21, - - -, 2:... on 41: are said to be independent in the
probability sense if the (conditional) probability distribution of the with
observation xi (i = 2, - ~ -, n), when the values of the preceding obser-
vations 2:1, - - -, 2:,-__1 are known, is not affected by these values. This
condition cannot be strictly fulfilled if the successive observations are
drawn from a finite population. Consider, for instance, the case dis-
cussed in Example 1 on page 12. Suppose that two successive units
are drawn at random from the lot. Denote by 2:1 the value of .1: for
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the first unit and by 1:2 the value of :1: for the second unit. The distri-
bution of :c1 is clearly given as follows: the probability that :01 = 0 is
1 — p and the probability that $1 = 1 is equal to p. The distribution
of $2, when the value of x1 is known, is given as follows: if :z:1 = 0,
then the probability that 2:2 = 1 is equal to pN/(N — 1) and the prob-
ability that 2:2 = 0 is equal to 1 — [pN/ (N — 1)]. On the other hand,
if 2:1 = 1, the probability that $2 = 1 is equal to (pN — 1)/(N -— 1)
and the probability that 11:2 = O is equal to 1 -—- [(pN -1 )/ (N — 1)].
Thus, the probability distribution of 1:2 is affected by the outcome of
ml. For similar reasons no strict independence can prevail in any other
case in which the successive observations are drawn from a finite popu-
lation. However, if the number of objects in the finite population is
sufficiently large, the dependence is only slight and can be neglected.

Let as be a discrete random variable, and denote the distribution of
:1: by f(t), i.e., f(£) is the probability that at = t. Let $1, - - -, .10.. be a
set of n independent observations on at. Because of the independence
of the observations, the probability of obtaining a sample equal to the
observed one is given by the product

f(I1)f(=r2) - ' ' f(xn)
This product is also called the joint probability distribution of the
observations 1:1, - - -, 1:...

If :1: is a continuous random variable admitting a probability density
function f(:r), then the joint density function of an independent obser-
vations zrl, ~ - - , 12,, on x is given by the product

.7-(1171).?-(1132) ' ' ' .1-(51711)

1.3.2 The General Nature of a Test Procedure
Denote by n the number of observations on the basis of which the

acceptance or rejection of the hypothesis in question is to be decided.
Any possible outcome of n successive observations is a sample of size n.
A test procedure leading to the acceptance or rejection of the hypoth-
esis in question is siinply a rule specifying, for each possible sample of
size n, whether the hypothesis should be rejected or accepted on the
basis of that sample. This may also be expressed as follows: A test
procedure is simply a subdivision of the totality of all possible samples
of size n into two mutually exclusive parts, say part 1 and part 2,
together with the application of the rule that the hypothesis be re-
jected if the observed sample is contained in part 1 and that the
hypothesis be accepted if the observed sample is contained in part 2.
Part 1 is also called the critical region. Since part 2 is the totality of
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all samples of size n which are not included in part 1, part 2 is uniquely
determined by part 1. Thus, choosing a test procedure is equivalent
to determining a critical region.

As an illustration, we shall discuss a few examples. Suppose that a
lot consisting of N units of a manufactured product is submitted for
acceptance inspection. Assume that each unit is classified in one of
the two categories: defective and non-defective. The proportion p of
defectives in the lot is assumed to be unknown. Let pg be a value
between O and 1 such that we prefer to accept the lot if the proportion
p of defectives is g pg and we prefer to reject the lot if p > pg. Sup-
pose that a sample of n units, drawn at random from the lot, is inspected
and on the basis of this sample a decision is to be made to accept the
lot or reject it. In other words, on the basis of the inspection of the
sample of n units a decision is to be made to accept the hypothesis
p g po or reject it. The critical region generally used in this case is
defined as follows: The hypothesis that p 5 P0 is rejected, i.e., the lot
is rejected, if, and only if, the proportion of defectives in the observed
sample of n units exceeds a suitably chosen numerical constant c.

Another example: Suppose that the length of a bar is measured with
an instrument for which the error of measurement is known to be
normally distributed with variance equal to unity. Thus, the outcome
1: of a measurement is a normally distributed random variable with
mean J1 equal to the true length of the bar and variance unity. Let
the hypothesis to be tested be the statement that the true length of
the bar is equal to a specified value nu. This hypothesis is to be tested
on the basis of a sample consisting of n independent measurements
$1, ' ' -, xn on the length of the bar. The critical region generally used
for this purpose is defined as follows: The hypothesis that it = no is
rejected if, and only if, the sample observed is such that | :3 — no I 3 c
Where :i': denotes the arithmetic mean of the n observations and c is a
suitably chosen numerical constant.

There are, in general, infinitely many possibilities for choosing a
critical region. For instance, in the example just discussed we could
have used the median, or the geometric mean, or the harmonic mean,
Or some other mean of the observations instead of the arithmetic mean.
The various critical regions cannot be regarded as equally good and
the fundamental problem in testing hypotheses is to set up principles
for the proper choice of the critical region. Such principles have been
advanced by Jerzy Neyman and Egon S. Pearson. In the next section
We shall discuss briefly the basic idea of the Ncyman-Pearson theory?‘

'_Se*3._for example, J. Neyman and E. S. Pearson, S!-atz'st-ical Research 1l{em.o1.'rs
Umvsrsity College, London, Vol. I (1036), pp. 1-37.
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1.3.3 Principles for Choosing a Critical Region
The principles formulated by Neyman and Pearson for the proper

choice of a critical region constituted an advance of fundamental im-
portance in the theory of testing hypotheses. The purpose of this
section is to indicate briefly the basic idea of the Neyman-Pearson
theory.

A simple case of particular theoretical interest arises when only one
unknown parameter 6 is involved in the distribution of the random
variable :2: under consideration, and 6 can take only two values, 60 and
61. The basic idea of the Neyman-Pearson theory can be indicated
even in this sirnple case. Therefore, in the rest of this section, as
well as in the following section, 1.3.4, we shall restrict ourselves to
the case of a single parameter 6 which can take only two values,
90 and 91.

For any value 6 of the parameter, let f(:z:, 6) denote the distribution
of :r:. We shall denote f(:z:, 60) by f0(:c) and f(:::, 61) by f1(:c). Suppose
that it is desired to test the hypothesis that 6 = 60. “Te shall refer to
this hypothesis as the null hypothesis and denote it by H0. The hy-
pothesis that 6 = 61 will be called the alternative hypothesis and will
be denoted by H1- Thus, we shall deal with the problem of testing the
hypothesis H0 against the alternative hypothesis H1 on the basis of
a sample of n independent observations 2:1, - - - , :r,,_ on zr.

As a basis for choosing among critical regions the following consider-
ations have been advanced by Neyman and Pearson: In accepting or
rejecting H0, we may commit errors of two kinds. ‘We commit an
error of the first kind if we reject H0 when it is true; we commit an
error of the second kind if we accept H0 when H1 is true. After a
particular critical region IV has been chosen, the probability of com-
mitting an error of the first kind, as well as the probability of commit-
ing an error of the second kind, is uniquely determined. The probability
of committing an error of the first kind is equal to the probability,
determined on the assumption that H0 is true, that the observed
sample will be included in the critical region ll-V. The probability of
committing an error of the second kind is equal to the probability, de-
termined on the assumption that H1 is true, that the observed sample
xvill fall outside the critical region W. For any given critical region
W we shall denote the probability of an error of the first kind by or
and the probability of an error of the second kind by B.

The probabilities or and B have the following irnportant practical
interpretation: Suppose we draw a large number of samples of size n.
Let M be the number of such samples drawn. Suppose that for each
of these ll-I samples we reject H0 if the sample is included in IV and
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accept H0 if the sample lies outside W. In this way we make M state-
ments of rejection or acceptance. Some of these statements will in
general be wrong. If H0 is true and if III is large, the probability is
nearly 1 (i.e., it is practically certain) that the proportion of wrong
statements (i.e., the number of wrong statements divided by M’) will
be approximately 0:. If H1 is true, the probability is nearly 1 that the
proportion of wrong statements will be approximately 16. Thus, we
can say that in the long run the proportion of wrong statements will
be or if HO is true and B if H1 is true.

It is clear that one critical region I-V is more desirable than another
if it has smaller values of or and ,6. Although either or or B can be made
arbitrarily small by a proper choice of the critical region W, it is im-
possible to make both or and ,8 arbitrarily small for a fixed value of n,
i.e., a fixed sample size. To illustrate this point, consider the follow-
ing two extreme cases: ( 1) I-V is empty, i.e., we always accept H0, ir-
respective of the outcome of the sample. In this case cr = 0 and ,6 = 1.
(2) IV is the totality of all possible samples, i.e., we always reject H0.
In this case or = 1 and 16 = O. If, for some reason, we decide to con-
sider only critical regions IV for which 0: has a given fixed value, the
choice of IV is based on the following principle, introduced by Neyman
and Pearson: Restricting ourselves to regions IV for which 0: has a fixed
value, we choose that one for which ,6 is a minimum.

The quantity or is called the size of the critical region, and the
quantity 1 — ,8, the power of the critical region. A critical region
which has the highest power in the class of all regions of equal size
ls a most powerful region. Since minimizing B is the same as
maximizing 1 - B, the Neyman-Pearson principle concerning the
choice of the critical region IV can be formulated as follows: Restrict-
ing ourselves to regions of a fixed size or, we choose that one which is
most powerful,
' For a fixed sample size, the probability B is a (single-valued) func-

tion of cc, say 6(a), if a most powerful critical region is used. Thus,
gwen the number of observations on which the test is based, one of
the quantities or and B can still be chosen arbitrarily. The Neyman-
Pcarson theory leaves the question of this choice open. It is clear
that if or is small, ,B(cr) is in general large, and if or is large, B(a) is in
gfincral small. The choice of or (or 6) will be greatly influenced by the
relative importance of the errors of the first and second kinds in each
particular application. Suppose, for example, that the loss caused by
an error of the first kind is one dollar and the loss caused by an error
Of the second kind is merely one cent. Then a small as and a large B
“"11 be Preferable to a large ck and a small B.
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Neyman and Pearson show that a region consisting of all samples
(x1, - - - , 2:“) which satisfy the inequality

(1:7) f1(fi1_)f1(f§_.'2) ' f1_(5l7n)_ .2 k
fo(1171)fo(11?2) ' ' ' f0(5~'7n)

is a most powerful critical region for testing the hypothesis H11 against
the alternative hypothesis H1. The term is on the right-hand side of
(1:7) is a constant chosen so that the region will have the required
size oz. The reason why the critical region defined by (1:7) is most
powerful can be indicated as follows: For simplicity suppose that the
probability distributions under H11 and H1 are discrete. Thus,
f,_-(:r1)f,(:r:2) - - - f,-(:z:,,) (21 == O, 1) denotes the probability of obtaining a
sample equal to the observed one. The critical region defined by (1:7)
can be built up by starting with a sample E1 = (:r11,:1:21, ~ - -, xn‘)

for which figs‘) l i l flcnn) takes its maximum value. Then a sample
fo(J-*1) ' ' ' fo(II3n)

f1($1) ' ' ' f1($-n)
E2 = ($12, . . -, :1;-,.12) is included for which j-firm takes its

maximum value in the set of samples which is left after E‘ has been re-
moved from the totality of all possible samples. In general, after r sam-
ples E1, - - -, E’ have been included in the critical region, asample E""'1

is added for which fl(I1) —. 'f1(x") takes its maximum value in thefc(1¢1) "'fO(In)
set of samples (x1, - ~ -, :c,.,) which are left after E‘, - - -, E’ have been
removed from the totality of all samples. This construction is con-
tinued until the size of the region reaches the desired value or.‘ Since
at any stage of the construction the last sample included in the critical
region has the largest probability under H1 per unit probability under
H11 as compared with any other sample not yet included in the region,
it can be seen that the probability measure of the critical region under
H1, i.e., the power of the critical region, is greater than or equal to the
power of any other region of equal size.

Let us illustrate the principle for choosing a critical region by appli-
cation to a simple and familiar case. Let H11 be the hypothesis that
sr is normally distributed with mean 611 and variance unity. Let H1 be
the hypothesis that :2: is normally distributed with mean 61 and vari-

*' If :c is a discrete variable, it may happen that, at the last stage of the constrnc-
tion, at the inclusion of the last sample in the critical region, the size of the region
increases from a value below or to a value somewhat greater than oz.
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unity Assume 9, > 61, For testing H11 against H1 we shall haveance - '

to determine the ratio f1(?;—1—) l ' ' f1(xii)- . Sincesen ~aeo ,
( ) 1 -at E (.-.-11-01)‘

- . . n = i-7: 8 “=1f1(I1) fl 5'3 (2105

and ,1

-ya Z c=..-em
f0(x1) ---roe.) = "L36 “=1

(2102
the inequality (1 :7) can be written as

Tl

'-Vi 2 (il?a_al)2
6 a= 1

n I I 5 is

—'}’§ 2 (3-i€I—9D)2
e a==I1

Taking the logarithm on both sides of this inequality, we obtain

%2(~'-Fa - 9o)2 _ %E(Ia ""' 91)2 = (31 -' aclz-Ta + %'"»(902 _ 912) E log k

Hence
" > log A: - %n(6112 -- 012). _ - . _ 121;’(1.9) G221 1:... ._. 61 ___ 90 ($3-Y)

Inequality (1 :9) can be written as

Z(.:r:_,, -—- 9) is’ — 12.6 H(1:10) 6- ° e - 6 ° —-— k (say)
71- 7?-

Now we shall determine the value of it” such that the critical region
defined by the inequality (1 :10) has the size or = .05. Since under the
hypothesis H11 the random variable [Z‘(x,,, —- 611)]/n is normally distrib-
uted with zero mean and variance 1/n, we see from a table of the
normal distribution that lo” == 1.64/\/Q. Thus, the most powerful
region of size .05 consists of all samples for which the inequality

E(..'-{Ta 1 60) 1(1.11) n - - 5; —\/i

holds.
This is a familiar result. Long before Neyman and Pearson devel-

oped their theory of testing hypotheses, it had been the practice to
use the critical region (1:11) for testing the hypothesis that 6 = 611
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against alternative values 6 > 611. A remarkable feature of the region
given by (1 :11) is that it does not depend on the alternative value 61.
In the derivation of (1:11) merely the inequality 61 > 611 was used.
Hence, the test defined by the region (1:11) is most powerful with
respect to all alternatives 6 > 611, i.e., it is a umlforsmly most powerful
test when the alternatives are restricted to values greater than 611.

1.3.4 Number of Observations Necessary if Cl. and B Have Pre-
assigned Values

In the preceding section we assumed that or and the sample size n
were given and we were looking for a critical region for which 16 was
a minimum. In this section we shall assume that oz and B are given
and our problem is to deterrnine the minimum value of n for which
the power of the most powerful region of size or is greater than or equal
to 1 -—- 16. _

Let 6,, denote the probability of an error of the second kind associ-
ated with a most powerful critical region of size ex when the test is
based on n observations. It can be shown that ,6", decreases, or at least
does not increase, with increasing n. In general, B-,1 will approach 0
as n increases indefinitely. Denote by n(cz, ,6) the smallest value of n
for which 18,, g ,6. If we want a test procedure such that the prob-
ability of an error of the first kind is equal to <1 and the probability
of an error of the second kind does not exceed ,6, then according to the
current theory we must draw a sample of size n. 3; n(cz, B). If we use
a most powerful critical region, we need a sample of size n = n(a, 16).

1.3.5 Testing a Hypothesis Viewed as a Decision between Two
Courses of Action

It happens frequently in practice that we have to decide between
two courses of action, say action 1 and action 2, and the preference
for one or the other action depends on the value of an unknown param-
eter 6 of the distribution of a random variable 3:. Denote by w the
set of all values of 6 for which action 2 is not preferable to action 1.
Thus, for any value 6 not contained in to we prefer action 2 to action 1.
The problem of deciding between these two actions on the basis of a
sample of n independent observations on :1: may be formulated as a
problem of testing the hypothesis II that the true value of 6 is con-
tained in the set w. If the test procedure leads to the acceptance of
H’ we take action 1, and if it leads to the rejection of H we take ac-
tion 2.

(l‘onsider, for example, the following problem. A lot consisting of a
large number of units of a manufactured product is submitted for



OUTLINE OF THE CURRENT TEST PROCEDURE 21

acceptance inspection. Suppose that the proportion p of defectives
in the lot is unknown. There are two courses of action: acceptance of
the lot and rejection of the lot. In general, there will exist a particular
value p’ of p such that if the true proportion of defectives is < p’ we
prefer acceptance and if p > p’ we prefer rejection. If p = p’ we are
indifferent which action is taken. Suppose that a decision is to be
made on the basis of a sample of n units drawn at random from the
lot. This problem may be viewed as a problem of testing the hypoth-
esis H that p g p’ on the basis of a sample drawn from the lot. The
lot is accepted or rejected according as H is accepted or rejected.

As mentioned in Section 1.3.3, the choice of or, i.e., the size of the
critical region, is greatly influenced by the relative hnportance we
attach to errors of the first and second kinds. If the problem of test-
ing a hypothesis arises out of the problem of deciding between certain
two courses of action, the relative importance of the errors of the first
and second kinds may be judged by considering the practical conse—
quences of taking one action when the value of the parameter is such
that the other action would have been preferable.



Chapter 2. SEQUENTIAL TEST OF A STATISTICAL
HYPOTI-IESIS: GENERAL DISCUSSION

2.1 Notion of a Sequential Test
In the current theory of testing hypotheses the number of observa-

tions, i.e., the size of the sample on which the test is based, is treated
as a constant for any particular problem. An essential feature of the
sequential test, as distinguished from the current test procedure, is
that the number of observations required by the sequential test de-
pends on the outcome of the observations and is, therefore, not pre-
determined, but a random variable.

The sequential method of testing a hypothesis H may be described
as follows. A rule is given for niaking one of the following three deci-
sions at any stage of the experiment (at the mth trial for each integral
value of m): (1) to accept the hypothesis H, (2) to reject the hypothesis
H, (3) to continue the experiment by making an additional observa-
tion. Thus, such a test procedure is carried out sequentially. On the
basis of the first observation one of the aforementioned three decisions
is made. If the first or second decision is made, the process is termi-
nated. If the third decision is made, a second trial is performed.
Again, on the basis of the first two observations one of the three deci-
sions is made. If the third decision is made, a third trial is performed,
and so on. The process is continued until either the first or the second
decision is made. The number n. of observations required by such a
test procedure is a random variable, since the value of ln depends on
the outcome of the observations.

For each positive integral value m, we shall denote by 111'm the to-
tality of all possible samples (rrl, - - -,.r,,,) of size m. ‘Ne shall also
refer to M1,, as the m-diniensional sample space. A rule for making
one of the three decisions at any stage of the experiment can be de-
scribed as follows. For each integral value m, the m-dirnensional sample
space is split into three mutually exclusive parts, R,,,°, Rm‘, and Rm.
After the first observation x1 has been drawn, the hypothesis H that
is being tested is accepted if 1:1 lies in R10; H is rejected if 41:1 lies in
R11; or a second observation is made if srl lies in R1. If the third
decision is made and a second observation 2:2 drawn, H is accepted,
PI is rejected, or a third observation is drawn, according as the ob-
served sample (zrl, :1.-2) lies in H30, R21, or R2. If (.r1, 1'2) lies in R2,

2'2
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a third observation 2:3 is drawn and one of the three decisions is made
according as (:r1, 2:2, I3) UB3 ill R30. R31, 01‘ Ra, and $0 011- This P1‘06855
is stopped when, and only when, either the first or the second decision
is made.‘ Thus, a sequential test is completely defined by defining
the sets Rm“, Rm‘, and Rm for all positive integral values m. Since
Rm", Rm‘, and Rm are mutually exclusive and add up to the whole
sample space film, it is sufficient to define any two of the sets Rm”,
Rm‘, and Rm. Any one of the three sets Rmo, Rm‘, and Rm consists
precisely of all those samples which are not contained in the other two.

VVe shall call a sample (x1, - - - , arm) ineffective if it contains an initial
segment (ml, - - -, zrmi), where m’ < m, such that (J31, - - -, xm-) lies in
Rm," or in Rm»‘. A sample which is not ineffective will be said to be
an effective sample. Clearly, for a sequential test procedure we shall
have an effective sample at any stage of the experiment. Thus, in
defining the sets Rm”, Rm‘, and Rm we may disregard ineffective sam-
ples. In other words, it is sufficient to state in which of the sets Rm‘),
Rm‘, and Rm each effective sample ($1, - - -, arm) should be included,
since ineffective samples cannot occur during the sequential process.

The following is a simple example of a sequential test. Suppose that
a lot consisting of a large number of units of a manufactured product
is submitted for acceptance inspection. Each unit is classified in one
of the two categories: defective and non-defective. The proportion p
of defectives in the lot is unknown. The lot is considered acceptable
if p g a given value p’. If p > p’ we prefer to reject the lot. Thus,
we are interested in testing the hypothesis H that p 5 p’. The follow-
ing procedure of testing H is a simple example of a sequential test.
Let no denote a given integer. If the first no units inspected are non-
defective, we stop inspection and the lot is accepted (H is accepted).
If for some value m 5 no the mth unit inspected is found defective,
no further units are inspected and the lot is rejected (H is rejected).
“Te shall assign the value 0 to any non-defective unit and the value 1
to any defective unit. In this example, a sample ($1, - - -, arm) is ef-
fective if and only if m g no and 2:1 -"= - - - = rm_.1 — O. Rm“ con-
tains no effective sample for m < no, i.e., acceptance is not possible
for m < no. R,,,,° contains only one effective sample: (O, O, - - -, 0).
For any m g -no the set Rm‘ contains exactly one effective sample:
(O, 0, -- -, 0, 1).

The Set-B Ran, Rm‘, and Rm (YR == 1, 2, - - -) defining a sequential test
can be chosen in many ways, and a fundamental problem in the theory
of sequential tests is that of a proper choice of these sets. To formulate

‘ “Te shall consider only sequential tests for which the probability is one that the
process Will eventually terminate.
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principles for a proper choice of the sets Rm“, Rm‘, and Rm, it is neces-
sary to study the consequences of any particular choice. This will be
done in the next section.

2.2 Consequences of the Choice of Any Particular Sequential Test
2.2.1 The Operating Characteristic Function
After a particular sequential test has been adopted, i.e., a particular

choice of the sets Rm“, Rm‘, and Rm (m = 1, 2, - - -) has been made,
the probability that. the process will terminate with the acceptance of
the hypothesis Ho under test depends only on the distribution of the
random variable :1: under consideration. As before, it is assumed that
the distribution of :1: is known except for the values of a finite number
of parameters, 6;, - - -, 6;,, say. Thus, the distribution of :2: is given
by a function f(:r, 61, - - - 6;,) where the functional formf is known, but
the true values of the parameters 61, - - - , 6;, are unknown. To simplify
notation, we shall use the letter 6 without subscript to denote the set
of all is parameters 61, - - - , 6),. ‘We shall refer to 6 as a parameter point,
since 6 can be represented geometrically by a point with the coordi-
nates 61, » - -, 65,. Since the distribution of :1: is determined by the
parameter point 6, the probability of accepting Ho will be a function
of 6. This function will be denoted by L(6) and will be called the
operating characteristic (OC) function. If there is only one unknown
parameter 6 the function L(6) can be plotted as a curve, 6 being meas-
ured along the horizontal axis and L(6) along the vertical axis. Since
we shall consider only tests for which the probability that the proce-
dure will eventually terminate is equal to 1, the probability of reject-
ing Ho is equal to 1 —— L(6).

The OC function is very closely related to the notion of the power
function in the current theory of tests. For any parameter point 6
which is not consistent with the null hypothesis Ho, the power of the
test is defined as the probability of rejecting Ho when 6 is the true
point. Thus, for any 6 not consistent with Ho the power of the test
is equal to 1 -— L(6).

To illustrate the meaning of an OC function, we shall compute the
OC function of the particular sequential test given as an example in
the preceding section. In that example the only unknown parameter
is 6 = p, where p denotes the proportion of defectives in the lot. The
lot is accepted if, and only if, the first no units inspected are non-
defective. The probability that the first unit inspected is non-defective
is equal to 1 — p. On the assumption that the size of the lot is suf-
ficicntly large as compared with no, the successive observations may
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be treated as being independent. Then the probability that all no
units will be non-defective is equal to (1 - p)"‘°. Thus, the operating
characteristic function is given by

Luv) = (1 — P)"°
This function can be plotted, as shown in Fig. 4, by measuring p

along the horizontal axis and L(p) along the vertical axis.

Lip)
1

—- -- -—- 1-0 1 P
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The OC function describes what the sequential test procedure ac-
complishes. For any parameter point 6 the probability of making a
correct decision can be obtained innnediately from the OC function.
If the parameter point 6 is consistent with the hypothesis Ho to be
tested, then the probability of making a correct decision is equal to
L(6). If the true parameter point 6 is not consistent with the hypoth-
esis Ho, the probability of making a correct decision is equal to
1 —- L(6). Clearly, an OC function is considered more favorable the
higher the value of L(6) for 6 consistent with Ho and the lower the
value of L(6) for 6 not consistent with Ho.

2.2.2 The Average (Expected) Sample Number (ASN) Function of
a Sequential Test

We have pointed out before that the number of observations re-
quired by a sequential test is not predetermined, but is a random vari-
able, because at any stage of the experiinent the decision to tenninate
the process depends on the results of the observations made so far.
For example, for the particular sequential test discussed in the pre-
ceding sect-ion, the number of observations required by the test may
be anything from 1 to no. If no defects are found during the sampling
process, we shall make no observations. On the other hand, if the
first m -— 1 units inspected are non—defective and the mth unit is de-
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fective for some value m < no, then the total number of observations
made will be equal to m.

We shall denote by n the number of observations required by the
sequential test. Then n is a random variable. Carrying out the same
sequential test procedure repeatedly, we shall obtain, in general, dif-
ferent values for n. Of particular interest is the expected value of n
(the average value of n in the long run, when the same test procedure
is applied repeatedly). For any given test procedure the expected
value of n depends only on the distribution of ac. Since the distribu-
tion of :1: is deterrnined by the parameter point 6, the expected value
of n depends only on 6‘. For any given parameter point 6, we shall
denote the expected value of n by Eo(n). If there is only one unknown
parameter 6 the function Eo (n) can be plotted as a curve, 6 being meas-
ured along the horizontal axis and Eo (n) along the vertical axis- We
shall refer to the average sample number function Eo(n) briefly as the
ASN function.

As an example, we shall compute the ASN function for the particular
sequential test discussed in the preceding section. For any positive
integral value m <1 no, the probability that the test will be terminated
at the mth observation is given by (1 — p)’"'_1p. We shall inspect no
units if and only if the first no — 1 units are found non-defective.
Thus, the probability that the test will require exactly no observations
is equal to (1 — p)"°"1- Hence, the expected value of n is given by

fl{)—* 1

E,,(n) = 2-rnp(1 -— p)'”"1 + ??»o(1 "" }'?)n° 1
m=1

The graph of the ASN function will be of the type shown in Fig. 5.
E,,'lnI
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An OC function and an ASN function are associated with each test
procedure. These two functions are perhaps the most important con-
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sequences of a test procedure. The OC function describes how well
the test procedure achieves its objective of making correct decisions,
and the ASN function represents the price we have to pay, in terms
of the number of observations required for the test. Thus, in judging
the relative merits of two different test procedures, we shall compare
the OC and ASN functions of these two tests.

2.3 Principles for the Selection of a Sequential Test
2.3.1 Degree of Preference for Acceptance or Rejection of the Null

Hypothesis Ho as a Function of the Parameter 6
In order to set up principles for the selection of a sequential test

it is necessary to investigate the dependence of the preference for re-
jection or acceptance of the null hypothesis Ho on the parameter point
6. Denote by w the set of all those parameter points 6 which are con-
sistent with Ho, i.e., Ho is precisely the statement that the true pa-
rameter point is included in the set 0.1. For example, if there is only
one unknown parameter 6 and if Ho is the hypothesis that 6 is less
than or equal to a certain particular value 6o, to is the set of all values
6 for which 6 _:§ 6o. Since a correct decision is preferred to a wrong
decision, we can say that acceptance of Ho is preferred whenever 6 is
in 0.1, and rejection of Ho is preferred whenever 6 is outside w.

The mere statement of preference for acceptance or rejection of Ho
is not yet a sufiicient guide for the selection of a proper sequential test.
For this purpose it is necessary to know something about the degree
of preference for acceptance or rejection as a function of the parameter
point 6'.

We shall denote by 63 the set of all parameter points which lie outside
aw. A point 6 will be said to be on the boundary of co, or a boundary
point of 0.», if any arbitrarily small neighborhood of 6 contains points
of Ed as well as of J». The totality of all boundary points of cu will be
called the boundary of (.0. If, for example, there is only one unknown
parameter and to is defined by 6 g 6o, then 6o is the only boundary point
of co. If 0.1 is the set of all values 6 for which 6o § 6 5 61, then both 6o
and 61 are boundary points. If the true parameter point 6 lies in w
but is near the boundary of 0:, the preference for acceptance of Ho will,
in general, be only slight. Similarly, if the true point 6 lies in J; but
near the boundary of cu, the preference for rejection of Ho will be only
slight. In other words, the rejection of Ho is not considered to be a
serious error if 6 is in w but near the boundary. Similarly, the accept-
ance of 1-Io is not considered a serious error if 6 is in 63 but near the
boundary of w. If the true point 6 lies exactly on the boundary of w,
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there will be, in general, no definite preference for one or the other
action, i.e., it will be indifferent to us whether the hypothesis Ho is
accepted or rejected. H

In general, it will be possible to subdivide the totality of all param-
eter points (parameter space) into three mutually exclusive zones: a
zone consisting of all points 6 for which acceptance of Ho is strongly
preferred; a zone consisting of points 6 for which rejection of Ho is
strongly preferred; and a zone consisting of all points 6 which are not
included in either of the first two zones, i.e., the third zone consists
of all points 6 for which neither acceptance nor rejection of Ho is
strongly preferred. W'e shall refer to the first zone as the zone of
preference for acceptance, to the second zone as the zone of preference
for rejection, and to the third zone as the zone of indifference. The
zone of preference for acceptance will always be a subset of no and the
zone of preference for rejection will be a subset of 6:. The zone of in-
difference will usually consist of points of to and <3 which are near the
boundary or on the boundary of cu.

Although the subdivision of the parameter space into three zones as
described above is used as a basis for the selection of a sequential test,
it cannot be considered a statistical problem. Such a subdivision is
made in each case on the basis of practical considerations concerning
the consequences of a wrong decision.

The subdivision of the parameter space into the above-mentioned
three zones gives a somewhat sketchy picture of the degree of pref-
erence for acceptance or rejection as a function of the parameter 6.
A more refined description of the degree of preference for one or the
other action can be given in terms of two functions wo(6) and wl (6),
where wo(6) expresses the relative importance of, i.e., the loss caused
by, the error of accepting Ho when 6 is true, and wl (6) expresses the
relative importance of the error of rejecting Ho when 6 is true. The
function wo(6) = 0 for any 6 in 0.», since for such points 6 the accept-
ance of Ho is a correct decision. For any 6 in 5;, wo(6) will have a
positive value which will, in general, increase with increasing distance
of 6 from the boundary of w. Similarly, 101(6) = O for all 6 in J: and
w1(6) > 0 for all 6 in w. Again, 201(6) will, in general, increase with
increasing distance of 6 from the boundary of cu. Our subdivision of
the parameter space into three zones may be interpreted as being
equivalent to choosing the functions wo(6) and 201(6) as follows:
wo(6) = 0 when 6 is in the zone of preference for acceptance or in the
zone of indifference. For any 6 in the zone of preference for rejection,
wo(6) has a high positive value, say co, indicating that the loss caused
by acceptance is of practical importance. Similarly, w1(6) = O for any
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6 in the zone of preference for rejection or in the zone of indifference.
For any 6 in the zone of preference for acceptance, w1(6) has some high
value, say cl, indicating that the loss caused by rejection of Ho is of
practical importance. Although a refined description of the depend-
ence of the degree of preference for one or the other action on 6 may
occasionally require the use of continuous functions wo (6) and 101(6),
the step functions iinplied by the subdivision of the parameter space
into three zones will give a sufiiciently good approximation for most
practical purposes. They also have the advantage of great sirnplicity.
Thus, in what follows we shall assume that the dependence of the
preference for one or the other action on 6 is described by a subdivision
of the parameter space into three zones of the type mentioned above.

As an illustration, we shall discuss briefly a few examples. Consider
first the case in which a lot consisting of a large number of units of a
manufactured product is submitted for acceptance inspection. Assum-
ing that the units are classified in one of the two categories, defective
and non-defective, the preference for acceptance or rejection of the lot
depends only on the proportion p of defectives in the lot, which is
unknown. In this case there is only one unknown parameter 6 which
is equal to the proportion p of defectives in the lot. It will, in general,
be possible to select two values po and pl (po < pl) such that for any
p § po the rejection of the lot is an error of practical importance, for
any p g pl the acceptance of the lot is considered a wrong decision of
practical importance, whereas for any value p between po and pl there
is no strong preference for either action. Thus, the zone of indifference
may be defined as the interval from po to pl, the zone of preference for
acceptance as the set consisting of all values p § po, and the zone of
preference for rejection as the set of all values p 3 pl.

As a second example, consider the ease in which the hardness 2: of
a certain product varies from unit to unit such that as may be con-
sidered a normally distributed variable in the population of all units
produced. Suppose that the mean value 6 of :2: is unknown but that
the standard deviation of .:c is known. Assume that the most desir-
able value of 6 is 6o and that the product becomes less desirable as
the absolute deviation I 6 -—- 6o I between the true mean and the most
desirable value 6o becomes greater. Suppose that the problem is to
decide whether the product should be put on the market or not. In
such a case, it will, in general, be possible to find a positive value c
such that if I 6 —- 6o I < c we prefer to put the product on the market,
and if I 6 — 6o I I> c we prefer to withhold the product. For I 6 — 6o I
= c, we are indifferent which action is taken. Thus, the hypothesis
Ho may be defined as the hypothesis that I 6 — 6o I < c. \Ve shall not
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define the zone of indifference by the equation I 6 — 6o I = e, since if
I 6 — 6o I differs only slightly from c, the preference for one action over
the other is only slight and of no practical irnportance. However, it will
be possible to find a positive value A such that, if I 6 — 6o I < c — A,
we strongly prefer to accept Ho (to put the product on the market)
and, if I 6 — 6o I > c —|— A, we strongly prefer to reject Ho (not to put
the product on the market) whereas, if c -—- A g I 6 — 6oI g c + A,
no strong preference is given to either action. Thus, the zone of indif-
ference may be defined by the inequality c —- A g I 6 -— 6o I g c + A,
the zone of preference for acceptance by I 6 — 6o I < c -—- A, and the
zone of preference for rejection by I 6 ~—- 6o I > c —l- A.

In each of the previous two examples there was only one unknown
parameter. \Ve shall now consider an example where there are two
unknown parameters. Suppose that a lot consisting of a large num-
ber of units of a manufactured product is submitted for acceptance
inspection. Assume that the characteristic of the product in which
we are interested is the resistance to pressure, which is a measurable
quantity :r. It is assumed that :1: varies from unit to unit in the lot
and has a normal distribution with unknown mean ,u. and unknown
standard deviation 0'. Let L be a value such that acceptance of the
lot is strongly preferred if the proportion of units in the lot with
resistance 2: -s L does not exceed .01, rejection of the lot is strongly
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preferred if the proportion of units in the lot for which x g L exceeds
.05, and no strong preference exists for either action if the proportion
of units in the lot with as _:‘; L lies between .01 and .05. The propor-
tion of units with zc g L is greater than or equal to .05 if, and only if,
(p. —— L)/6 g A1, and the proportion of such units is g .01 if, and only
if, (is — L),/a Q A2 (A1 < Ao). The values A1 and A2 can be obtained
from a table of the normal distribution. Thus the zone of prefercrlfifi
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for rejection is given by the set of all values ,u and or for which
(1.4 — L)/or g A1, the zone of preference for acceptance is given by
(ii — L)/cr gt ho, and the zone of indifference is given by A1 < (p. -—- L)/0'
< ho. These three zones are represented in Fig. 6, where it is measured
along the horizontal axis and 0- along the vertical axis. The zone of
indifference is bounded by two straight lines which go through the
point L on the abscissa axis and have slopes 1 /A1 and 1/A2, respectively.

2.3.2 Requirements Imposed on the OC Function
Suppose that the hypothesis Ho to be tested states that the true

parameter point 6 lies in a given set cu of parameter points. Then we
wish to make the probability of accepting Ho as high as possible when
6 lies in co, and as low as possible when 6 is outside w. Since the prob-
ability of accepting .Ho is by definition equal to the QC function L(6),
an OC function is considered more desirable the higher the value of
L(6) for any 6 in to and the lower the value of L(6) for any 6 outside w.
An ideal OC function would be given by a function L(6) such that
L(6) = 1 for any 6 in w and L(6) = 0 for any 6 outside cu. Suppose,
for example, that there is only one unknown parameter 6 and the
hypothesis to be tested is the statement that 6 g 6o. Then, an ideal
OC function, as shown in Fig. 7, would be given by a function L(6)
such that L(6) = 1 for 6 é 6o and L(6) = O for 6 > 6o.

L(6)

Example of an ideal
DC function

1

1- -—- - Al -—- ——i—i-—;-O do 9
Fro. 7

The ideal form of the OC function can never be achieved on the
basis of incomplete information about 6 supplied by a random sample
drawn from the population, but it can be approached arbitrarily closely
if we are willing to take a sufficiently large sample.

The nearer the OC function is to the ideal function and the smaller
the expected number of observations required, the more desirable is
the sequential test. These two desirable features of a test are some-
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what in conflict, since the closer we approach the ideal form of the
OC function, the larger, in general, will be the number of observations
required by the test. T'o achieve a compromise between these two
conflicting desiderata, we may proceed as follows. First we formulate
requirements concerning the closeness of the OC function to the ideal
function and then consider only tests which satisfy these requirements.
From these tests we try to select one for which the expected number
of observations required by the test is as small as possible. To impose
the desired conditions on the OC function first and then to minimize
with respect to the expected number of observations does not seem to
be an unreasonable procedure, since the OC function is perhaps of
primary importance.

To formulate requirements on the OC function, we shall make use
of the subdivision of the parameter space into the three zones discussed
in the preceding section. Since in the zone of indifference there is no
strong preference for one or the other action, we shall not irnpose any
conditions on the behavior of L(9) within the zone of indifference. In
the zones of preference for acceptance and rejection the requirements
on the OC function may reasonably be stated as follows. For any 6
in the zone of preference for acceptance the probability of rejecting
the hypothesis HO, i.e., the value of 1 — L(6), should be less than or
equal to a preassigned value or, and for any 6 in the zone of preference
for rejection the probability of accepting Ho, i.e., the value of L(6),
should be less than or equal to a preassigned value B.

\Ve can summarize the requirements iniposed on the OC function
as follows. First the parameter space is subdivided into three mutually
exclusive zones: a zone of preference for acceptance, a zone of prefer-
ence for rejection, and a zone of indifference. Then two positive values
or and B, both < 1, are selected. The requirements imposed on the
OC function are then given by the two following conditions:

(2:1) 1 — L(6) g 0: for any 6 in the zone of preference for acceptance

(2;2) L(6) g ,6 for any 6‘ in the zone of preference for rejection

Condition (2:1) can also be written as

(2:3) L(6) g 1 -—- on for any B in the zone of preference for acceptance

The subdivision of the parameter space into three zones, as well as
the choice of the values or and B, is to be made on the basis of
practical considerations in each particular case. We shall say that a
sequential test is admissible if it satisfies the requirements (2:2)
and (2 :3).
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A typical OC function satisfying the conditions (2:2) and (2:3) is
shown in Fig. 8, where there is only one unknown parameter 6 and the
zone of preference for acceptance IS defined by 6 _-5. B0, and the Z0118 Of
preference for rejection is defined by 6 Z 61. (90 < 91-)

L10)

1-1:
___ L j _fi

_ — - Pb
O 90 01 0

FIG. 8

2.3.3 The ASN Function as a Basis for the Selection of a. Sequen-
tial Test

After the parameter space has been subdivided into three zones and
the quantities or and 6 have been chosen, we consider only tests which
are admissible, i.e., tests which satisfy the conditions (2:2) and (2:3).
Clearly, we wish to select a sequential test for which the expected value
of the number of observations required by the test is as small as pos-
sible. This expected value Eg(n) depends, as we have seen in Section
2.2.2, on the parameter point 6. In section 2.2.2 we referred to the
function E'@(n.) as the ASN function of the test.

The expected value E6 (n) of the number of observations to be made
depends, of course, also on the particular sequential test used. To put
this dependence in evidence, we shall occasionally use the symbol
E@(n l S) to denote the value E9 (n) when the sequential test S is applied.

It is of particular interest to consider for any particular 6 the mini-
mum 2 value of E5-(n | S) with respect to S where S may be any admis-
sible sequential test. This minimum value, in symbols Min Eg(R I S),

sdepends only on 6. Clearly, for any admissible sequential test S’ we
have

Em. | s’) g Min Em». | s)
s

If an admissible sequential test S0 exists for which the expected value
of the number of observations is minimized for all 6, i.e., for which

' If the minimum value does not exist, we can take the greatest lower bound with
respect to S.
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E9(n I S0) = I\/gin E@(fn | S) for all 9, then S0 may be regarded as a

“uniformly best” test. In general, however, no uniformly best test
exists? i.e., it will not be possible to minimize the expected value of
the required number of observations simultaneously for all 6. Thus,
in such cases some compromise principle is to be adopted for the selec-
tion of a sequential test. We do not propose to enter into a discussion
of the various possible compromise principles that could be advanced,
since the various possibilities have not yet been fully investigated.
However, for the particular, but theoretically very interesting, case
when a sirnple hypothesis is tested against a single alternative, the
situation has been clarified and we shall discuss it in some detail in
the next section.

2.4 The Case When a Simple Hypothesis H0 Is Tested against a
Single Alternative H1

2.4.1 Eficiency of a Sequential Test
We shall consider only two values of the parameter 6, say 60 and 61.

Let H0 be the hypothesis that 6 = 60 and let H1 denote the hypothesis
that 8 = 81. We shall refer to H0 as the null hypothesis and to H1 as
the alternative hypothesis. \Vith any sequential test of the hypothesis
H0 against the alternative hypothesis H1 there will be associated two
numbers or and B between O and 1 such that if H0 is true the prob-
ability is or that we shall commit an error of the first kind (we shall
reject H0), and if I-I1 is true the probability is 6 that we shall comrnit
an error of the second kind (we shall accept H0). Two sequential tests
S and S’ will be said to be of equal strength if the values or and I6
associated with S are equal to the corrmponding values a’ and I3’ as-
sociated with S’. If cc < a’ and I5’ § 5', 01‘ if Q! § 11' and -5' <1 5', We
shall say that S is stronger than S’ (S’ is weaker than S). If cc < cx’
and B > _8’, or if or > cx’ and B < B’, we shall say that the strength of
S is not comparable to that of S’. _

Restricting ourselves to sequential tests of a given strength (a, B),
a test may be regarded as more desirable the smaller the expected
number of observations required by the test. If S and S’ are two
sequential tests of equal strength such that Ego(R I S) g E9u(n | S’) and
E5-,(n s) < rem I S’). or Izmn I S) < E@.<n I 8') and Em“ I S) é
E@,(n S’), the test S will be considered preferable to S’. If a test
So exists such that E3u(n. l S0) 3 Eaufn l S) and Ea,('??» l S0) 5 Ea,(" l S)

* The situation here is similar to that in the Neyman-Pearson theory of testing
hy-nothes.es, where uniformly most. powerful tests exist only in exceptional B9385-
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for all tests S of strength equal to that of S0, we shall say that Sq is an
optimum test. _

We shall denote by n0(o:, ,6) the I'I1IlJ'1.l1I111II1 value of E9,,(n I S) with
respect to S, and by 111 (er, B) the 1I1iI1im11II1 Value Of Ea,(n l S) Wlth
respect to S, where S may be any sequential test of strength (cur, 6).‘
Then for any sequential test S of strength (oz, B) We have E000?» l S) §
n0(a, ,3) and E91(n | S) g n1(o:, B). A sequential test S of strength
(or, B) is an optimum test if E@u(n | S) = ??»o(~'1, I3) and E010?» ls) =
n1(cr, B). The existence of an optimum test has not been proved.
However, it will be shown in Section A.7 of the Appendix that for the
so-called sequential probability ratio test S0 of strength (oz, I6’), defined
in Chapter 3, the ratios

_ Em I S0) Em I so
<2") ma. B) and n1(a1 B)
can exceed 1 only by very small quantities which can be neglected for
practical purposes. Thus, for all practical purposes, the sequential
probability ratio test may be regarded as an optirnum test.“ In Sec-
tion A.7 it is also shown that the ratios (2 :4) converge to 1 as 91 ap-
proaches 611.

We shall define the efliciency of a sequential test S of strength (or, ,8)

by the ratio  % when H0 is true, and by  % when H1 is

true. Clearly, the efficiency of a sequential test under H0, as well as
under H1, lies always between O and 1. The greater the efficiency of
a sequential test of a given strength the more desirable it is. An opti-
mum test has the efficiency 1 under H0, as well as under H1. The se-
quential probability ratio test for testing HO against H1 is shown in
Section A.7 to have an efliciency, if not exactly, very nearly equal to 1
under H0 as well as under H1. As mentioned before, in Section A.7
it is shown that the efliciency of the sequential probability ratio test
approaches 1 under H0 as well as under H1, when 61 approaches 6,1.

2.4.2 Efiiciency of the Current Test Procedure, Viewed as a Par-
ticular Case of a Sequential Test

The current test procedure may be regarded as a particular case of
a sequential test. In fact, if N denotes the fixed number of observa-
tions used in the current procedure and if I-V,-v denotes the critical region,

" If the minimum value with respect. to S does not exist, we take the greatest
lower bound.

"The author conjectures that the sequential probability ratio test is exactly an
optimum test, but he did not succeed in proving this.
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i.e., WN is the totality of all those samples of size N for which the
hypothesis under test is rejected, then the current procedure may be
regarded as a sequential test defined as follows. For all positive inte-
gral values rn < N, the regions R,,,°, Rm‘ are the empty subsets of the
m-dixnensional sample space M',,.,, and R,,, = Mm. For m = N, RN‘ is
equal to IVN, RN0 is equal to the totality of all samples of size N not
contained in RN‘, and RN is the empty set. Thus, for the current test
procedure we have E@,,(n) = E@,(n) = N.

It will be shown later that the efficiency of the current test for test-
ing H11 against H1, based on the most powerful critical region, is rather
low. Frequently it is below %. In other words, an optimum sequen-
tial test can attain the same or and B as the current most powerful test
on the basis of an expected number of observations much smaller than
the fixed number of observations needed for the current most powerful
test.

In Chapter 3 a simple sequential test procedure for testing H0 against
H1 will be proposed. It is called the sequential probability ratio test,
which for practical purposes can be regarded as an optimum sequential
test. It will be seen that these sequential tests usually lead to average
savings of about 50 per cent in the number of trials as compared with
the current most powerful test.



Chapter 3. THE SEQUENTIAL PROBABILITY RATIO TEST
FOR rssrmo A SIMPLE HYPOTHESIS H0 AGAINST A SINGLE

ALTERNATIVE H1
3.1 Definition of the Sequential Probability Ratio Test

Let f(:c, 6) denote the distribution of the random variable at under
consideration.‘ Let H0 be the hypothesis that 6 = 60, and H1 the hy-
pothesis that 6 = 61. Thus, the distribution of :1: is given by f(:r, 60)
when H,1 is true, and by f(:r, 61) when H'1 is true. ls-Ve shall denote the
successive observations on :1: by :r1, 2:2, - - - , etc.

As mentioned before, we consider only two cases: (1) :1: admits a
probability density function; (2) ax has a discrete distribution. It is
our intention to cover both cases simultaneously. However, the diffi-
culty arises that some statements will have to be formulated slightly
differently, depending on whether :2: admits a density function or :1: has
a discrete distribution. This difference in formulation is caused mostly
by the fact that “probability density” in the continuous case is to be
replaced by “probability” in the discrete case. For the sake of brevity,
we shall occasionally use the word “probability” to mean “probability
density” in the continuous case, if this can be done without danger of
confusion. With this understanding it will frequently be possible to
cover the discrete, as well as the continuous, case with a single statement.

For any positive integral value m the probability that a sample
2:1, - - - , :r,., is obtained is given by

plm = J-($1: 61) ' ' ' .f(-Fm: 61)

when H1 is true, and by

pflm = f(x1: 90) ' ' ' .f(rrru 60)
when H0 is true.

The sequential probability ratio test for testing H11 against I11 is
defined as follows: Two positive constants A and B (B < A) are chosen,
At each stage of the experiment (at the mth trial for any integral
value m), the probability ratio p1,,,/pom is computed. If

(3:1) B<-2-)13<A
pfim

f(;r, 6) denotes the probability density function of 2:, if a density function exists.
If has a discrete'distrihut.ion, f(.:r, 6) denotes the probability that the random
variable under consideration takes the value :c.

37



38 THE SEQUENTIAL PROBABILITY RATIO TEST

the experiment is continued by taking an additional observation. If

(3=2) pi =; A
P011:

the process is terminated with the rejection of H0 (acceptance of H1).
If

(3 :3) 353- 2 B
P0:-n

the process is terrninated with the acceptance of HOP
The constants A and B are to be determined so that the test will

have the prescribed strength (ex, ,6). The relations among the quan-
tities oz, 18, A, and B will be discussed in the next section.

For purposes of practical computation, it is much more convenient
to ‘compute the logarithm of the ratio p1,,,/pom than the ratio pl,“/pom
itself. The reason for this is that log (plm/pom) can be written as the
sum of m terms, i.e.,

m 1 9 .773! 9(3:4) 1Og_pL _-= logfcvl 1). | . . . _|_ 10g';(_2;_Q.
Pom J-(QT: , 90) f(1?m, 90)

We shall denote the with term in this sum by z,;, i.e.,

(3 :5) 2,; = log 
J-(xis 60)

The test procedure is carried out as follows, the quantities 2:; (1I =
1, 2, - - -) being used: At each stage of the experirnent (at the mth trial
for each integral value of m), the cumulative sum 21 + - - - -l— zm is com-
puted. If

(3;6) logB<z1—l—---+z,,,<log/1

the experiment is continued by taking an additional observation. If
21 +---+z,,, 5 logA

the process is terminated with the rejection of Ho. If

Z1 +---+ zm 5.105-5'

the process is terminated with the acceptance of H0.
2 If for a particular sample pl", = pa... = 0, we shall define the value of the ratio

p1,.,,/-p;-_1,,, as 1. If for some sample (.1.-1, - - -, ;z:,,,) we have Plm > O but pom = 0
inequality (3:2) is considerr.-(.1 fulfilled and Hg is rejected.
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A few simple illustrations will help to make the procedure more con-
crete. Suppose that the random variable zi: can take only two values,
0 and 1. We shall denote the probability that as = 1 by p, the value
of which is assumed to be unknown. Thus, p is the unknown param-
eter of the distribution. The distribution of ac is given by the function
j'(:c, go) which is defined only for two values of zr, namely x = O and
.1: = 1. f(1, p) = p and f(0, p) = 1 —— p. Let H0 be the hypothesis
that p = pg and H1 the hypothesis that p = pl (P1 ¢ P0). Then

2; = log fail pl) log E if 1?; = 1
f(-ti: P0) PO

1m=10g_-Ziiix,-=0
1-390

Hence,
_ * pl 1 "' P1(3-7) 21+---+Zm=m log—+(m—m*)log——-—

P0 1 — Po
where m* denotes the number of ones in the sequence of the first in
observations. Vie accept H0 if

P 1 -m* log —i + (m -— m*) log————??i g log B
P0 1 "" P0

We reject Hg (accept H1) if

1, pl it 1 —' P1'm10s— + (m — m)10g-——— g log/1
pl) 1 — pg

Vile continue the experinient by taking an additional observation if

P 1l0gB <m*log-1‘-+(m -m*) log—-——2i < l0gA
P0 1 —p0

The expression (3:7) can, of course, be obtained cumulatively. If an
observation is a one, the constant log (ID;/pg) is added to the preceding
value of (3:7) to obtain the new value. If the observation is a zero,
tllfi C011-St.£l.I1t lOg (I -— -—- pg) i5 3_ddcd__

abijtfltfiicmid exatinple, consider the problem of testing a hypothesis
tributed m‘n(<i::1oVaa_no1'ma‘ distribution. Let :1: be a normally dis-

riable with unknown mean 6' and unit variance
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Let Ho be the hypothesis that B = B0 and H1 the hypothesis that
6 = 61. Then

f(2-;, Q0) = m1__ 6- $'§(1=-Bo):
\/Er

and
f(3;, 91) = __]‘_... 6- %(==—6i)‘

‘\/2"rr

f(xi: 6 ) 1

= 1Ogf(a:s8:>) " “*1 “ 6"’-”* J" 5 “"2 -' "12)
Hence,

and
Pim m m

If l0g;;n"=31+"'+zm=(91-"3g)i§_=1£Ui"l";(9()2-'-912)

m m
Q91‘ "" 90) E :55; + -5 (902 -' 912) 2 10g A

i

the process is terminated with the rejection of Ho. If

m m
(91 —' 90) 2 :9-"Ii: + E (902 —' 912) é 1053

i

the process is terminated with the acceptance of H0. If
m m

log B < (61 - 60) E1 £13; + E (602 -" 912) < 10g A

the experiment is continued by taking an additional observation.
Again, log (p1,,.,,/pom) can be computed cumulatively if after each ob-
servation :i:,; we compute (B1 — 60):i:,; + %(902 -— 612) and add it to the
preceding value of log (plm/pom).

3.2 Fundamental Relations among the Quantities oi, B, A, and B
In this section we shall derive certain inequalities satisfied by the

quantities oz, ,8, A, and B which will provide the basis for determining
the constants A and B in the sequential probability ratio test.

We shall say a sample (:21, - - -, x,.,) is of type O if

B<P1m f<M>'~~f§M1<......-.,...,.._.
Pflm j.(-$1: 60) ' ' ' f(xm: 60)

and
pin

p011
EB
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Similarly, we shall say a sample ($1, - - '1 In) i5 of type 1 if

B < P11?! -—- - ' 'f(-rrrl! < A for ?n Z 1, . - 1., n 1 1

P0111 f(I1, 90) ' * ' f(Ia, 90)
and

111;‘.
POH

Thus, a sample of type 0 leads to the acceptance of H11 and a sample
of type 1 leads to the acceptance of H1 (rejection of H11).

Clearly, for any given sample (x1, - - , :z:,,) of type 1 the probability
of obtaining such a sample is at least A times as large under hypothesis
H1 as under hypothesis H11. Thus, the probability measure of the
totality of all samples of type 1 is also at least A times as large under
H1 as under H11. The probability measure of the totality of all samples
of type 1 is the same as the probability that the sequential process will
terminate with the acceptance of H1 (rejection of H11). But the latter
probability is equal to oz when H11 is true and to 1 — B when H1 is
true.“ Thus, we obtain the inequality

(3:8) 1 — ,6 Q Aci:

This inequality can be written as
1 _

(3:9) A g ———E
CZ

£11

Thus, (1 — 16)/ix is an upper limit for A.
A lower limit for B can be derived in a similar way. In fact, for

any given sample (:r1, - - -, ;i:,,) of type 0 the probability of obtaining
such a sample under H1 is at most B times as large as the probability
of obtaining such a sample when H11 is true. Thus, also the probability
of accepting H11 is at most B times as large when H1 is true as when
H1-1 is true. Since the probability of accepting H11 is 1 -—- OI when I111
is true and B when H1 is true, we obtain the inequality

(3:10) B g (1 — a)B

This inequality can be written as

(3:11) B 2 #8-—
_ 1 — or

Thus, 8/(1 -— a) is a lower liinit for B.

* The probability that H11 will be accepted when H1 is true is by definition equal
l»*_0 I3. Section A.1 of the Appendix shows that the probability is one that the sequen-
tial process will eventually terminate. Thus, the probability that H0 will be rejected
when H1 is true must be equal to l — B.
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Inequalities (3:8) and (3:10) can also be written as
or 1

3:12 ——-— -< > 1_fisA
and

(3:13) i—— § B1 — or

These inequalities are of considerable value in practical applications,
since they furnish upper limits for O! and B for given values of A and
B. For example, it follows from these inequalities that

1

and
(3:15) ,6 é B

It may be of interest to represent graphically the totality of all
pairs (a, B) which satisfy the inequalities (3:12) and (3:13). Any pair

B
L1

1

_ _._. _,,-
=-:-,,___ ____ - ---14 .- 1 .._-L- 3-qr

2

Fio. 9

(Of, B) can be represented by a point in the plane with abscissa oz ‘and
ordinate 16. Consider the straight lines L1 and L2 in the plane given
by the equations

(3:16) 0'-A = 1 -" 5

and

(3117) B = B(1 — Q)
respectively. The line L1 intersects the abscissa axis at oz = (1/A)
and the ordinate axis at B = 1. Similarly, the line L2 intersects the
abscissa axis at or = 1 and the ordinate axis at B = B. The reglon
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consisting of all points (oz, 18) which satisfy the inequalities (3:12) and
(3:13) is the interior and the boundary of the quadrilateral determined
by the lines L1, L2, and the coordinate axes. This region is shown by
the shaded area in Fig. 9. J

The inequalities (3:12) and (3:13) have been derived under the as-
sumption that the successive observations :i:1, xg, - - -, etc., are inde-
pendent observations on zr. The assumption of the independence of
the observations has been used in showing that the probability is one
that the sequential process will eventually terminate.‘ The rest of the
derivation, however, remains valid also when the successive observa-
tions are dependent, i.e., when the conditional distribution of the ith
observation I1‘ is affected by the outcome of the preceding observations
1:1, - - - , :r,;__.1. If the successive observations are not independent, the
probability that a sample (.i:1, - - -, x,,,) will be obtained, i.e., the joint
distribution of (:i:1, ~ - -, 2:11,), is no longer given by the product
f(;i:1, 6)f(.1?2, B) - ~ -f(:i:,,,, 6), but by a more general function p,,.,(:r1, - - - , mm).
Thus, in dealing with dependent observations, the null hypoth-
esis H11 will be the statement that the distribution of the sample
(:21, - - -, :r,,,) is given by some function p11,,,(x1, - - -, :r,,,), and the alter-
native hypothesis H1 will be the statement that this distribution is
given by some other function p1,,,(:c1, - - -, :r:,,,). We can construct the
sequential probability ratio test for testing H1, against H1 in the same
way as for independent observations. That is to say, we select two
constants A and B (B < A) and continue taking observations as long

as B < p""@" xm) < A. The first time that the probability
lD0m(x1i ' ' '1 xm)

ratio p1m/pom ,2 A or g B, we terminate the sequential process. H11
is accepted if p1,,,/p11,.,, g B and H1 is accepted if p11,,/pom g A. The
fundamental inequalities (3:12) and (3:13) remain valid for such a test
procedure in spite of the dependence of the successive observations,
provided that the probability is one that the procedure will eventually
terminate. It can be shown that for a very general class of joint dis-
tributions p11,,,(a:1, - - -, :1:,,,) and p1,.,.,(.r1, - - -, :::,,.,) the probability is one
that the procedure will eventually terminate. Thus, the validity of
the inequalities (3:12) and (3:13) is by no means restricted to the case
of independent observations. They are generally valid also for de-
pendent observations.

A simple case of dependent observations arises when we sample from
a finite population. Suppose, for example, that a lot consisting of N
units of a manufactured product is submitted for acceptance inspection.

‘ See Section A.1 in the Appendix,
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Let D be the number of defectives in the lot, which is assumed to be
unknown. To each defective unit we assign the value 1 and to each
non-defective unit the value O. Then the distribution of a. single ob-
servation :1: is given by f(:r, p) where f(1, p) = p, f(0, p) --= 1 — p, and
p = D/N. The successive observations are, however, not independ-
ent. For example, if x1 = 1, the distribution of x2 is given by

D — 1 . . . . . . .f ($2, , while if 1:1 = 0, the distribution of x2 1S given by

D
f ($2 . If we denote by d,; the number of defectives (the num-

ber of ones) in the set of the first 21 observations 1:1, - - -, at,-, the joint
distribution of (:r:1, - - -, :c,,,) is given by 5

(3:18)~< ~‘1>f<x D-*1>f< P-1'2> »<-isp’"_f I"1v 22v-1 x3’N-2 ""N-m+1
Suppose that the hypothesis Hf] is that D is equal to some specified
value D0, and I11 is the hypothesis that D is equal to some value D1
(D1 > D0). Then the distribution of (.111, - - -, ;r,,,) under HQ is given by

3'19 _ Q Do) C Do — (£1) _ -{(1}: Do — dm-1)
(' ) pUm'-f 3:1:N f $2: "11N__Tn+l

and the distribution under I11 by

D1) ( D1 _ C111) D1 m dm-1)
‘ 2 ‘ -i ‘ -—mm—-“"""‘ ' ‘ ' Im, ‘ I(3 P1,” j-(11.1, N I 112, N __ 1 N _ Tn + 1

The sequential probability ratio test for testing H0 against H1 is based
on the ratio pl",/p@,,,. Inspection continues as long as B < pm/pom
< A. The lot is accepted if plm/pom g B and the lot is rejected if
pl,"/pq,,, 1‘; A. The fundamental inequalities (3:12) and (3:13) remain
valid for this test procedure in spite of the dependence of the obser-
vations.

3.3 Determination of the Constants A and B in Practice
Suppose that we wish to have a test procedure of strength (cz, B).

Then our problem is to determine the constants A and B such that
the resulting test will have the desired strength (or, B). Let us denote
by ../1(o:, 6) and B(o:, B) the values of A and B, respectively, for which
the test has the required strength (or, B). The exact determination of

5 This formula is valid as long as d,,.__1 5 D.
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the values A(cr, B) and B(a, B) is usually very laborious.“ ' However,
the fundamental inequalities derived 111 the precedmg section permit
an approximate determination of A and B which will suffice for most
practical purposes. From (3:9) and (3:11) it follows that

(3:21) AUX, B) 5 ‘Li-E
CI

and

(3 =22) B(a, B) 2 13
1-—o:

We shall propose to put A = (1 — 13)/cx = a(o:, B), say, and B =
,6/(1 — a) == b(o:, 6), say, and we shall investigate the consequences
of this determination of A and B. From (3:21) and (3:22) it follows
that the value (1(o:, B) chosen for A is greater than or equal to the
exact value A(o:, B), and the value b(o:, B) chosen for B is less than or
equal to the exact value B(a, B). Then, letting A = a.(<:.r, 8) instead
of A(a, 6) and B = b(a, ,8) instead of B(a, B) will, in general, change
the probabilities of errors of the first and second kinds. If A were
put equal to a value greater than A(o:, B), and if B were put equal
to B(a:, B), then the resulting probability of an error of the first kind
would be less than cx, but the probability of an error of the second kind
would be slightly larger than ,6. Similarly, if we were to use the exact
value A(a, B) for A, but a value B below the exact value B(a, 6), the
resulting probability of an error of the second kind would be less than
6, and the probability of an error of the first kind would be slightly
greater than or. Thus, if a value A is used which is higher than the
exact value A (or, B) and a value B is used which is lower than the
exact value B(o:, ,8), it is not clear what the resulting effect on the
probabilities of errors of the first and second kinds will be. Let us
denote by oz’ and B’ the resulting probabilities of errors of the first and
second kinds when A = a(a, 6) and B = b(o:, ,8). From (3:12) and
(3:13) it follows that

(3:23) ta-—— .5 1 we A -2 a-
1-—fi' a(a,[3) 1-13

and

(3124) ";6—-— :5 Mar, :3) = L
1 -— cr' 1 -— or

" The results in Section AA of the Appendix can be used for deriving arbitrarily
close approximations to the values A(-:1, 5) and B(a, B).
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From these inequalities it follows that

(312.5) cg’ g -5-1 — B

__€__.
(1-Q)

Multiplying (3:23) by (1 -— B)(1 — B’) and (3 :24) by (1 — a)(1 -— oz’)
and adding the two resulting inequalities, we obtain

(3127) ¢~='+B'_$or+5
Inequalities (3:25), (3 :26), and f3 :27) give valuable upper limits for

or’ and ,6’. The values or and B will usually be small i_n practical appli-
cations. l\'Iost frequently they will lie in the range from .01 to .05.
Thus, or/(1 — B) and B/(1 -— CI) will be very nearly equal to or and B,
respectively. It follows then from (3:25) and (3:26) that the amount
by which oi’ may exceed a, or B’ may exceed B is very small and can
be neglected for all practical purposes. Ivloreover, (3:27) shows that
at least one of the inequalities or’ 5 or and B’ 5 B must hold exactly.
In other words, by using o(a, 8) and b(o:, B) instead of A(cx, B) and
B(cx, B), respectively, at most one of the probabilities or and ,6 may be
increased.

Thus, we may conclude: The use of a(o:, B) and l)(oz, B) instread of
A(o:, B) and B(a, B), respectively, cannot result in any appreciable in-
crease in the value of either or or 6. In other words, for all practical pur-
poses the test corresponding to A = a(a, B) and B = b(o:, ,6) provides at
least the some protection against wrong decisions as the test corresponding
£0 A =1 /l(or,B) and B = B(o:,

Our discussion so far leaves still open the possibility that the use
of a(o:, 5) and b(a:, B) instead of A(a, /3) and B(a, ,8), respectively, may
result in an appreciable decrease of oz, or B, or both. If this were so,
it would mean only that the test corresponding to A = a(a, B) and
B = b(a, ,8) would provide a better protection against wrong decisions
than the test corresponding to A = A(o:, ,8) and B =- .B(o-:, B). Thus,
the only disadvantage that may arise from using o,(a, ,6) and b(o:, B)
instead of A(o:, B) and B(o:, ,8), respectively, is that it may result in
an appreciable increase in the number of observations required by the
test. In fact, since o(a, ,6’) Ii; A(o:, B) and b(o:, B) g B(cr, ,6’), the num-
ber of observations required by the test corresponding to A = o(o:, B)
and B = b(a, B) can never be smaller than the number of observations
required by the test corresponding to A = A(o:, 8) and B = B(a:, I3)-
Thus, if the increase in the necessary number of observations caused

and

(3 :26) 5' g
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by the use of a(a, B) and b(a, B) instead of A(a, B) and B(ci-:, B) can
be shown to be only slight and of no practical consequence, the test
corresponding to A = a(a, B) and B = b(cr, B) serves the purpose just
as well, and the determination of the exact values A (or, (3) and B(o:, B)
is of little interest.

We shall now indicate the reasons why the increase in the necessary
number of observations caused by the use of o(a, B) and b(o:, ,6) instead
of the exact values A(.-1, ,3) and B(o:, B) will generally be only slight.’
The reason that (3:21) and (3:22) are inequalities instead of equalities
is that the sequential process may terminate with plm/pom > A or
P1.../pom < B. If at the final stage p1,,,/pom, were exactly equal to A
or B, then A(oz, B) and B(oz, B) would be exactly equal to (1 —- B)/cu
and ,8/ (1 - oz), respectively. On the other hand, a possible excess of
pm/pom over the boundaries A and B at the termination of the test
procedure is caused only by the discontinuity of the number of obser-
vations, i.e., by the fact that the number of observations can take only
integral values. Thus, if fractional observations were possible, i.e., if
the number m of observations were a continuous variable, pl",/pg...
would also be a continuous function of m and consequently A(a, B)
and B(o:, ,8) would be exactly equal to £I.(-or, B) and b(o:, B), respectively.
That the increase in the necessary number of trials caused by the use
of a(o:, B) and b(a, B) will generally be slight is strongly indicated by
the fact that the discrepancy between A(o:, ,8) and a(o:, ,6), as well as
that between B(o:, ,6) and b(a, B), arises only from the discontinuity
of the number of observations. In Section 3.9 we give upper estimates
of the increase in the expected number of trials caused by the use of
~‘1(¢¥, .3) and b(o:, B). Numerical computations given in that section
show that the increase is slight. It may be added that the nearer the
distribution f(.:i:, 91) is to the distribution j'(:r.:, 90) the smaller will be this
increase in the expected number of trials. The reason for this is that
the nearer f(:r,61) is to f(:c, 60), the smaller the expected excess of
Plm/Pom over the boundaries A and B and, therefore, also the smaller
the discrepancy between A(a, 6) and a(a, B) as well as that between
B(QI, 5) and b(o:, 15). If f(:z:, 61) approaches f(:r, 90) the exact values
Afar, 5) and B(a, B) converge to a(a, B) and b(a, ,6), respectively.

Hence, if experimentation is not excessively costly, for all practical
purposes the following procedure may be adopted: If o. sequential test
is desired such that the probability of on error of the first kind does not
esccced or, and the probability of on error of the second kind docs not exceed
15» Fm! = (1 —— B)/or and B = B/(1 -—- Of) and carry out the sequential
P?'0b-‘lbiliiy ratio test as clqfincd by the inequalities (3:1), (3:2), and (3:3).

T - - .For a more complete CllSCLlSSl0D see Section 3.9.
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The fact that for practical purposes we may put A = a(a, ,6) and
B = b(a, ,6) brings out a surprising feature of the sequential test as
compared with current tests. Whereas current tests cannot be carried
out without finding the probability distribution of the statistic on
which the test is based, there are no distribution problems in carrying
out a sequential test. In fact, a(a, B) and b(a, ,8) depend on or and B
only, and the ratio pl.../pg", can be calculated from the data of the
problem without solving any distribution problems. Distribution
problems arise in connection with the sequential process only if it is
desired to find the probability distribution of the number of trials
necessary for reaching a final decision. But this is of secondary im-
portance as long as we know that the sequential test on the average
leads to a saving in the number of observations.

3.4 The OC Function of the Sequential Probability Ratio Test B
Since the sequential probability ratio test for testing the hypothesis

H0 against the hypothesis H1 will be applied to problems when the
parameter 6 can take values as 60 and 5'5 91, it is of interest to derive
the whole operating characteristic function L(6) of the test. For con-
venience, we shall treat the case of a single unknown parameter 6 in
this section and in Section 3.5. The results can be extended without
difficulty to any number of parameters. In Section 2.2.1, L(6) has
been defined as the probability that the sequential process will termi-
nate with the acceptance of H0 when 6 is the true value of the param-
eter. In this section we shall indicate the derivation of an approxi-
mation formula for L(6), neglecting the excess of plm/pom over the
boundaries A and B at the termination of the process. A rigorous
derivation (using a different method) together with upper and lower
limits for the OC function will be given in Section A.2.3 of the Appendix.

Consider the expression
28 [1.I‘£1_)]m’

(3 l ) J-(ma 60)

For each value 6, the value of h(6) is determined so that 72(6) re O
and the expected value of the expression (3:28) is equal to 1, i.e.,

+w j(xI 91) h(8)
(32290) L” f(I~‘-T, 9) div = 1

3 As mentioned in the Introduction, the operating characteristic function for the
special case of ii. binomial distribution was found by Milton Friedman and George
W. Brown independently of each other, and slightly earlier by C. M. Stoekman in
England. The derivation of the OC function in the general case is due to the author
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if f(:::, 6) is the probability density function, or
me)

(3:29b) Z f(=v, 9) = 1
3’ f(:-E: 60)

if 2: has a discrete distribution (the summation is taken over all pos-
sible values of x). It is shown in Section A.2.1 of the Appendix that
under some slight restriction on the nature of the distribution function
f(:r, 6), there exists exactly one value 11(6) ¢ 0 such that (3 :29) is fulfilled.

Hence, for any given value 6, the function of x given by
11(0)

(3130) f*(r, 9) v lint’ 61)] f($, 9)
_ _ _ _ _ f(~r: B0)
1s a distribution functlon.

Since h(6) ;é 0, there are two possibilities: h(6) > 0 or 11(6) < O. VVe
shall first consider the case when 71(6) > 0.

Let H denote the hypothesis that f(:r, 6) is the true distribution of
zc and H* the hypothesis that f*(a:, 6) is the true distribution of :0.
Consider the sequential probability ratio test S* for testing H against
H* defined as follows: Continue taking observations as long as

(3:31) Bhw) < f*(“i" '9) It ' ' -f:*(“f”" 6? < Am)
-f(-I11. ' ' f(-rm:

Accept the hypothesis H if

(3:32) f*(x1’ 6) '_ ' ' fi#(fc’"?_B) 5 Ema)
f(I1, 9) --'f(Im, 9)

Reject the hypothesis H (accept H*) if

(3:33) f*(""* 6) _"'f*(“’""_ 9) 2Ah(8)re: 6) ---f(r 6) '"Since 1 ms

(3:34) fi.__.§Z‘.'l = [f("’=' 61)]m)
-f(x! .f(J-:1 60)

and since h(6) I> O, the inequalities (3:31), (3:32), and (3:33) are
equivalent to

B < .f(I1: 61) "'f@- 31)
f(-191160)

(3:36) f(-T-'11__?1)

f(xrn: 60)

f(Im, 91)
f(l?1, 90)

.1-(II: 61)

and

(3 :37)

f(Im1 90')

J-(Irn: 61)

<

5..

J-(I1: 60) .f(-rift: 60)

_‘;>
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But these inequalities are identical with those defining the sequential
probability ratio test S for testing H0 against H1, when the constants
A and B are used. Thus, if the test S* leads to the acceptance of H,
the test S leads to the acceptance of H0, and if S"“ leads to the rejection
of H, then S also leads to the rejection of HQ. From this, it follows
that the probability of accepting HO when 6 is true, i.e., the value of
L(6), is the same as the probability that the test S* will lead to the
acceptance of H when f(a:, 6) is the true distribution of :2.

To calculate the latter probability we shall apply the formulas (3:9)
and (3:11) to the test procedure S*. Denote by cu’ the probability that
S* will lead to the rejection of H when H is true, and by B’ the prob-
ability that S* leads to the acceptance of H when H* is true. Apply-
ing the forrnulas (3:9) and (3:11) to the test procedure S* we obtain

(3 =33) A’*<9> g i-",—'-3-
CI

and
Bf

1-0:’(3 :39) BM” 2

W'hen the excess over the boundaries at the termination of the proc-
ess is neglected, the equality sign holds in (3:38) and (3:39), that 13,9

(3;-40) AW" ~ 1-775’oz

and BI

1 or

From (3:40) and (3 :41) we obtain
1 _ 1313(8)

(3142) “I "'"' Amaa _iB:=<e>

Since Q’ == 1 -— L(6), EVE get
11h(6) _ 1

(3143) L69) N Ame) ;_ Bus;

The case 31(6) -< O can be treated in a similar way. Vile obtain the
same result, i.e., the approximation formula (3 :43) remains valid also
when 11(6) <1 O.

9 The symbol -..-~ indicates an approximate equality.
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It is interesting to note that h(6@) = 1 and h(61) = -1. This fol-
lows easily from (3 :29b).

As an illustration, we shall determine L(6) for the binomial case when
x can take only the values O and 1 and the distribution f(;i:, 6) is given
as follows:f(1, 6) = 6 and f(0, 6) = 1 — 6. Then equation (3 :29b) can
be written as

91 me) 1 _ 6 me)
1(3.44) 0(a) + (1 - 0) (Eta) -. 1

To plot the OC function, it is not necessary to solve equation (3 '44)
with respect to h(6). We may consider h = h(6) a parameter and solve
(3:44) with respect to 6. Then we obtain

(‘ 1 9‘)1 _ _.___.__
1 - so

(”‘)h (1 1 6‘)60 1 — 60

If we let A == (1 — )3)/or and B -= ,6/(1 —— C2), (3:43) can be written as

i -- ,3 9(3-> -1CI

(1 “ 6) ( 6 )i0: 1 — 0:

%;O;;1.ny arbitrarily chosen value h, the point [6, L(6)], computed from
) and (3 .46), will be a point on the OC function. The OC func-

EOIL be drawn by plotting a sufficiently large number of points
J C C . ‘t_ orresponding to vaiious values of h.
A typical OC function for the binomial case is shown in Fig. 10.

(3 :45) 6 ==

(3 :46) L(9) .--...

L16)

1

0 1“ "T '“ "9 "5
Fio.10
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We shall now compute L(6) when a: is norrnally distributed with un-

known mean 6 and known variance 62. In this case we have

1 — -L (:i:—6)9
6 =_ m_ 263f(=‘1=. ) ‘/5? 9

The quantity h(6) is the non-zero root of the equation

1- -( -3 >= M9)
. +m 1 _g%=<=_e)= e 2”’ I l(3.47) —-6 , 3.; = 1

— an V 2T|'O' 8- 5;-5 (ii?-90):

Evaluating the above integral and solving the equation with respect
to h(6), we obtain

0 0 -29(3:48) h(9)  “L ° --91 '-' 90

An approximation to the OC function is obtained from (3 :43) by sub-

3.5 The ASN Function of a Sequential Probability Ratio Test

Let n denote the number of observations required by the test and
let E5-(n) be the expected value of n when 6 is the true value of the
parameter. This expected value E@(n) is a function of 6 which we have
called the average sample number function, or briefly the ASN func-
tion. In this section we shall outline the derivation of an approxima-
tion formula for the ASN function, neglecting the excess of pl”,/pg”,
over the boundaries A and B at the termination of the sequential
process. A more complete discussion together with upper and lower
limits for the ASN function is given in Section A.3 of the Appendix.

Let N be an integer sufficiently large to allow the probability that
n g N to be neglected.“ Thus we shall assume that n < N. Then
we can write

(3:49) Z1 -t **'+ Ziv = (Bi -I--H -I-Zn) + (Zn-1-1 -I-*" -I-Ziv)

where
f(I 91)

(3 :50) 2... = log —-—3———
j.('-Ea: 60)

1° It is shown in Section i-1.3.1 that no error is involved in assuming this, since we
pass to the limit when N approaches w.
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Taking expected values on both sides of (3:49), we obtain

(3:51) =E(z1+ "‘+-Zn) +E(zn+1 +"'+zN)

where '
r ,3(3=52) Z = logi-—1Z
f(x.1 60)

Since, for or > n, the random variable 2,, is distributed independently
of n, the expected value of z,,+1 + - - - + 2N is equal to the expected
value of (N — n) times the expected value of a single z, i.e.,

(3:53) E(z,,+1 —l- - - -—|— By) = E'(N — n)E(z) = NE(z) — E(n)E(z).

From (3:51) and (3:53) it follows that

(3154) E(Z1 +- ~- +2») — E(n)E(Z) = 0
Hence

(3:55) E(n) . E(z‘ +' ' ' +3")
E

if E(z) ¢ O. (Z)
If 6 is the true value of the parameter, then E(n.) = E9(n) by the

definition of the symbol E9 (n). We shall denote by E5 (z) the expected
value E(z) of z when 6 is the true value of the parameter. If the excess
of the probability ratio p1,,,/pom over the boundaries A and B at the
termination of the sequential process is neglected, the random variable
(Z1 + ' ' ' + Zn) can take only the values log A and log B with the
Probabilities 1 — L(6) and L(6), respectively. Hence

(3=59) E(-=1 +- - -+ 2,.) ~ L(6) logB + [1 - 13(3)] logA
Fr9111 (3155) and (3 :56) we obtain the approximation formula

(3:57) E,(,.,) ...,, L(6) 1°93 + HQ“ L(6)] 199 A
519(3)

In the preceding section we have computed explicitly the formula
£49) for the binomial and normal case. Thus, to obtain the explicit
_°rmula' for E6("), We need only compute E@(z). In the binomial case,
Lev when .1-(17, 9) = 6 for :1: = l and f(;r, 6) = 1 — 6 for :1: = O, we have

6 Z E” logftr, 60> 6l°gr(1.@0> + (1 6) 10gf(0, 60*
0 1-0=910g§+ <1 -e) log?---61

O '_' I‘)
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In the normal case, i.e., when
1 _...i_ __ 2

fan, 6) = is 2,2 (a: 6)
‘V 21m’

f( . 9 ) 1
(3:59) z = logfli 9,3) _ 202 [2(61 — 6q):i: + 602 — 612]

we have

Hence,
1

(3 E6(Z) = -éiz [2(61 '— 6g)6 + 602 — 912]
0'

3.6 Saving in the Number of Observations Efiected by the Use of
the Sequential Probability Ratio Test instead of the Current
Test Procedure

In this section we shall assume that H0 is the hypothesis that the
random variable :1: under consideration is normally distributed with
mean 60 and variance unity, while H1 is the hypothesis that :1: is nor-
mally distributed with mean 61 and variance unity. VVe may assume
without loss of generality that 60 < 61. We shall compare the ex-
pected number of observations required by the sequential probability
ratio test of strength (or, B) for testing HO against H1 with the fixed
number of observations needed for the current most powerful test to
attain the same strength (oi, )6).

We shall denote by ??.(o:, B) the fixed number of observations re-
quired by the current test to attain the strength (O3, ,6). The current
most powerful test procedure for testing H0 against H1 is carried out
as follows. The hypothesis HQ is accepted if the arithmetic mean :3 of
the observations 1:1, - - -, a::,, (the number n of observations is deter-
mined in advance) is less than or equal to a preassigned constant d,
and H0 is rejected (H1 is accepted) if i‘ exceeds d. The constant d
and the fixed number n of observations are to be determined so that
the test will have the required strength (ct, ,6). For any given n and d
the corresponding strength of the test can be determined as follows-
Since :2 g d is equivalent to the inequality -\/17i(i': -— 60) g -\/§(d —- 60),
the probability that :t g d is the same as the probability that
flfii: — 60) g \/;.(d — 60). The random variable jg = \/;.(:i'.i — 90)
is normally distributed with mean O and variance unity if H0 is true.
Thus, the probability that is g d when H0 is true, i.e., the probability
that we shall accept H0 when I10 is true, is equal to the probability
that y g \/?.(d —— 60). We shall denote by G'(t) the probability that
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a normally distributed random variable with mean 0 and variance
unity will take a value less than t, i.e.,

21 ‘ - §. = -i- d(3 .31) G6) \/Zr L we w
Then the probability that we shall accept H0 when H0 is true is equal
to G[fl(d -— 60)]. Since the probability that we shall accept H0 when
H0 is true is 1 — 0: by definition, we have

(3:62) G[\/7-¢(d -— 90)] = 1 - -I
To determine the value of B corresponding to given n and d, we shall

write the inequality 3?: g d in the equivalent form \/;i(:E — 61) g
\/?,(d — 61). By definition, B is the probability that we shall accept
H0 when H1 is true. But the latter probability is the same as the
probability that 5: § d, i.e., that &(:E — 61) § \/ii(d — 61), when H1
is true. But when H1 is true this probability is equal to G[\/'?z(d - 61)].
Thus, we have

(3133) G[\/5013 -— 91)] = B
Hence, to obtain a test of the required strength (or, B), we have to

choose the quantities n and d so that equations (3:62) and (3:63) are
fulfilled. Let A0 be the value for which G()\0) = 1 —- cr and let A1 be
the value for which G'(A1) = )3. The values A0 and A1 can be obtained
from a table of the normal distribution. Then equations (3:62) and
(3:63) can be written as

(3364) ‘\/;(d '" 90) = 30
and
(3155) fioi - 3,) = A,
Subtracting equation (3 :64) from equation (3:65) we obtain

(3566) \/I-!(9c — 91) = M '-' 7\o
Thus,

(31 —' 7'-(1)2(3267) = or, ) -@ -
n M B (6.. —~ 602

If this expression is not an integer, ??.(o:, B) is the smallest integer in
excess.

‘We shall now determine the expected number of observations re-
quired by the sequential probability ratio test of strength (or, )6) and
we. shall compare it with the fixed number n(o:, B) of observations re-
quired by the current test as given in formula (3:67). In the sequen-
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tial test we shall use the approximation formulas for A and B, i.e.,
we shall let A and B equal (1 — B)/0: and ,6/(1 -—- ax), respectively, in-
stead of the exact values A(a, ,6) and B(a, B), respectively. It has
been shown in Section 3.2 that (1 — ,6)/or 2 A(a:, B) and B/(1 _ a)
g B(cr, 5)- Thus, by letting A = (1 — B)/a and B = -3/(1 — or) in-
stead of using the exact values A(cr, B) and B(a, 46), we can only in-
crease the number of observations required by the sequential test.
Consequently, the saving effected by the sequential test of strength
(at, 13) as compared with the current test cannot be smaller than the
saving which results from the sequential test obtained by using the
approximation formulas A = (1 — B)/or and B = B/(1 -—- :1).

We shall assume that I 61 — 60 I is small so that the approximation
formula (3:57) for the expected value of n can be used. Since L090)
= 1 —- or and L(61) = B, we obtain from (3:57)

— A
(3 :68) E1(n) ~ log B + (1 B) his

131(3)
and

(1 -— or) logB —|— a:lOgA.
(3:69) Eq(n.) E — ~ E0(z) e

where E,(-n) denotes the expected value of 1; when Hi is true (i = O, 1).
As can easily be verified,

(3;':'0) 511(2) = %(9c» — 902
and

(3:71) Eo(-B) = ""'%(9o - 902

From (3:67), (3:68), (3:69), (3:70), and (3:71) we obtain

E101). - g - _. ~ ;- Q -A 2 [Bl B + (1 B) log Al
(3.72) n(oc, ,3) (R1 — 7\u)2 g
and

E0 2
(3:73) fl(a’ sis) (A1 __)\0)2l (1 — cx) log B — or log A]

‘ ' t, t,’ t t that the ratios El (n) and E0(n) are inde. . no e —-—— -i—-—' -It IS in eres mg o ,n(a, B) “(OH B)

pendent of the parameter values 60 and 6'1. The average saving of theE (R)
sequential test as compared with the current test is 100 [1 — ———-——(16)]n or

per cent if H1 is true, and 100 [1 -—- -—i1-2-1 per cent if H0 is true."(en B)
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EIn Table 1, panel A shows the value of 100 [1 — , and panel B
n oz,

E0("»)shows the value of 100 [1 — ———————] , for several values of or and B.
1'1(-as B)

Because of the symmetry of the normal distribution, panel B is ob-
tained from panel A simply by interchanging or and B.

TABLE 1

AVERAGE PERCENTAGE Savrrw IN SIZE or SAMPLE WITH SEQUENTIAL ANALYSIS,
as Comranen wrrx-1 CURRENT Mosr Powsnror. TEST FOR TESTING MEAN

or A NORMALLY DISTRIBUTED VARIATE

A. "When alternative hypothesis is true:

\~= "1
\ .01 | .02 , .03 i .04 .05

B y
. 01 5 as 60 | 6 1 62 l 63
. 02 l 54 l 56 57 58 l 59
.03 51 53 l 54 55  55
.04 i 49 ‘ 50 51 I 52 53
.05 47 ‘ 49 50 ‘ 50 I 51

h I!

1 __ __ __ — ' V . _ _

B. ‘lVhen null hypothesis is true:

\4 »\\\\ .01 | .02 .03 .04 3 .05Bl 4i .
. 01 4 ss 54 l 51 I 49 4?
. 02 60 56 53 ‘ so | 49
. 03 I 61 ‘ 57 54 l 51 50

5s , 55 so
I 59 as

I

.04 62 52

.05 ‘ 63 3 53 , 51

As the table shows, for the range of a and B from .01 to .05 (the
range most frequently employed), the sequential test results in an aver-
age sav1ng of at least 47 per cent in the necessary number of observa-
tlons as compared ‘with the current test. The true saving is slightly
hlgher than shown 1n the table, since E,~(n) (i = 0, 1) calculated under
the condltlon that A = (1 *— B)/or and B = B/(1 — oz) is greater than
E,(n) calculated under the condition that A = A(o:, B) and B = B(a, B).
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3.7 Lower Limit of the Probability That the Sequential Test Will
Terminate with a Number of Trials Less Than or Equal to a
Given Number

In Section A.6 an approximate formula 11 for the probability distri-
bution of the number of observations required by the sequential test

is derived in the case in which z -= log‘-flfilg is normally distributed.
j_(-$1 90)

It is pointed out that the same distribution function of n can be
regarded as an approxirnation to the exact distribution even when z
is not normally distributed, provided that the absolute value of E(z)
and the standard deviation of z are sufficiently small as compared with
log A and log B. Although the distribution of n given in Section A.6
could be used to determine the probability that n g no for any fixed
integer no, we shall prefer to derive a lower limit for this probability
by a different method for the following reasons. (1) The computation
of the lower limit given in this section is very simple, whereas the use
of the distribution function given in Section A.6 would require labo-
rious computations, since that distribution function has not yet been
tabulated. (2) If no is fairly large and if or and B are small, as they
usually are in practice, the lower bound given in this section will be
fairly near the exact value.

For any given positive integer let P,;(n é no) denote the probability
that n g no when H’; is true, i.e., when 6 = 6, (i = O, 1)." We want
to derive a lower bound for P,-(n 1.-.=1_ no). It will be assumed that no is
sufficiently large so that the sum 21 —l-- - ~ + Zn, may be regarded as
normally distributed even when the distribution of z is not normal.“

no

If E 2,, g log A, then we certainly have n g no. Similarly, if
a==1

"O

E z,,, ;;__ log B, we must have n g no. Hence
a=1 730

(3:74) P1(§ :9-‘<1 5103-/1)§P1("§'n0)
a=1

and no

(3:75) Pq( E Ea 510:; B) § P00?» é '-'10)
or = 1

11 See formulas (A:166), (A:183) and (A:194). _ _
12 In general, for any relation R we use the symbol P;(R) to denote the probability

that R holds when Hi ii-T» U110-
" According to well-known theorems in the theory of probability, the sum of a

large number of independent random variables is nearly normally distributed under
very general conditions.
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. "0

The inequality E 2,, g log A can be written as
an = I

"U

E 2.1 -—- n@E1(-Z)
1. er‘ _ m log A _. n°E1(3:76) 7 \/am) 6 \/aw)

where 01(2) denotes the standard deviation of z when H1 is true. The
left-hand member of (3:76) is normally distributed with mean 0 and
variance unity when H1 is true. For any value A we shall denote by
G'(7\) the probability that a normally distributed random variable with
mean 0 and variance unity will take a value less than A. Thus, the
probability that such a random variable takes a value Q A is given by
1 — G'(A). Hence the probability that (3:76) holds when H1 is true is
equal to 1 — G[)\1(no)] where

<3 =71) >~1(a) = 1°g A 7 "°E‘(‘”)
\/'T0<1'1(-'=‘-') J

But the probability that (3:76) holds when H1 is true is equal to
P1(Zz,.,, Q log A). Thus,

"U

(ms) P,(§:z.._. E log .4) = 1 - G-'[A1(no)]
Because of (3 :74), we obtain

1 '— Gl7\1("»0)l 5 P1(?'-'7 § no)
Thus, 1 -—- G[)\1(7tg)] is a lower limit of the probability that n g no,
when H1 is true.

To obtain a lower limit for Po(n é no), we rewrite the inequality
710

2 :2‘: 2 log B in the forrn
or = I

22,, — noEo(2)
a = B i 11. E (Z)

3 1 I m, - — 0 0 .__'( ) \/$000(Z) E ‘/7360 (Z) )\o(no), say

where 0'0 (2) denotes the standard deviation of z when Ho is true. Since
the left-hand member of (3:79) is normally distributed with mean 0
and variance unity when Ho is true, the probability that (3:79) holds
when Ho ls true IS equal to G[)\o(no)]. Hence,

<3=8°> Pt-<§}a s log B) = 0l>\0<~@>1
ar=1
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Because of (3 :75), we then have

(3381) Gl>\0(?’1‘-0)] 5 P00?» § no)

Thus G[).o (no)] is a lower bound of the probability that n g no when
Ho is true.

When logA = log (1 — B)/oz and logB = log B/(1 -— 0:), Table 2
shows the values of the lower bounds of Po(n 5 no) and P1(n g no)
corresponding to different pairs (a, B) and different values of no. In
these calculations it has been assumed that the distribution under Ho
is a normal distribution with mean 0 and variance unity, and the dis-
tribution under H1 is a normal distribution with mean 6 and variance
unity. For each pair (a, B) the value of 9 has been determined from
(3:67) so that the number of observations needed for the current most
powerful test of strength (a, B) is equal to 1000.

TABLE 2

Lowrzn BOUND OF THE PROBABILITY ‘THAT A SEQUENTIAL ANALYSIS WILL
TEnMn-mTE wrrmu VARIOUS Nomnsns or-" Tnmts, wnnu THE Mosr

P0wEnFUL CURRENT TEST REQUIRES EXACTLY 100-0 Tnmns

¢¢=_013_f1dfl =_0lcx=.01£1I'ld]3—_—.05l £!'='-053-ndB="-05

of Alterna- Null Altt_erna- Nun 1, A1:f\1r':fl- Null

Trmls twe h tl ' We . h pothesis . hypothesis. ypo iesis 3" _
hypothesis true , hypothesis , true A hyplothesls true

l true true PUB
. - _ ‘ 

1-I "I ._ -- T

I 000
1 200
1 400
1 600
1 800
2000
2200
2400
2600
2800
3000

I .910
l .950

.972

.985

. 991
L . 995

. 997
. .999

.999
I .00
I .00

9 10
950
972
985
991
995
997
999
999
00
00

. 799

. 871

.916

. 946

.965
- 977
. 985
.990
. 99-1
. 996
. 997

89 1
932
957
972
982
989
993
995
997
998
999

I .
| _

773
837
883
9 1 5
938
955
967
976
982
987
990

773
837
883
9 1 5
938
955
967
976
982
987
990

The probabilities given are lower bounds for the true probabilities. They relate
to a test of the mean of a normally distributed variate, the difference between the

' - ‘ >' ' ~ I ' f l es of or and 15'null and alternative hypothesis bung ad_|ustv.d for eac 1 pair o va u
so that the number of trials required under the most powerful current test IS exactly
1000.
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3.8 Truncation of the Sequential Test Procedure

Although it is shown in Section A.1 that the probability is 1 that
the sequential test procedure will eventually terminate, it is occasion-
ally desirable to set a definite upper limit, say no, for the number of
observations. This can be achieved by truncating the sequential proc-
ess at n = no, i.e., by giving a new rule for the acceptance or rejection
of Ho at the noth trial if the sequential process did not lead to a final
decision for n g no. A siinple and reasonable rule for truncation at
the noth trial seems to be the following: If the sequential probability
ratio test does not lead to a final decision for n § no, accept Ho at the

fig "0

noth trial when log B -< E 2,, g 0, and reject Ho when 0 < E 2,, <
c:=1 a:=1

log A.
By truncating the sequential process at the noth trial we shall, how-

ever, change the probabilities of errors of the first and second kinds.
Let or and B be the probabilities of errors of the first and second kinds
if the sequential test is not truncated. The effect of the truncation
on or and B will, of course, depend on the value of no. The larger no,
the smaller will be the effect of truncation on as and B. ‘We shall denote
the resulting probabilities of errors of the first and second kinds by
o:(no) and B(no), respectively, if the sequential process is truncated at
n = no. In this section we shall derive upper bounds for a(?1o) and
B010)-

To obtain an upper bound for o:(no) we have to consider the cases
in which the truncated process leads to the rejection of Ho, while the
non-truncated process leads to the acceptance of Ho. Denote by
po(no) the probability under Ho of obtaining a sample such that the
truncated process leads to the rejection of Ho, while the non-truncated
process leads to the acceptance of Ho. Then, we clearly have

(3382) ¢'¥("»0) E or + Polno)
The reason that in (3:82) the inequality sign holds instead of the
equality sign is that there may be samples for which the truncated
process leads to the acceptance of Ho, while the non-truncated process
leads to the rejection of Ho. To obtain an upper bound for o:(?1o), we
merely need to derive an upper bound for po(no). By definition,
po(no) is the probability under Ho that for the successive observations
Z1. Z2, ---, etc.. the following three conditions are simultaneously
fulfilled:

fl

(5) logB< E z,,,<logA forn=1,---,no—1
or=1
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no
(ii) o< 2 :z_._,,< 1ogA

a=l

(iii) Vi-Then the sequential process is continued beyond no, it termi-
nates with the acceptance of HQ.

Denote by §.;,(n0) the probability under H0 that condition (ii) will
be fulfilled, i.e.,

710

(3183) am) = P<>(0 < E :z.=< log A)
a=1

Since the probability that condition (ii) is fulfilled cannot be smaller
than the probability that all three conditions are fulfilled simultane-
ously, we have

5o(T¢o) 3; P0(nO)
and, therefore,

(3184) <=~=(no) 2 cr-= + .3o("»o)
Thus, oz + §0(n0) is an upper bound for a(n9), which _can easily be
computed, as will be shown later. To obtain an upper bound for
B(no) we shall denote by p1(n0) the probability (under H1) that the
successive observations will be such that the truncated process leads
to the acceptance of HO, while the non-truncated process leads to the
rejection of H0. In other words, p1(?'Lg) is the probability under H1
that the successive observations will satisfy the following three condi-
tions sirnultaneously:

1'1

(11) l0gB< é z_,,,<logA f0rn=1,---,n0—1
o:=1

(ii) logB< E 2,1;-'10
a=1

(iii) If the process is continued beyond the noth trial, it terminates
with the acceptance of H1.

Clearly
(3:85) l3(’"»o) E I3 + P1 ("-0)

Since it is difficult to determine the value of p1(7Lg), we shall derive
a simple upper bound for it. Let 51(n0) be the probability under H1
that condition (ii) is fulfilled, i.e.,

(3 :86) fi1(n<:-.3 = P1(l¢-s B < 2 Pa é 0)
a==1
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Then 51(n0) 2 P1("-0) and We have

(3:87) -39*-0) § 5 + 51("»o)

We shall now show how ,3o(no) and :31(no) can be computed. Vile
shall assume that no is sufiiciently large so that 21 + - - - + zno may be
regarded as a normally distributed variable. ‘When H5 is true (:6 =
0, 1) the expected value of 21 +~ - - + zoo is equal to noE,-(2) and the
standard deviation of z, + - - - + 2,1,, is equal to \/Q0-,-(z) where in-(Z)
denotes the standard deviation of z when H; is true. To compute

"O

',6o(no), we shall write the inequality 0 < E za < log A in the follow-
a=l

ing form:

(3:88) —noEo(z) < 21 +5 —I—_zn, — '-'_’lnEo(Z) < log A 5- no-Eo(z)
\/?ofl'o(-Z) \/E)!‘-"0(Z) \/%<T0(-1')

Let

(3-so) 1» - "”°E°("") and P2 -_ 1°‘; A “a "°E"(z)' ‘ \/%a><z> \/nae)
Since the middle term in (3 :88) is normally distributed with zero mean
and unit variance when Ho is true, the probability that (3:88) is ful-
filled when Ho is true is equal to G(v2) -—- G(v1) where G'(v) denotes the
probability that a normally distributed variable with mean O and vari-
ance unity will take a value < v. Thus,

(3190) i50("-0) = G'(v2) — G0-'1)

To compute §1(no), we shall write the inequality log B < E 2,, 5 O
a = 1in the following form:

I083 _ "'0E1(3) 3| +"'+Zn "* 71-nE1(Z) "—nr1E'1(Z)3:91 so a or ~ ~__o° -~ _ -—=_—-—-( ) fi5¢1<z> < \/'"0°’1(-3) 5 \/"o@’1(-Z)
Let

1'95 B -" TloE1(Z) "'nr1E1(Z)3 :92 ~— — .._ -— --3 a __ a »
( ) V3 ‘\/n.0o"1(2) and P4 '\/"Roe; (2)

Since the middle term in (3 :91) is normally distributed with mean O
and variance unity when H1 is true, the probability (under H1) that
(3:91) holds is equal to G-'(v4) — G(l-'3). Hence,

(3:93) 51910) = G(1'-1) — G(1'3)
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Our results can thus be summarized as follows:

(3194) ¢'-“('1'-‘»o) E 01 + G(1’2) —' G(Pi)

and

(395) |3('"»o) é .3 + G(P4) — G(P3)

where v1, vo, 1.-3, and v4 are given in (3 :89) and (3:92). These upper
bounds may considerably exceed o:(‘no) and B(no), respectively. It
would be desirable to find closer limits.

Table 3 shows the values of the upper bounds of a:(no) and B(no)
given in (3 :94) and (3:95) corresponding to different pairs (OZ, ,6) and
different values of no. In these calculations we have put logA =

TABLE 3

EFFECT on RISKS or‘ ERROR or TRUNCATING A SEQUENTIAL ANALYSIS
AT A PREDETERMINED NUMBER OF Tnums

-or = .01 and ;3 = .01 1:: = .01 and B = .05 or = .05 andfi = -05

Number ‘
of Upper . Upper Upper UPPEP UPPBY Upperf

Trials bound of bound of bound of bound of bound of bound o
effective effective effective effective efiective » effective

a B ¢ 5 a I B

1000
1 200
1400
1 600
1 800
2000
2200
2400
2600
2800
3000

.020

.015

.013

.012

.011

.010

.010

.010

.010

.010

.010

, .020
: .015
‘ .013

.012

.011

.010

.010

.010

.010

.010

.o10

. 033 070 I 095 095

.024

.019

.016

.014

.012

.012

.011

.011

.010

.010

.063

.058

. 055

.053

. 052

.051

.051

.051

. 050

.050

082
072
066
062
058
056
055
053
053
052

082
072
066
062
058
056
055
053
053
052

If the sequential analysis is based on the values or and B shown, but a declslflll
is made at no trials even when the normal sequential criteria would require a con-
tinuation of the process, the realized values a(no) and B(11o) will not eicceed the
tabular entries. The table relates to a test of the mean of a normally distributed
variate, the difference between the null and alternative hypotheses being afiiu-5*/ed
for each pair (0,, 5) so that tho munher of trials required by the current» T/681? IS 1000-
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log (1 -—- ,6)/a and log B = log B/(1 — Of), and assumed that the dis-
tribution under Ho is normal with mean 0 and variance unity, and the
distribution under H1 is normal with mean 6 and variance unity. For
each ‘pair (oz, B) the value of 6 has been determined so that the number
of observations required by the current most powerful test of strength
(cc, ,6) is equal to 1000.

It seerns to the author that the upper limits given in (3 :9-1) and
(3:95) are considerably above the true o:(no) and p3(no), respectively,
when no is not much higher than the value of n needed for the current
most powerful test.

3.9 Increase in the Expected Number of Observations Caused by
Replacing the Exact Values A(c|., (3) and B(a., B) by (1 -—- B)/e.
and [3/(1 — a), Respective-ly

The quantities A(o:, 13) and B(o:, ,6) denote the values of A and B
for which the probabilities of errors of the first and second kinds asso-
ciated with the sequential probability ratio test are exactly or and B,
respectively. In Section 3.3 it has been recommended that A(o:, ,8)
and B(a,B) be replaced by a(a, B) = (1 — ,6)/or and b(a,;3) =
B/(1 — CZ), respectively. This may slightly increase the expected num-
ber of observations, since c1(o:,B) §_=:_ A(a, ,6‘) and b(or, B) g B(a, ,8).1**
The present section gives estimates of the amount of such increase in
the expected number of observations.

In Section 3.5 the following approximation formula has been ob-
tained for the expected number of observations:

(3:96) Efln) N L0?) log B -|— [1 ,— L(6)] log A

E00-’)

Since L090) = 1 — or and L(6,) = )5‘, we obtain from (3:96)

(3:97) E00“) W -:- (3 + ci:l(ig_:1_

130(3)and

(ass) E1(-n) M B105 ii + (1 ‘ B) 10% ii
1?1(Z)

E.(n) denotes the expected value of n when 6, is true.

“ See inequalities (3:21) and (3:22).
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Thus, the changes AEo(n) and AE1(n) in the expected values Eo (n)
and E1(n) caused by using a.(o:,‘|5‘) and b(o:, B) instead of A(o:, B) and
B(<x, B), respectively, are given by ‘

{(1 -—- c-=)[1<>s b(<=r, B) — log BM, 6)] +}
(3,,,,,) AEM) N o go silos <1(-=1, @> -19gA<a,a>1

1170(3)

b , ,
(1 -—- 0:) log (Q rlr or 10g —————a(a6)

B(-11¢, B) A (<1. 6)
Eo(z)

and
{fillos l>(a, B) -— log B ('1, 6)] + 1‘

(3,100) AE101) '_____ (1 - 6)[l¢s @g¢,(f)) — l0sA(<=~=,i6)]
1

b(<r. 6) <1(e, B)‘“°gB<.. B) ' <1 '" ”’1°g2tzs
E1 (Z)

Formulas (3:99) and (3:100) are, of course, approximation formulas,
since (3:97) and (3:98) are approximations. However, if the error in
the formulas (3:97) and (3:98), i.e., if the differences

1 — l B + l A
(3 2101(1) Eo(n) a) Og ~~ a ogEo(Z)
and -» 1 A
(3:101b) E1(n.) -'61°gB+ (1 '3) 9gEi(Z)

were exactly independent of the quantities A and B, then in (3 :99) and
(3:100) the equality sign would hold exactly. It can be shown that
small changes in A and B afi"ect the differences (3:10l) exceedingly
little, and, therefore, (3 :99) and (32100) are very close approximations.

“Te shall derive upper bounds for the right-hand members of (3:99)
b ’ B - Q 1'

and (3 :100). Since Eo(z) and log it-¥—--6)? are negative,“ while log- 
all a,

is positive, we have

15 It is remarked at the end of Section A.2.1 that E(z) and a certain quantity ho
defined there have opposite signs. Since ho = 1 if Ho is true, and ho = -1 if H1 is
true. it follows that E'o(z) <2‘ 0 and E1(z) 13> 0.
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be», B) ta, 6) b(-1, B)<1 " 0"’ ‘°g'§<:""s + “ ‘°g iefs <1 “ "1’ ‘°gT,B)

Eoe) Eotz)
1 b(a, B)m__1 _m_._< .::,,e> °g Be-,6)

a(aJ . . . b(a!Similarly, since E1(z) and log ---—- are positive, while log ————-

(3 1102)

is negative, we have

b(C¥, (Q, ( 13,103) B105 ——~——B(a,B) + <1 - B)10gm—:(a,B) < <1 — @>1ogA-3%,)
(' - E]_(Z) 1911(3)

1 c(-=1. B)< —--—- log -—————
E1(/Z) /1(<1', B)

1 .Thus, for all practical purposes —;——-— logH is an upper bound for
B 1(2) A (as

1 b ,
AE1(n) and —--—- log ——(—€r—-£2 is an upper bound for AEo(n). The exact

E0(z) B(ai

values /l(a, B) and .B(e:, ,6‘) not being known, we cannot yet use these
. . .. . . 1 a(c, B) . .limits. Since E1(z) > 0, an upper limit of ————-- log ——Z— 1S obtained

151(2) A (O1, 6')
by substituting for fig an upper bound of E . Similarly,

-*1(<‘r. B) A (-'1, B)
. . . . 1 Me. B) _since 1:,o(z) < 0, an upper limit of -—-— log ———-—— can be obtained by

EU(z) B(a'r

. . b( . B) b ,substituting for —-—a-~ —_— a lower hound of ii-
B(c, B) B01, B)

From equations (A :29) and (A :30) in the Appendix one can derive
the following inequalities:

<3 10-1) i’5—»—°"(3) s 50od A (Q, B)
an

(3 :l05) -gig};

where the quantities 5o and no are defined by equations (.1 :27) and

2 120.,
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(A :28)?“ The quantities 68 and no have been explicitly computed for
binomial and normal distributions.

Thus, we arrive at the following result: For all practical purposes
we may regard (log 69,)/E1(z) as an upper bound for AE1(n) and
(log non)/Eo(z) as an upper bound for AEo(n).

TABLE 4

INCREASE IN EXPECTED NUMBER or OBSERVATIONS Reset-Tine FROM
APPROXIMATIONS IN CRITERIA FOR TERMINATING A SEQUENTIAL

Pnoenss

Number of
Observations Needed ax = .01 . a = .01 u = .05

for the Current B = .01 ~, ,6‘ = .05 B = .05
Most Powerful Test

O01-IO0

1- O'~Iib0Or-Ii-I

100
200
500

1000 Gl"~1§OrP-(Oi-* I-* tOiOOI1$>t.\‘.>i-1 '-lO'~lOl\DO-J I-ll-I U'lOO5rl>-[Oi-1 ih'iO<O<O"~IOI

 _ -V '

The tabular entries may, for practical purposes, be treated as upper bounds of
the exact increases. The table relates to a test of the mean of a normally distributed
variate, the difference between the null and alternative hypotheses being adjusted
for each pair of values of or and ,6 so that the number of trials required under the
best current test is as shown in the left-hand column.

1° This can be seen as follows: Substituting A(a, 6) for A, B(a', 15‘) for B, and Go
for 6, we obtain from (A:29) and (A:30)

[B(as 6)]h(0o]7l8g g E95‘

and
Eoo** § lA(¢'1. J-9)lMa“)5flu

Since we lot A .-_- /1((x, 6) and B = B(a, B), we have L(Bo) = 1 — a: and L(61) = B.
It follows from this and the two equations which are obtained from (A:18) by
substituting Bo and 6; for 6 that

1 B
Eon} = -L = b(e=, 8) and Eo,,""" = —i = (1(CI, ,6)

1 — or 6!

Since h(6o) = 1, we Obtain

B(ai fi)7?9g g b(¢1. and “(G1 é A(ar fl)69fl

from which (3:104) and (3:105) follow.
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As an example, consider the case in which the distribution under
Ho is normal with zero mean and unit variance, and the distribution
under H1 is normal with mean 6 and variance unity. Since for the
normal distribution no = 1/Bo [see equation (A:51)] and —Eo(z) =
E1(z), the upper bound of AEo(n) is the same as the upper bound of
AE1(n). This upper bound depends only on the value of 6. For any
pair (a, 6) and for any positive integer m there exists exactly one value
of 6 such that m observations are needed for the current most powerful
test of strength (OE, B). Thus, with each integer m and pair (oz, B)
there is associated exactly one value of 8. Table 4 shows the common
upper bound of AEo(n.) and AE1(n) calculated for values of 6 corre-
sponding to difierent pairs (oz, ,6) and integers m.



Chapter 4. OUTLINE OF A THEORY OF SEQUENTIAL TESTS
OF SIMPLE AND COMPOSITE HYPOTHESES AGAINST A SET

OF ALTERNATIVES

In Chapter 3 we were concerned mainly with the theoretical case of
testing a simple hypothesis Ho against a single alternative H1. In
probleins arising in applications, the unknown para-meter, or param-
eters, can usually take infinitely many values. In this chapter we
shall discuss sequential tests of simple and composite hypotheses
against infinitely many alternatives.

4.1 Tests of Simple Hypotheses

4.1.1 Introductory Remarks
A simple hypothesis lias been defined as a statement which specifies

completely the values of all the unknown parameters. 1‘/e should like
to make some reniarks concerning the conditions under which a test
of a simple hypot-licsis is meaningful and appropriate. For this pur-
pose it will be suflieient to consider the case in which there is only one
unknown parameter 6 involved in the distribution of the random vari-
able .1: under consideration. A simple hypothesis is then a statement
that 6 is equal to some specified value 6o.

Iii applications the problem of testing a hypothesis usually arises
as follows: Tliere are two alternative courses of action, say action 1
and action 2, between which a decision is to be made, and the prefer-
once for one or the other action depends on the value of the parameter
6. Let or denote the set of all values of 6 for which action 1 is preferred
to action 2; then action 2 is preferred to action 1 for all values 6 out-
side ta.‘ Lot Ho be the hypotlic-sis that 6 is contained in -Lu. Then the
problem of deciding between the two courses of action can be formu-
lated as the problcni of testing the hypothesis H',_,. If I10, is accepted
we take action 1 and if Elm is rejected we take action 2. If the degree
of preferciice for one or the other act-ion varies continuously with the
value of 6, the set ea cannot consist of a single value 6o. In fact, if to
wol-Q to Qontaiii only the single value 6o, it would mean that we prefer
action 1 when 6 = 6o and we prefer action 2 for any 6 ¢ 6o, no matter

1 For values 6 on the lioiiiiiliiry of uJ it will usually be inconsequential which
action is lnkcii.

70
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how near 6 is to 60. Thus, we would have a discontinuity in our prefer-
ence scale at 6 = 60.

We see that the problem of testing a simple hypothesis arises, strictly
speaking, only if there is a discontinuity in our preference scale for
actions 1 and 2. ‘While a discontinuity in the preference scale is, of
course, possible, it will occur rather seldom. A discontinuity in the
preference scale may occur, for example, if we want to test the validity
of some hypothetical scientific theory which implies that the param-
eter 6 must have a specified value 60. In such a case any deviation of
the value of 6 from 60, no matter how small, is of irnportance, since it
invalidates the hypothetical theory in question.

‘Whenever the degree of preference for one or the other action varies
continuously with the value of 6, the hypothesis to be tested will have
to be, strictly speaking, a composite one. Nevertheless, frequently it
will be expedient to approxirnate the composite hypothesis by a. simple
one, since the latter is usually a simpler problem to treat. As an illus-
tration, consider the following example: Suppose that the hardness at
of a material varies from unit to unit and is normally distributed with
a known variance. The mean value 6 of :2: is, however, unknown. Sup-
pose that 60 is considered to be the most desirable value of 6 and the
material is considered less desirable the greater I 6 — 60 Let action
1 be acceptance of the material and action 2, rejection of the material.
Preference for acceptance is strongest when 6 == 60. The preference
for acceptance will decrease steadily as I 6 -- 60 I increases. There will
be a positive value 6 such that for I 6 — 60 I > 6 rejection of the mate-
rial is preferred and the degree of preference for rejection increases
with increasing value of I6 — 6,;;.I in the domain I6 — 60I 22> 6. If
I 9 -‘ 50 I = 6, i.e., if the quality of the product is just on the margin,
neither action is preferable to the other. In such a situation the proper
hypothesis to be tested is the composite hypothesis that I 6 — 60 I g 6.
However, if 6 is small, the composite hypothesis may be replaced for
Practical purposes by the simple hypothesis that 6 = 60. The test of
the hypothesis that 6 = 60 will have nearly the same operating charac-
tenstic function as the test of the hypothesis that I 6 -— 6OI g 6, for
the following reasons. To test the hypothesis that I 6 — 6,1,] g 6 we
subdivide the 6-axis into three zones: zone of preference for acceptance,
:'50ne of preference for rejection, and zone of indifference. As explained
In Section 2.3.1, the zone of preference for acceptance consists of all
Values 6 for which acceptance is strongly preferred, i.e., for which the
g<5fJ\3'f3ll11OI1 of the material is con:-"idcrcrl an error of prar-lieal importance.
51?‘ arlbf, the some of preference for rejection ecinsists of all those values

01‘ which rejection IS strongly preferred, whereas for values 6 in the
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indifferent zone the preference for one action over the other is only
slight and we do not care particularly which action is taken. In our
example the three zones may reasonably be defined as follows. We
select two positive values 60 < 6 and 61 > 6. The zone of preference
for acceptance is given by I 6 — 60 I g 60, the zone of preference for
rejection by I6 — 60I g 61, and the zone of indifference by 60 <
I 6 — 60 I < 61. The test procedure will then be constructed so that
the probability of rejection will not exceed a preassigned value or when-
ever 6 is in the zone of preference for acceptance, and the probability
of acceptance will not exceed a preassigned value ,6 whenever 6 is in
the zone of preference for rejection.” Now if we replace the original
composite hypothesis by the simple hypothesis that 6 -= 60, the zone
of preference for acceptance will consist of the single value 6 = 60.
The zone of preference for rejection may be defined, as before, by
I 6 — 60 I Q 61. The zone of indifference is then given by 0 < I 6 — 60 I
< 61. The test procedure for testing that 6 = 60 will then satisfy the
requirement that the probability of rejecting the hypothesis is or when
6 = 60 and the probability of accepting the hypothesis does not exceed
B whenever I 6 — 60 I Q 61. If 60 is very small, the test of the hypoth-
esis that 6 = 60 will satisfy the requirements imposed on the test of
the original composite hypothesis with close approximation, since the
probability of rejecting the hypothesis will be nearly equal to or for
values 6 in a sufficiently small neighborhood of 60. Thus, for practical
purposes we may replace the original composite hypothesis by the
simple hypothesis that 6 = 60.

As we have seen, a test of a simple hypothesis will occur in applica-
tions in two cases: (1) when there is a discontinuity in the preference
scale and the problem calls for testing a simple hypothesis in the strict
sense (these cases are rare); (2) when the problem is such that it calls
for testing a composite hypothesis and it is approximated by a simple
hypothesis merely for the sake of simplicity.

In terms of the zones of preference for acceptance, of preference for
rejection, and of indifference, the simple hypothesis may be character-
ized by the condition that the zone of preference for acceptance con-
sists of a single point.

4.1.2 Test of a Simple Hypothesis against One-Sided Alternatives
\Ve shall discuss here the simple case in which there is only one un-

known parameter 6 and the hypothesis that 6 = 60 is tested against
alternative values of 6 which lie on one side of 60, say > 60. In other
words, only values of 6 21> 60 are considered admissible alternatives to

2 In this connection see Section 2.3.2.
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the hypothesis to be tested. In this case the zone of preference for
acceptance consists of the single value 611. The degree of preference
for rejection of the hypothesis will generally increase with increasing
value of 6 in the domain 6 > 611. It will, therefore, be possible to find
a value 61 > 61-1 such that the acceptance of the hypothesis is con-
sidered an error of practical importance whenever 6 3; 61, while for
values 6 > 611 but < 61 the acceptance of the hypothesis is an error of
no particular practical consequence. Thus, the zone of preference for
rejection may be defined by 6 g 61, and the zone of indifference by
60 < 6 < 61.

According to Section 2.3.2 we shall ixnpose the following require-
ments on the OC function of the test. The probability that the hy-
pothesis will be rejected should be equal to a preassigned value or when
6 = 60. The probability of accepting the hypothesis should not exceed
a preassigned value ,6’ whenever 6 g 61.

In most of the important cases occurring in practice, such as when
:t has a normal, binomial, or Poisson distribution, and so on, the se-
quential probability ratio test of strength (oz, ,8) for testing the hy-
pothesis that 6 = 60 against the single alternative 61 will satisfy the
imposed requirements, since the probability of an error of the second
kind will decrease steadily with increasing values of 6 in the domain
5‘ 2 61. Thus, in all these cases the sequential probability ratio test
for testing the hypothesis that 6 = 60 against a properly chosen alter-
native 61 provides a satisfactory solution to our problem.

The case in which the alternative values of 6 are restricted to values
I9 < 60 instead of values > 61, is entirely analogous and need not be
discussed separately.

4.1.3 Test of a. Simple Hypothesis with No Restrictions on the
Alternative Values of the Unknown Parameters

In this section we shall deal with the following general problem: The
dntribution of :1: involves k unknown parameters 61, - - -, 6;, and the
hypothesis H0 to be tested is that 61, - - -, 6;, are equal to some
Specified values 61°, - - -, 61,0, respectively_ The set of it parameters
(91, ' - -, 61,) will be denoted by 6 without any subscript and will
be referred to as a parameter point. The use of a superscript to the
letter 6, such as 6° or 6‘, etc., will indicate that a particular parameter
Pfllnt is meant. Our hypothesis H], can thus be expressed by stating
that the unknown parameter point 6 is equal to the particular param-
eter point 6°.

As we have seen in the preceding section, the zone of preference for
acceptance consists of the single parameter point 6". Denote the zone
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of preference for rejection by w,-. This will usually be the set of all
points 6 whose “distance” (defined in some sense) from 6° is greater
than or equal to some given positive value. The requirements imposed
on the OC function of the test, as formulated in Section 2.3.2, can then
be stated as follows: The probability that H0 will be rejected when
6 = 6° should be equal to a preassigned value as and the probability
that H0 will be accepted should not exceed a preassigned value ,6 for
any parameter point 6 in the zone cu,-.

Before we discuss the problem of constructing a proper sequential
test satisfying the above requirements, we shall consider the problem
of finding a proper test procedure satisfying the following modified
requirements. For any 6 in co, let 13(6) denote the probability that H0
will be accepted when 6 is the true parameter point. Thus 6(6) is the
probability of an error of the second kind when 6 is true. Our original
requirement was that 5(6) should not exceed a preassigned value 6‘ for
all 6‘ in cu,-. Instead we shall now require that the weighted average of
18(6), weighted with a given weight function w(6'), should be equal to
,6, i.e.,

(4:1) JB(6)w(@) d6 = B
where w(B) g 0 for all 6 in w,- and 3

(4 :2) fw(6) d9 = 1

The requirement that the probability of rejecting H0 when H0 is true
be equal to a preassigned or is maintained as before. A proper sequen-
tial test procedure satisfying these modified requirements can eas1ly
be constructed. Let Pen be the probability distribution of the sample
(551, - - -, :r:,,) when H0 is true, i.e.,

0
(4 p0n = f(x1: 610: ' ' ' 1 6350)]-($2: 910: ' ' '1 01:0) ' ' ' f(xn: 610: ' ' ' I 65¢)

Furthermore, let P111. be defined by

(4:4) pl =If($1, 61, ""', 61:) ""f(xn161: ' ":0k)w(6) da7'!-

Thus pm is a weighted average of the probability distribution func-
tions J-(I1, 51, - . . , pk) . . - f(;.~:,,, 6,, . . . , 93,) corresponding _ to yarigus
parameter points 6 1I1 co,-. As such, 301,, itself IS a probabillty d1str1 u-

.3 The weight function w(6) may also be discrete. A single formula valid for both.
-continuous and discrete, weight functions could be given by using Stieltje's lntegra-15
in (4:1) and (412)-
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tion function of the sample (:|:1, - - - , :r,,).4 Let H1 denote the hypoth-
esis that the distribution of the sample ($1, - - -, :r,.,) is given by p1,,
defined in (4:4). Then H1 is a simple hypothesis, since it specifies
completely the distribution. Consider the sequential probability ratio
test of strength (or, ,6) for testing H0 against the simple alternative
hypothesis H1. This procedure is given as follows. Reject H0 if

(4:5) g 2 A
PO11

accept HQ if

(4:6) E s B
pfln

and take an additional observation if

(4:7) B<@‘-<A
PO11

The expressions p0,, and P1».-1 are given by (4:3) and (4:4), respectively,
and the constants A and B are to be chosen so that the test will have
the required strength (oz, ,8). As we have seen in Section 3.3, for most
practical purposes we may use the approximation formulas A =
(1 -— B)/or and B = B/(1 — er)-5

The sequential probability ratio test defined by (4:5), (4:6), and
(417) can be shown to satisfy the relation (4:1). Thus, this probability
ratio test may be regarded as a satisfactory solution to our problem if
our requirement is that the probability of an error of the first kind
should be cu and that 6(6) should satisfy (4:1).

In practical problems, however, it seems more reasonable to main-
tain the original requirements. That is to say, we shall want a test
procedure such that the probability 6(6) of accepting I170 does not
exceed 13 for all parameter points 8 in the zone co,-, and the probability
ls ox that we shall reject H0 when B = 19°. There are, in general, infi-
nitely many sequential tests which satisfy these requirements, and we
Want to select one for which the expected number of observations is
as small as possible

‘The distribution of the sample (x1, - - -, 2:") will be precisely given by p1,, if
:'€6‘;‘S5ume that 9 in wr has a probability distribution given by the density function

‘Although the successive observations .r|, I3, - - -, etc., are not. imlepemlcnt
when H1 is true (301,, cannot be represented as a product of -n f:u.-tors wliere the czth
fact”? depfifltls only on xa), the rc:=.ult..s and conclusion in Sections 3.2 and 3.3
remain valid, as pointed out in Section 3.2.
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Although a thorough investigation of this problem has not yet been
made, the following approach may perhaps be reasonable. First we
restrict ourselves to the class C of sequential probability ratio tests
based on the ratio pl,-,/p,;,,,, where pm, is given by (4:3) and pm by
(4:4), corresponding to an arbitrary non-negative weight function w(6)
satisfying (4 :2)!‘ Thus, the class C contains at least as many tests as
there are possible weight functions w(6) satisfying (4:2). A test in
class C is uniquely determined by choosing a particular weight func-
tion w(6) and particular values for A and B. The test procedure is
then carried out in the usual way. H0 is accepted if p1,,/pan g B,
H0 is rejected if p1,,/pun Z A, and an additional observation is made
if B < p1,,/pm, < A. The restriction to the class C of sequential tests
is suggested by the fact that we have been led to these tests by the
requirement that some weighted average of the probabilities of errors
of the second kind be equal to a given value 5.

Accepting the restriction that the sequential test should be a mem-
ber of the class C, we still need a principle for choosing the weight
function w(6). Suppose that the quantities A and B have already
been determined. Let us then examine what would be a reasonable
choice of w(6). After A and B have been chosen, the probability at of
making an error of the first kind is also determined for practical pur-
poses and the choice of w(6) will not affect it.’ Thus, the choice of
10(6) will affect only 5(6). A weight function w(6) may be regarded
the more favorable the smaller the maximum value of 5(6) with respect
to 6 (6 is, of course, restricted to points in an). Thus, the following
choice of w(6) seems reasonable: For given values of A and B the weight
function 20(6) is chosen for which the maximum of 5(6) with respect to 6
(6 restricted to points in w,) takes its smallest value. ‘When this principle
for the choice of w(6) is adopted, oz and the rnaxirnum of 5(6) with
respect to 6 (6 in wr) will depend only on the quantities A and B.

° Instead of defining pin by some weighted average of the type given in (4:4), it
would seem equally reasonable to define pin as the maximum of f(:z:1, 6) - - -f(:::,-., 9)
with respect to 6 where 6 is restricted to points in 0.1,-. Then the ratio pl,-,/p0,, would
coincide with the so-called likelihood ratio introduced by J. Neyman and E. Pearson
and widely used in current test procedures. Our reason for preferring weighted
averages is that the theory of such tests seems to be considerably simpler. If

' ' ‘ ld l er be ap1,, were defined by the maximum with respect to 6 in cu,-, p1,, wou no ong
probability distribution. _

1 In fact, with good approximation the following relations hold: (1 — B)/at = A
and E‘;/(1 _ 0,) = B w]~,e;-B Z’-3 = J;r_3(B)w(6) d6. Solving these equations with

respect to or and EVVB Obtain flr = (1 — B)/(A '— B) and .5’ = lB(-4 — 1)]/(A "“ B)-
Thus, or and 5 depend only on A and B.
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These values A and B are then determined so that the probability of
an error of the first kind has the desired value or and the maximum
of 5(6) with respect to 6 is equal to the required value 5.

There is no general method yet available for the determination of
an optimum weight function w(6) in the sense defined above. For
some special but important cases, however, such a weight function has
been deterrnined. This point is discussed in Section A.8.

4.1.4 Application of the General Procedure to Testing the Mean
of a Normal Distribution with Known Variance

In this section we shall consider the problem of testing the simple
hypothesis H0 that the mean 6 of a normal distribution with known
variance is equal to a particular value 60. The acceptance of H0 will
not be considered a serious error if 6 sé 69 but is near 60. However,
there will be, in general, a positive value 6 such that the acceptance
of Ho is considered an error of practical importance if (and only if)

9 — 9 . .-Z-Q _2__ 6, where 0- denotes the known standard devlation of the
(T

distribution. Thus, the region of preference for rejection may be de-
6 — I9 .fined as the set of all values 6 for which mo g 5. The region of

U’

preference for acceptance will consist of the single value 60, and the
region of indifference will be the set of all values 6 for which O <
0-a~———° <5

U

The probability density of the sample ($1, - --,:1:,,) under H0 is
given by

I
— '1' ( a_9 )2

(4:8) - _--Ii 262.121 I 0

(21r)2o""‘

According to the general theory discussed in the preceding section,
pin is defined as some weighted average of the probability density cor-
"5-lsllonding to various values of 6 in the zone of preference for rejec-
tion. It is shown in Section A.8.2 that an optimum weighted average
i8 the simple average of the two density functions: the density func-
tion corresponding to 6 = 60 — 50- and the density function correspond-
ing '00 9 == 60 + 60-. Thus,

. 1 1 - L 2(.1.- -a +-so’ 1 - .1. 2:1: —~6'=>—6¢>’(4.9) p1_n __. 2 . n -- Q 2.112 G D +f 8 20- a

J 71(21r)%" (21.-Q21
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The test is then carried out as follows. We continue taking obser-

vations as long as B < P111/Pen < A. If pl"/pon g A, we reject H0.
If pm/p0,, g B, we accept HO. To make the probability of an error
of the first kind equal to 0: and the maximum of 3(6) (in the domain

. )6 — 6
-mo g 6 equal to 6, for all practical purposes we may put

A = (1 — B)/or andB = B/(1 — a).
A more detailed discussion of this test procedure is given in Part II,

Chapter 9.

4.2 Tests of Composite Hypotheses
4.2.1 Discussion of an Important Special Case
A frequent and important problem is that of testing the hypothesis

H that the unknown parameter 6 does not exceed a specified value 6’.3
This problem is of particular irnportance in quality control of manu-
factured products. The importance of an error of the first kind (re-
jection of H when H is true), or that of an error of the second kind
(acceptance of H when H is false), will usually vary with the value of
6. For example, if 6 is only slightly below 6' the rejection of H will
not be considered a serious error. Similarly, if 6 is only slightly above
6’ the acceptance of H will not be considered a serious error. In gen-
eral, the importance of an error of the first kind will increase steadily
with decreasing value of 6 in the domain 6 § 6', and the irnportance
of an error of the second kind will increase steadily with increasing
value of 6 in the domain 6 > 6'. Thus, it will be possible to find two
values 60 < 6' and 61 > 6’ such that an error of the first kind is con-
sidered of practical importance whenever 6 g 60, and an error of the
second kind is considered of practical importance whenever 6 3; 61,
whereas for values 6 between 60 and 61 we do not care particularly
which decision is made. I-Ience the zone of preference for acceptance
may be defined as consisting of all values 6 g 60, the zone of preference
for rejection as the set of values 6 for which 6 Q 61, and the zone of
indifference as the set of all values 6 for which 60 < 6 < 61. In such
a situation we shall want a test procedure for which the probability
of an error of the first kind is less than or equal to a preassigned or
whenever 6 g 60, and the probability of an error of the second kind is
less than or equal to a preassigned (3 whenever 6 g 61. In most of the
important cases occurring in practice, such as when as has a normal,
binomial, or Poisson distribution, and so on, the sequential probability

3 It is assumed here that there is only one unknown parameter 6 involved in the
distribution of 2:.
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ratio test of strength (oz, 6) for testing the hypothesis that 6 = 60
against the single alternative that 6 = 6l will have the desired prop-
erties and provides a satisfactory solution to the problem. If the
sequential probability ratio test leads to the acceptance of the hypoth-
esis that 6 = 60, we accept the original hypothesis that 6 5 6', and if
the probability ratio test leads to the rejection of the hypothesis that
6 = 60, we reject the original hypothesis that 6 g 6'.

As an illustration, we shall discuss briefly one or two examples.
Suppose that a lot consisting of a large number of units of a manu-
factured product is submitted for acceptance inspection. We shall
assume that each unit is classified in one of the two categories: de-
fective and non-defective. The proportion p of defectives in the lot
is assumed to be unknown. The preference for acceptance or rejec-
tion of the lot will, of course, depend on the value of p. It will be
possible, in general, to select two values of p, say pl) and pl (pl) <1 pl)
such that the rejection of the lot is considered an error of practical
importance whenever p g pg, and the acceptance of the lot is an error
of practical importance whenever p g pl; for values p between pll and
pl we do not care particularly which decision is made. Thus, the zone
of preference for acceptance is given by p 5 pll, the zone of preference
for rejection by p Q pl, and the zone of indifference consists of values
P for which pl, < p < pl. Hence, we shall want a test procedure for
which the probability of rejecting the lot is less than or equal to a
preassigned value oz whenever p 5 pg, and the probability of accept-
ing the lot is less than or equal to a prcassigned value B whenever
P 2 131- Such a test procedure is given by the sequential probability
ratio test of strength (oz, B) for testing the hypothesis that p = pl)
against the single alternative that p = pl. To compute the proba-
bully ratio p1,,/pun for this problem, we shall denote by d.-,, the number
of defectives found in the first n units inspected. The probability of
obtaining a sample equal to the observed one is given by
(4:10) Pm = P1d"(1 — Pllnuid"
when p = pl, and by

(4:11) Pen = Pcd"(1 *“‘ Po)n_d"'

when P = P0.” Then

. n 1 _
“'12) 10g 51- == dn log gal -|- (en — d,,) log -—i1

Po“ Po 1 — Po
9F°rm}1laS (4110) and (4:11) are strictly valid only if the lot contains infinitely

Elia"? Units. It is assumed that the lot. contains a large number of units so that
B80 formulas can be used with good approxirnation.
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The test procedure is carried out as follows. We continue inspec-
tion as long as log B < log (pl,,/pl;,,,) < log A. If log (pln/pun) g
log A, inspection is terminated with the rejection of the lot, and if
log (pln/pun) él log B, inspection is terminated with the acceptance of
the lot. For practical purposes we may put A -= (1 — B)/0: and B =
6/ (1 — H)-

A detailed discussion of the problem of acceptance inspection when
each unit is classified either as defective or as non-defective is given
in Part II in Chapter 5.

Another example for testing a hypothesis that 6 ii’ 6’ is the case
when 6 is the unknown mean of a normal distribution with known
variance.“ Again it will be possible to select two values 60 -< 6' and
6l > 6’ such that an error of the first kind is considered of practical
iinportance whenever 6 §'- 60, an error of the second kind is of prac-
tical importance whenever 6 g 6l; for values 6 between 60 and 6l we
do not care particularly which decision is made. In such a situation
we shall want a test procedure for which the probability of committing
an error of the first kind is less than or equal to some preassigned value
or whenever 6 § 60, and the probability of committing an error of the
second kind does not exceed a preassigned value ,6 whenever 6 g 6l.
These conditions will be satisfied by the sequential probability ratio
test of strength (oz, B) for testing the hypothesis that 6 = 60 against
the single alternative hypothesis that 6 = 6l. The probability density
of the sample (xl, ~ - -, In) is given by

1 -- $ 2:<=..—a>'
(4:13) pun = if 6 "

(21r)2o'"
when 6 = 60, and by

1 — $ r<=a—r-u)’
(4114) P1». = if 6

(2*:r)2o'“

when 6 = 6l. ‘We continue taking observations as long as B <1
pl,,/pm, <1 A. If ply./Pen E A, we reject the hypothesis that 6 5 9',
and if pl",/pg" g B we accept the hypothesis that 6 g 6’. Again, We
putA = (1 -—- B)/cu: and B = ,3/(1 -—- or)-

4.2.2 Outline of the Test Procedure in the General Case
In testing a composite hypothesis H“, that the parameter point 6 lies

in a subset 0.» of the parameter space, the parameter space 1S agaln
subdivided into three mutually exclusive zones: the zone of preference

1° This problem is discussed in detail in Part II, Chapter 7.
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for acceptance ma, the zone of preference for rejection om,-, and the zone
of indifference. The zone of preference for acceptance will now con-
sist of more than one parameter point, as distinguished from the case
of testing a simple hypothesis.

For any test procedure the probability of an error of the first kind
(rejecting Hm when HQ, is true) will, in general, vary with the param-
cter point in w. For any parameter point 6 in w we shall denote by
a:(6) the probability that Hl, will be rejected when 6 is true. Simi-
larly, the probability of an error of the second kind (accepting H,,, when
it is false) is a function 6(6) defined for all points 6 outside ca.

According to the requirements formulated in Section 2.3.2, we shall
want a test procedure such that n:(6) will not exceed a preassigned
value or for all 6 in the zone ma, and 8(6) will not exceed a preassigned
value 13 for all 6 in the zone cc,-. Before discussing the problem of
finding a proper test procedure satisfying these requirements, we shall
again consider, as in the case of the simple hypothesis, the following
modified problem: Let w,,(6) and w,(6) be two non-negative functions
of 6, called weight functions, such that '1

(4115) fw,,(a) d6 = 1 and jlw,-(6) d6 = 1

Suppose that we wish to construct a sequential test such that the

Weighted averageI a(6)w,,(6) d6 of the probabilities of errors of the

first kind is equal “to a given value or, and the weighted average

-]‘B(6)1-07(6) (Z6 of the probabilities of errors of the second kind is a

Elven value B.
A DTODBI‘ sequential test satisfying these modified requirements can

be constructed as follows. Let pm, and p1,, be defined by

(4:16) pun =J'f(I1’ 31, . . ., pk) . . . f(_-rm 31, . . ., g,_)wa(9) ([6

and U“

(M7) PM =ff(x1.@1. Bk) ~--Io... 61, Gk)“/lr(0) dc
gvlqere fix’ 911 "'1 Bk) denotes the probability distributiori of 1: when

IS t ‘ - - -d‘ rue.‘ 'lhe functions pun and pl,, can be n1tcrp1'eic<.l as probability
lstributions of the sample (xl, - - -, .r,,)- Denote by 11l,* the hypoth-

“ The weight fun t‘ - - - 'for both con“ C "3715 1¢=(6) and w,-(6) may also be (l|=~.crr.t1.. Forrnulas valid
int‘: rat _ IILIOUS and discrete Weiglit f11r|(rt.ir)l-ll-; could be given by using Stleltjtfs

g S "1 (4-15) and subsequent equations.
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esis that the distribution of the sample ($1, ~ - - , 2:“) is given by (4:16),
and by H1* the hypothesis that the distribution of (x1, - - -, mu) is given
by (4:17). The sequential probability ratio test of strength (or, B) for
testing Ho* against H1* provides a solution to our problem. If the
constants A and B in this sequential test are chosen so that the prob-
ability is or that We reject I-10* when H0* is true, and the probability
is B that we accept H0* when H1* is true, then for this sequential test
we have

I w.,,(6)a(6‘) d9 = or

and

fw.<@>@w> de = 6
To make the strength of the test of I-10* against H1* equal to (oz, B),
again, for practical purposes, we may put A = (1 -—- ,3)/0: and B =
13/ (1 — <1)-

To construct a sequential test procedure satisfying the requirements

(4:18) o:(l9) §_ or for all 6‘ in ma

and

(4:19) 8(8) § 6 for all 6 in cu,»

we shall restrict ourselves to sequential probability ratio tests for which
pm, and pm are given by (4:16) and (4:17), respectively, and wa(6)
and w,-(6) may be any weight functions satisfying (4:15). Denote by
C the class of all such tests corresponding to all possible Weight func-
tions w,,(6) and w,.(6). To select a proper test from the class C which
satisfies the requirements (4:18) and (4:19), our procedure will be sim-
ilar to that in the case of simple hypotheses, as discussed in Section
4.1.3. A test in class C is uniquely determined by the choice of the
constants A and B and by the weight functions 'w,,(6) and w,(6). Thus,
the maximum of Q-(6) with respect to 6 in the zone wa, as well as the
maximum of 6(6) with respect to 6 in the zone w,-, is determined uniquely
by A, B, wa(6), and 'w,(6). Denote these ma:-zima by a[.4, B, we, wr]
and B[.»‘1, B, wa, w,-], respectively. For given values A and B, the
weight functions wa (6) and w,-(B) may be regarded the more desirable
the smaller they make cr[/1, B, wu, wr] and ,6[.-'-1, B, wa, w,.]. Thus, if it
is possible to find weight functions w,,(6) and w,.(6) for which both
o:[A, B, wa, wr] and L-3[A, B, wa, wr] are simultaneously minimized, they
may be 1~ega,1-(led as optimum weight functions. It is shown in Section
A.9 that in some important special cases, such as testing the mean of
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a normal distribution with unknown variance, optimum weight func-
tions of the type described above do exist. However, it is not known
whether they generally exist. If it is not possible to minimize both
a[A, B, -we, 1.0,] and ;6[A, B, we, wr] simultaneously, it may be reason-
able to choose w.,(6) and w,-(6) such that some average of the two
values o:[A, B, we, w,] and ;f3[A, B, we, 1-Ur]; or the maxinium of these
two values, is minimized.

If the principle described above for choosing the weight functions
w,,(6) and w,(6) is adopted, the maxirnum of 11(6) in the zone we and
the maximum of 3(6) in the zone 00,- will depend only on A and B.
Finally the constants A and B are determined so that these two max-
ima are equal to or and ,6, respectively.

There is no general method yet available for constructing weight
functions w,,(9) and w,.(6) which are optimum in the sense defined
above. In some special cases, however, such weight functions have
been constructed."

4.2.3 Application of the General Procedure to Testing the Mean
of a Normal Distribution with Unknown Variance (Sequen-
tial t-Test)

A frequent and important problem in applications is that of testing
the hypothesis II that the unknown mean 6 of a normal distribution
is equal to some specified value 60 when not-hing is known about the
variance <12 of the distribution. If the true value 6 differs only slightly
from 60, i.e., if I 6 — 6,, I is only a small fraction of the standard devi-
ation 0', the acceptance of H will usually not be considered an error of
practical consequence. However, the importance of an error committed
by accepting if when 6 as 60 will, in general, increase with increasing

6 — 6 _ _ _value of —:--—0 . Thus, it will be possible to find a positive value

6 such that the acceptance of I1 is considered an error of practical
. 6 -—- 6importance only when --frH g 5. Accordingly, the three zones in

the parameter space will he defined as follows, The zone ma ef prefer-
ence for acceptance coiisists of all points (6, <1) for which 6 = 60, i.e.,
we consists ul all points (6H, cr) where 0' can take any positive value.
lhe zone ti, of preference for rejection consists of all points (6, 0) for

wh' h 8——-—»-H6" > ' -If» U = 5. Finally the zone of indifference contains all

points (6, 0') for which O < I {Li I< 5,
(T

"2 Sec Section A1).
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The probability density of a sample (x1, - - -, xn) drawn from a nor-
mal distribution with mean 6 and standard deviation ur is given by

1 " .
'-' 7 2 (-"3q_fl)2

(4220) pn = -J? 6 2 2°‘=1
(2-rr)§c"'

As in the general procedure described in the preceding section, the test
procedure will be based on the ratio p1,,/pen where pen is some weighted
average value of pn corresponding to various points (6, or) in me, and
p1,, is some weighted average of p,,_ corresponding to various points
(6, tr) in w,_. It is shown in Section A.9 that by choosing the weight
functions we (6) and w,.(6) according to the principles described in the
preceding section we are led to the following ratio: 13

1 :'° 1 (-Ta'“"90_5"')2 (IQ-—6g-I-50'):

P. 5 . ale +6 Id“TI-
(4121) m = -mm

P031, 1 '—' W Z:(-‘Fa-99):
0 F 6 °' do’

The test procedure is then carried out as follows. Additional observa--
tions are taken as long as B < Pin/P0,, < A. The hypothesis H is
rejected if p1,,/p0,, g A and the hypothesis If is accepted if p1,,/pen
g B. To satisfy the requirenients (4:18) and (4:19) for practical pur-
poses we may let A = (1 — ,6’)/oz and B = ,6‘/(1 -—- oz).

4.2.4 A Particular Class of Problems Treated by Girshick 1‘
A class of problems treated by 1-\'I. A. Girshick may be forinulated

as follows. Let 1:1 and 1:2 be two independent random variables. The
distribution (elementary probability law) of 1:1 is given by f(:r1, 61)
and that of re by f(.r2, 62), where the function f is known but the values
of the parameters 61 and 6e are unknown. The problem is to test the
hypothesis If that 61 1‘-1 62 against the alternative hypothesis H' that
61 > 62.

The type of problem described above occurs frequently in applica-
tions. For example, let :1: denote some quality characteristic, such as
hardness, tensile strength, or weight, of a manufactured product. Sup-

" Considerable work on the evaluation of this ratio to bring it to a suitable
form for tabiilation was done by I{. Arnold while he was a member of the Statistical
Research Group of Colurnbi.-i University. Tables for the computation of this ratio
have been prepared by the l\I;it-licinatieiil Tables Project, New York.

1* lid. A. Girsliick, “Contribut-ions to the Theory of Sequential Analysis,” T716
.rl?1Ih'IfS of .‘lI:ithe1m.i!i'cal iS'Iaz‘z'si‘i'cs, Vol. 17 (1946).
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pose that the distribution of :1: in the population of units produced has
a known functional form f(:r, 6), but the value of the parameter 6 is
unknown. Suppose, furthermore, that there are two competing proc-
esses of production under consideration by the manufacturer. "Let 61
denote the value of 6 when process 1 is used, and 62 when process 2
is used. Both values, 61 and 62, are unknown. If the product is con-
sidered the more desirable the greater the value of 6, the problem of
deciding between the two competing processes reduces to that of test-
ing the hypothesis H that 61 g 62. Process 1 is chosen if H is rejected,
and process 2 is chosen if H is accepted.

The following procedure for testing the hypothesis H has been pro-
posed by Girshick. We choose a particular value 61° of 61 and a par-
ticular value 62° of 62 where 61° < 62°. Let H0 denote the hypothesis
that the joint distribution of 2:1 and $2 is given by f(:::1, 61°)f(:c2, 82°),
and let H1 be the alternative hypothesis that the joint distribution of
I1 and 2:2 is given by f(:::1, 62°)f(:z:2, 91°). 'W'e then set up the sequen-
tial probability ratio test for testing the simple hypothesis H0 against
the simple alternative H1. The hypothesis H is accepted or rejected
accordingly as the sequential probability ratio test leads to the accept-
ance or rejection of H0. Thus, to carry out the test procedure, two
constants A and B are chosen and the ratio

(422) P{"‘ c f(I11,; 920)f(I21.- 910) ' ' ' f(-Tim, 520)f(;1[12m, 910)
Pom f($11, 91D)f($21.= 920) ' ' ' f(I1m, 310)f(I2m, 92°)

is wmputcd at each stage of the experiment. Here 2:,-,2 denotes the
crth observation on :1:,- (ii = 1, 2). It is assumed that the observations
are taken in pairs, where each pair consists of an observation on x1
and an observation on I2. Experimentation is continued as long as
Phe 'a'ti° Pim/pqm lies between B and A . The hypothesis H is accepted
If Plm/Pom § B, and the hypothesis H is rejected if pm,/pom g A.

It has been shown by Girshick that in niany important cases the
a'bO""f tciit Procedure will have the following property: There exists a
function v = "(91,9g) such that v may be regarded as a reasonable
measure of the difference between 61 and 62, and the probability of
acceptmg H depends only on the value of v. The function v satisfies,
furthermore, the conditions: (1) v(61, 62) = O when 91 = 62; (2) v(61, 62)

<1‘; fies 62, > H1; <3) v(61182) = —~<@2, 61>.
four E"ua‘:3/Ftljloil "0 Wltgl the above properties exists, the choice of the
lowing congifb 613 92 , A, and B may be made on the basis of the fol-
ance of H~i1;4erat1ons: Let 5 be a po:-altlve value such that the accept-

regarcled as an error of practical importance whenever
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v 2 6, the rejection of H is regarded as an error of practical importance
whenever v g -6; for values v between -6 and 6 we do not care par-
ticularly which decision is made. Thus, we shall want a test procedure
for which the probability of rejecting H will not exceed a preassigned
value oi whenever v g -6 and the probability of accepting H will not
exceed a preassigned value ,6 whenever v g 6. The test procedure will
have the desired properties if the quantities 61°, 62°, A, and B are
chosen so that v(61°, 62°) = 6 and the sequential probability ratio
test for testing H0 against I11 has the strength (oz, B). For all prac-
tical purposes we may let A = (1 — B)/or and B = -3/(1 — O5).

As an illustration, we shall consider the following example. Suppose
that one of two production processes is to be chosen. Suppose, further,
that the quality characteristic under consideration is normally distrib-
uted with known mean and unknown standard deviation 61 when proc-
ess 1 is used, and that the distribution is normal with the same mean
but unknown standard deviation 62 when process 2 is used. The proc-
ess that leads to a smaller standard deviation is preferred. Thus, the
manufacturer is interested in testing the hypothesis H that 61 g 62.
There is no loss of generality in assuming that the known means are
equal to 0. Let H11 be the hypothesis that 61 = 61° and 62 = 62°, and
H1 the hypothesis that 61 = 62° and 62 = 61° (61° < 62°). Then the
probability ratio for testing H2 against H1 is given by

. fl}
1 1plm — e(2(fl°)_:. 2-t"bj,)[a§1(zi¢2__:m°ll

(4 :23)
P016:

where :r:,;._-,1 denotes the octh observation from the population correspond-
ing to process i.

As Girshick has shown, the probability that the sequential prob-
ability ratio test of H2 against H1 will terminate with the acceptance
of H11 depends only on the value of

1 l 1(4:24) .=-(02.22) 2 U2, F1,
This quantity may be regarded as a reasonable measure of the devi-

ation of 61 from 62. Suppose we want a test procedure satisfying the
following conditions: The probability of rejecting H should not exceed

1 1 1 . . -
or whenever ( 3 1 U 2) 5 -6, and the probabihty of accept!-Hg H

0'2 1
I 1 1

should not exceed ,6‘ whenever 2(a_ 5 62) g 6. Then we choose2 i
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61° and 62° SO that
1 1 1“*2” 5 ("as "' we) = "6

The probability ratio given in (4 :23) becomes then equal to
m

plm '5 2 (Ila,-'32a’)
(4:26) —-— = es"!

Pom
1 . .“Then — loggi-3‘ = Z(:i:11,,2 — a:2,,,2) is used instead of &'-" the test
6 pfirn gm

procedure can be carried out as follows. We continue taking pairs of
observations as long as

1 B '” 1 A(421) lg? < E f(==1..” - $2.”) < 3-5-
c|=l.

We accept H if

(4 528) 2(1'1<=2 — 37262)

and reject H if

(4329) 2($i-=2 —' $2.112)
alll

é

2

log B
6

log A
6



PART II. APPLICATION OF THE GENERAL THEORY TO
SPECIAL CASES1

Chapter 5. TESTING THE MEAN OF A BINOIVIIAL DISTRI-
BUTION (ACCEPTANCE INSPECTION OF A LOT WHERE
EACH UNIT IS CLASSIFIED INTO ONE OF TWO CATEGORIES)

5.1 Formulation of the Problem
Let :1: be a random variable which can take only the values 0 and 1.

Denote by p the (unknown) probability that :2: takes the value 1. We
shall deal here with the problem of testing the hypothesis that p does
not exceed some specified value p’.

This problem arises, for example, in acceptance inspection of a lot
consisting of a large number of units of a manufactured product. Sup-
pose that each unit is classified in one of the two categories: defective
and non-defective. We shall assign the value 0 to any non-defective
unit and the value 1 to any defective unit. Let p denote the unknown
proportion of defectives in the lot. Then the result :1: of the inspection
of a unit drawn at random from the lot can take only the values 1
and O with probabilities p and 1 — p, respectively. Usually it will be
possible to specify some value p’ such that we would like to accept the
lot whenever p 5 p’ and we would like to reject the lot whenever
p > p’. Thus, the problem of deciding whether the lot is to be ac-
cepted or rejected on the basis of a random sample may be formulated
as the problem of testing the hypothesis ;0 g 30’ against the alternative
hypothesis that p > p’.

Since acceptance inspection of manufactured products is perhaps
one of the most important applications of testing the mean of a bi-
nomial distribution, in what follows we shall use the terminology cus-

' The special cases treated here are discussed mainly to illustrate the general
theory and to bring out points of theoretical interest specific to these applications.
Accordingly, computational procedures and simplifications are not stressed much
and hardly any tables are given. A more detailed and non-mathematical discussion
of these applications. together with a number of tables, charts, and computational
simplifications, is contained in “Sequential Analysis of Statistical Data: Applica-
tions," a report prepared by the Statistical Research Group of Columbia University
and published by Columbia University Press, Sept., 1945. This report will be
referred to hereafter simply as SRG 255.

8-8
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tomary in acceptance inspection. This, of course, does not mean that
the test procedure is not applicable to other cases as well. In the
terminology of acceptance inspection, our problem may be stated as
follows: A proper sampling plan (test procedure) is to be devised for
deciding whether the lot submitted for inspection should be accepted
or rejected.

5.2 Tolerated Risks of Making Wrong Decisions

Any sampling plan which does not provide for complete inspection
of the lot may lead to a wrong decision. That is, we may accept the
lot when p > p’, or we may reject the lot when p g p’. Since com-
plete inspection is frequently not feasible, or too costly, we are willing
to tolerate some risks of making wrong decisions- In order to devise
a proper sampling plan, it is necessary to state the maximum risks of
wrong decisions that we are willing to tolerate.

If p = p’, the quality of the lot is just on the margin and we are
indifferent which decision is made. For p > p’, we prefer to reject the
lot and this preference increases with increasing value of p. For p <1 p’,
we prefer to accept the lot and this preference increases with decreas-
ing value of p. If p is only slightly above p’, the preference for rejec-
tion is only slight and acceptance of the lot will not be regarded as an
error of practical consequence. Sirnilarly, if p is only slightly below
p’, rejection of the lot is not a serious error. Thus, it will be possible
to specify two values pg and p1, pg below p’ and p1 above p’, such that
acceptance of the lot is regarded as an error of practical consequence
if (and only if) p 5. p1, and rejection of the lot is regarded as an error
of practical importance if (and only if) p g pg. If p lies between pg
and p1 we do not care particularly which decision is made.

After the two values pg and p1 have been chosen, the risks of mak-
ing wrong decisions which we are willing to tolerate may reasonably
be formulated as follows: The probability of rejecting the lot should
not exceed some small preassigned value or whenever p g pg, and the
probability of accepting the lot should not exceed some small pre-
assigned value 6 whenever p g p1.

Thus, the tolerated risks are characterized by four numbers, pg, p1,
oz, and B. The choice of these four quantities is not a statistical prob-
lem. They will be selected on the basis of practical considerations in
each particular case. A proper sampling plan can be determined, as
Wlill be shown in the next section, after these four quantities have been
c osen.
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5.3 The Sequential Probability Ratio Test Corresponding to the
Quantities pg, 161, 6., and B

5.3.1 Derivation of Algebraic Formulas for the Test Criterion
A sampling plan satisfying the conditions that the probability of

rejecting the lot does not exceed 2 whenever p g pg, and the prob-
ability of accepting the lot does not exceed 6 whenever p g p1, is given
by the sequential probability ratio test of strength (oi, ,6) for testing
the hypothesis p = pg against the hypothesis p = p1. This test is
defined as follows (see Section 3.1): Let :r,- denote the result of the
inspection of the ith unit; that is, xi = 1 if the ith unit inspected is
found defective, and :i:,; = 0 otherwise. If p denotes the proportion
of defectives in the lot, the probability of obtaining a sample equal
to the observed ($1, - - -, arm) is given by

(511) P°""(1 — p)’"“""
where dm denotes the number of defectives in the first m units in-
spected? Under the hypothesis that p = p1 the probability (5:1) be-
comes equal to

(532) Pim = Pid"'(1 “" P1)m—d'“

and under the hypothesis that p = pg the probability (5:1) becomes
equal to

(5 :3) Pom = Pod'“(1 —' Po)m—d'“

The sequential probability ratio test is carried out as follows. At each
stage of the inspection, at the inspection of the mth unit for each posi-
tive integral value zm, we compute

m P 1 _' p(5:4) log -?‘— = d... log -—1 + (m -—- cl...) 10s -ii
P01-n pi] 1 _ P0

Inspection is continued as long as

B plm 1 T B(5;5) log —_— < log ——- < logi
1 _' Q p0m Q

1 The lot is assumed to be sufficiently large so that the successive observ-eti0I13
1:1, 6:2, - - -, etc., may be regarded as independent.
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Inspection is terminated the first time that (5:5) does not hold. If
at this final stage we have

In 1 1(5:6) log 2L 2 logJ
Pom *1

the lot is rejected, and if
P rn B(5:7) log ——1— § log —-—-——-—-

1 0:P012: _"
the lot is accepted.“

Inequalities (5:5), (5:6), and (5 :7) can easily be seen to be equiva-
lent to the following inequalities:

13 1*'Polog—-—- log-~—i
1—C! 1_'1J1

(5:8) —|—m <d.,,.,<
I P 1 — 1 —
og --1 —- log ———-Z2 log g — log ————p1

P0 1 Po Po 1 Po

1-13 1-
l0g-—-—-—- log--2

“ 1 “P1—|-m
1* 1 P1 1"'P1 P1 1-P1

0g—-—l0g——-—- 1og--——logl-——
P0 1 "P0 Po 1 -210

og-——-Z log——-1
°‘ 1"“P1(519) dm 2 1 + m 1

logg —— log-i loggl — log-:-12
P° 1 "' P0 P0 1 —' Po

and
I3 1 —

10g :'--— logJ

(5:10) dm s S‘ + m 1 " 1°‘
P — P -

lflg i * log ‘F-ii 10g Z)-1; .._. log _....__.££

P0 — P0 P0 1 -' Po
For each value of m we shall denote the right-hand member of (5:10)

by am and call rt acceptance number. Similarly, we shall denote the

‘ There is a slight approximation involved in the use of the constants log [6/' (1 —-a)]
and I08 [(1 - J3)/or]. For further details see Section 3.3.
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right-hand member of (5:9) by rm and call it rejection number. For
purposes of practical computations, the use of the inequalities (5:8),
(5:9), and (5:10) seems to be much more convenient than the use of
the original inequalities (5 :5), (5:6), and (5:7).“ On the basis of in-
equalities (5:8), (5:9), and (5:10), the sequential probability ratio test
is carried out ‘as follows. At each stage of the inspection we compute
the acceptance number am and the rejection number rm. Inspection
is continued as long as am < dm < rm. The first time that d,,, does not
lie between the acceptance and rejection numbers, inspection is termi-
nated. If dm g 1-,,, the lot is rejected, and if dm § am the lot is ac-
cepted.

5.3.2 Tabular Procedure for Carrying Out the Test
The acceptance number

B 1-Polog—-— log———-——
1-rd l—'P1(5:11) a7)-1, = i-—+mi

P1 1 — Pi P1 1 '—' P1l0g— — log—i ]og—— — log-—-—-—
Po 1 - P0 P0 1 — Po

and the rejection number

1 "" .3 1 '" Polog—-——- log———-—-
Ot 1 P1

(5:12) rm = m—"-""-—i""""l"?'»'1i_
P1 1 "" P1 P1 1 _P1log——log———-———- log——--log-i -
Po 1 — Po P0 1 '“ Po

depend only on the quantities po, pl, Q, and ,6‘. Thus, they can be
computed and tabulated before inspection starts. If a.,,, IS. not an
integer, we may replace it by the largest integer < am. Similarly, if
rm is not an integer, we may replace it by the smallest integer
> Tm. .

As an illustration, consider the following example. Let goo = -1,
pl = .3, or = .02, and B = .03. The acceptance and rejection num-
bers, as well as the results of the observations, in an experiment are

‘ The use of the inequalities (5:8), (5:9), and (5:10) instead of (5:5), (5:6), and
(5:7) was first suggested by J. H. Curtiss. In SRG 255 similar transformations
of the inequalities defining the test procedure have been used in other problems
as well.
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given in Table 5. In this example, inspection is terminated. at m =
22 with the rejection of the lot.

TABLE 5

m an dm r
Number Number . '9 .
of Units Aceepmnce of Defects Bglectggn

Inspected Number Observed um r

017"'~l@U'l|-I50-3l\9|"
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
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_ 5.3.3 Graphical Procedure for Carrying Out the Test
The test procedure can also be carried out graphically. The num-

ber m of observations is measured along the horizontal axis and the
number d.,, of defects along the vertical axis. The points (m, am) lie
on a straight line L0, since am is a linear function of m. Similarly the
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points (m, rm) lie on a straight line L1. The intercept of L0 is given by

1—-or(5:13) ho =
P1 1 _ Pilog — — log ‘-—-
Po 1 — Po

and the intercept of L1 is given by

1 -" 5log —~———-—
(5:14) h, = °'

P1 1 — P1log —-— — log i——-
Po 1 Po

The lines L0 and L1 are parallel and the common slope is equal to

1 — Pologi
1 P1(5:15) s = i-—-—-—-——

Pi 1 — P1log— -—- log———-
P0 1 — Po

The two straight lines Lo and L1 are drawn before inspection starts.
The points (m, d,,.,) are plotted as inspection goes on. We continue
inspecting additional units as long as the point (m, d,,,) lies between
the lines L0 and L1. Inspection is terminated the first time that the
point (m, dm) does not lie between the lines L0 and L1. If (m, d,,,) lies
on L0 or below, the lot is accepted. If (m, aI,,,) lies on L1 or above, the
lot is rejected.

Figure 11 shows the graphical procedure for the example given in
Section 5.3.2.
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5.4 The Operating Characteristic (oc) Function L(p) of the Test ‘
5.4.1 Determination of L(p) for Some Special Values of p
As defined in Section 2.2.1, the value of the oc function L(p) for

each p is equal to the probability that the lot will be accepted when
p is the true proportion of defectives in the lot. One can easily verify
that

(5:16) L(0) = 1 and L(1) = 0
Since the test procedure is so set up that the probability 1 '

that the lot will be accepted when p = pg, and the probability is ,6
that the lot will be accepted when p = pl, we have

(5:17) L(Po) = 1 — tr and L(p1) = B

1—Polog——-————
1-‘P1When =s=P

P1 1 — P1log —- —- log —————
Po 1 P0

we obtain from equation (3 :43)
1- 1--fi

Ah-

1 .__m__
og C! kl(5:18) L(s) = —= A *8 A e ~

1—s (-1 h+|hl‘°g1i:;.;l 1 Q
where ho and h, are the intercepts of the lines L0 and L1.“

Thus, five points on the OC curve corresponding to p = O, 1, po, pl,
and s can immediately be determined. Since L(p) is monotonically
decreasing with increasing p, the five points will determine fairly
closely the shape of the whole OC curve. This will frequently be suf-
ficient for practical purposes and there will be no need to compute L(p)
for additional values of p.

‘ The formulas given in this section involve an approximation caused by neglecting
the excess of dm over the boundaries am and rm at the termination of the test proce-
dure. For details see Sections 3.4 and A.2.3. An exact formula for L(p) is given
in Section 5.4.3 for the special case in which the slope s of the decision lines is equal
to the reciprocal of an integer.

' Virhen p = a, the value of h in formula (3:43) is equal to O. The limiting value of
. _ log Ath ht-h d b f 3:43 , h h 0, 1 t r e A - ' ‘e rig an mem er o ( ) w en —> is equa to l0gA + no BI which is

8equal to the right-hand member of (5:18), since A = (1 —- 5)/at and B = B/(1 —- tr).
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5.4.2 Detenznination of L(p) over the Whole Range of p
It has been shown in Chapter 3, equations (3 :45) and (3 :46), that "

0+6)"» 1
(i+;1)"~(.e.)“

where h is determined by the equation
1 _ h1 ~ (—:)1 — Po(5:20) e = -—i-1-

(£1)"_ (1_-£1)”
P0 1 — Po

To compute the OC curve, it is not necessary to solve equation
(5:20) in h. For any arbitrarily chosen value h, the values of p and
L(p) may be computed from (5:19) and (5 :20). The point [p, L(p)]
computed in this way will be a point on the OC curve. The OC curve
can be drawn by plotting a sufficiently large number of points [p, L(p)]
corresponding to various values of h. Figure 12 shows a. typical OC
Cl.1I'V6.

(5119) L(P) =

Lip)
1

O 1-H I 1 P
FIG. 12

The range of h in (5:19) and (5 :20) is from — so to -|—<=<=>. It can be
verified that the right-hand member of (5:19) is increasing with in-
creasing h, and the right-hand member of (5 :20) is decreasing with in-
creasing h. The five values of p considered in Section 5.4.1, that is,
p = O, pg, s, pl, 1, correspond to the values ofh = + so, 1, O, —-1, '- °°i
respectively, as can be seen from (5 :20). Letting h = -l-"Q, 1, 0, "1:

T In the formulas given in SRG 255, p. 2.50, the quantities p and L(;P) are 93'"
pressed in terms of another parameter :1: which is functionally related to h.
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-— =0 in (5:19), we obtain the corresponding five values of L(p) which
coincide with those given in Section 5.4.1.

If the part of the OC curve corresponding to positive values of h
has been deterrnined, the computation of the part of the OC curve
corresponding to negative values of h can be simplified.“ To show this,
let h be a given positive value and let [p, L(p)] be the corresponding
point on the OC curve. Let [p', L(p')] denote the point on the OC
curve corresponding to -h. Then we have

(-‘—?)"”—1
(~‘—:E3)_"— <.%.;)_"

= (1—?)h(.—f-;)i[(‘—3—5-)*“—1]
(i§£)"(.~§—.;)"[(‘—‘5'5’)”"— (rf—.)”‘]
(if. J (1

(:—f——.)’*~ (155
. »~ 1- (‘~;—'°)" . 1Similarly, - (l _ 0,) <1 fig). C :8). = Le»)

.1- ___.‘<1ii;>”“ =(s>"(1+;;)"~(.%;)”
(Z-?.;)"‘— (1 i 13;)” (ELY

(521) L(P') =

-mm:mm

(‘ ‘ ”‘)"9- 1= .________1- P0 _ C2)"
P0 (1-P1)“ (p1)h Po P

1 P0 Po
. ____ _. I

mn-

‘A similar siniplification is given in SRG 255 "1' "0 -'
Parameter :1: used there. 1 pl -“D 1 “uh rhference to the
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Thus, the point [p’, L(p’)] corresponding to —h can be computed from
the point [p, L(p)] corresponding to h by using the simple relations

e' = (E-;)he end L(1>’) = (-,&,)hL(p).
5.4.3 Exact Formula for L(p) When the Reciprocal of the Slope of

the Decision Lines Is an Integer
The quantity z, i.e., the logarithm of the probability ratio for

a single observation, can take only the values log (pl/pg) and
log [(1 — pl)/(1 — pg)]. It follows from (5:15) that

1 1
logg = (-— — 1) log-———?£

P0 '5-‘ 1 "P1
where s is the slope of the decision lines. Assume that 1/s is an in-
teger. Then the two values of z are integral multiples of d’ =
log [(1 — pg)/(1 — pl)], namely, ---d and [(1/s) — 1]d, and the results
in the last part of Section A.4 can be used to determine the exact OC
curve.” On the basis of these results one can show that

1 1 1 A- ';"2+l:%*:l‘Ht
g (‘fit '— 1)I_I("t - 1&1)

= j#i“"” ,5 ~ 2 +1‘:-+1] + 1-—''1
£==1 ('1-it - 1) I N (‘"1" '-' H3‘)

it-=1
where A and B are the constants used in the sequential test," the
symbol [la] denotes the smallest integer g Ic, and ul, ‘U2, - - -, ul are the
roots of the equation '

1(1 -—- :0)“ + av H-"— = 1
U ul

A different method for deriving an exact formula for L(p) was given
by M. A. Girshicl-c in The Annals of Matheinatical Statistics, Vol. 17
(1946). His method does not require the computation of the ro_ots
ulr ' ' ' I 1'81‘

I

‘To reduce this case to the case discussed in the last part of Section A.4, 0116
merely has to consider the test corresponding to 2"‘, A‘, and B "' where 1:‘ = —-B’.
logA"' = — logB and logB* = — log A.

1° To obtain a test of strength (at, ,8), we used the approximate values A -I
(1 — fl)/at and B = 15‘/(1 -— 0:).
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5.5 The Average Sample Number (ASN) Function of the Test

Let n denote the number of observations required by the test pro-
cedure. Then n is a random variable, since it depends on the outcome
of the observations. The expected value of n depends on the propor-
tion of defectives in the lot and is denoted by E,,(n). This can be
plotted as a curve, p being measured along the horizontal axis and
E,,(n) along the vertical axis. A typical ASN curve is shown in Fig.
13. This curve is called the ASN curve of the test (see Section 2.2.2
for a general definition of the ASN curve).

T E,,(n.l

I

_ I I e -J < 
0 P, P, 1 P

FIG. 13

The general formula for the ASN function of a sequential probability
ratio test is derived in Section 3.5. The approxirnation formula (3 :57)
applied to the binomial case gives 1‘

L(z>)10s B + (1 -— L(p)) log/1(5:23) E,,(n) =
P1 1 '- Piir>l<>s—- + (1 -—- P)1°E—"_"—
Pc 1 -“ P0

where A = (1 —- B)/tr, B = )6/(1 — oz), and L(p) denotes the prob-
ability that inspection terminates with_ the acceptance of the lot
Using this formula, we shall compute E,,('rt) for p = 0, pg, pl, and 1:
Since L(0) = 1, the value of E,,(n) is given by

1-0:

1 _' P1log ——-—-
1 _ P0

‘ The right-hand member of (5:23) can be expressed as a function of L(p). the
intercepts, and the slope of the decision lines. See SRG 255, p. 2.63.

ll
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'E"gh;;1)P = 0- F01‘ P = Po, we have L(p) = 1 - cu and we obtain from

1(1 — -s)10e-—€-—+=:=l<>g——-E
1 —o: or(5 =25) E,“ <1») =

P 11:-01¢-g—‘ + (1 - p0>1og-ii
PU 1 "'- pg

For p = pl, we have L(p) = 5 and we obtain from (5:23)

6102-9-—+ (1 -13) Iogfl
1-0: or(5 :26) E3,1(n) =

P1 1 "" P1P1 1<>g- + <1 — p1)]0g_'_i
P0 1 "" Po

Since L(1) = 0, we obtain from (5 :23)

1 — 5logi
O!(5:27) E,,(n) =i

P1log —-
Po

when p = 1.
Using formula. (Azlf-)9) in the Appendix, we can compute the value

dof E,,(n) when p is equal to the common slope s of the acceptance an
rejection lines, i.e., when 12

1 — pg
log—~——-~—-——~

1 — P1p =ii= s
391 1 "‘ P1log -— — log ——€—
Po 1 — Po

From (A :99) we obtain

( 1- ‘°g "'€";;) (‘°g
(5 :28) E, (n) =fi 

where E_,(z2) is the expected value of 22 and z is a random variable
' 1 )/(1 — P )1wh1ch can take only the values log (pl/P0) and log [( -—- pl 0

1‘ The value s of p corresponds to the value 6' in formula (A:99). It can be shown
A 9 d therefore also (E-'28), involvesthat 3 lies between P0 and P1- FDITI1‘-115' ( 3 9), fin -

an approximation caused by neglecting the excess of the cumulative sun: over the
boundaries.
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with probabilities s and 1 — s, respectively. Thus

P1 2 __ (1 1 P1)2(5:29) E_,(z2) - s(log E) + (1 8) 03 _'—‘*-1_ P0

P1 2 1 — P1)2] A (1 1 — my
=si(1Og;l;) _(10g1—pl;l + Og1—Po

1-P0 P1 1—P1 1_'p12= 1 _)(. —-+lg-————)+(l0s-———)(og1_p1 ogpo o l__p0 lqpo

P1 1 —' P0= log — log —————
190 1 '— P1

From (5:28) and (5:29) we obtain

( 1 1 _

- ‘°g (‘°g"T5)(5:30) E (R) = '—""*"—-—i-i-3

P1 1 — P0log -- log —_-
P0 1 pl

The determination of the five points of the OC curve, as given in
(5:24), (5:25), (5:26), (5:27), and (5:30), may frequently suffice in
practice, since these five points already give a fairly good idea of the
shape of the whole curve. The ASN curve generally increases as p
increases from O to pll, and decreases as p increases from pl to 1. In
the interval (pll, pl) the ASN curve gcnerallv increases as p increases
from pl, to some value p’, and decreases p increases from p’ to pl.
The value p’ is generally equal to s or is very near s.

If it is desired to plot the ASN curve over the whole 1'11-I120 Of Z)? it
is necessary first to compute the OC function L(p). The value of
E,-,,(n.) can then easily he determined from (5:23) for an_\_,' value p.

5.6 Observations Taken in Groups

5.6.1 General Discussion
For practical reasons it may sometimes be preferable to take the

observations in groups, rather than singly. That is, the test procedure
is carried out as follows. A group gl consisting of v units is drawn
from the lot. If the number of defectives (1,, in this group gl is less than
or equal to the acceptance number a,., inspection terminates with the
acceptance of the lot. If d,, is greater than or equal to the rejection
number r,., inspection terminates with the rejection of the lot. If
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av < dl, < r,,, a second group g2 of v units is drawn. Again, the lot is
accepted if the total number of defectives dz, in the two groups is less
than or equal to a2,., the lot is rejected if d2-,, g r2,,, and a third group
g3 of v units is drawn if Ctgl, < d2-U < r2,__.. This process is continued
until either rejection or acceptance of the lot is decided. Thus, when
the observations are taken in groups of v units, the number dm of
defectives found is compared with the corresponding acceptance num-
ber am and reject-ion number r,,,_ only for m = v, 2v, 3v, - - -, etc.

The purpose of this section is to make some comments onlthe effect
of grouping on the OC and ASN curves of the sampling plan. Clearly,
grouping can only increase the number of observations required by the
test. For, suppose that inspection terminates at the nth unit when
observations are taken singly. If n is equal to an integral multiple of
2.1, i.e., n = kv, then the number of groups inspected, when observations
are taken in groups’, will be precisely equal to I-2, and the total number
of units inspected will be the same as when observations are taken
singly. However, if Irv < -n. < (la + 1):), grouping will cause an in-
crease in the amount of inspection, since we shall have to inspect at
least (lo —|— 1) groups, that is, at least (is + 1):) units. It may even
happen that we shall have to inspect more than (Kc + 1) groups. This
will be the case when d,, lies outside the interval (an, r,.,), but (2(];.|..1]v
< d,l._,_,,.,, <1 ;,-(,,_|_,,,,_ Thus, the increase in the expected number of
units inspected caused by grouping may even exceed v in some cases.

Regarding the effect of grouping on the OC curve, the following
remarks may be made. Putting A = (1 — ,6’)/oz and B = B/(1 — cu),
the probability oi’ of rejecting the lot when p = pll and the probability
B’ of accepting the lot when p = pl will be only approxirnately equal
to or and B, respectively, even if the observations are taken singly.
This was pointed out in Section 3.3, where the following inequalities
were derived:

(5:31) er’ g --——f— and B’ 5 ——E--
1 — 6 1 — or

I1; l-_-an Q-;~l_~;il_\,' he vcrifiecl that these inequalities also remain valid when
the obseiwat-ions are taken in groups. The quantities or and 5 F-1T8
usually very small and or,/(1 — 8) and B/(l — 0:) are very nearly equal
to cc and B, respectively. Thus, also in case of grouping, the realized
Valugg 0,’ and ,8’ cannot exceed the intended values or and )3, respec-
tively, except by an exceedingly small quantity which can be neglect/Ed
for all practical purposes. This means that, for all practical purposes,
grouping will not decrease the protection against wrong decisions pI‘0-
vided by the test. The only possible effect of practical significance that
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may be caused by grouping is that it may make as’ or B’ substantially
smaller than the intended values or and B. This feature of grouping
compensates, to some extent, for the increase in the number of ob-
servations.

It may be of interest to remark that, if the number 1: of units in a
group is equal to the reciprocal of the common slope s of the accept—
ance and rejection lines and if the intercepts of these lines are integers,
the OC curve is not affected at all by grouping.“ This can be seen as
follows: Because s = 1/cl, we have a.,,,_|_,,- = am + 1 and r,,,_l_,l =
1-,,, -[— 1. Furthermore, since the intercepts of the acceptance and re-
jection lines are assumed to be integers, am and r,,, have integral values
for any m which is an integral multiple of v. If item-by-item inspec-
tion leads to acceptance of the lot at the nth item, then n must be an
integral multiple of v, and therefore inspection in groups of v will also
lead to acceptance. If item-by-item inspection leads to rejection of
the lot at the nth item, then we have dl, g r,,. Let n’ be the smallest
integral multiple of v greater than or equal to n. Then dll = Tn», since
01,, is an integer, d,, — rn é 1, and r,.,» -— 1-,, g 1. Hence dn» g 1-,,» and
inspection in groups will also terminate with rejection of the lot. Thus,
inspection in groups leads to exactly the same decision as item-by-
item inspection and consequentlygrouping does not affect the OC curve.

5.6.2 Upper and Lower Limits for the Efl’ect of Grouping on the
OC and ASN Curves

Upper and lower liniits for the effect of grouping on the OC and ASN
curves can be obtained by considering the following three auxiliary
sequential sampling plans. Let ho be the intercept of the acceptance
line, hl the intercept of the rejection line, and s the coinmon slope in
the given sampling plan. The first auxilialy plan is obtained by
changing ho to hll* = ho — vs and leaving hl and s unchanged. The
second auxiliary plan is obtained by changing hl to hl* = hl —l— vs,
leaving ho and s unchanged. Finally, the third auxiliary plan corre-
sponds to the intercepts hl;,*, hl*, and slope s. Let L,-(p) denote the
OC function and E,,,- (n) the ASN function of the auxiliary plan 2i, when
item-by-item inspection is used (i = 1, 2, 3). Furthermore, let L(p)
denote the OC function and E,,(n) the ASN function of the given plan
when item—by-item inspection is used. When inspection is made in
groups thti OC and ASN functions are affected,“ and we shall denote
them by LU?) and El,("n) respectively.

'3 Sec also SRG 255, p. 2.30.
" Except, in the case of the OC function, when the number of units in the group

is the reciprocal of the slope, as stated in Section 5.6.1.



IO4 TESTING THE MEAN OF A BINOMIAL DISTRIBUTION

It can easily be seen that whenever the first auxiliary plan (using
item—by-item inspection) leads to the acceptance of the lot, the orig-
inal plan (taking observations in groups) also leads to acceptance.
The converse is, however, not necessarily true. That is, it may happen
that the auxiliary plan leads to rejection of the lot, whereas the original
plan leads to acceptance. Thus, we have

(5 =32) L1(P) é EU»)
Similarly, one can verify that whenever the second auxiliary plan

(using item-by-item inspection) leads to rejection of the lot, the orig-
inal plan (using grouping) also leads to rejection. Hence

(5133) 1 — I-l2(P) é 1 — E00)
This can be written as

(5134) Z(P) 5 L2(.'P)
From (5:32) and (5:34) we obtain

(5135) L1(P) 5 EU?) é L209)
To derive an upper limit for E,,(n) we shall make use of the third

auxiliary plan. If this plan (using item-by-item inspection) terminates
at the inspection of the nth unit, the original plan (using grouping)
must terminate at the latest with the inspection of the group in which
the nth item is included.“ Hence, the number n’ of units inspected
when the original plan is used cannot exceed n + v. From this it
follows that s

(5:36) Ep(fl) é Epa(n) + v
Since E,-,,(n) g E,,(n), we obtain the limits

(as?) EA») s EAR) s Ema) + v
Limits for Z(p) and I-i",,('n) could also be derived by using the method

described in Sections A.2.3 and A.3.1 of the Appendix. The limits
given in (5:35) and (5:37) will be rather close when P1/P1) and
(1 — pl)/(1 — pg) are near 1 and vs does not exceed 1.

5.7 Truncation of the Test Procedure
The sequential sampling plan does not provide any definite upper

bound for the number n of units to be inspected. any large value of
n is possible, but the probability 1S small that n will exceed twice or

1* It. is possible, of course, that inspection terminates with an earlier group-
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three tiines its expected value. It is sometimes desirable to set a
definite upper bound no for n, excluding even a small probability that
n may exceed no. This can be done by truncating the sequential proc-
ess at n = no. That is to say, we terminate the process at n = no
even if the regular sequential rule does not lead to a final decision for
n 5 no. The following seems to be a reasonable rule for deciding
acceptance or rejection of the lot at n = no if no decision is reached
for n g no with the regular sequential procedure: If do, 2
(an, —|— r,,,,)/2 we reject the lot, and if do, < (an, + r,-,,,)/2 we accept
the lot.

Truncation and its effect on the OC curve are discussed in Section
3.8. If no is put as high as three times the expected value of n, the
efiect of truncation on the OC curve is negligibly small, since the
probability is nearly 1 that the regular sequential procedure will tenni-
nate for n < no.
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Chapter 6. TESTING THE DIFFERENCE BETWEEN THE
MEANS OF TWO BINOIVIIAL DISTRIBUTIONS (DOUBLE

DICHOTOMIES)

6.1 Formulation of the Problem

Suppose that we want to compare the effectiveness of two produc-
tion processes where the effectiveness of a production process is meas-
ured in terms of the proportion of effective units in the sequence pro-
duced. We shall say that a unit is effective if it has a certain desirable
property, for example, if it withstands a certain strain. Let pl be the
proportion of effectives if process 1 is used, and p2 the proportion of
eifectives if process 2 is used. In other words, pl is the probability
that a unit produced will be effective i_f process 1 is used, and P2 is the
probability that a unit produced will be effective if process 2 is used.
Suppose that the manufacturer does not know the values of pl and
pg, and that process 1 is in operation. If pl Q pg, the manufacturer
wants to retain process 1. However, if pl -< pg, especially if pl is
substantially smaller than P2, the manufacturer would like to replace
process 1 by process 2. Thus, we are interested in testing the hypoth-
esis that pl g P2 against the alternative that pl < po.

A more general formulation of the problem can be stated as follows.
Consider two binomial distributions. Let pl be the probability of a
success in a single trial according to the first binomial distribution,
and let pll be the probability of a success in a single trial according to
the second binomial distribution. We shall use the symbol 1 for suc-
cess and the symbol 0 for failure. Suppose that the probabilities pl
and P2 are unknown. We consider the problem of testing the hypoth-
esis that pl Q P2 on the basis of a sample consisting of Nl observations
from the first binomial distribution and N2 observations from the
second binomial distribution. Since in many experiments the case
Nl = No is mainly of interest, and since this case (as we shall see
later) makes an exact and simplified mathematical treatment of the
problem possible, in what follows we shall assume that Nl = N2 = N
(say). Thus, on the basis of the outcome of the two series of N inde-
pendent trials we have to decide whether the hypothesis P1 ll: P2
should be accepted or rejected.
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6.2 The Classical Method

The classical solution of the problem for large N is given as follows.
Let Sl be the number of successes in the first set of N trials (drawn
from the first binomial distribution), and let S2 be the number of suc-
cesses in the second set of N trials (drawn from the second binomial
population). Denote (Sl + S2)/2N by p and 1 — 13 by Q. Then for
large N the expression

(6,1) 5%-;_—_S_1
\/2N;§q

is normally distributed with zero mean and unit variance if pl == po.
Suppose that the level of significance we wish to choose is er. Let All
be the value for which the probability that a normal variate with zero
mean and unit variance will exceed Ac, is equal to as. (For example, if
or = .05, Ra = 1.6-1.) Thus, if pl = P2, the probability that the ex-
pression (6:1) will exceed All is equal to oz. If pl > po, the probability
that the expression (6:1) will exceed Pia is less than cm. According to
the classical method, the hypothesis that pl Z P2 is rejected if the
observed value of (6:1) exceeds A0,. This method involves an approxi-
mation, since the distribution of (6:1) is not exactly normal (for small
N it is far from normal). For small JV an exact method has been pro-
posed by R. A. Fisher which, however, involves cumbersome calcula-
tions. In Section 6.3 we shall suggest another (non-sequential)
method which is exact and is fairly simple to apply as far as compu-
tations are concerned. The latter method has the further advantage
of being suitable for sequential analysis, to which existing methods
are not readily adaptable.

6.3 An Exact Non-Sequential Method

Let al, - - - , age be the results in the first set of N trials, and bl, - - - , by
the results in the second set of N trials. These results are arranged in
the order observed. Consider the sequence of N pairs:

(6 (G12 bl)! ' ' '1 (GM, b."V')

Let tl be the number of pairs (1, 0) and to the number of pairs (0, 1)
in this sequence. "We consider only the pairs (O, 1) and (1, O) and base
the test on them.

Let a be the outcome of an observation from the first population,
and b the outcome of an observation from the second population.
The pI‘Ol)3.l_)lllt-Y ((1, = (1, f3(]l.l£l.l t.() p1(1 -— p2), ,{1,n(_]_ the

Pffibfl-bility '1-hat (cl, b) = (O, 1) is equal to (l — pl)p2. Hence, know
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ing that (a, b) is equal to one of the pairs (0, 1) and (1, 0), the (condi-
tional) probability that it is equal to (0, 1) is given by

(1 - Pi)P2(6:3) ~ - -
p P1(1 "' P2) + P2(1 — Pi)

and the (conditional) probability that it is equal to (1, O) is given by

(6:4) 1 _ p _ Pi(1 — P2)
Pi(1 — P2) + (1 -' P1)P2

Hence, when only the pairs (1, 0) and (0, 1) are considered, the variate
to is distributed like the number of successes in a sequence of t =
tl —l— to independent trials, the probability of a success in a single trial
being equal to p. One can easily verify that p = }é if pl = pl-l,
p < }/Q’ if pl > Pg, and p > % if pl < po. Thus, the hypothesis to
be tested, i.e., the hypothesis that pl g pl, is equivalent to the hypoth-
esis that p s‘ V2. Thus, we can test the hypothesis that pl Q po by
testing the hypothesis that p 5 %; on the basis of the observed value
of to. Since the distribution of to is the same as the distribution of the
number of successes in t = tl + to independent trials (t is treated as a
constant and the probability of a success in a single trial is equal to
p), the test procedure can be carried out in the usual manner. If we
want a level of significance a, a critical value T is chosen so that for
p = %l the probability that to g T is equal to oz. The hypothesis that
p g %l is rejected if and only if the observed to is greater than or equal
to the critical value T. The value of T can be obtained from a table
of the binornial distribution. If t is large, to is nearly normally dis-
tributed, and the critical value T can be obtained from a table of the
normal distribution.

This procedure thus provides a simple test of the hypothesis that
pl g P2. The question arises whether the efficiency of this method is
as high as that of the classical method. It would seem that the method
suggested here cannot be a most efficient procedure, since the values
of tl and to depend on the order of the elements in the sequences
(al, - - -, alv) and (bl, - ~ -, blv), and there is no particular reason to
arrange them in the order observed. However, it has been shown 1
that the loss in efficiency as compared with the classical method is
negligible if the number N of trials is large.”

1 See the author’s report, Sequential Analysis of Statistical Data: Theory,_s11b-
mitt/ed to the Applied It-Iathematics Panel, National Defense Research Committee,
Sept., 1943. _

2 The author believes that the loss in efficiency is slight even when N is small,
although no exact investigation of this case has been made.
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It should be pointed out that the procedure for testing the hypoth-

esis that pl a pg can be used also for testing the hypothesis that
pl = pg if the alternative hypotheses are restricted to po > pl.

In addition to simplicity and exactness, the present method seems
superior to the classical one in the following respect. Suppose that
(contrary to the original assumption) the probability of a success varies
from trial to trial. Let pl“) denote the probability of success in the
with trial of the first set, and let pom denote the probability of success
in the ith trial in the second set (i = 1, - - -, N). Assume that the
probabilities pl“) and pom are entirely unknown and we wish to test
the hypothesis that pl“) -— pom = » - - = pl“) — pow’ = O. In this
case the classical method is not applicable, but the present method
provides a correct procedure. Such a situation may arise, for instance,
if we want to test the hypothesis that the probability of a success
(hitting the target) is the same for two different guns. In the course
of the experiments the probability of a hit may change because of ex-
ternal conditions such as wind or disposition of the gunner. However,
these external conditions are likely to affect both guns equally if the
trials are made alternately (or approximately alternately), so that if
the two guns are equally good we have pl“) = pom (i = 1, -- - N).

6.4 Sequential Test of the Hypothesis That pl Z pl

6.4.1 Risks That We Are Wifling to Tolerate of Makiiig Wrong
Decisions

In order to devise a proper sequential test for testing the hypothesis
that pl g po, we have to state first what risks of making wrong deci-
sions we are willing to tolerate. The efficiency of production process 1
may be measured by the ratio of effectivcs to lI1(?iii*€!l?i.-l\’(_?S produced,
i.e., by kl = pl/(1 — pl). Production proc-e.~<s 1 may be regarded the
more efficient the larger the value of kl. Siniil.-.irl_v, the cfliciency of
production process 2 may be measured by /to = ;r1ll_._»"’(l — pg). The
relative superiority of production process 2 over process 1 can ther
reasonably be measured by the ratio of kl to I;-l, i.e., by

if *7 _u 7—' 2 ;_ F)--(61;

If-1 Pill — P2)

If ‘IL = 1, the two processes are equally good. If u > 1, process 2 is
superior to process 1, and if n < l, proce:-=s l is superior to process 2.
Thus, the manufacturer will, in general, be able to select. two values
Of u, uo and ul, say (uo < ul), such that the rejection of process 1 in
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favor of process 2 is considered an error of practical importance when-
ever the true value of u g uo, and the maintenance of process 1 is con-
sidered an error of practical importance whenever u g ul. If u lies
between uo and ul, the manufacturer does not care particularly which
decision is made.

Clearly, we will always have uo < ul. If the transition from pro-
duction process 1 to process 2 involves some cost or other inconven-
iences, it seems reasonable to put uo = 1 (or uo may even be slightly
greater than 1). This choice of uo really means that we consider the
rejection of process 1 a serious error whenever this process is not infe—
rior to process 2. On the other hand, if the transition from process 1
to process 2 does not involve any inconveniences, the rejection of proc-
ess 1 in favor of 2 cannot be a serious error when the two processes are
equally efficient, i.e., when u = 1. Thus, in such a case it seems reason-
able to choose uo somewhat below 1.

After the quantities uo and ul have been chosen the risks that We
are willing to tolerate may reasonably be expressed in the following
form: The probability of rejecting process 1 should not exceed a pre-
assigned value or whenever u g uo, and the probability of maintaining
process 1 should not exceed a preassigned value ,6 whenever u 3 ul.
Thus, the risks that we are willing to tolerate are characterized by the
four quantities uo, 14:1, cr, and 6.

6.4.2 The Sequential Probability Ratio Test Corresponding to the
Quantities uo, ul, ct, and [3

After the four quantities uo, ul, or, and L-3 have been chosen, a proper
sequential test can be carried out as follows. The (conditional) prob-
ability that we obtain a pair (O, 1), as given in (6 :3), can be expressed
as a function of u. In fact

(1 ""' P1)P2

(1 '-' IPUP2 P10 "" P2) __ u
(6:6) p =s " r ’_' — -'_"’1-'>1(1 — P2) + P2(1 — P1) 1 k P20 '—' P1) 1 + 1*' - I

P1(1 — P2)

Let H0 denote the hypothesis that p = uo/(1 + uo), and I_1T1 the
hypothesis that p -= 241/ (1 + ul). A proper sequential test satlsfymg
our requirements concerning tolerated risks is the sequential prob-
ability ratio test of H0 against H1. The acceptance and re]ect1on num-
bers for this sequential test can be obtained from (5:11) and (5:12) by
substituting uo/(1 + 1&0) fol‘ Po, ‘I11/(1 + H1) f0!‘ P1, and 5 -'= 31 + 32
for m.
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Thus, for each value of t the acceptance number is given by

5 1+u1log--Z log-—-—-—
1—O! 1"}-‘big

(6 I7) (I; z
log u; — log an log u; —- log uo

and the rejection number is given by

1""'45 1+141
log——- log——-i

a 1-Fug
(6 :8) T; =

log ul — log uo log ul —- log an

These acceptance numbers a, and rejection numbers r, (t = 1, 2, - - -)
are best tabulated before experimentation starts. The sequential test
is then carried out as follows. The observations are taken in pairs
where each pair consists of an observation from the first process and
an observation from the second process. We continue taking pairs as
long as a, < £2 < rj. The first time that £2 does not lie between the
acceptance and rejection numbers, experimentation is terminated.
Process 1 is maintained if at this final stage £2 g at, and process 1 is
rejected in favor of 2 if £2 g rj.

As an illustration, the following example is given. Let 140 = 1.3,
ul = 3, or = .03, and B = .10. The observed pairs (0, 1) and (1, 0)
in an experiment, and the rejection and acceptance numbers, are given
in Table 6. In this example, the sampling process is terminated at
t = 18 with the retention of process 1.

The test procedure can also be carried out graphically as shown in
Fig. 14. The total number t of pairs (0, 1) and (1, 0) is measured along

24 t 2 L1

1 B 55 \_

. ecx 9‘wenew C5300 Lo
1 2 E 3.050%

- uc’D(\\\“ x

10°”?6 wcegx 9
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the horizontal axis. The points (t, a,) will Lie on a stralght hne Lo
smce 0:, is a linear function of t. The points (t, 1-,) will he on a parallel
hne L1 We draw the lines L0 and L1 and plot the points (t, t2) as

Number Pairs Ac: t_ Nuriber
of Pairs (0, 1), (1, 0) P of Palrs Rejection

(0, 1), (1, 0) Observed ”‘“°° (0, 1) Number
Observed N“‘“b°' Observed

mlllmtm |—- I I I — 1 ‘-"""— ii

®'*-10301!-I-‘~OJI'.\'.H--I
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

(0. 1)
(0. 1)
(1, 0)
(1, 0)
(1. 0)
(0. 1)
(1, 0)
(0, 1)
(0, 1)
(1, 0)
(0. 1)
(0. 1)
(0. 1)
(1. 0)
(1. 0)
(0, 1)
(1. 0)
(1. 0) cow-4-qomcnswwzov-1-o

9
10
11
11
12
13
13
14
15
15
16

flG¢O<OW®®‘~IOiU\iflhl¥¢A)Wl~JNMMH

-_ —
. i  mm -3- I

experimentation goes on. The first time that the point (15 $2) 15 11°17
wlthm the lines LO and L1 experimentation IS terminated Process 1
[S maintained if at the final stage (t, t2) hes on L0 or below, and P1'°°
ess 1 IS rejected if (t, £2) lies on L1 or above.
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The intercept of line L0 is given by

1 0:
(6:9) ho =

log 11.1 —- log uo
and the intercept of L1 is given by

1 — 15log ‘—-
C!

111 =
log ul — log uo

The common slope of the two lines is equal to

1-I-141
logi

1-l-"0
log ul -— log no

6.4.3 The Operating Characteristic Curve of the Test
For any value u of the ratio I02/kl, we shall denote by L(u) the

probability of maintaining process 1. Clearly, L(u) is a function of u.
This function L(u) is called the operating characteristic function of the
test. It can be obtained from equations (5:19) and (5 :20) by substi-
tuting 11.0/(1 —|- uo) for pg and ul/(1 + ul) for pl. These equations

3HIE:

1 -,9 ’*<-> ~»612 = °'“ ’ <1;f>*<.:.>*
and 1 » <-I: W)”(613) 1" = 1 + "1

1 + 1). 'u1(1 + 110))“ <1 + soy

(6:11) s =

'¢40(1 + R1) 1 + 1&1
Equation (6:13) can be written as

1 (1 + M0)‘
1 + 111

?~¢1(1 + 1¢o))h 1

11-0-(1 + ?-£1)
'1ndthe formulas given in SRG 255, p. 3.38, the quantities u and L(u) are ex-

Preb-se I11 terms of a. “dummy” variable :1: which is functionally related to h.

(6:14) u = (
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For any given value h we compute u and L(u) from the equations
(6:12) and (6:14). The point [u, L(u)] obtained in this way will be a
point of the OC curve. By calculating the points [u, L(u)] for a sufii-
ciently large number of values of h, the OO curve can be drawn.

We shall compute [u,L(u)] for h = -cc», -1, 0, 1, +~==>. Since
1 + 1
i < 1 and 21-1‘ > 1, we obtain from (6:12) and (6:14)
1 + 1»-1 ’¢1~0(1 + ui)
(6:15) ‘u = as and L(u) = 0 when h = —m

(6:16) u = O and L(u) = 1 when h 1-— +00-

Furthermore we obtain

(6:17) u = ul and L(u) = B when h = -1

and

(6:18) u = uo and L(u) = 1 — oz whenh = +1

For h = 0, the expressions u and L(u) have the form O/O. The
limiting values of u and L(u) when h —> 0 can be obtained by differen-
tiating numerator and denominator at h = 0. Then we have

1"+"'£-£11<.g—- log---—-
; ==—-———-—-— an =619 1+“° d La) “( 1“ 1 "1<1+"=»> 1 1;'_“._,,, _._f_. e Os s

Og ’t£()(1 + U1) C! 1 '_ ‘Di

when h = O.
These five points on the OC curve already determine roughly the

shape of the curve. It can be seen that u is a decreasing function of
h and L(u) is an increasing function of h. Hence L(u) is a decreasing
function of u. As u varies from 0 to uo, L(u) decreases from 1 1‘-0
1 — cu. In the interval from uo to ul, L(u) decreases from 1 -— or to
6, and as u varies from ul to —|— w, the OC function L(u) decreases
from B to 0.

6.4.4 The Average Amount of Inspection Required by the Test
For any value u of the ratio kg/kl, let E,,(t) denote the expected

value of the total number of pairs (0, 1) and (1, 0) required by the
test. The value of E,,(t) can be obtained from (5 :23) by substituting
E,,(z) for E,.(n). L0“) for L(p), 1'1-0/(1 + uo) for Po, H1/(1 + 141) for P1-
and u/(1 + u) for p. Thus 4

' The right-hand member of (6:20) can be expressed as a function of Ll"). the
intercepts and the slope of the decision lines. See SRG 255, p. 3.41.
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B 1 BL(u) lvs 7:; + (1 — L(u)) lvsT
6:2O E,,(t) =-

( ) 14 u1(1 + Ho) 1 1 -l-R0—-i1og~ 2 —| logi
*-~ 1+u uo(1+u1) 1+u 1+'u1

To compute the expected value of the total number of pairs (in-
cluding also the pairs (0, 0) and (1, 1)), we merely have to divide the
right-hand side of equation (6:20) by p1(l — P2) + p2(1 — pl).

Since L(O) = 1 and L(~=-e) = 0, we obtain from (6:20)
13logTi
— or:

(6:21) E,,(t) = -i— when u -= 0
l 1-‘jvllg
0_____.__g1+

and ul
1 — Blog ‘-—-

(6 :22) E,,(t) = --ma--— when u = so
u1(l + 1:0)

log e ~ r
uo(1 + U1)

Since L(u0) = 1 -— 0: and L(u1) = )5’, it follows from (6 :20) that
I»-

5 1 13(1 --a)log——-——+cxlog—-——--——-
l-—o: o:

(6 :23) E,,,,(£) =
Ho '!41(1 + He) 1 1 + T10

——--—- log — 1-: I 3 - log ——-———-
and 1 + R0 1¢0(1 + 141) 1 + 110 1 +'1¢1

l
Bl0g——§—+ (1 ——B)1Os——-"£3

1-or or(6 :24) Eu! (1) =
U-1 'Z£1(1 + Hg) 1 1 -1- U0

‘T 10g " ‘ r 2|“ - 1.0g ii‘
1 -I‘ H1 '1-1o(1 + 141) 1 + 111 1 + ‘#11

_ In Section 5.5 we have computed the expected value of n when p
ls equal to the slope of the acceptance and rejection lines. This corre-
sponds to the case when 2.:/(1 + u) = s, i.e., u. = s/(1 — s), where the
$10119 8 18 given in (6:11). The value of E,,(£) for -u = s/(1 —- s) can
be obtained from the right-hand member of (5:30), replacing pl by

' “I/(1 + "11 and P0 by uo/(1 + uo). Thus
5 1 — .3~ <1@g.1-><1@g->(GI25) E . (z) = Q D”

1:; 1-11(1 +161) 1 +111
log -1 e ltigm

"o(1 + H1) 1 + rm
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The determination of the five values of E,,(.'!), as given in (6:21)
through (6:25), may frequently sufiice in practice, since these five
points generally give a fairly good idea of the shape of the whole curve.

6.4.5 Observations Taken in Groups
In applications it may happen that, at each stage in the sequential

process, instead of drawing a single observation we draw a group of
v observations from each of the binomial distributions. Hence, instead
of a single pair, we have two groups of v observations. The effect of
grouping on the OC and ASN curves has been discussed in Section 5.6
and the results obtained there can be applied to the case under con-
sideration here. If the order of observations in each group of v is re-
corded, we can establish the number of pairs (O, 1) and the number of
pairs (1, 0) for each pair of groups of v observations. In such a ease
the test can be carried out as described in Section 6.4.2, since after
each pair of groups of 2: observations we can compute 6 and £2. How-
ever, if the order of observations in such groups is not recorded, the
difficulty arises that ‘W6 are not able to determine the values of t and
t2 needed for the test procedure.

It has been shown 5 that in such a case we may replace 5 and £2 by
certain estimates of t and t2 without affecting seriously the probability
of making an incorrect decision. The estimates of £1 and t2 (and thereby
also an cstirnate of t = £1 + £2) are obtained as follows. Let 221 be the
number of successes in the group of v observations drawn from the first
binomial distribution, and let v2 be the number of successes in the
group of v observations drawn from the second binomial distribution.
Then for this pair of groups of u observations we estimate the number
of pairs (1, 0) to be :21 — (U102/U) and the number of pairs (0, 1) to be
:22 —— (vlvg/u). Thus, an estimate of £1 is obtained by summing v1
-—- (U1 1:2/:2) over all pairs of groups observed, and that of £2 is obtained by
summing 02 — (1)1132/L‘) over all pairs of groups observed.

For the effect of grouping on the OC and ASN curves, the results
of Section 5.6 can be applied, since the test procedure discussed here
reduces to that considered in Section 5.6 when p = u/(1 + u),
?'?i!, =81 +12 =1’, (gm = £2.

5See the author’s report-, Sequential Analysis of -Srm'z's!z'cal Data: Theory, sub-
h C mxnittee,mitted to the Applied l\Iat-hemat-ics Panel, National Defense Researc 0

Sept., 1943.



Chapter 7. TESTING THAT THE MEAN OF A NORMAL DIS-
IRIBUTION WITH KNOWN STANDARD DEVIATION FALLS

SHORT OF A GIVEN VALUE

7.1 Formulation of the Problem

Let as be a random variable which is normally distributed with un-
known mean 6 and known standard deviation 0'. In this section we
shall deal with the problem of testing the hypothesis that :9 is less than
or equal to some specified value 6’.

Such a problem arises frequently, for example, in quality control and
acceptance inspection. Suppose that a lot consisting of a large number
of units of a manufactured product is submitted for acceptance inspec-
tion. The number of units in the lot is assumed to be sufficiently large
so that the lot may be treated as containing infinitely many units.
Suppose that the result of an observation is a measurement ac of some
quality characteristic of the unit, such as the weight, or hardness, or
tensile strength. The value of zc will, in general, vary from unit to
unit. It is assumed that 2: is normally distributed with a known stand-
ard deviation cr but unknown mean 9. Suppose, furthermore, that the
product is considered the more desirable the smaller the value of 6.
Then it will, in general, be possible to designate a. particular value 6’
such that we prefer to accept the lot if 6 < 6’ and we prefer to reject
the lot if 6 > 6'. Thus, in such a situation, we are interested in de-
vising a sampling plan to test the hypothesis that 6 <1 6'.

Since quality control and acceptance inspection is an important field
of application for such test procedures, we shall continue the discus-
sion using the terminology of acceptance inspection. This, of course,
should not be interpreted as a restriction on the general validity and
applicability of the test procedure.

7.2 Tolerated Risks of Malsixig Wrong Decision
If 9 = 6’, we are indifferent whether the lot is accepted or rejected.

The preference for acceptance increases with decreasing value of 9 in
the domain 9 < B’, and the preference for rejection increases with in-
creasing value of B in t-he domain 6 > I9’. Thus, it will be possible in
general, to find two values 00 and 61 (60 <1 6’ and 91 > 3') such that

117
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rejection of the lot is considered an error of practical consequence if
6 g 60, and acceptance of the lot is considered an error of practical
consequence if 6 Z, 61; for values 6 between 60 and 61 we do not care
particularly which decision is taken. Using the terininology introduced
in Section 2.3.1, we may say that the zone of preference for acceptance
consists of all values 6 for which 6 g 60, the zone of preference for re-
jection is the set of all values 6 for which 6 Q 61, and the zone of in-
difference consists of all values 6 between 60 and 61.

After the two values 60 and 61 have been chosen the risks that we
are willing to tolerate may reasonably be expressed as follows.‘ The
probability of rejecting the lot should not exceed a small preassigned
value or whenever 6 as 60, and the probability of accepting the lot
should not exceed a small preassigned value ,6‘ whenever 6 Q. 61. Thus,
the risks that we are willing to tolerate are characterized by the four
numbers 60, 61, 0:, and 5.

7.3 The Sequential Probability Ratio Test Corresponding to the
Quantities 90, 91, <1, and I3

The requirements regarding the tolerated risks are satisfied by the
sequential probability ratio test of strength (oz, 6) for testing the hy-
pothesis that 6 = 60 against the alternative that 6 = 61. This sequen-
tial test is given as follows. Let zrl, I2, - - -, etc., be the successive
observations on ac. The probability density of the sample ($1, - - - , rm)
is given by m

1 — $ E (ra——\‘-Po)’

(711) Pom ‘-— ""1... 6 “=‘
(217) E6“

if 6 = 60, and by
1 — £3 2 (za—61}’

{7 plm =_—- T6 cz=1

(21r)2a'“

if 6 = 61. The prbbability ratio p1,,,/pom is computed at each stage
of the inspection- Additional observations are taken as long as

pl 6- $ E(=.=—eu)’
(7;3) B < '" - - 6,6 <: A

pom, -' £3 3(Ic:'-90): '
6

1 See. for instance, Section 2.3.2.
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Inspection is terminated with the acceptance of the lot if
1

6-' F EU-’a—91)2

(7 34) '7 1 5 B-— ::<==..—en>= _

Inspection is terminated with the rejection of the lot if
1

e— E; l‘:(3a_Bl)2

(7:5) _i£(= __ao)2 3 A

According to Section 3.3 approximate values of A and B are given

6 203 u

by (1 — B)/or and B/(1 -— ax), respectively.
By taking logarithms and simplifying, the inequalities (7:3), (7:4)

and (7:5) can be written as

,6 0,-00 ’" m 1-s7:6 1-———-<—-——-E ,,,+—-02-02 <1 ---—-( ) 0s1_a G2 “=1-'8 2a_2(o 1) Os at

. 61 — 6° Em: m 2 2"*7;--a=133a-|-'2;-é(9Q —'61)

1* and
91 '" 90 771

77?,
(738) T 21:11?“ + 5;"; (502 '- 912)

respectively.
Further simplification in carrying out the test procedure can be

achieved by adding (—m/202) (602 -—- 612) to both sides of the inequal-
ities (7:6), (7:7), and (7:8) and then dividing these inequalities by
(61 — 60)/02. These operations transform the inequalities (7:6), (7:7),
and (7 :8) into

#2 6 @o+@1(7:9) ———-——l ——-~— __.___
91-90 Og1—a+m 2 <

(7 :10) Ex“

and

(7 :1 1) Era
respectively.

§

Ii:

m 02 1 B
E r.,<-———-—log———-—+m——-i

a=1 61 H60 a 2

0'2 I B
._.._._____ O mi _|_ _____i_

91 90 g 1 or m 2

02 1—,B
_ log-—-——--1-m

5'51 --—-
_0g1—-0:

1....
al<>s——-Q

Q!

_ 9c"|"91

99-I-61

3o+51
91 30 Q; 2
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120 TESTING THAT THE MEAN IS BELOW A GIVEN VALUE

By using the inequalities (7:9), (7:10), and (7:11) the inspection
plan may be carried out as follows. For each m compute the accept-
ance number

2 0 0(7112) an = .“m,,,gi_+,,,a‘£_1
61—'90 1"-(I 2

and the rejection number

I <6 1-B H@+617;13 .,,=j1 —_— _--
( ) r 61-'69 cg C! +m 2

These acceptance and rejection numbers are best computed before in-
spection starts. Inspection is continued as long as am < Ex“ < rm.
At the first time when Ema does not lie between am and rm, inspection
is terminated. The lot is accepted if Era g am, and the lot is rejected
if Ex, g rm.

As an illustration, consider the following example. Let 60 = 135,
61 = 150, or = .01, and ,6 = .03. Furthermore, let 0' = 25. The ob-
servations and the acceptance and rejection numbers are tabulated in
Table 7, which shows that the sampling inspection is terminated at
m = 20 with the acceptance of the lot.

The test procedure can also be carried out graphically as shown in
Fig. 15. The number m of observations is measured along the hori-

4-0'00 Z x L1

c..‘i'~°“
3000 _@¢e"°59e L,

0°“

2000 ‘\Q\- ‘Ox
Q-exec P&q,BQ\

I000

0 - I -—- 2 I --—~ I -21- ~.--m
O 5 10 15 20 25

Fie. 15 .

zontal axis. The points (m, am) will lie on a straight line L0 and_tl19
points (m, rm) will lie on a parallel line L1. We draw the parallel lines

L0 and L1 before inspection starts. The points (m, E x) are plotted
a:=1

as inspection goes on. Inspection is continued as long as the plotted
points (m, Era) lie between the lines L0 and L1. Inspection is termi-
nated at the first tiine when the point (m, Ema) does not lie between
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TABLE 7

| 21
m am as Cumulated rm

Number of Acceptance Observed Sum of Rejection
Observations Number Value Observed \ Nurnber

Values

0:~1o=01m-u>w»-

281 ‘
424
566

851
994

9 ' 1136
10 1279

111 1 1421
12 1504
13  1705
14 1 1349
15 1991 1
16 2134 i
17 2276 A
18 2419
19 I 2551 ,
20 i 2704
21 2846

139 H

709 I

422 2989 I
23 A 3131
24 1 3274
25 3416

_ ' — 7' 6*"; 7— — 4 __ .. 7 __

151
144
121 i
137
133
135
155
150
144
145
130
120  
104
140
125
105
145 1
123
133 1
103
+ a 1- I

151
295
416
553
691
827
982

1142
1286
1431
1561
1681
1785
1925
2050
2156
2301
2424
2562
2670
I I I 4

- 0 i

334
476
619
761
904

1046
1189
1331
1474
1616
1759
1901
2044
2186
2329
2471
2614
2756
2899
3041
3184
3326
3469
3611
3754

L0 and L1. If it lies on L0 or below the lot is accepted, and 1f 1t lies
on L1 or above the lot is rejected.

The common slope of the lines LO and L1 is given by

90'+"5h(7:14) 3

The intercept of LO is equal to

I“ 61

-i
Iii

2

52
(7515) ho = —-——— 10g 6

and the intercept of L1 is given by

2 1
61 80 O5

--60 1—C’£

jm-1
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7.4 The Operating Characteristic (OC) Curve of the Test
Let L(6) denote the probability that the sequential test will lead to

the acceptance of the lot when 6 is the true mean value. The function
L(9) is called the operating characteristic function of the test. Ap-
proximate formulas for the OC function are derived in Section 3.4 and
the general results are applied to testing the mean of a normal popu-
lation. [See equation (3 :-48).] It is shown there that

<‘ 1”)” 1
<-#51)“ <1 51>”

I9 +6 —28(1213) 5 3 “es0, --0.,

It can be seen from (7:17) and (7:18) that L(6) is an increasing func-
tion of h and h is a decreasing function of 6‘. Hence L(6) is a decreas-
ing function of 9. . _

For 6 =-= — w, 60, (60 + 01)/2, 61, + on the values of L(6) obtained
from (7:17) are given as follows.”

(7:19) L(—=<>) = 1; L(6'5) = 1 —- <1
1 -6

1og—-—
O!

A log—-———-—log———-
cc 1 --a:

L011) = 15
.=.- O

(7 :17) L(6) ~

where

The computation of these five points of the OC curve will suffice in
many applications.

It may be of interest to express L(9) in terms of the intercepts ho

2 For 3 = L? we have h = 0 and the limiting value of the right-hand membfi’-‘I’
1 -—- B

log-———
CI

510.17) as h ->0 is equal to '
log?-— — log-—-—~

(I 1 as
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and hl and the common slope s of the lines L0 and L1.‘ From (7:17)
and (7:18) it follows that

91+-90-29 1'"-3“-1»-T ‘°‘ -=e — 1
(7 H“ 9|-I-843-26‘ :2 31+-760-28 B I

ml m
3 91-"99 cg I-I ....e 91-'90 D71-*1

2 2B 1--13 6 +6
Sinceho == ~——?;log————-,h1 == -—-‘!-L-1og—-iand s = Iii,

91--60 1-0: 91-—-B0 or 2
we obtain from (7:20) 2

1 (a—6)h1
e’ — 1=21 1. 9 ~ 2 4 4 —(7 ) ‘ > 6; <._.,.._ 6; ..._.,..

7.5 The Average Amount of Inspection Required by the Test
In Section 3.5 the following approximation formula is derived for

the expected value Ea (n) of the number n of observations required by
the sampling plan.

13 1 - 5L(6) log T: + [1 — L(6)] log -———
(7:22) E901.) = Q
where Ea (Z)

f(r 9 ) e*%(zmm2(7:23) z = log-—3——!— = log In 5 5
J-(I1 90) 6" gs (I-901'

1
= £3 l2(31 - 90)-'13 + 902 — 9121

and E.-,~(z) denotes the expected value of z when 6 is the true mean of 2:.
I‘he value of E@(z) is given in Section 3.5, equation (3:60).

1(7:24) Ea(z) = 53 [2(e, - age + 902 - @121
0'

Hence

L(6) log IL -1- [1 — L(6)] log —1——T—E-
(7:25) 38(5) =252 

902 — 91 + 2091 '- 90)5

t hi. ""'

6 —- s
3 See also SRG 255, p. 4.19.
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where ho and h1 are the intercepts and s is the common slope of the
lines L11 and L1.

For 6 = s, the right-hand member of (7:25) takes the form 0/0. It
is shown in the Appendix, equation (A:99), that the limiting value is
given by

13 1 - 15
-—- log -—-—-—-— log Z-—-

1 -—- or or
(7:26) E,(n) = E.(z2)
Since E,(z) = 0, E_._,(z2) is equal to the variance 5-,2 of z. From (7 :23)
it follows that the variance of z is equal to (61 — 611)2/5-2. Hence

B 1-13—log———1ogZ-—-
l-—o: 0: —h0h1

(7:27) E',(n) = (61 _ 602 0'2 -—- T



Chapter 8. TESTING THAT THE STANDARD DEVIATION OF
A NORMAL DISTRIBUTION DOES NOT EXCEED A GIVEN

VALUE

8.1 Fonnulation of the Problem
Let :1: be a normally distributed variate. In this section we shall

deal with the problem of testing the hypothesis that the standard
deviation 0' of :1: does not exceed a given value 0". There are two cases
to be considered: the mean of :2: is known or unknown. First we shall
treat the case when the mean of x is known. If the mean of 2: is un-
known, only a slight modification of the test procedure will be neces-
sary, as will be seen later.

This problem, like the one treated in Section 7, arises frequently in
quality control and acceptance inspection. Suppose that :1: is some
measurable quality characteristic of a manufactured product and that
2: is normally distributed in the population of units produced. Sup-
pose, furthermore, that the quality of the product is considered the
better the smaller the standard deviation 0'. Thus, there will be, in
general, a value 0-’ such that the product is considered substandard if
cr I> 0" and the product is considered satisfactory (meets specification)
if cr § 0'. Since er is unknown, the problem is to devise a sampling
plan for testing the hypothesis that the product is satisfactory, i.e.,
that 0' § 0".

8.2 Tolerated Risks for Making a Wrong Decision

If the quality of the product is exactly on the margin, i.e., if tr = or’,
it will make no difference whether the product is classified as satis-
factory or as substandard. However, if 0- is considerably smaller than
0", the classification of the product as substandard will usually be
regarded as an error of practical importance. Sirrrilarly, if cr is mucl"
larger than a’, the classification of the product as satisfactory will be
a serious error. Thus, it will be possible to specify two values 0'0 and
01 (09 < a’ and 01 > or’) such that the classification of the product as
substandard is considered an error of practical importance whenever
0' 5 <10, and the classification of the product as satisfactory is regarded
as an error of practical consequence whenever 0' g <11; for values 0 be-
tween 00 and 0'1 we do not care particularly which action is taken.

125



126 TESTING THAT VARIANCE IS BELOW A GIVEN VALUE

In accordance with the considerations in Section 2.3.2, the risks that
we are willing to tolerate may reasonably be stated as follows: The
probability of classifying the product as substandard should not exceed
a small preassigned value oz whenever 0' g 0'0, and the probability of
classifying the product as satisfactory should not exceed a preassigned
value ,6‘ whenever 0- Q 0'1.

8.3 The Sequential Probability Ratio Test Corresponding to the
Quantities 0'0, 0'1, 0., and [3

A sampling plan satisfying the requirements regarding the tolerated
risks is given by the sequential probability ratio test of strength (oz, B)
for testing the hypothesis that 0' = a-0 against the alternative that
U‘ = 0"].

Let x1, 2:2, - - -, etc., denote the successive observations on az. The
probability density of the sample (ml, - - - , :r,,,) is given by

m
I

1 — T 2 (1-'-?a""l9)2

(811) Pm = me 2 2""
(21r)_2b'm

where the value of the mean 9 is assumed to be known- Let pm de‘
note the expression we obtain if 0- is replaced by 0,; (11 = O, 1) in the
right-hand member of (8:1). The sequential probability ratio test 1s
given as follows. The probability ratio plm/pom is computed at each
stage of the experiinent. Additional observations are taken as long as ‘

1 _ 2:12 2l(I"_a)=

L < %‘ = O-1 1 m < T

1 *_ Q pom 1 -—- 5;)?! 2 (I|3—9):

The product is classified as satisfactory if
"I

1 _ 23% Z (=,,—e)‘*
7 6 -£I'=1 B(8:3) é ZTn

1 -'%§-i ix"-'5')’
_..-i 8 D¢I=1

(Tam

1 There is a slight approximation involved in the formulas given below, sinfie_ _ t.‘ l .the constants A and B are Put Bf-1119-1 to (1 13)/*1 and 5/(1 Q) respec “Fey
In this connection see Section 3.3.
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The product is classified as substandard if

1 "' ,
1 _ -""""' E (3a_8)2011
i 3 a==l

A Elm 1 '—(8:4) ——-—..-—— a —3
1 Cl

1 —" Z55 E (-‘l=a—'-‘U2
-—-— e cl-1
tfgm

Taking logarithms, dividing by (1 /2:102) — (1/2.112) and simplifying,
the inequalities (8:2), (8:3), and (8:4) will become

19 0'12
m

-O! 0'08:5 l-——-1 ,,,-62( ) 1 1 < 1(:v ) <
Ii-on-III!-I|im|-311. an

2 20'0 0'1 1 — B 012

2log—-————- + mlog-5
Ct 0'9

iiimm

(T02 (T12

A3 0'12,,, 2 log1——— + mlog—-2;
<s=6> E Io. - er s 1 °‘ 1 "°

c:=1

0'02 0'12
and

1-5 2
,,, 2l0g—-——-kmlogl

(8:7) Xe. — 0)” g '2' 1
c:=-1

$5 _ Z5
respectively.

On the basis of the inequalities (8:5), (8 :6), and (8:7), the test pro-
cedure can be carried out as follows: For each integral value m com-
pute the acceptance number

P B 0.1221@g1—- 10g_2
(es) am: _"‘+,,,.___°'°_

1 1 1 1
-3 — TE —_— _ "T0'0 0'1 "02 012
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and the rejection number
1 -—- 5 2

2 log-i log 12
(8-9) 7- _ ......_.._..__..2__ _|_ m .._.._£_..

' "‘ 1 1 1 1
_* _ '_' _' _ E0'02 0'12 0'92 0'1

These acceptance and rejection numbers do not depend on the
outcome of the observations and, therefore, they can be computed
before inspection starts. Inspection is continued as long as am <

‘"1

E (:r,,, — 9)2 < rm. The first time that E(:z:,,, — (9)2 does not lie be-
c:=1

tween am and rm, inspection is terminated. If at the final stage

E (:::,,, — 9)2 5 am the product is declared satisfactory, and if
a=l

E (ma -—- 6)2 2-: rm the product is declared substandard.
cl==1

A graphical presentation of the test procedure is shown in Fig. 16.

zis, -er‘
L1

n¢aida
Ffoiiuci '5“b5‘

' 1.1
'\nS‘Ped'io L0

. gactflfl

9108“
L - at. . m

Flo. 16

The number m of observations is measured along the horizontal axis.
Since both am and rm are linear functions of m, the points (m, am) Wm
lie on a straight line LO and the points (m, rm) will lie on a straight
line L1. These two lines are parallel and the common slope is given by

10,5
0'32

(8:10) 3 — 1 1

—E—i20'0 01
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The intercept of L0 is equal to

2 log —i—-
%___i;£(8.11) - 1 1

EFIZE
and the intercept of L1 is given by

2 log L13
(s=12) hl = ii-

l 1

Z8835
The lines L0 and L1 can be drawn before inspection starts. As inspec-

tion goes on the points [m, E (;r,,, —— 6)2] are plotted. The first tiine
or 1

that the point [m, E(;i:,,, — 60% does not lie between the lines LU and
L1, inspection is terminated. If the point [m, E(;r,,, — 6)2] lies on L0
or below, the hypothesis that the product is satisfactory is accepted;
and if the point [m, Z(:::,,,, — 9)2] lies on L1 or above, the product is
declared substandard.

8.4 The Operating Characteristic (OC) Function of the Test

For any value 0, let L(0') denote the probability that the test will
terminate with the acceptance of the hypothesis that the product is
satisfactory. The function L(a) is called the operating characteristic
function of the test.

In Section 3.4 a general method is given for deriving an approxima-
ti f ' ' ' 'on ormula for the OC function for any sequential probability ratio
test. Applying the result of that section, we obtain

1 - 5 "<-> - 1(s;13) L = —ii-1-_-._

(6) (‘ 8 5);‘-( B Y-or 1 — or

where h is the root of the equation

h + an _, U 2 (:_9)2 It<8... _-1 Jo 6 2-»> -=~e q -8 - a=1
\/2-Ira’ H1 - Q. 8- 200., lI——6J2
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It can be seen that the integral on the left side of (8:14) has a finite
value only if (h/012) —- (h/0'02) -l- (1 /0'2) > 0. In this case, as can be
verified, we have

1 2 h
-I-no e_fi($"""9) 2 1~11- ...._.

(315) I ( 1 ( W 6 2,, = »> dz __=
_ Q. "'- F02 I— i -—- -—- ‘—-

e 0'12 0'92 + 0'2
Hence equation (8:14) can be Written as

0'1 h H 1

‘W’ “(sl =\/.1’-..._.i*_+i
U12 0,02 G2

Instead of solving (8:16) with respect to h, we shall solve it with re-
spect to cr- We obtain _

2:»0'0(J— — 1
8: = 1 ( 17) cr h h

‘_2"“‘5111 0'0
With the use of equations (8:13) and (8:17), the OC curve can be

plotted as follows. For any given value of h we compute 0' and L(cr)
from equations (8:13) and (8:17). The pair [o-, L(a)] obtained in this
way gives us a point on the OC curve. Computing [cr, L(cr)] for a
sufficiently large number of values of h, we obtain enough points to
draw the OC curve.

For computational purposes, it may be convenient to put 2
h h -215(313) s 2 2%--t or h= 1 1

201 201) ( i)

0'02 0'12

Then equations (8:13) and (8:17) can be written as

(‘"8 LIB)
6 135-31 _1

19 L = (8: ) (cw) 60,38 %*') e(log1—__"-57') (3?-—-_

e"‘h‘ — 1 _
6-H“ i eilhq

1A similar simplification was made by the Statistical Research Group. S89
SRG 255, P. 6.31. The parameter t used there corresponds to —t here.
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and _
(103%)

3 ;?‘- Q? — 1 _ 628‘ -—- 1<8=2°> " = ""—-s;'""—"—" - \/"T
where s is the common slope and ho and hl are the intercepts of the
lines L0 and L1. Equations (8:19) and (8:20) may be more convenient
for the computation of the OC curve than the original equations (8:13)
and (8:17).

For 0' = 0, 00, —\[=;, 01, + on the values of L(cr) are given as follows:

(8:21) L(O) = 1

L(O'Q) = 1 — C!

L(\/§) hmh
I —' U

LQT1) =13

L(w) =0

These five points already determine roughly the shape of the OC curve
and in many instances it will not be necessary to compute further
points.

8.5 The Average Amount of Inspection Required by the Test

According to the results in Section 3.5, an approximation formula
for the expected value E.,(n) of the number n of observations required
by the sampling plan is given by

B 1 ,6L(<1) 1@g-—- + [1 - 1:.(¢)]10g —-_
(8 =22) Em.) = _L
where

1 — —l—-(1:-B)?
..._.- 6 2712

1 1 1s=23 =1 “'1 =1 U0 (  ) _' 2
( ) Z Og_l__e—%(:=—-6)? Ugo"; | 2 002 012 (1: 6)

F0
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and E, (z) denotes the expected value of z when 0' is the standard devi-
ation of 2:. We have

1 1 1
(8 :24) E,(z) = — (-5 —— —2) E(:z: -— (9)2 + logfg

2 0'9 0'1 0'1

l(1 1 ) crgas .12 1 _
2 0'02 0'12 + Og 0'1

Hence, substituting the right-hand member of (8:24) for E,(z) in
(8:22) we obtain 3

B 1-B 1—BL“) [merit ""°gTl +‘°g"";"
1 1 1 (T0_ 0.2 1 _
2 (U92 0'12) + cg 0'1

L(v)(h<> — hl) + hi

(8 :25) E, (n) =

. [:2-—-s

For 0 = \/.§ the expected value of z is equal to 0 and the right-hand
member of (8:25) takes the form O/O. According to equation (A :99)
in the Appendix, the limiting value is given by

B 1 16-—- log-~—-—log—-—~—
1 — cz or

(8:26) E./§(‘n) =
Eva (Z2)

Since E1,‘-;(z) = 0, E'v,;(z2) is equal to the variance of z when or -=
A It follows easily frorn (8:23) that this variance 1s equal to
1 1 1 2__ __ _ ___. 2 1-I2 (602 012) s . ence

6 1 - B_] m__] _m
Og 1 — or Og or —-h-(J11

(8:27) = 1 ( 1 1 )2 2 = 282
m ~-— s

2 0'02 0'12

=The expression of E,(n) in terms of the slope and intercepts of the decision
lines is contained also in SRG 255. 13- 5-34-
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8.6 Modificafion of the Test Procedure When the Population Mean
Is Not Known ‘

If the mean 6 of :1: is not known, the following two modifications of

the test procedure are to be made: (1) replace E (:c,, — 9)2 by
1¢[|=1

"I

E (a:,,, — :3) where if: = ($1 —|— - - -+ :1:,,,)/m; (2) the acceptance num-
a==1

ber am is replaced by a.,,,_1 and the rejection number rm is replaced
by r,.,,__1. Thus, if the mean is unknown, the acceptance and rejection
numbers at the mth trial are equal to the acceptance and rejection
numbers corresponding to the (m — 1)th trial when the mean is known.

The formula for the OC curve remains unchanged and the expected
value of the number of observations required by the test is larger by 1
when the mean is unknown than when the mean is known.

‘ The result contained in this section was found by C. Stein and M. A. Girshick,
independently of each other. The proof is based on a transformation of the observa-
tions whjch reduces this case to the case when the mean is known. See Girshick’s
paper, “Contribution to the Theory of Sequential Analysis,” The Annals of Mathe-
matical Statistics, June, 1946.



Chapter 9. TESTING THAT THE MEAN OF A NORMAL DIS-
TRIBUTION WITH KNOWN VARIANCE IS EQUAL TO A

SPECIFIED VALUE

9.1 Formulation of the Problem

Let as be a quality characteristic of a product, such as weight, diam-
eter, or hardness. Suppose that :0 is normally distributed in the popu-
lation of all units produced and that the standard deviation 0' of sc is
known but the mean 6 of x is unknown. Suppose, furthermore, that
a particular value of 6, say 60, is considered the most desirable value
for the product. In general, the greater the absolute deviation of the
true value 6 fI‘0l11 the most desirable value 60, the less satisfactory the
product. Since the manufacturer would like to achieve and maintain
the value 60 of 6 as closely as possible, he will be interested in testing
the hypothesis that 6 = 60. If the evidence supplied by a sample
should indicate that 6 ¢ 60, he will try to improve the production proc-
ess. Of course, if 6 ?-'3 60 but is near 60, there is no particular need to
improve the production, and acceptance of the hypothesis that 6 = 60
would not be a serious error. However, there will be, in general, a
positive value 5 such that the acceptance of the hypothesis that 6 = 60

. . 9 — 90
1s regarded as an error of practical unportance whenever -—~—-—- g 6.

{T

The situation described in the preceding paragraph will thus lead
to the following problem: A sampling plan is to be devised for which
the probability that the hypothesis that 6 = 60 will be rejected (the
product will be declared substandard) does not exceed a small pre-
assigned value or when 6 = 60, and the probability of accepting the
hypothesis that 6 = 60 (declaring the product satisfactory) does not

6 — 6
exceed a small preassigned value B whenever B9 Z 6.

(T

9.2 A Sequential Sampling Plan Satisfying the Imposed Require-
ments

It has been shown in Section 4.1.4 that an adequate sampling plan
for the problem described in Section 9.1 is given as follows. Compute
the ratio
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. <5
j_,, (9:7) log cosh [— Z(;r,,, — 60)] 5
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1 "'1 1 "1

.._ E; Z (::|:a—Bq—6ur): — F 2 (-17¢‘-'0fl"'|’°6I)2
n'= 1m 1 cr-1

(9:1) ii = hf. .-_ 77 _ 5+
19°" 2 -—- -§ Z <=q—v»>=

e a=1

at each stage of the experiment. Continue taking observations as long
3-S

plm
(9:2) B<-1-<A

p0m

Accept the hypothesis that the product is satisfactory if

(9:3) E s
pflm

Reject the hypothesis that the product is satisfactory if

B

(9:4) E2 Q A
POM.

To satisfy the requirements imposed regarding the probabilities of
making wrong decisions, for all practical purposes we may put A =
(1 -—- B)/or and B = B/(1 — or).

The expression for pm/pom given in (9:1) can be simplified to

m 1 ii I _ _..§ _i 5 e-— Z( G 90)+ 8 dz(I:I 60))

pOm

m

e cos U E 1 ($0,, 0)

Substituting this value of plm/pom in (9:2), (9:3), and (9 4) and taking

W

logarithms, we find that these inequalities become
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With the use of inequalities (9:6), (9:7), and (9:8), the test proce-
dure is carried out as follows. At each stage of the experiment we

m
6

compute Z,,, = log cosh [— E ($0, — 60)] . The first time that Z",
6 a"'1

does not lie between log B + [m(62/2)] and log A -|- ["m(62/2)] We ter-
ininate the process. The hypothesis that 6 = 60 is accepted if Zm 5
log B —|— [m(62/2)], and rejected if Z,.,, g log A + [m(62/2)].

The computation of Z,.,, at each stage of the experiment is somewhat
6

cumbersome. However, if — E(:r,,, -—- 60) 1 is greater than 3, Z”, =

6 6
log cosh — Z(:r,,, -—- 60) is very nearly equal to — Z(:r,,, — 60) I —

or 0"
log 2-‘ Vvhen this approximation to Z,,, is used, inequalities (9:6),
(9:7), and (9 :8) sirnplify to

cr 0'5(919) E(logB +log2) +m-2- < | ace. - a.,)| <
(T 05
—(logA—l—log2)+m—
6 2

as
(910) |2(=~.:.,, —9o)l§%(1ogB+log2)+m%
and

5
(9:11) |Z(:r—9o)i :£%(logA+log2)-l-m%—-

respectively. For all practical purposes inequalities (9:9), (9:10), and
(9:11) may be used instead of (9:6), (9:7), and (9:8) whenever

g12(1:,.-6@)| a3.
The following is an alternative computational procedure which may

be found useful. Consider the equation in nu.

(9;12) log cosh I u I = v

This has exactly one positive solution if v 7; 0. The root of this equa-
tion is given by

(9:13) Iul =¢(v) =l<>s(@”+‘\/<32”-* 1)
1 See also SRG 255, p. B.15.
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The function ¢(v) can easily be tabulated. In terms of the function
¢>(v), inequalities (9:6), (9 :7), and (9:8) can be written as

(9:15) | 2:(.-1;... - so
and

(9:16) [>:(;¢., - 90) |

acceptance number

5

2

52 62

A (9:14) %¢(logB+m—5)<I2(x.=.—6o)I<%¢>(logA+:m-2-)

.( 2)
"<1 A-F 52>6¢ Og m2

'Wl:ien inequalities (9:14), (9:15), and (9:16) are used the test can
be carried out as follows. For each integral value m we compute the

cr 52
—<;b logB—|-'m.—

62

(9:17) am = %¢(logB+

and the rejection number
62

(9=1s) r,,, = Ea (logA + m 3)

These acceptance and rejection numbers can be computed before ex-
perimentation starts. Additional observations are taken as long as
am < I 2(£II,;,_. — 60) I < rm. If I E(:r,,, — 60) I g am the hypothesis that
6 = 60 is accepted and if I Z(;rq — 60) I g rm the hypothesis that 6 = 6
is rejected.



PART 111. THE PROBLEM or MUL11- VALUED DECISIONS
AND ESTIMArzozv

Chapter 10. THE CHOICE OF A HYPOTHESIS FROM A SET
OF MUTUALLY EXCLUSIVE HYPOTHESES (MULTI-VALUED

DECISION)

10.1 Formulation of the Problem

Part I has been devoted exclusively to the discussion of the problem
of testing a statistical hypothesis. In such problems only one of two
possible decisions can be made: the hypothesis is either rejected or
accepted. Thus, we can say that testing a hypothesis is a two-valued
decision problem, since the decision can take only the two values:
acceptance and rejection. Let H denote the negation of the hypothesis
H to be tested. Then testing the hypothesis H is the same as choosing
between the two competing hypotheses H and H.

It has been pointed out in Section 1.3.5 that testing a hypothesis H
arises frequently as a consequence of the problem of deciding between
two alternative courses of action, say action 1 and action 2. Suppose
that the preference for one or the other action depends on the value
of an unknown parameter 6 of the distribution of a random variable a:.
Let w denote the set of all values of 6 for which action 1 is preferred to
action 2 (or at least not less desirable than action 2). If a decision is
to be made on the basis of a finite number of observations on x, this
leads to the problem of testing the hypothesis H that the true value 6
lies in 6.». If H is accepted, we decide for action 1, and if H is rejected
we decide for action 2. In applications it happens frequently that there
are more than two alternative courses of action, one of which is to be
chosen. Suppose that there are It (Ia > 2) alternative actions, say
action 1, action 2, - - -, action Fc, and that one of them is to be chosen

' ' d ' ble . Su ose,on the basis of some observations on the ran om varia :1: pp
furthermore, that the relative degree of preference for these actions
depends on the value of a parameter 6 of the distribution of :i:. Then
it will be possible, in general, to subdivide the totality of all possible
values of 6 into k mutually exclusive parts ml, £92,, - - -, <..>;,_ such that
action j is preferable to all other actions '5 95 j if, and only 1.f, the true
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GENERAL NATURE OF A SEQUENTIAL SAIVIPLING PLAN 139

value 6 lies in 6.1;. Let H,- denote the hypothesis that 6 lies in my (j =
1, - - -, k). Then the problem of deciding for a particular action re-
duces to the problem of choosing one of the hypotheses H1, - - -, HE.
If H,; is accepted we decide to take action i. Such a problem may be
called a multi-valued decision problem, since the decision to be made
can take is values: ‘We may accept H1, or H2, - - -, or Hi.

In this section we shall deal with the problem of choosing one out
of lc mutually exclusive and exhaustive hypotheses, H1, - - -, H1,, on
the basis of some observations on the random variable :2: under con-
sideration.‘ The problem of testing a hypothesis is contained in this
as a special case when it = 2.

The following simple example may serve as an illustration. Suppose
that :1: is a measurable quality characteristic of a product which is
normally distributed in the population of units produced. Suppose,
furthermore, that the quality of the product is regarded the better the
higher the mean value 6 of 12:. Assume that the following three alter-
native actions are under consideration by the manufacturer: (1) to
sell the product at the regular market price, (2) to label the product as
second rate quality and sell it at a reduced price, (3) to withhold the
product from the market. Let a and b (a < b) be two values of 6 such
that the manufacturer prefers action 3 if 6 5 a, he prefers action 2 if
a < 6 < b, and he prefers action 1 if 6 g b. Let H1 denote the hy-
pothesis that 6 g a, H2 the hypothesis that a < 6 < b, and H3 the
hypothesis that 6 Q b. If the value of 6 is unknown and if the manu-
facturer must decide which action should be taken on the basis of
some observations on rr, he is faced with the multi-valued decision
problem of choosing one of the mutually exclusive hypotheses H1, Hg,
and H3.

10.2 The General Nature of a Sequential Sampling Plan for Select-
ing a Hypothesis from a Set of Mutually Exclusive Hypotheses

A sequential sampling plan for choosing one of is mutually exclusive
and exhaustive hypotheses H1, - - -, HA, may be described as follows.
A rule is given for making one of the following (lc + 1) decisions at
each stage of the experiment (at the mth trial for each integral value
of m): (1) to terminate experimentation with the acceptance of H1;
(2) to terminate experimentation with the acceptance of H2; - - -; (ls)

1 This problem in the non-sequential case, that is, when the total number of
observations to be made is determined in advance, has been treated in several
previous publications. See, for example, the author’s article "Statistical Decision
Functions Vfhich It/Iiniinize the Ivlaximum Risk,” The Annals of 1|-fathematics
April, 1945. '
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to terminate experilnentation with the acceptance of Hk; (Ia + 1) to
continue the experiment by making an additional observation. Such
a procedure is carried out sequentially. On the basis of the first ob-
servation one of the aforementioned (lc —|— 1) decisions is made. If one
of the first is decisions is made, the process is terminated. If the last
decision is made, a second trial is performed. Again, on the basis of
the first two observations, one of the (Ic + 1) decisions is made. If
the last decision is made, a third trial is performed, and so on. The
process is continued until one of the first is decisions is made.

In more precise mathematical terms, a sequential sampling plan
may be described as follows. Let Rm denote the totality of all possible
samples of size m, i.e., Rm is the m-dimensional sample space. For
each positive integral value of m, the m-dimensional sample space is
split into (k + 1) mutually exclusive parts, Rml, Rmg, - - -, Rm; and
R,,.,_;,_|.1. If the first observation :01 lies in R1; where i § 1:, the process
is terminated with the acceptance of H,-. If :01 lies in R1_;,,+1 a second
observation 2:2 is made. Again, if ($1, 1:2) lies in some R2,; with '5 § lo,
the process is terminated with the acceptance of Hi. If (ml, 2:2) lies
in R2_;,+1 a third trial is performed, and so on. This process is stopped
at the first time when the sample ($1, -- -, mm) lies in Rm; for some
value '5 _§ ic. Thus, a sequential sampling plan is completely defined
by the sets Rm, - - -, R,,,_k.|.1. Since these sets are mutually exclusive
and add up to the whole sample space Rm, it is sufficient to define any
lc of these sets, since they determine uniquely the remaining set.

For any m, the subdivision of the sample space Rm into the (Ic + 1)
parts Rml, - - - , R,,,_;,_H can be made in many ways, and a fundamental
problem is that of a proper choice of these sets. In order to set up
principles for this choice, in the next section we shall study the con-
sequences of any particular choice.

10.3 Consequences of the Choice of Any Particular Sequential Sam-
pling Plan

After a particular choice of the sets Rml, - - - , R,,,,;,+1 has been made,
i.e., a particular sequential sampling plan has been adopted, for any
i g I-c the probability that the process will terminate with the accept-
ance of H,- depends only on the distribution of the random variable x
under consideration. Since it is assumed that the distribution of a: is
known except for the values of a finite number of parameters 61, - - w
6,-, the probability that H,- will be accepted will be a function of these
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parameters. To simplify notation, we shall use the letter 9 without
subscript to denote the set of all r parameters 61, - - -, 6,. Let L,-(6')
denote the probability that the adopted sequential samplmg plan will
terminate with the acceptance of H,- (11 = 1, - - -, Io). We shall refer
to the set of functions L1(6), L2 (B), - - -, L1, (6) as the operating charac-
teristics of the sampling plan. We shall consider only samplmg plans
for which the probability is 1 that the process will eventually termi-
nate. Then we have

(10;1) L109) +- --+ LAB) = 1
and, therefore, one of the functions L1(6), - - - , Lk(6) is determined by
the other la — 1.

The operating characteristics represent the accomplishment of the
sampling plan in giving protection against possible wrong decisions.
For any parameter point 6, the probability of accepting the correct
hypothesis, i.e., the hypothesis which is consistent with parameter
point 6, can be obtained irnmediately from the operating character-
istics. Since the hypotheses H1, - - -, H,1, are mutually exclusive and
exhaustive, for any given parameter point 6 one, and only one, of the
hypotheses H1, - - -, H;, will be consistent with a given 6. If H, is the
hypothesis consistent with a given 9, the probability of making a cor-
rect decision when this 6 is true is equal to L,-(6). The operating char-
acteristics of a sampling plan are considered the more favorable the
higher the probability for making correct decisions for the various pos-
sible parameter points 9.

The price we have to pay for the accomplishment of the sampling
plan in giving protection against wrong decisions is represented by the
number n of observations required by the sampling plan. Since n is
a random variable, we shall consider, as in testing a hypothesis, the
expected value of n. After a particular sampling plan has been
adopted, the expected value of n will be a function of the parameter
point 6 only. As in testing hypotheses, we shall denote the expected
value of n, when 6 is true, by E@(n), and we shall refer to Eg(fl) as the
average sample number (ASN) function of the sampling plan.

In conclusion we may say that the most important consequences of
any particular choice of a sampling plan are given by the operating
characteristics and the ASN function of the adopted sampling plan.
The operating characteristics represent the accomplishments of the
sampling plan and the ASN function represents the price paid for these
accomplishments.
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10.4 Principles for the Selection of a Sequential Sampling Plan
10.4.1 Dependence of Importance of Possible Wrong Decisions on

the Parameter Point 6
To set up principles for the selection of a sequential sampling plan

it will be necessary to investigate the dependence of the importance
of possible wrong decisions on the parameter point. Let (0,; denote the
set of parameter points 6 consistent with H, (ii = 1, - - -, is), i.e., H, is
precisely the statement that the true parameter point 6 is included in
w,;. If the true 6 is in oi, but not far from @_,- for some j 5'5 i, the accept-
ance of Hj will not be regarded, in general, as a serious error. How-
ever, if 6 is far from w_,- and H_,- is accepted, the error committed will
usually be of considerable practical consequence.

As an illustration, consider again the example given in Section 10.1.
The decision to withhold the product from the market will be con-
sidered an error of little practical significance if 6 is only slightly above
a. The seriousness of this error will, however, increase with increasing
value of 6. If 6 is substantially above a, the decision to withhold the
product will be regarded as an error of considerable practical impor-
tance. Similarly, the decision to try to sell the product at regular
market price will not be a serious error if 6 is just slightly below b,
but the importance of this error will increase with decreasing value
of 6.

It will frequently be possible to express the importance of the var-
ious possible wrong decisions by lc functions 101(6), ~ - -, 'w;_-(6), where
1.0,-(6) is a non-negative function expressing the importance of the error
committed by accepting H,~ when 6 is true. In industrial problems,
w,~(6) may be thought of as expressing the financial loss caused by
taking the action corresponding to the acceptance of H,- when 6 is true.
‘Ne shall, of course, put w,-(6) = O for all points 6 in aw,-, since for such
points 6 the acceptance of H’, is a correct decision. Vile shall refer to
the functions wl (6), - - - , -wk (6) as error weight functions, or more briefly
as weight functions.

The choice of a sampling plan will be influenced by the weight func-
tions w1(6), - - -, w;,.(6). The determination of these weight functions
cannot be regarded as a statistical problem. They will be chosen on
the basis of practical considerations in each particular problem.

10.4.2 The Risk Function Associated with a Given Sampling Plan
For any parameter point 6 we shall mean by the risk r(6) the ex-

pected value of the loss caused by possible wrong decisions when 6 1s
true. Since the probability of accepting H ,- is equal to L,-(6) and smce
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the loss caused by this decision is given by w,-(6), the expected value
of the loss is equal to
(10=2) 1-(0) = L1(6)'w1(6) + L2(6)w2(6) + + L1.(6)w;.(6)
We shall refer to r(6) as the risk function of the sampling plan.” _

We shall judge the relative merits of a sampling plan by its risk
function r(6) and ASN function E@(n).

10.4.3 The Risk Function and the ASN Function as a Basis for the
Selection of a Sequential Sampling Plan

A sequential sampling plan is the better the smaller the risk r(6) and
the smaller the expected value E,;(n) of the number of observations.
These two desiderata of a sampling plan are somewhat in conflict, since
the smaller we make 1-(6), the larger, in general, will be the number of
observations required by the plan. To achieve a reasonable compro-
mise between these two conflicting desiderata, one may proceed as
follows. First we impose the condition that the risk r(6) shall not
exceed a certain prescribed positive value ro, i.e.,
(10 :3) r(6) g ro

for all parameter points 6. We then consider only sampling plans for
which (10:23) is fulfilled. From this class of sampling plans we try to
select one for which E@(n) is as small as possible.

To impose first the condition (10:3) and then to try to minimize with
respect to the expected number of observations does not seem to be
an unreasonable procedure, since the risk function r(6) is perhaps of
prirnary importance.“

The choice of the upper limit 1-0 of the risk is not a statistical prob-
lem. It will be determined on the basis of practical considerations in
each particular case.

2 Another possible definition of the risk function could be given by including also
the expected value of the cost of experimentation. If c denotes the cost of taking
a. single observation, the expected value of the cost of experimentation is equal to
cEa(n) and the risk is given by

2;
00:2‘) r*(6) = ZIL.-(6)w,-(6) + cE6(n)

i=1
If the cost of experimentation is not proportional with the number of observations,
but IS given by the cost function c(n), then the term cE'8(n) in (10:2*) is to be
replaced by E,-,.[c(n)].

3 Iii-“F18 U19 TIER fl-H16"!-ion r*(6). as given in (10:2"'), a sampling plan for which the
maximum value of r"'_(6) ‘Wll;l'l respect to 6 is minimized may be regarded as an
optimum plan. If l;l'llS definition of an optimum sampling plan is accepted, no
condition of the type (10:13) is imposed; we simply try to find a plan for which the
ID3XlI1’1U.II1 of r"(6) with respect to 6 takes the smallest possible value.
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10.4.4 The Use of Certain Simple Weight Functions
The construction of specific weight functions w1(6), - - -, w;,(6) in a

given problem may occasionally run into practical dificulties. Al-
though in industrial problems w,(6) could be assumed to be equal to
the financial loss (or estimated financial loss) caused by the acceptance
of H_, when 6 is true, in purely scientific investigations it is rather difli-
cult to give a reasonable measure of the loss caused by accepting a
wrong hypothesis.

Even if the difiiculties in measuring the loss caused by possible wrong
decisions are disregarded, we still face the practical difi-iculty that the
weight functions w1(6), - - -, 'w;,(6) in a given problem may be too in-
volved to be manageable. Thus, there is a need for simplification.

The choice of the sampling plan is usually not very dependent on
the exact shape of the weight functions. It will, therefore, be fre-
quently satisfactory to use some rough approximations, reproducing
only the main features of the weight functions. A very rough, but
for many applications satisfactory, approximation can be obtained by
replacing w,-(6) by 1I2_,-(6) defined as follows:

(10:-4) 255(6) = 0 if w,-(6) is less than or equal to a certain value c;

= c if w,-(6) > cf

where c is some positive constant. Thus, ti),-(6) can take only two
values, O and c. There is no loss of generality in putting c = 1, since
this can be achieved by multiplication by a proportionality factor
which has no effect on the selection of the sampling plan.

In what follows in this and the following section, we shall consider
only the weight functions 13,-(6‘). We shall call the set of all parameter
points 6 for which 1?),-(6) = 0 and i'D_,-(6) = 1 for j ;-5 2' the zone of pref-
erence for acceptance of H,. The set of points 6 for which 1?),-(6) =
12:,-(6) = O and 1I:;,({5') = 1 for k ;'$ i, j will be called the zone of indifier.
ence between H,; and H_,-. Similarly, the set of points 6 for which
11‘),-(6) = *J)_,(6) = 1I>,,,(6) = O and 155(6) -= 1 for Z 515 'z',j, m will be called
the zone of indifference among the hypotheses H,-, H,~, and Hm, and
so on.

If we deal with the problem of testing a hypothesis H, then Ic = 2,
H1 = H, and H2 is equal to the negation F of H. The zone of pref-
erence for acceptance of H, the zone of preference for acceptance of F,
and the zone of indifference between H and H defined here correspond
to the zone of preference for acceptance, zone of preference for rejec-
tion, and zone of indifference discussed in Section 2.3.1.

To illustrate the meaning of the various zones defined here, we con-
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sider again the example discussed in Section 10.1. In this example H1
m the hypothesis that 6 § a, H2 is the hypothesis that a. < 6 < b,_and
H3 is the hypothesis that 6 Q b. The functions 131(6), 132 (6), and 103(6)
may reasonably be defined as follows:

iTi1(6)=O for6<a-I--5

= 1 for 6 g a + A where A is a certain positive quantity

1132(6) = 0 if a. — A <2 6 < b + A and = 1 elsewhere

153(6) = 0 if 6 5 b — A and = 1 elsewhere

Then the zone of preference for acceptance of H1 is the set of values
of 6 for which 6 g a -— A. The zone of preference for acceptance of
H2 is given by the inequality a + A g 6 -< b —- A, and the zone of
preference for acceptance of H3 by 6 Z b + A The Z0118 Of i11diffeP-
cnce between H1 and H2 is given by the inequality a — A <1 6 < a +
A, the zone of indifference between H1 and H3 is empty, and the zone
of indifference between H2 and H3 is given by b -— A 5 6 <1 b + A.
Finally, the zone of indifference among I11, H2, and H3 is empty.

When the weight functions £01 (6), - ~ - , iB;,(6) are used, the risk func-
tion r(6) defined in (10:2) takes a particularly simple form. Since
iI:,(6) can take only the values 0 and 1, we shall have

(1015) ».-(e) = ZL,-(a)

where the summation is to be taken for all values of j for which
'lI)j(9) =

We shall say that a wrong decision is made if, and only if, a hypoth-
esis H, is accepted for which iI:,(6) = 1. Then the risk r(6) given in
(l0:5) is simply equal to the probability that a wrong decision will be
made.

The principle for the selection of a sequential sampling plan, as
stated in Section 10.4.3, can now be formulated as follows. \-Ve con-
sider only sequential sampling plans for which the probability of mak-
ing a wrong decision does not exceed a certain preassigned value r

u-From the class of such sequential sampling plans we try to select one
f h' -h P 'or w IL the expected ialue of the number of observations required
by the plan is as small as possible.

10.5 Discussion of a Special Class of Sequential Sampling Plans

The problem of finding a sequential sampling p‘an whit-l l. - .1 niay )6
regarded as an optimum plan in the sense of the previous section is
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not yet solved. However, as will be shown in this section, a wide class
of sequential sampling plans can be constructed for which the condi-
tion that the probability of making a wrong decision should not exceed
a preassigned value ro is fulfilled.

To construct such a class of sampling plans we shall make use of
the following lemma.

Lemma. Let 2:1, 2:2, - - -, etc., be a. sequence of variates, let p1,,,(:i:1, - - -,
xm) (m = 1, 2, - - -) denote the joint probability density function of :01,
- - -, cum under the hypothesis H1, and let p11,,.,(a:1, - - ~, ;i:,,,) be the den,-
sity function under the hypothesis H0.‘ Let, f'2.tTlh6T?TLOT8, A be a. con-
stant greater than one. Then, under the hypothesis H11, the probability
that

:6) p1m(x1! ':1 < A

pOm(xlr ' ' ': -rm)

will hold for all values of 1'71 is greater than or equal to 1 — (1/A).
The validity of this lemma can easily be shown with the help of the

inequalities given in Section 3.2 by letting the constant B in those in-
equalities approach O-

With the help of this lemma we can construct a sequential sampling
plan satisfying the condition that the probability of making a wrong
decision does not exceed a prescribed value 2'11 as follows. Let
pni.(:-E1: ' " ' 1 xmi be equal to f(x11 6)f(x2l 6) ' ' ' f(-tmp 6) ‘Where f(1', is
the probability distribution of :1: when 6 is true. For any parameter
point 6 let p,,,*(:i:1, - - ~, :r,,,, 6) be an arbitrary but given probability
distribution of the variates 2:1, 1:2, - - -, mm.“ Then according to our
lemma the probability that

111* :"'i mag(11);?) pix‘ e "T )</1pm(1ri, -—-, rm, 9)
will hold for all m is greater than or equal to 1 —— (1 /A) when 6 is true.
For any sample point En = (;r1, - - - , xn), let w,,_(E,,) denote the totality
of all parameter points 6 for which the inequality (1017) is fulfilled for
all values Tfl g art. Clearly, the probability that the true parameter
point 6 will be included in all sets w,1(E',1) (T1 = 1, 2, - - -, ad inf.) is
greater than or equal to 1 — (1/A). The sequential sampling plan is
then defined as follows: Vile continue taking additional observations
as long as none of the weight functions 131 (6), - - -, 1I:;,(6) is identically
zero in r.u,1(E',1). At the first time when w,,(E,,) is such that at least one

‘ If the distribution of x1, 2:11, - - -, etc. is discrete, p;m(:r1, - - ~, rm) denotes the
probability of obtaining a sample equal to the observed.

5 It is understood that the distribution of 1:1, -- -, :12”, determined from the dis-
tribution p,,,»""(.:i:1, - - -, .:r,,,-, 6) (m' > m) is identical with p,,,“"(.i':1, - - -, arm, 6).
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of the weight functions 1111(6), ~ ~ - , iT:;,(6) is identically O in w,,(E,,), we
stop the process with the acceptance of the hypothesis corresponding
to the weight function which is identically zero in w,,(E,.,).“ Obviously,
this sequential sampling plan will have the property that the prob-
ability of making a wrong decision does not exceed 1/A. If we let
A equal l/2'0, then the probability of making a wrong decision will not
exceed ro, as required.

This method leads to a wide class C of sequential sampling
plans with the required property, since the distribution function
p,,.,*(.r1, 1 - -, rm, 6) in the numerator of (10:7) can be chosen entirely
arbitrarily. It is doubtful whether this class C of sampling plans con-
tains an optimum plan in the sense of the definition given in 10.4.
If we are willing to restrict ourselves to sampling plans in class C, we
still have the problem of so choosing p,,,*(:i:1, - - ~, rm, 6) as to make the
expected number of observations required by the plan as small as pos-
sible. This problem, too, has not yet been solved. There may be some
waste involved in letting A = 1/r-0, since this may result in a maximum
probability of making a wrong decision that is considerably less than
the tolerated value ro. A further development of the theory may show
that A can be put equal to some value smaller than 1/ro which would
lead to a saving in the number of observations.

Although the present stage of the theory is very incomplete, sampling
plans based on the inequality (l0:7) may still be used with good advan-
tage in some problems. Even if we cannot yet find the best distribu-
tion p,,,_*(:i:1, - - -, :r,,,, 6) to be used in the numerator of (10:7), we still
may be able to make a reasonably good choice of p,,,*(.r1, - - -, I-m, 6)
and thereby obtain a sequential plan which requires, on the average,
a substantially smaller number of observations than the best possible
non-sequential sampling plan based on a predetermined number of
observations.

Regarding possible choices of p,,,*(x1, - - -, rm, 6) which may give
reasonably good results, the following remarks may be made. A good
result may be obtained in some problems by letting p,,.,*(.i:1, - - - , ;r,,,, 6)
equal a properly chosen weighted average of p,,,(.i:1, - - -, ;r,,,, 1*) where
§' is a. variable parameter point. In other words, we let "'

p*'**(I1! ' ' '1 IP12 =Lp6(§_)prr1(-I-1: ' ' '2 x'?f1J

'5 If there are several weiglit. functions which are identically O in t-.=,,(E,,) we may
_ _ I

choose arbitrarily one from arnong the liypotheses corresponding to these weight
functions.

1 r I‘ '| I I‘ I I . U ' ll _ ' ~ .llii. .11. eniging fllflttlflll p6,(§') may also be discrete. Formulas valid for both
r.-ontinuous and discrete averaging functions could he given by using Stielt-je’s
integrals.
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where the integration is taken over the whole parameter space Q and
p9(§') is a non-negative function of f satisfying the condition

00:9) fp,(r) dc = 1
The choice of the averaging function p8(§‘) will depend on the weight
functions 1.721(6), - - - , 1‘E»;,(6). If, for example, 111,-(6) = O for the param-
eter point 6 under consideration, it seems reasonable to let p,,(g') = 0
for all parameter points §' for which 1?),-(§') = O, since we are not inter-
ested in discriminating between parameter points for which the same
decision is correct.

The following is another possible choice of p,,.,,*(x1, - - -, mm, 6) which
may lead to good results in some problems:

pm*(x1: ' ' '2 xm: 6) = ¢'(x1: 9)]-($2: 51)f(3-73: 52) ' ' ' f(x"H 51'"--'1)

where 5,. is the maximum likelihood estimate of 6 based on the first r
observations 1:1, - - -, .13, and ¢>(:z:1, 6) is some suitably chosen prob-
ability distribution of 2:1.

To illustrate the sampling procedure based on (10:7), we shall con-
sider the following simple example. Let :.c be normally distributed
with unknown mean 6 and unit variance. Then

1 —»~s § cs-0)‘
pm(x1: "'!xm: = we “=1

(2102
Let

pl*(I1: ' ' ': xm! 6)

= %[pm(x1: ' ' '1 xmr 6 + + pr?!-($1: ' ' '1 $1"! 6 ‘-—-

where 6 is a given positive quantity. Then
_ 169,62?)mP=l-=(_1;1, - . ':__?3m; 6 _ [e,5};(;a-8) _|_ e—6E(:a—8)]

6) 2Pm(3-71; ' ' '2 xm-I
(10:13)

h _ -= 6" “M” cosh [a2(m,,, - 9)]
T e equatlon

(1();14) coshu = v (v > 1)

has two roots in u which are eclual in absolute value. Let x]/(1)) be the
positive, and —»,!/(v) the negative root of (10:14). Then the roots Of
the equation in 6

(10115) e_ *"-‘"6’ cosh [52(I,;,, - 0)] = A
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are given by M,
__A

81(-Em) = in; + flailm6
(10=1s) and ‘D1-6:

62(Em) = -im ¢(e 2
m5

where :1-,,, is the arithmetic mean of the observations 9:1, - - -, arm.
The set of all values of 6 for which the inequality

.pm::£x1' ...’x'"’6) 1.4-A
Pm(-171; ' ' '1 xmr

is satisfied is the open interval (62(E,,,), 61 (E,,,)). The set w,,(E,,) is
defined as the common part of the open intervals (62 (E1), 61 (E1)), - - - ,
(62(E,,), 61 (E,,)). Hence w.,,(E,,) is equal to the open interval whose
lower endpoint is equal to the maxirnum of the values 62 (E1), - - -,
62(E,,), and whose upper endpoint is equal to the minimum of the
values 61 (E1), - - -, 61 (E,,).'-" Experixnentation is terminated the first
time the open interval w,-,(E',,1) is such that one of the weight functions
1131(6), - - -, 1111(6) is identically zero in w,,(E,.,).

As another illustration, consider again the example given in Section
10.1, and for simplicity assume that the standard deviation of .1: is
equal to 1. Although the proper choice of p,,,*(:r1, - - -, xm, 6) for this
example has not been thoroughly investigated, the following choice of
p,.,.,"'(:r1, - - -, xm, 6) is perhaps not unreasonable. A parameter point 6
in the zone of preference for acceptance of H1, i.e., a value 6 g a — A,”
should be discriminated against all other parameter values §' for which
acceptance of H1 is a wrong decision. The smallest value §‘ for which
acceptance of H1 is a wrong decision, i.e., the smallest 5- for which
fi':1(§') = 1, is §' = a. + A. Thus, we put

p"l*(x1: ' ' '2 mm: Z pm($l: i i '1 $171: a +

for all 6 g a — A
If 6 is in the zone of indifierence between H1 and H2, i.e., if c -— A <
6 < a + A, we want to discrilninate 6 against values I for which ac-

° If it happens that the upper endpoint determined in this way is less than the
lower endpoint, the set w,,(E,,) is empty.

“ For a definition of the various zones and weight functions 1131(6), 2.-32(6), and
53(6) for this example see Section 10.4.4.
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ceptance of H1, as well as of H2, is a wrong decision. The smallest
value of this kind is §' = b + A. Thus, we let

pm*(x1: ' ' ‘,9 xflll =' pm(x1: ' ' '1 xm; b '+'

if a -— A < 6 < a. -1- A

is in the zone of preference for acceptance of H2, i.e., if a. + A
= 6 < b — A, we want to discriminate it against values f for which
acceptance of H2 is wrong. The greatest value I of this kind to the
left of an —l— A is I = a — A, and the smallest g' of this kind to the right
of b — A is I = b -1- A. It seems, therefore, reasonable to let

pm-* = ié-lpm(-$1: ' ' ': mm: a "_ + Pm(1171; ' ' '; 37m: b +

if a —|— A é 6 < b — A

AQ
<2:

If 6 is in the zone of indifference between H2 and H3, i.e., if
b — A § 6 <1 b —i— A, we want to discriminate 6 against values g' for
which the acceptance of H2, as well as of H3, is wrong. Thus, we let

(10:20) p,,,*(:I:1, - - -, :r,,,, 6) = p,,,(:1:1, - - -, mm, a —- A)
ifb — A 5 6 < b -l— A

Finally, if 6 is in the zone of preference for acceptance of H3, i.e., if
6 g b —l— A, we want to discriminate 6 against values I for which the
acceptance of H3 is wrong. The least upper bound of values of f of
this kind is §' = b -— A. Thus, we shall let

]9m*(-‘U11 ' ' ‘p -rm; 6) "= Pm(3?1.» ' ' '1 mm: b '_ A)
for 6 Q b + A

It should be remembered that there is no systematic theory yet
available for the proper choice of pm*(I1, ' ‘ ', -Tm, l9)- The Choice Of
p,,,*(:r1, - - - , rm, 6) in the above example has been made only on intui-
tive grounds. It may well be that another choice of p,,,*(x1, - - - , :c,,,, 6)
exists which leads to much better results. It should also be remarked
that it doubtful whether an optimum sampling plan, as defined in the
preceding section, is a member of the class of sampling plans based on
the inequality (10:7). Further investigations are needed to clarify
these questions.



Chapter 11. THE PROBLEM or SEQUENTIAL ESTIMATION
11.1 Principles of the Current Theory of Estimation by Intervals or

Sets
In this section we shall give a brief outline of the basic ideas of

estimation by intervals or sets as developed by J. Neyman.‘ Consider
first the case in which the distribution of the random variable a: under
consideration is known except for the value of a single parameter 6.
The problem treated in the current theory is that of estimating the
value of 6 on the basis of a fixed number of observations, say N obser-
vations 2:1, - - -, IN on ac.

Let E denote the sample ($1, - - -, :rN) and let _6(E) and 6(E) be two
single-valued functions of the sample E such that

(11 :1) §(E) g 6(E) for all possible samples E

Let 6(E) denote the interval extending from §(E) to 6(E). ‘Ne shall
refer to 6(E) also as an interval function, since it associates an interval
with each sample. Since the interval 6(E) is a function of the sample,
its location and length will, in general, be random variables and, there-
fore, probability statements can be made as to whether 5(E) includes
the true parameter value 6 or not. For any value 6 we shall express
the relation that 6(E) contains 6 by the symbol 6(E) C6. For any rela-
tion R, the symbol P(R| 6) will denote the probability that R holds
when 6 is the true parameter value.

According to Neyman, an interval function 6(E) is said to be a con-
fidence interval of 6 if

(11=2) P[5(E)C6 | 0] = ~,
identically in 6 where -y is a fixed value independent of 6. The relation
(11:2) simply says this: The probability that 6(5) will include the t.1'u<'-
parameter value is always equal to 7 no matter wliat the true value oi
the parameter happens to be. The fixed value 1» is called the confidence
coeflicient associated with the confidence interval -5(1:.‘).

1 J. Neyman, “Outline of a Theory of St.:1.t.istical Estirnation B:1se<'.l on the Classi-
cal Theory of Probability,” Philosophical Transar.-tioris of the Royal ."»’ricz'c!y of Lon-
don, Series A, Vol. 236 (1937), pp. 333-380.
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Suppose, now, that the distribution of :2: involves several unknown
parameters, say 61, - - -, 6,-. Any set of possible values 61, - - -, 6,. can
be represented by a point 6, called a parameter point, in the r-dimen-
sional Cartesian space (parameter space). If we want to estimate the
parameters 61, - - - , 6, jointly, i.e., if we want to estimate the parameter
point 6, the estimating set will be some subset of the r-dimensional
parameter space. ‘Whereas in the case of a single unknown parameter,
estimating sets other than intervals have little practical value, this is
not so when several unknown parameters are to be estimated jointly.
Estimating sets other than intervals in the r-dimensional space, such
as the interior of a sphere, or ellipse, or more general regions, will
have to be considered. Thus, we shall have to consider a set function
w(E) which associates with each sample point E a certain subset m(E)
of the parameter space without making the restriction that w(E) is an
T-dlII18I1Sl0I'l.£i.l interval.

A set function w(E) is said to be a confidence region of the param-
eter point 6 == (61, - - ~,6,.) if

(11 :3) P[w(E)C6 [ e] -= -1
identically in 6 where 7 is a fixed value independent of 6. The value
7 is called the confidence coefficient of the confidence region m(E').

If only one of the parameters 61, - - - , 6, is to be estiinated, estimating
sets other than one-dimensional intervals will not be of much practical
interest, as in the case of a single unknown parameter. Suppose, for
example, that only 61 is to be estimated. According to Neyman, an
interval function 5(E) is said to be a confidence interval of 61 with
confidence coefficient -y if

(11;4) P[a<E>c'e. I 61. B2, 6.1 = ‘Y
identically in 61, 62, - - -, 91»-

Usually there will be infinitely many confidence intervals 6(E) or
confidence regions w(E) with a given confidence coefiicient -y and a
fundamental problem is to find a proper confidence interval or con-
fidence region which has some optimum properties. It is clear that a
confidence interval or confidence region with a given confidence coef-
ficient *1» will be regarded the better the shorter the interval or the
smaller the region. The notion “short” or “small” is to be made pre-
cise, since the length of a confidence interval and the size of a confi-
dence region are random variables depending on the outcome of the
sample. This has been done in the theory developed by Neyman who
introduced various notions of optimum confidence intervals and con-
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fidence regions. The mathematical consequences of these definitions
have been investigated and optimum confidence intervals and regions
have been derived in many important cases. It is not intended to go
into further details here and the reader is referred to the original publi-
cations of Neyman on this subject.

11.2 Formulation of the Problem of Sequential Estimation by Inter-
vals or Sets

In estimation procedures based on a fixed number of observations,
we cannot control, in general, the length of the confidence interval
obtained, since this depends on the outcome of the sample. It may,
therefore, sometimes happen that the confidence interval obtained is
so long that it has little or no practical value. The possibility of such
an event is a drawback inherent in estimation procedures based on a
predetermined number of observations.

For example, the length of the best confidence interval, based on a
fixed number of observations, for the mean of a normal population
with unknown standard deviation is proportional to the sample esti-
mate s of the population standard deviation 0". The sample standard
deviation s may take any value and is likely to be large if 0- is large.

To devise estimation procedures which lead to confidence intervals
not only with a prescribed confidence coefficient but also with a pre-
scribed length, or with a length not exceeding a prescribed value, or
which satisfies some other similar condition, it is, in general, necessary
to abandon the approach based on a fixed number of observations, and
estimation procedures of sequential nature have to be constructed.”

The general nature of a sequential procedure of estimation by sets
may be described as follows. For any positive integer m we consider
a set Syn of samples of size m. These sets must satisfy the following
condition. If the sample Em is an element of Sm and if Em, (m' > m)
is an element of Sm», then Em must not be equal to the sample consist-
ing of the first m observations in Em’. ‘Nith any clement E", of Sm
(m = l, 2, - - -, ad inf.), we associate a subset w-(E',,,) of the parameter
space?’ The sequential process of estimation is then carried out as
follows. 1Ne continue to make observations on .1: until we reach a value
n. such that EL, is an element of Sn. At this stage, we stop the process

2 A very interesting sequential procedure has been devised by C. Stein, “A Two
Sample Test for a Linear Hypothesis whose Power Is Independent of the Vari-
ance,” The Annals of Ilfathcmatical Statistics, Vol. XVI, Sept., 1945, which leads
to confidence intervals of fixed length in an important class of problems, including
the example mentioned before.

-" If we are concerned with interval estimation, w(E’,,,) will always he an interval
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and state that w(E,,) contains the true parameter point, i.e., w(E',,) is
the confidence set resulting from the sequential estimation procedure.

Thus, a sequential estimation procedure is determined by the sample
sets S1, S2, - - -, etc., and the set function w(E) defined for all samples
Ii‘ 1n S1, S2, - - -, etc. The fundamental problem in sequential estima-
t1on is that of a proper choice of S1, S2, - - -, etc., and of ¢o(E). First.
we impose the following two conditions:

Condition I. The confidence set w(E,.,) resulting from the sequential
estimation procedure should satisfy certain stated requirements re-
garding its geometric shape.

Condition II. The confidence set w(E,,) resulting from the sequen-
tial estimation procedure should satisfy the inequality 4

for all parameter points 6. (The quantity 7 is a fixed value which is
frequently chosen as high as .95, or more.)

The requirements to be imposed on the geometric shape of the con-
fidence set w(E,..) do not constitute a statistical problem, and they will
be decided on the basis of practical considerations in each particular
problem. For example, if there is only one unknown parameter 6 (the
parameter space is one-dimensional), we may want to require that
w(E) be an interval whose length should not exceed some fixed pre-
scribed value d, or some given function of the midpoint of the interval.
The latter case may be of interest, for example, in estimating the mean
of a binomial distribution. If there are several unknown parameters,
say 91, ~ - - , 6., and we want to estimate them jointly, we may require
that the Euclidean volume, or the diameter“ of the confidence set
<.-.>(E,,) does not exceed some fixed prescribed value. If we merely want
to estimate one of the unknown parameters, say 61, we may impose
the requirement that w(E,,) be an interval with length not exceeding
some prescribed fixed value, or the weaker requirement that w(E,,) be
a subset of the r-dimensional parameter space whose projection on the
61-axis has a diameter not exceeding some preassigned value.

Usually there will exist infinitely many sequential estimation pro-
cedures which satisfy Conditions I and II. The criterion for selecting
one from among them will be based on the expected number of obser-

" This is weaker than the requirement by Neyman that the equality sign should
hold.

‘The diameter of a set is the largest possible distance between two points of
the set.
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vations required by the estimation procedure. The sequential esti-
mation procedure may be regarded the better the smaller the expected
number of observations required by the procedure. Thus, we shall try
to select a sequential estimation procedure from the class of procedures
satisfying Conditions I and II for which the expected number of obser-
vations to be made is as small as possible.

The problem of finding an optimum estimation procedure is un-
solved. However, a special class of estimation procedures satisfying
Conditions I and II will be discussed briefly in the next section. It is
doubtful whether this class of procedures contains an optimum solu-
tion in the sense defined before.

11.3 A Special Class of Sequential Estilnatzion Procedures

The special class of sampling plans based on the inequality (10:7),
and discussed in Section 10.5, can be used to obtain estimation pro-
cedures satisfying Conditions I and II. ‘With each sample point En =
(;r1, -- -, zrn) (n = 1, 2, - - -, ad inf.) we associate the set w(E,.) con-
sisting of all parameter points 8 for which (lO:7) is fulfilled for all
values m g n. If we put A = 1/(1 — -'y), then w(E,,) will satisfy Con-
dition II for each n. The estimation procedure is carried out as fol-
lows. ‘Ne continue taking observations as long as w(E',-,) does not
satisfy the requirements in Condition I. ‘Ne stop the process at the
smallest n for which o:-(E',.,_) satisfies Condition I and then state that
the true parameter point 6 is included in t.:-(En). This rule of stopping
insures automatically the fulfillment of Condition I.

If Pm*(-T1, ' - -, :r,.,,, 6) is chosen so that the probability is 1 that the
diameter of w(E.,.) will converge to 0 as m ——> -=0, and if Condition I is
such that any set of sufficiently small diameter satisfies it, the prob-
ability is 1 that the estimation process will be terminated at a finite
stage.

It is doubtful whether the special class of procedures considered here
contains an optimum procedure in the sense of the preceding section.
Even if we are willing to restrict ourselves to procedures based on
(10:7), there is no theory yet developed for the proper choice of
Pm*(I1, - - -, xm, 9). Our aim is, of course, to choose p.,.,*(:z:1, - - -, zcm, 6)
so that the expected number of observations required by the pro-
cedure should be as small as possible. An optimum choice of
Pm.*(:c1, ---,2:,,,,6) will depend also on the nature of Condition I.
For example, if a certain choice of p,,,*(-.r1, - - -, ;;;,,,, 6) i5 @pt,im;1.1 when
Condition I requires that the diameter of w(E.,) does not exceed a pre-
assigned value, this choice will probably not be optimal when Condition
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I requires that the diameter of the projection of w(E,,) on one of the
parameter axes does not exceed a preassigned value, and vice versa.

There may be some waste involved in putting A = 1/ (1 —— -y), since
this may imply the validity of Condition II for a value 7’ substantially
larger than the intended 7. A further development of the theory may
show that A can be put equal to some value smaller than 1 / (1 —- -y)
which would lead to a saving in the number of observations.
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A.1 PROOF THAT THE PROBABILITY IS 1 THAT THE SEQUENTIAL
PROBABILITY RATIO TEST WILL EVENTUALLY TERMINATE

The sequential probability ratio test terminates at the nth trial
where n is the smallest integer for which either

z1+"'+3nglOgA r
is 1.- - 1 -—-]or I-2 0gf(1?=', 90)

Z1 + ' ' ' + Zn g log B

Let c = | logB| + | logA We shall subdivide the infinite se-
quence 21, 22, 23, - - - , ad inf., into segments of length r where r is some
positive integer. Thus, the first segment S1 will consist of the elements
zl, - - -, 2.. the second segment S2 will contain the elements z,._,_1, - - -,
22,-, etc. In general, the lath segment St will consist of the elements
.1-.'(;,___1),._,_1, - - -, 2;... Let Q, denote the sum of the elements in the kth
segment. It can be seen that if the infinite sequence 21, 22, - - - , ad inf.,
is such that the sequential process never terrninates, then we must have

(Au) |;,,|<¢ for1c=1,2,---,adinf.
Inequality (Azl) can also be written

(A:2) (_(';¢)2 < c2 for it = 1, - - -, ad inf.

Thus, in order to show that the probability is 1 that the sequential
process will eventually terminate, it is suffieient to prove that the
probability is 0 that (A:2) holds for all integral values is. For any
given positive integer -i denote by P, the probability that g-.-2 < c2.
Since 21, 22, - - - , are independently distributed, each having the same
distribution, the distribution of §',- must be the same for all values i.
Hence, also P, is independent of 2' and we shall denote it by P. Since
I1, I2, - - -, etc., are independently distributed, the probability of the
joint event that (A:2) holds for k = 1, 2, - - - , j is equal to P1’. Hence,
in order to show that the probability is 0 that (A :2) holds for all values
k, it is suflicient to show that P < 1. Clearly, if the expected value
of §',-2 is > c2, then P must be <2 1. Since the variance of z,- is assumed
to be positive, the expected value of {,2 can be made arbitrarily large
by choosing r, i.e., the number of elements in a segment, sufficiently
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large. Thus, P <'. 1, and we have proved the proposition: The prob-
obilily is 1 that the sequential probability ratio test procedure will even-
tually terminate.

A.2 UPPER AND LOWER LIMITS FOR THE OC FUNCTION OF A SEQUEN-
TIAL TEST

A.2.1 A Lemma
In what follows we shall denote the expected value of any random

variable z by E(z). For any relation R we shall use the symbol P(R)
to denote the probability that R holds. If the expected value E(z)
or the probability P(R) has been determined under the assumption
that 6 is the true value of the parameter involved in the distribution
of the random variable under consideration, we shall occasionally put
this in evidence by using the symbols E9(z) and P@(R), respectively.‘

In deriving lower and upper limits for the OC function of a sequen-
tial test, we shall make use of the following lemma.

Lemma /1.1. Let 2 be o. random variable such that the following three
conditions are fulfilled:

Condition I. The expected value E(z) exists and is not equal to 0.
Condition II. There exists a positive 6 such that P(c" <21 1 —- 5) > O

andP(c'* > 1 +6) >0.
Condition III. For any real value h the expected value E(e"“‘) = g(h)

exists.
Then there exists one and only one real value ho ¢ O such that

E'(e"°‘) = 1

Proof: For any positive h we have

(A:3) go) > Po“ > 1 + no + 6)“
Hence, since P(e’ > 1 + '5) > 0,

(AA) 901) = + =0

Sirnilarly, we see that for any negative h
g(h) > P(e’ < 1 - a)(1 - 5)“

Hence, since P(e’ <: 1 -— 6) > 0. we have
(A15) h§111mv(h) = +<===

1 If there are several unknown parameters, say 61, - - -, Bk, then 9 denotes the
SE13 (61, ' ' '1 Gk)-
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Since g’’ (h) = E(z2e'“),’ it follows from Condition II that
(A:6) g” (h) > 0
for all real values of h.

The relations (A :4), (A:5), (A:6) imply that there exists exactly one
real value h* such that g(h) takes its minimum value for h = h*.
Since g’(O) = E(2) is unequal to O by Condition I, we see that h* 9-5 O
and g(h*) <1 g(0) = 1. It is clear that the function g(h) is monotoni-
cally decreasing in the strict sense over the interval (-—- on , h*) and is
monotonically increasing in the strict sense over the interval (h*, + w).
Since g(0) = 1 and g(h*) < 1, there exists exactly one real value
ho sf O such that g(h0) = 1. Hence lBl'l'lIT1€t A.1 is proved.

From the above considerations it follows that if h* > 0 then also
ho > 0, and if h* < O then also ho < O. Furthermore, if h* > 0 then
E(z) = g’(0) <1 0, and if h* <1 0 then E(z) = g’(0) > 0. Hence, ho
and E(z) are of opposite sign.

A.2.2 A Fundamental Identity

In this section we shall derive an identity which will play a funda-
mental role. Consider the sequential probability ratio test for testing
the hypothesis H0 that the probability distribution of :1: is given by
f(:r:, 60) against the alternative hypothesis hf; that the probability dis-

tribution in question is given by f(;r, 61). Let z = logjlf-ii) and
.f(x: 00)

_ f(xI'1 61) . .2; — logW where 11,- denotes the zth observation on 2:. As defined
1': U

in Section 3.1, the test procedure is given as follows. Continue taking
observations as long as

(A:7) logB<z1+---+zm<logA

where A and B (B < A) are constants determined before the experi-
mentation starts. Accept H0 when

(A18) Z1 +- - ~ + Z-m. ;' log B
and reject H0 (accept H1) when

(A39) 21-}----+z,,,2l0gA
’ From Condition III it follows that all derivatives of g(h) exist, and they may

be obtained by differentiation under the integral sign, i.e.,

of’ h
7%; = E(2"e’h) (r = 1, 2, - - -, ad inf.)
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In what follows we shall denote by n the number of observations re-
quired by the test. Clearly, n is a random variable. Let D’ be the
subset of the complex plane such that E(e"‘) = <i>(t) exists and is finite
for any point t in D’. Consider the following identity:

(A10) Ewe-‘+<Z~"Z"’*> = E<eZ~‘> = [¢>(¢)]”
where N denotes a positive integer and Z; = 21 + - - - + 2,-. Let PN
be the probability that n 5 N. For any random variable u, let EN('u.)
denote the conditional expected value of u under the restriction that
n § N, and let E,v*(u) denote the conditional expected value of u
under the restriction that n > N. Then identity (A:10) can be writ-
ten as

<A=11> P~E~<e”"‘+‘Z""Z""> + (1 — P~)E~*(eZ"'> = [¢<¢)1”
Since in the subpopulation defined by any fixed n g N the expression
ZN — Zn is independent of Zn, we have

(A =12) EN(eZ~‘+‘Z" * 2"”) == EN 1 (@Z"‘)[¢(t)]”*"l
From (Azl 1) and (A:12) we obtain the identity

(A:13) PNEN{@Z~'[¢(¢)]”-"I + (1 — P.»-)E~*(e‘°'”‘) = [¢>(1)l“"
Dividing both sides by [¢(¢) 1” we obtain

N*(3ZNt)
(A=14) P~E~ieZ"'[<1><#)]""} + (1 — PN) E[¢(,)]~— 1

Let D” be the subset of the complex plane in which I<;b(t)| g 1
and let D denote the common part of the subsets D’ and D”. Since
Hm (1 _ PN) = 0, and since | EN*(eZ”‘) I is a bounded function of"N,
N: no

we have in D Z
1' (1 P )E”*(€ M) 0_ m __ . s i a _.

(AJ5) .v1= ~== A i¢*(3)lN
Since Z tlim PNEN{ez"'[¢(i)]_”l = Eie "l¢(1)]"'"I

N: on

we obtain from (A:14) and (A:15) the fundamental identity

(A:16) El¢="‘"‘[¢>(¢)]'"i = 1
for any point t in the set D.
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A.2.3 Derivation of Upper and Lower Liinits for the OC Function

The OC function of the sequential test is defined by the function
L(6), where L(6) denotes the probability that the sequential process
leads to the acceptance of H0 when 6 is the true value of the pa-
rameter.“ It has been shown in Section A.1 that the probability is
O that the sequential process will never terniinat-e, i.e., the relation
P (n = Q0) = O has been proved. Thus, the probability that the proc-
ess will terrninate with the rejection of 11¢, (acceptance of H1) given
by 1 — L(6). Using the fundamental identity derived in the pre-
ceding section we shall obtain upper and lower limits for L(6).

. . . . ( Y, 9 ) .It will be assumed that the distribution of 2 = log [LL satisfies
.f(-rs 6U)

the three conditions of lemma A.1 for any value 6. Then for any given
B there exists exactly one real value M6) 95 0 such that E,;(c""‘“9)) = 1.
Substituting h(6) for ti in the fundamental identity (A:l6_‘», we obtain

(A:17) E@(@Z=*"<">) = 1
since ¢>[h(|9)] = 1.

Let E@* be the conditional expected value of eZ"’“9) under the restric-
tion that H0 is accepted, i.e., that Zn g log B, and let E@** be the
conditional expected value of cz"M'” under the restriction that H1 is
accepted, i.e., that Zn g log A. Then we obtain, from (A:17),

(A113) [L(9)lEe* + [1 — L(9)]Ea** = 1
Solving for L(6) we obtain

E ** — 1(Awe) L(6) ’¥Ease _ Eves

If both the absolute value of E.9(z) and the variance of 2: are small,
as they will be when f(.r, 61) is near f(.r, 60), then E5“ and E9** will
be nearly equal to BM6’ and .~1"‘””, respectively- Hence, in this case
a good approximation to L(6) is given by the expression

1131(6) __ 1

(A20) L(O) T mo?_ §;;<i>

This is tlieepproximation formula (3:-13) given in Section 3.-1. It is
9"=_L‘5}’ t0 VeI‘lf}’ thil-L71-'(6) = l if 9 = 6“, and 11(9) = —l if 6 = 61. The
‘11fT<1*l‘@I1CB LU?) —- L09) approaches O if both the mean and the \’£lI‘i2LI1CE'
of 2 converge to 0.

3 For Sifliplieity the r.':isi; of :1. single iiriliii-.iwli pill‘-HIIlt‘l1_.'I‘ 0 is iiisiilissecl, but the
results can obviously be extended to any number of pai-anieters.
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To judge the goodness of the approximation given by 5(9), it is
desirable to derive lower and upper limits for L(6). Such liinits can
be obtained by deriving lower and upper limits for EM‘ and E9“.
First we consider the case when 71(6) I> O. To obtain a lower limit for
E@* consider a real variable §' which is restricted to values > 1. For
any random variable u and any relation R we shall denote by E(u | R)
the conditional expected value of u under the restriction that R holds.
Let P9(g") Cl8I10‘t€ the probability that e’*<°>Z~~* < §B"“”. Then we
have

~> 1
(A:21) E5,-* = I [§'B"“”E@ (b’*<°>-'= l e’*<°>= s -5)] dPa(£')

1

Hence, a lower bound of E,9* is given by

(A:22) BM” [g.l.b. (E6 (6-’=“>= I @’*<*’>= s
I

where the symbol g.l.b. stands for greatest lower bound with re-

spect to f. Since Bhwr’ is an upper bound of E5“, We Obtain the limitfi

Bh(9) §_E0 (e?a(B)z I 811(9): g g E9# 2 Bh(9)

’ [h(6) > 01

To derive limits for E9** consider a real variable p which is restricted
to values > 0 and < 1. Let Q(p) denote the probability that
e’*<‘*lZ=~—1 < pAh(6)_ Then we obtain

1 1
(A:2-'1) Ea** '-=J‘ [PAMMEB (ems): l ems): *3 _)] dQ(p)O P

Hence an upper bound of Ea“ i=3 given by
i

_ A;,(g) ‘b’ (_h(6lz -M19): g(A25) up P B <1‘ 18 P

Since Ami) is a lower bound of E5-**, we obtain the following limit3
fO1‘ E9**I 1

AME) g Eo** :2 ;ih(6) [1_.u‘;}). PEO (ehtaiz l 615(3): g

[h(6) > 0]
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Putting

I

and

(A:2B) l.u.b. pEe (Ema): l em“: 3 = 50
P P

m

inequalities (A :23) and (A226) can be written as

(A:29) B"(”’mi s E@* s B""’)
and
(A30) Ame) g Ease é Ah(6)59

Since B < 1 and A > 1,‘ we see E@* < 1 and Eg** > 1 if h(6) > O.
From this and relations (A:19), (A:29), and (A :30), it follows that

Ame) _ 1 58Ari(a=) __ 1
(A31) Ania) _ n6B2=(e1 5 Lw) 5 5aAii<e:F_ Bmei

where 12(6) > 0.
If h(6) < O, limits for L(6) can be obtained as follows. Let z’ = -—z,

A’ = 1/B and B’ = 1/A. Consider the sequential test S’ defined as
follows. Continue taking observations as long as log B’ < 2'1 + - - -
+ z’,,,, < log A’. Terminate the process with one or the other decision,
depending on whether 2’; + - - - + z’,,, g log B’ or g log A’. We shall
let L’(6) be the probability that at the termination of the process the
cumulative sum z’1 + - - - + z’,,,,_ B less than or equal to log B’. Then
L’(6) = 1 —— L(6). Furthermore, we shall denote the quantities h(6),
119, 69 corresponding to the test S’ by h’(6), n’@, and 6’9, respectively.
‘Ne can apply (A:31) to the test S’, since h’(6) = —h(6) > 0. Thus,
we obtain

Arh’(6) ___ 1 6: A:h’(6) ___
(A:32) ~ ,,. - s. 5 L’(6) 1: _ “es; -1 1,

A! (9) __ TTIBBIPI (5) ‘_ — 5:614 Hi (6) __ BR: (6)

where h’(6) > 0. Since mi and 69 depend only on the distribution of
h(6)z, and since h’(6)z’ = h(6)z, we have -r;’g = m; and 6'9 = 69. Sub-
Stitutingl in (A:32), 69 for 6’9, -be for 1;’g, 1/B for A’, 1/A for B’, —h(6)
for h'(B), and 1 - L(6) for 17(0), we Obtaill

‘ W’e have assumed thatB < A. Since we IetB = B/(1 — oz) andA = (1—- fi)/ac,
W9 ml15'fl' have 5/(1 -— 0:) < (1 — 13)/Q. Pvlultiplying this inequality by o:(l — Q),
WE Obtain fl'B<1-a--|3+aB, i.e., O<l—~cz-13. Hencefi-<.'l—a and
l-63> er. and thereforeB <1andA > 1.
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Bhw) __ 1 <: 68Bh(5) __ 1

(A33)  _F@ g 1 _ L(6) -‘= 5aB1a(0) i_ Ame)

where h(6) < 0. Hence
1 _ 115(0) 1 ___ n6Ah(6)

(A34) 5631.10) _ Ame) é L(6) 5 Bats) _‘n6An(a)

where h(6) < 0.
We can summarize our results as follows. If h(6) > 0, limits for

L(6) are given in (A:31). If h(6) < O, limits for L(6) are given in
(A234). The quantities 55 and 139 are defined in (A:27) and (A :28).

In Sections A.2.4 and A.2.5 we shall calculate the values of 68 and
135 for binomial and normal distributions. If the liniits of L(6) as given
in (A :31) and (A:34) are too far apart, it may be desirable to deter-
mine the exact value of L(6), or at least to find a closer approximation
to L(6) than that given in (A:31) and (A:34). A method of dealing
with this problem is described in Section A.4. There the exact value
of L(6) is derived when z can take only a finite number of integral
multiples of a constant d. If z does not have this property, arbitrarily
fine approximations to the value of L(6) can be obtained, since the
distribution of z can be approximated to any desired degree by a dis-
crete distribution of the type mentioned above if the constant d is
chosen sufficiently small.

A.2.4 Calculation of 86 and 119 for Binomial Distributions
Let X be a random variable which can take only the values 0 and 1.

Let pi be the probability that X = 1 when Hi is true (ii = 0, 1). Let
H be the hypothesis that p is the probability that X -= 1. Denote
1 -— p by q and 1 — p,- by q,; ('5 = 0, 1). The distribution f(:i:, p) of :1:
is given as follows: f(1, p) = p and f(0, p) = q. It can be assumed
without loss of generality that pl > pg. The moment generating

. , ) . .function of z = log"-(—x-—&- IS given byfix, Po)
_ .. _ f<==»P1>]‘_ a)‘

Let h(p) 9-‘-‘ 0 be the value of 1! for which ¢(£) = 1, i.e.,
h(i>) Mn)as + gs) = 1Po Q0



1

L

LIMITS FOR THE OC FUNCTION 165

First we consider the case when h(p) > 0. It is clear that e"”‘(”) =
[f($i Pi) ]h(")
in- > 1 implies that as = 1. Hence e"”“”) > 1 implies that
f(Ii P0)

hi?) h(P)1,e"‘('” [K PO] = . From this and the definition of 5,,
j-(1: PO) PD

given in (A:28) it follows that

(A =3 5) a,, = fig)
P0

where h(p) > 0. Similarly, the inequality e”‘(”] < 1 implies that
e"“'*°) = (ql/qo)"“’). From this and the definition of 11,, given in (A:27)
it follows that

(Ase up =
Q0

where h(;0) > O.
If h(p) < 0, it can be shown in a similar way that

5(9)
(A:37) 5,, = (iii)

Q0
where h(p) < O, and

(Ass) up = (g)
Po

where h(p) < 0.

M ii)

h(P)

Mp)

A.2.5 Calculation of 63 and 116 for Norinal Distributions

We shall now assume that X is normally distributed with unknown
mean 6 and known variance 112. \Ve can assume without loss of gener-
ality that or = 1, since this can always be achieved by multiplication
by a proportionality factor. Then

(A139) f(I, 5%") = ‘fir BI %(”“8"’2 (i = O, 1)
and

(A :40) f(;;;, 9) = 6- 34<==—a)=

We can assume without loss of generality that 60 = —A and 61 = A
where A > 0, since this can always be achieved by a translation. Then

3 = l()g'f--i—---(I,61) =

i 61))
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The moment generating function of z is given by
(AA2) E6 (en) = e2sa:+2a*:*

Hence

(A:-=13) h(6) =6-6 — £-

Substituting this value of h(6) in (A :27) and (A:28) we obtain
1(A:44) as = l.u.b. pE@ (e"2*-*= [ e_2“"‘ g; -)

P P
and
(A :45) 119 = glib. {E9 (e_2a” I e“'29“’ §

For any relation R let P@*(R) denote the probability that the rela-
tion R holds under the assumption that the distribution of :1: is normal
with mean 6 and variance unity. Furthermore, let Pg**(R) denote the
probability that R holds if the distribution of at is normal with mean
—-6 and variance unity. Since e_29“’ is equal to the ratio of the normal
probability density function with mean -6 and variance unity to the
normal probability density function with mean 6 and variance unity,
we see that

(A:-46) E9 (6-26: | 6-26” E — =

Paws (3-29; Z
1) P

p 130* _28x 5
P

‘m"Ch

and 1
P@** -2“ s -)

8 1 I
(A:-47) E9 (e_29‘ I 8"-2 I é - =

I =l= ( --261:P9 6 g —
I

It can easily be verified that the right-hand members of (A146) and
(A447) have the same values for 6 = A as for 6 = —)\. Thus, 59 and
175 also have the same values for 6 = )\ as for 6 = —)\. It will therefore
be sufficient to compute 69 and 139 for negative values of 6. Let 6 =
._)\ where A > O. First we show that we = 1/59. Clearly,

K-P8## (62:-\£ g **(e_2)\$ >_

(A:48) - 6 = (1 s r -< <=~==>—2)\::Pa‘: (emu g Pe*(@ 2 §')
§'
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Letting I = (1/p) (0 < p 5 1) in (A:48) gives

g-Paem (62%: é P8## (e—2)\::: g

P(11.49) ——-—-—i - 1)
P

1P84: <62}: :51-I _) pP0# (6-21: E __

I
Hence

1;.P0** (621: é 1

119 = ' = _€*T___*“ 
I P84: (82%: g P138111 (e—2'J\:|': 2 __

‘P l.u.b. P
P Paws (6--2?*~= g

P

Because of the symmetry of the normal distribution, it is easily seen
that

pP6* <e—2}\z 2 pP8*# (6212: 2

l.u.b. —--———i = l.u.b. —-—-———-'9- = a,
1 1) 6 ( )P P

P Pa** (8-21: g _ P III 62%;: g _

Hence ‘
1

113 % --—

3a

Now we shall calculate the value of 69. Let G(:1:) denote
1 "'-* _ if

7-? I 6 2 di. Then
‘If I

1 1 1 1Pg** (em: g -) = P9** (2>\:z: Q log -—) = P5** (:1: Q — log —)
P P 2); p

1 1
= G 5-; log — — A

O

Similarly

1 1 1 1 1P*(e2A=g_)=P#( 2__l _)=G(__] _ )

8 p ° x"2>~ ogp 2:\ °gp+>‘
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Let u denote (1/2)\) log (1/p). Since p can vary from O to 1, u can
take any value from 0 to w. Since p = e_2"", we have

pP0** (GZRE g

P G ..._

(A:52) 59 = l.L1.b. "m-'-'—"""--—i'-"-" = l.u.b. (e_'2*“‘

Pa* (6%: Z —) u (u + A)
P wsusw)

We shall prove that

(11:53) x(u) = 6-2"*-C-;£ii-—l)
G(u + A)

s a monotonically decreasing function of u and consequently has a
maxlmum at u = 0. For this purpose it sufiices to show that the de-
rivative of log ;-((u) is never positive. Now

(A:5/-1) log >((u) = log G'(u — A) — log G'(u + A) — Zku

1 . d .
Let <I>(a':) denote -3- e_ i"5"’2. Since 5 G(u) = —¢I>(u), 1t follows from

\/ 11'

(A:54) that
d <I>(u - Ix) <I>(u + PS),

(A55) El mg "M ' 1 ' G<-ti - zl) + G'(u + >0 2*
It follows from the mean value theorem that the right-hand side of

. . d <I> ) .
(A:55) is never positlve 1f 3 1s equal to or less than 1 for all

values of u. Thus, we need merely to show that
d [<1>(u)] <I>’(u)G'('u) -- G'(zQ<I>(a)_ _ . <P’(1;)G(u) + <I>2('u)

“'56) at Ga) G'2(u) Wu)
Z _ , ea g ,

G (u) G(u)
<i>( ) - _

Let y denote —-3- . The roots of the equation 9'2 -—- uy — 1 — 0 are
G(u)

ad: V242-I-4y_ t
2

Hence the inequality yz —- uy —- 1 g 0 holds if, and only if,

surfs u2+4<y<:lu+ su2+4i-
' 2H Z H 2
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Since y cannot be negative, this inequality is equivalent to

(A57) E21 = 2, 5 '*i_+I‘€ ?~=2_+_4
G(u) _ 2

S ‘ Thus we merely have to prove (A:57). We shall show that (A 57)
holds for all real values of u. Birnbaum 5 has shown that for u > O

Vu2+4—u
(A :58)

Hence
<i>('u) 2 Vu2+4+u

2 <P('w) 5 G(u)

(A:59) ——— g -——- A A (u > 0)
G’(u) ‘\/u2-I-4—u 2

which proves (A:57) for u > 0. Now we prove (A 57) for u < O Let
u = —v where v ‘.> 0. Then it follows from (A 59) that

(A :60)
<I>(v) 7 2

£__ __

Q ‘\/4+v2—-

Taking reciprocals, we obtain, from (A:60),

3 (A :61)

Since
G(u.) G'(v) + 2v<i1-(v) G(v)

lb V 4: + U2

<I>(v) _ 2

._ 2 _ _ .. W ___ ,_ 2
om) " <I>(v) ¢- v l U

.ve obtain, from (A:61)

2(A262) G(u.; 2 LV vp —l—24+ 32; 1} (‘V 2.2 + 4 + v

2<I>(u _
Taking reciprocals, we obtain

'=1>(u) 2 \/v2+4-— \/u2+4+u-———-5"? g or _» _l
G(u)'“\/v2+-4+» 2 2

Hence (AI-57) is proved for all values of u and consequently 5,9 1s equal
to the value of the expression (A153) if we substltute O for u Thus

‘F G(-x)(A:63) 5,, = (A = |5 D

5 Z- W- Birflbflllm. "An Inequality for l\-Iills’ Ratio,“ The Annals of ZlfathematzcalStatistics, Vol. XIII (1942)

G()\
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Formula (A :63) has been derived for the case in which 09 = —A,
61 = A, and 0- = 1. It can easily be seen that for general values 6'0,
61, and cr we have

(A:64) a, .-= _-1)
G'()\)

1 6 6
where A = — 6 —-i

cr 2

A.3 UPPER AND LOWER LIMITS FOR THE ASH FUNCTION OF A SE-
QUENTIAL PROBABILITY RATIO TEST

A.3.1 Derivation of General Formulas for Upper and Lower Limits

As before, let

16 ‘£16 - .
3 =1Qg , Z; =10g (Z = 1,, 2, ' ' *, ad lllf.)

J-($1 60) f(x1': 60)

and let n. be the number of observations required by the sequential
test, i.e., in is the smallest integer for which Zn = 21 —|—- ' '+ 2,, is
either Q log A or § log B. To determine the expected value E(n) of
n under the hypothesis H that 6 is the true value of the parameter, we
shall consider a fixed positive integer N. The Sum ZN = Z1 + ' ' * + ZN
can be split in two parts as follows:

(A:65) ZN = Zn + Z3;
WhereZ'n -—-: Zn+1 +---+zNifn§N&ndZ'n = ZN

Taking expected values on both sides of (A:65) we obtain

NE@(z) = E@(Z,. + Z’-n)

Let. PN denote the probability that n 5 N. Then

E9(Zfl + Z’,,) -= PNE6N(Zn -I" Z'n) + (1 '— PN)EeN*(ZN)

where the operator EQN means conditional expected value when n g N,
and E@N* means conditional expected value when n > N.

Since ZN lies between logB and logA when n > N, and since
]j_m (1 - PN) = 0, we obtain from the last two equations

(A166) [NEa(-Z) -—- PN-EfiN(Zn + Z’,-J] = 0
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For any given value of n < N, the variates zn_|_1, - - -, ZN are inde-
pendently distributed, each having the same distribution as z. Hence,
we have

E'a1v(Z'n) = Eav(N "- '"»)Es(-Z) = -EaN(n)Ea(=) + NEa(=)

From this and (A:66) we obtain, since Alim (1 —- P,v)N = 0,‘

(A:67) Jim [P1vEoN(n)Eo(Z) — PNE8N(Zn)] = 0

Since

lim P1vEe1v(") = Ee("») 8-11d Jim PNE0N(Zn) = EB(Zn)
N== w = "P

equation (A:67) gives

(A163) Efl(Zn) = Eo("»)Eo(Z)

Hence

(A :69) E9(n) =  )

if E@(z) 95 0. Let E@*(Zn) be the conditional expected value of Zn
under the restriction that the sequential analysis leads to the accept—
ance of H0, i.e., that Zn 5 log B. Similarly, let Eg**(Zn) be the con-
ditional expected value of Zn under the restriction that H1 is accepted,
i.e., that Zn g log A. Since L(6) is the probability that Zn 5 log B,
and 1 — L(6) is the probability that Zn ,2 log A, we have

(A170) E9(Zn) = [L(9)]E'e*(Zn) + [1 - L(6)]E6**(Zn)
From (A :69) and (A:70) we obtain

(A:71) Ens) iL@_iEi“*(?"? T ill T"_L(8)]E’**(Z")
Eat?)

The exact value of Eg(Zn), and therefore also the exact value of
E@(n), can be computed if z can take only integral multiples of a con-
stant d, since in this case the exact probability distribution of Zn was
obtained (see Section AA). If z does not satisfy the above restriction,
it is still possible to obtain arbitrarily fine appro:-cixnations to the value

1 C. Stein has shown, in “A Note on Cumulative Surns,” The Annals of Mathe-
matical Statistics, Vol. 17 (1946), that all moments of n must be finite. This implies
that Jim (1 '-' P1v)N* = 0 for any positive integer k.
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of E@(Zn), since the distribution of z can be approximated to any de-
sired degree by a discrete distribution of the type mentioned above
provided the constant d is chosen sufficiently small.

If both | E(z) | and the standard deviation of z are small, E@*(Zn)
is very nearly equal to logB and E9**(Zn) is very nearly equal to
log A. Hence in this case we can write

N [L(6)] log B ,+ [1 — I{(f)l log A
E-9(2)

This is the same approximation formula as given in (3:57).
To judge the goodness of the approximation given in (A :72) we shall

derive lower and upper limits for E9(n) by deriving lower and upper
limits for Ea*(Zn) and Eg**(Zn). Let r be a non-negative variable
and let

(A273) £9 = Max E@(z — r | z Z 7') (T Z 0)

(A :72) E9 (n)

and

(A:74) 5', = Mm E@(z + T | Z + T s 0) (r 2 0)
It is easy to see that

(A:75) logA é E9**(Zn) 5 10811 + E0

and

(A:76) log B + as s E@*(Z,.) s log B
We obtain from (A:71), (A:75), and (A175)

L(6)(l B + s’) + [1 — L(6)] l0sA
(A:77) cog eE9(z) r c* e é E001)

E [L(6)] log B,+ [1 — L(6)] (log A + Ea) if Em) > 0
_ Ee(Z)

(A78) [1;(a)] log B [1 -nL(6)](log_A + £19) é E601)
-50(2)

5 lD(6)(log B + Fa) ?|f[1 ff 11(9)] 1°84 if Egg) < 0
"" EM?)

The limits given in (A:77) and (A578) will generally be close to each
other for values B é 60 and 6 5 B1. However, for values 6 between

and
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60 and 61 the difierence between the upper and lower limits may be-
come very large, since E,;(z) may be near (or equal to) 0 for such
values 6. In fact, we have seen that Eg,,(z) < 0 and E,9,_(z) > 0.
Hence, if E,9(z) is a continuous function of 6, there will be a value 6’
between 60 and 61 such that E942) = 0. For 6 = 6" or for values 6
very near 6" the limits given in (A :77) and (A :78) are of no practical
value, since they are far apart.

We shall now derive lirnits for E9(n) which can be used for values 6
in the neighborhood of 6'.’ For this purpose, we shall expand ewnz“
in a Taylor series as follows:

(A=79) e"‘°’Z" = 1 + h(9)Z.. + ~%'[h(9)]2Z..” + %[h(9)]3Zn3e"
where )\ is some value between 0 and h(6)Zn. From (A:17) and (A :79)
we obtain

(A180) h(9)E6(Zn) = —i>"[h('9)]2Ee(Z.-.2) — %[h(6)]3Ee(Zn3e")
From this and (A:69) it follows that

_ ,_ my . [h(9)]2(AB1) Em) 21% (Z) E.<Z..2> —- -6%E@<z.3e*>
Thus, upper and lower limits for Eg(n) can be obtained by deriving
upper and lower limits for E9(Zn2) and E@(Zn3e"). To derive lin1its
for Eg(Zn2), we write

(A132) Ee(Z.-.2) = L(9)Ee"‘(Z.~.2) + [1 — L(6)lE6**(Zn2)
where the operator E* stands for conditional expected value when
Zn é log B, and E** stands for conditional expected value when
Zn Z log A. Let e’ denote Zn — logB and e” denote Zn — log A.
Then

(A:83) E@*(z.,,2) = (log B)2 + 2(log B)E,*(..') + E@*(¢'2)
and

(A:84) E@**(Z..”) = (log A)"’ + 2(10s A)E@**(e") + E@**(-5"”)
Since E'@*(¢'2) s 0 and (log B)E,*(¢') g 0, we obtain, from (A:83),
(A:85) (log B)’ s E@*(Z...)2

1 See also the author's paper, "Some Improvements in Setting Limits for the
Expected Number of Observations Required by a Sequential Probability Ratio
Test,” The Annals of Mathernaticai Statistics, Vol. 17 (1946).
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The quantlty 8'9 given in (A :74) is a lower bound for E'@*(e'). Since
log B < 0, (log B)£'@ is an upper bound for (log B)E9*(e’). An upper
bound for Eg*(e’2) is given by

(Ase §"e = Max Ewe + i->212 + =~ s 01 (T s 0)
Hence

(A137) E'a*(Zn2) é (108 B)2 + 2003 B)-‘5’e + §"o
Thus we obtain the liinits

(A133) (log B)2 é E'a*(Z.-.2) é (108 B)2 + 2002.‘ B)E’a + §"a
In a similar way, the following limits can be derived for E@**(Zn2):

(A139) (log A)” é Ea**(Zn2) é (10% A)” + 2(l0s A)Es + fa
where £9 is given in (A :73) and

(A:90) (9 = Max E@[(z - r)2 | Z g 1-] (r a 0)

If we denote by L’(6) the lower limit and by L”(6) the upper limit
of L(6) given in (A :31) [(AB4) when h(6) < O], we obtain fl‘0TI'1 (A132),
(A:88), and (A:89) the following limits for E,.(Z..2):
(A:91) L’(6)(l0g B)” + [1 -— L”(H)](log A)“ s Ea<Z»2)

§__ L”(6)[(log B)” + 2(l0g B)&’@ + §"'el +
[1 -2 L'<e>1[<1<>g Ar + zaog Am + :61

Using a similar method, one can also derive upper and lower limits
for E9(Zn3e") without any difficulty. We shall, however, not derive
such limits here, since we are interested in obtaining limits for E@(n)
when 6 is near 6’ and since, for such values of 6, the second term in
the right-hand member of (A:81) is negligible. We shall show that, if
h(9), E9(z), and E@(z2) are continuous functions of 6, the factor
[h,(6)]2/[E,,(z)] in that term converges to 0 as 6 ——1- 6’. It follows from
the discussion given in Section A.2.1 that lim h(6) = 0. S1nce8=6'

lh(6)]2 [h(9)]3 ,, _._,
(A:92) E8(en(a>=) = E6 {I _|_ h(9)z + __2_!__z.-2 _|_ T236 ace) } = 1

(O g u é 1)
we obtain, when h(6) as O,

hm) [h(6)]2 U ,E9 {z+31_z2+?E__z3e 171(9) 1, =0
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Thus

(A:94) 3,-L’(—§")3 = E9 [ - is -—- 539?-z3e"*<°>'] than s 01
Assuming that Ea (e""i) is a bounded function of 6 in the neighbor-

hood of 6", we see that Eg(| z |3e' M’) ' ' ’ ') is also a bounded function of
6 in a suficiently small neighborhood of 6'.“ Hence, Eg(z3e“"@‘) 1s
also a bounded function of 6 in the neighborhood of 6’. From this and
(A94) it follows that

(A:95) ZZZ) LE.-(Z2) < 0

From (A:95) it follows that

(A :96) lim Mi = 0
6=6' Eg(Z)

The lower and upper limits for E@(n), based on (A :81), will generally
be close to each other for values 6 in a small neighborhood of 6'. Thus,
when 6 is near 6’ these limits for Ea (n) can be used instead of the limits
given in (A :77) and (A:78).

It may be of interest to determine the limiting form of (A :81) when
6 = 6'. If E@(Zn2) is a continuous function of 6 and E@(Zn3e)‘) is a
bounded function of 6 in the neighborhood of 6’, it follows from (A :81),
(A:95), and (A196) that‘

2

(A:97) E9.-(n) .1 EMZ" )
E0422)

The boundedness of E@(Zn3e)‘) can be proved if, for t = =l=1, the ex-

pected value pE9 (eiz l ct‘ Z is a bounded function of 6 and p
P

(0 < p < 1). Since lim h(6) = 0, there exists a constant C’ such that
6=6

l Znaei‘ l g Ce‘ 2"‘ for 6 in the neighborhood of 6’. Hence, we merely
have to show that E@(e' 3"‘) is bounded. Since ez“ + e_Z" 2 6'3"‘ it
IS sufficlent to show that both E.9(ez") and E9 (e“Z") are bounded. 'iiVe
have

1Ee(ez" l Zn g log A) g A 1.u.b. [pE9 (ea | e’ Q —-)]
P .0

3‘ This follows from the fact that | h(6) | <1’ 1 when 6 is sufficiently near 6'.
" A different method for deriving (A:'97) was given in the author's paper, “Dif-

ferentiation under the Expectation Sign in the Fundamental Identity," The Annals
of A/Iathemaiicai Statistics, Vol. 17 (1946).



176 APPENDIX

where 0 < p < 1. Since

E.(@Z~ | zn s log B) ;_;_ B
we obtain

1
E9(ez") g A l.u.b. [pEg <6’ I e‘ g —):| + B

P P

The right-hand member of this equation is bounded, since
1 . . .

pE9 (ei l e‘ Ii; 3) 1S bounded by assumption. Hence E9 (ez") 1S bounded.

The boundedness of E@(e"Z“) can be shown in a sirnilar way. Upper
and lower lirnits for E9» (n) can be obtained from (A :97) by substituting
for E@»(Zn2) the upper and lower limits given in (A :91).

We shall now compute an approximate value of E9»-(n), neglecting
the excess of Zn over the boundaries. Since lirn h(6) = 0, we obtain,
from (3:43), "=°'

log A
A:98 L 6' ----— r

( ) ( ) logA — logB
Hence

log A '_ log B 2E.-Z,,2 z""--I . 1 as 1 B)24~~ 6 (1OsA)
8( ) logA—-logB(0g 10511"-1°53

= - log B log A

Thus an approximate value of E9-(n) is given by 5

E6. (z,.2)_ ;- log B log A_
(A E6’ (n) — Ea’ (Z2) E8’ (Z2)

If the OC function L(6) of the test is known exactly, close limits for
E9(n) can be derived which remain valid over the entire range of 6.
We shall indicate briefly the derivation of such limits. Denote by
f9(z) the distribution of 2: when 6 is the true value of the parameter.
By the distribution of zeconjugate to the distribution f@(z) we shall
mean the distribution eh‘ )‘f9 (z). In important cases, such as for bl-
nomial and normal distributions, to any given value 6 of the param-
eter there will correspond a value 6 such that f§(z) is conjugate to

5 W. Allen Walfis obtained this approximation formula independently of the
author. It is included in the publication of the Statistical Research Group of
Columbia University, Techniques of Statistical Analysis, Chapter 17, Section 7.2|
McGraw-Hill, New York (1946).
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j@(z), i.e., f-5(2) = e"“”‘f@(z). We shall call 5 conjugate to 8. It has
been shown elsewhere 3 that

- L 0 1 — L115)EB*(eh(3)Zn) Z L) and Ea*#(eh(5)zn)

L(6) 1 — L(6))
On the other hand,

,,, h 0 2= eh(a)E6 (Z»)E0* {1 _|_ .l.___(§_)l__ [Zn _ E'9=i=(Zn)]2e-u}

where v lies between O and h(0)[Z,, — Eg*(Z,,)]. Similarly

(A:102) E,**(e*‘“>Z~) [h (9)12
= eh(0)E9**(Zn)Ea** {1 + T [Zn __ E8**(Zn)]2ev’}

where v’ lies between O and h(6)[Z,, — E@**(Z,,)]. From (A:100),
(A:101), and (A2102) we obtain

EB*(Zn) 1 Lt?)°“°"'> Em)  h<@>E@<z> ‘err; ‘
1 [h(9)]2

——fi(z) 108; (1 + ——2 Ee* {[311} — Eo*(Zn)]2@"})
and
(A.104) Ea**(Zn) _ 1 10 1 ,

' 139(2) h(6)E@(z) g 1 - L(6)
1 [h(5)l2-—-—i-h(9)E6(z) log (1 + ———~2 Ea** ill. — E@**(Zn)]2@”'})

Thus
(A:l05) Eg('n)

L1  L(6) log @ + [1 - -3(9)] 105} iii?“ ~ie Rh(~9)Ee(Z) L(6) 1 —
where
(A 1106)

I (9)12-— - 1 h =l= =l= 2 vlR W)EB(z) [Lw>1<>g(1 + -726 {lZn - E6 <z,.>1 6 J) +
lh<@)1"-'[1 — L<e>11og(1 + ~2—- 1:@**{[zn -_ E@**<zn>1%~'})]

‘See, for instance, the author's article en “Some Generalizations of the Theory
of Cumulative Sums of Rflndcm Variables," The Anmzls of .='lIa£he*maIz'caI Statistics
Vol. XVI (1945). '
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Since h(6)Eg(z) g O (see Section A.2.1), we see that R Q O. Hence a
lower bound for E,-_9(n) is obtained by substituting 0 for R in (A:105).

To obtain an upper bound for E9 (n) we shall derive an upper bound
for R. Clearly

(A1107) HZ» — 103 B) + [E'a*(Zn) - 103 BN2 Z [Zn -—- E'e*(Z=-J12
whenever Zn g log B. From this and (A :76) we obtain

(A1103) I(Zn — log B) + £’el2 2 [Zn — E6*(Zn)]2
whenever Zn g log B. Similarly, we obtain

(A1109) l(Zn - 10811) + £al2 Z [Zn — E6**(Zn)]2
whenever Zn 7'-'==', log A, where £9 is given by (A173). From (A:107),
(A2108), and (A:109) it follows that

(A1110) E9*llZn —— E0*(Zn)]2eUi
g Ea*[(Zn _ log B + £1-8)28l Zn- losB+E'0l IM6) I]

and

(A1111) E@**{[Z,, - E@**(Zn)]2e""]
s Ea**[(Zn - log A + s@)’*e""'"“ ‘°*‘*+‘“""“°’ '1

Furthermore, we have

(A:112) Efl*[(Zn -— log B + 8'0)
£ Max E'a*l(z -i- 1*‘ -I" E'a)26|:+r+Fa I ‘Mail l 3 + 7' 5 0] 2 P’ (Say)
— rgfl

and

28] Zn— 108 B+£'6 I |!1(fi) I]

(A:113) Ea**l(Zn - log A + e>”@“°'"‘ ‘°““”“""“"‘ '1
s Max E5-**[<z _ r + z@)”e""'*“""‘”" l Z — T Q 01 = P” (Se?)

1'20

From (A:106) and (A:1l0) through (A:113) we obtain the following
upper bound for R:_. 1 [hw)12 ,
(A114) R § R is h(6)Ea(z) (L(6) log{l + -—'-2 P} +

[h(9)]2
[1 -—- L(6)] log [1 + —§—-P”})

An upper limit for Elq(n) is obtained by substituting R _for R in
(A:105). The value of R will generally be small over the entire range
of 9.
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A.3.2 Calculation of the Quantities §@ and §'g for Binomial and Nor-
mal Distributions

Let X be a random variable which can take only the values 0 and 1.
Let the probability that X = 1 be denoted by 6. Then the distribu-
tion of :1: is given by f(:i:,6), where f(1,-6) = 6 and f(0, 6) = 1 — 6.
Let H,; be the hypothesis that 6 = 6; (i = 0, 1). It can be assumed

. , 6 )without loss of generality that 61 ‘> 60. It is clear that log')E—-i- > 0
-{(531 60)

. . J-(xi 61) _ 61) __implies that a: — 1 and consequently log ‘Fm,60) — log I-—"-V60) —

6log -1- . Hence
90 a(A:l15) .56 = Max E@(z - Tl Z g T) = log-51

F 0
,. f(xi 61) . .Since log i-—-— g 0 implies that :1: = 0, we have

f('r: 60) 1 __ B

(A:116) 5'9 = Min E'@(z + r | Z + r g 0) = log I-——61
I‘ - o

Now we shall calculate the values £9 and E’;-;» when X is normally
distributed with unit variance. Let

1 _ ,_ 6 _

d KI, 8‘) 2 72;; 6 %( M2 (1 = 0, 1 and 91 > 90)an
1 2J 9 = —%(-r--6]"“"” ’ \/if

‘We may assume without loss of generality that 60 = --—-A and 61 = A
where A > 0, since this can always be achieved by a translation.
Then

, 6(A:ll7) Z = 10gf___("’‘) = 25;;
2 j-(xi 60)

I an I2

Let <1>(a:) denote -—1—~ J F and let Ga) denote L I 6' § dt. La
'\/211' \/Er

t= 2: — 6. Then 2 = 2A(£ + 6) and
(A:l18) E,9(z --rlz —rg0)

T T=2aE@(z+r1——|z+e----go)
2A 2a

= 35- fair ~ z )¢>(-0 dz ~ 235 l—r Ga ) + to >1G00) =0 U G00) ° ° 6°
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where
A:119 =l_( ) 30 2A

In Section A.2.5, equation (A:56), it was proved that [¢I>(to)/G(to)]
— to is a monotonically decreasing function of to. Hence the maxi-
mum of E@(z -—- 1- | 2 — r 5 0) is reached when r = O, and consequently

APPENDIX

6

_ = 2A __ _ _ q>(_a)
(A-120) Ea —1G(_8) [6G( 6) + <I>( 0)] _ 2a ['1 + -@(__B):|

Now we shall calculate 5'6. We have
Mi.nEg(z+r|z+:r g 0)(A:121) £'

=— 9»Xa*——-—_—-"—=-_

—MaxE9(—z —r| —-z -rg
I’

T T2.»; M E ( =1: | x ==- 0)r 24 2a
Let t = —:z: + 6 and to = (r/2n) + 6. Then

(A:122) E.,(-1;-il-e-é_=;0)=E@(e—¢@I¢—toe0)

(A123) Max Ea(—$ '— Ll ‘“-'~“ To 3 0) = ——) "" 9' ,- 2a 2A— ()

1 no=____j; (t-to)<I>(t)dt-————

0)

‘1>(¢o)
G010) G00)

Since this is a monotonically decreasing function of :10, we have

From (A:121) and (A:123) we obtain
¢I>(6

(A:124) £’@ = —2A —- 9]

Formulas (A:120) and (A:124) have been derived for the case when
90 = -A, 61 = A, and 0- = 1. For general values 60, 61, and 0- the

G(6

values of £9 and 5'9 are given by

and

(A:125) £0 = E (91 "" 90) [5 +EG(—@]

<I>6 _
(A:126) 5'0 = — E (91 — 90) _ 9

where
GOD

_ 1( 90-l-91)a=— 0——-——
o' 2

<I>(6

G 6
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11.4 DERIVATION OF EXACT FORMULAS FOR THE OC AND ASN FUNC-
TIONS WHEN z CAN TAKE ONLY A FINITE NUMBER OF INTEGRAL

MULTIPLES OF A CONSTANT

In this section we shall derive exact forinulas for the OC and ASN
f(I 91)functions when 2 = log jT(-5:-1-655 can take only a finite number of inte-

gral values of a positive constant d. This is a rather general result,
since any distribution of z can be approximated arbitrarily closely by
a discrete distribution of the above type if the constant d is chosen
suficiently small.

To obtain the exact OC and ASN functions, we shall first derive
the exact probability distribution of the cumulative sum Z,, =
zl —l— - - -+ z,, at the termination of the sequential process. In what
follows in this section the probability of any relation and the expected
value of any random variable are determined under the assumption
that 6 is the true value of the parameter} However, to simplify nota-
tion, we shall not put this in evidence in the formulas, i.e., we shall
write P instead of P9 and E instead of E9. Let g1 and g2 be two posi-
tive integers such that P(z = —g;d) and P(z = ggd’) are positive and
2 can take only integral multiples of d which are g ~——g1d and g ggd.
Denote P(z = id) by h,-. Then the moment-generating function of z
is given by

(M2?) Be") = h.@'** -= ¢<o (say)
To obtain the roots of the equation ¢(t) = 1, we let em = u and

solve the equation:
U2

E hl"[.[,‘: 2 1

i=—6i

Let g. denote g1 + Q2 and let the g roots of (A:128) be ul, - - -, us, re-
P-Pectlvely. We shall assume that no two roots are equal, i.e., 24,- ;é u,-
for i 95 j. Substituting u,- for e“"' in the fundamental identity (A:16)
we obtain

£-6 -_ -- . . .(A:129) Em. ) -—- 1 (i - 1. ,9)
Let [a] be the smallest integer Z log A/d, and [b] the largest integer
-E (log B)/d. Then Zn/d can take only the values

(A1130)

_- g1 + 1): T gl + 2): ' ' iv lali + 1): ' ' '1 + g2 _'

' If there are several unknown parameters, 6 denotes the set of all parameters.
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Denote the g different values in (A:130) by c1, - - -, cg, respectively.
Furthermore, denote P(Z1. = ad) by £,. Then equations (A:129) can
be written as

F

(A:131) E .§_,1.¢£"i = 1 (5 = 1, . . ., 9)
;'= 1

Let A be the deterrninant value of the matrix ||u¢°‘ ('5, j = 1, ~ - -, g)
and let A; be the determinant we obtain from A by substituting 1 for
the elements in the jth column. If A 5'5 0, it follows from (A:131) that
P(Z,, = c,d) = 5, is given by

A
(A :132) gj = 23.

Thus, the probability L(6) that the process will terminate with Z,, §
log B is given by

A:(A:133) L(6) = 2I
J’

where the summation is to be taken over all values j for which dc; g
log B. Equation (A:133) is an exact equation of the OC function.

From the probability distribution of Zn we can easily derive the ex-
pected value E9(n) of n. In fact, in Section A.-'3 it has been shown that

E8(Zn)Em’ " "at?
But

H c-A-d
(A:134) E@(Z..) = E :—"33—

.1= 1
Hence 1 0 CjAjd
A:135 E ( ) = -—- ——

( ) 9 n E3(3) A

is the exact equation of the ASN function.
The method of obtaining the probabilities £1, - - -, £8, as described

above, requires the computation of the roots of the polynomial equa-
tion (A:128). This is not necessary, however, if a method given by
Girshick is used.“ Girshick proceeds as follows. Multiplying
(Eh,-‘ta’: — 1) by um and (25,-'u"" — 1) by u°‘_[°]_1, we obtain two

1 J
polynomials f(u) and F(u), where f(u) is of degree g1 + g2 = g and

2 IVI. A. Girshick, “Contributions to the Theory of Sequential Analysis,” The
Annals of El-faffzmraatical Sta-tistics, Vol. 17 (1946).
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F(u) of degree g + [a] - [b] -—- 2. According to (A:l28) and (A:131),
every root of f(u) is also a root of F(u). Hence

F01») = f(v1)f*(u)
where f*(u) is a polynomial of degree [ca] — [b] — 2, i.e.,

f*(?-4) = kc + klu + ' ' ' + k[a]—[b]—2 ?1»[a]*[b]_2

Putting the coeficient of any power of u in F(u) equal to the coef-
ficient of the same power of u in f(u)f*(u), we obtain a system of
g + [a] — [b] — 1 linear equations in the g + [a] — [b] — 1 unknowns
£1, -- -, £3, kg, kl, - - -, lc[,,]_[,,]._2, from which these unknowns can be
determined. Thus, the probabilities £1, - - -, E, can be determined
without solving the polynomial equation (A:128). This advantage is,
however, bought for the price of an increased number of linear equa-
tions to be solved. If the roots of the polynomial equation (A:128)
are computed, only g linear equations have to be solved for determin-
ing El, - - -, 5,. If Girshick’s method is used, no polynomial equation
is to be solved, but the number of linear equations is increased to
g+[a] —-[b] -1.

If g2 = 1, the OC function L(6) is a simple expression of the roots
u1, - - -, ug. In fact, L(6) = P(Z,., g log B) = 1 —- P(Z,, Q log A) =
1 — £3. We have

,,1u=1—@.+1 ullbl ,,11»=1 1

-='>= IIII. I111".
ug[b]—a1+1 _ ,ug{z>| ug[.-.1]

and
.,,1lbl——m+1 _ __ ,u1[b] I 1

‘ I I I In Q 0 I 1» -a,=
lb]—0 +1 {blug ‘ - - - ug 1

The value of the ratio A,/A is not changed if we multiply the ith
row of A, as well as that of Ag, by u,-”"“’]_". Th11s

L 1 U1 _ _ _ u_1ai—1 .uI.=:n—1—[b] 1

‘ " - . 5 ‘ I I O -I I I I Q -1 '

l ' ' 9 I I 0 In 0 1 -. g - .

-1 Q1—1——[b] -
f _ r I

1 ul . . . ul ""1 ulUl"‘1'l‘l<1l'_lbl

‘ I Q I I n 1| g g . - ‘ '

I

I ll I I I u 0 Q g Q . . 4 -IiI .

I 1 ‘us, . . . -u_ga|—1 .ug5'1_1'l"l¢1l"'lbl
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The cofactor of each element in the last column is a Vandermonde
determinant. Expanding the determinants in the numerator and de-
nominator according to their last columns and dividing numerator and
denominator by the Vandermonde determinant,

1 Z61 ‘Ii-12 ‘ ' ' 1.6101

(91=9"'1)
1 us ‘U-32 "' 1&3“

we obtain
0 ui§1—1'"'lbl ]

A ,;=2|[(ua -‘1)l |(ui""uj)
£8 Ag U .u

J'#£
[ £01-1+l0l-'lbl

1

L i Q-I-u
i mu-

_ r |-I

1-Z (‘Mi — 1)H(u1.' '— "ill
.1‘;-es

We shall illustrate the derivation of the exact OC ‘and func-
tions by a simple example. Let :1: be a random variable which can
take only the values O and 1. Denote by H1: ('1 0, 1) the hypothesm
that the probability that x = 1 is equal to Pi (1 = 0, 1)- Let

1 — 42-2 d 6’ — 6-1
poled e2 an p1_e e2

in
1-Z m

gm

Consider the sequential test for testing Ho against H1. We shall com-
pute the probability that the process will terminate with the accept-
ance of H0 and the expected number of trials required by the test,
when the true probability that 1: = 1 is equal to 10 = %- In What
follows in this section, all probability statements and expected values
refer to the case when p = 9/5-

First we compute ¢(,g) = E(e"‘). Since z can take only the values

1-20 _
loggi-=_-log6=1 and l0gTi=1°ge 2": '_2

po —p0

with probabilities 1% and 5?. respectively. We have
¢>(-¢) = "i-6‘ + ’=‘r@_2'

Letting e‘ = u and solving the equation
3 i41__1
7“ 71:2-
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\:o c_-:\we obtain the roots ul = 1, 1&2 = 2, and 1:3 = — The integers

c1, G2, c3 are given by

cl =1ogB -—- 1, 02 = logB, ca = logA
Hence

1 1 1
A = 2103 B— 1 210; B 210g A

(____g_)logB—1 (____%)l0BB (__g_)lu-RA

1 1 1
210g B 210; AA1 =1 11 <-am <-aw‘

1 1 1
210-g B-1 1 2103.4!
(_%_)1ogB--1 1 (_%)logA

A2=

1 1 1
210; B-1 21033 1

(__%_)logB—1 (_%)logB 1
A3=

Then the probability that H0 will be accepted is given by

A

The expected value of n. is given by

E91,) =_ 1; .¢‘A1,+ °?42 + °3A3
E(z) A

= _ Z:(— logB + 1)-A1 +_(yyl_<-#2 B)-A2 j— (l0gA)A;a
5 A

7 (— logB + 1)A1 —|— (- log B)A — (log A)A_ y f 2 3
5 A

11.5 THE CHARACTERISTIC FUNCTION AND HIGHER MOMENTS OF It

A.6.1 Derivation of Approximate Formulas Neglecting the Excess of
the Cumulative Sum over the Boundaries

Let 2,, be a random variable _defined as follows: Zn = log A if
Zn =_Z1 -I----+ Zn 2 logA, and Zn = logB if Zn 5 log B. Denote
the d-lfieffillfie Zn - Zn by e. Then e is a random variable.
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In what follows in this section we shall neglect e, i.e., we shall sub-
stitute 0 for e. No error is comxnitted by doing so in the special case
when z can take only two values, d and —d, and the ratios (log A)/d
and (log B)/d are integers, since in this case e is exactly 0. Apart
from this special case e will not be identical with the constant 0.
However, the smaller | E(z) | and E(z2), the smaller the error we com-
mit by neglecting e. In fact, for arbitrarily small positive numbers
61 and 52 the inequality P(| 6| 5 51) 2 1 — 62 will hold if [E(z)|
and E(z2) are sufliciently small. Thus, in the limiting case when E(2)
and E(2:2) approach 0, the random variable I5 reduces to the constant 0.

As in the preceding section, all probability statements and expected
values will refer to the case in which B is the true parameter point,
without putting this in evidence in the formulas by using 6 as a sub-
script to the operators P and E. Let ¢>(t) be the moment generating
function of z, i.e.,

¢(¢) = E'(e““)
To derive an approximation to the characteristic function of n, we
shall consider the equation

(A:136) -—- log ¢(¢) = T
where -r is a purely imaginary quantity. It will be assumed that z
satisfies the conditions of lemma A.1. Then, according to lemma A.1,
the equation —- log q‘>(t) = 0 has exactly two real roots in 6; they are
,5 = (] and ,1 = h, (h ;-6 0). Furthermore ¢'(O) and ¢>’(h) both are un-
equal to 0. Hence, if qf>(t) is not singular at t = 0 and t = h, equation
(A:l36) has two roots, t1(r) and t2(-r), for sufficiently small values of
I -rl such that liII1£1('r) = 0 and ling’ i2('F) -"= hx Identity (A315) can

=0 -r='

be written as T

(A:13?) LE*{eZ"'[¢<¢>1~": + <1 - L)E**l@z"‘l¢>(¢>1_"l = 1
where L denotes the probability that the test procedure leads to the
acceptance of H0, E'* stands for conditional expected value uknkder the
restriction that the process leads to the acceptance of H0, E stands
for conditional expected value under the restriction that the process
leads to the rejection of H0. Neglecting the excess of Zn over the
boundaries, we have Zn = log B when the process leads to the accept-
ance of H0, and Zn = log A when the process leads to the rejectlon
of H0. Hence (A:l37) can be written as

(A138) LB‘E*[¢»(¢)]‘" + (1 —- L)A‘E**[¢(¢)]—“ = 1
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This identity is valid for all values of t for which | ¢(t) I g 1.1 Letting
t = t1(1') and t = t2('r), we obtain, from (A:138),

(A:139) LB‘*"’E*(e"‘) + (1 — L)A“"’E**(e"‘) = 1
and

(A:140) LB""‘E*(e‘”‘) + (1 - L)A‘*"’E**(e"*) = 1
Solving these equations in E"‘(e"‘) and E**(e"‘), we obtain

Al2(r) __ Afifrl
(A:141) E'*(@"‘) = ‘ifs,-§z.;A¢,<.>‘_ ;1"=:<;>§a,'<;fi

I1 1' ___ £2 1')
and ( ) (

* n B B
-E‘: (ef ) = (1__L)[Bt1(r)A!2(r) __Aj1fr(:r)‘Bl2(r)]

for all imaginary values 1-.
The unconditional expected value E(e"") is clearly equal to

(A:143) E(e°'“) = LE*(e'") + (1 — L)E**(e"")

Hence, the characteristic function of n is given by
A_!2(r) _____ A¢1(f) _|_ B110’) _ Bl2(1')

(A514-4) 134"’) = E(e"") —‘ BamA==<-> _ Auk-)iB¢=m
(for all imaginary 1-).

By definition, the expected value E(em) is the characteristic func-
tion of n, and (A144) gives the desired approximation formula when
the excess of Zn over the boundaries can be neglected. Our deriva-
tions yield also approximation formulas for 1,!/*(1‘) = E*(e"‘) and
1,!/**(-r) = E**(e"‘). The function 1,!/*(-r) can be interpreted as the char-
acteristic function of the conditional distribution of n when the process
leads to the acceptance of H0, and 1,‘/**(-r) can be interpreted as the
characteristic function of the distribution of 'n in the subpopulation
of samples leading to the rejection of H0.

As an illustration we shall determine 1p*(¢), J/**(-r), and 1,!/(1-) when
z has a normal distribution. Denote by p. the mean of z and by 0- the
standard deviation of z. Then equation (A:136) can be written as

02
—log¢>(t) = —,ut ——L-2-£2 = -r

I-This follows from the considerations in Section A.2.2, since D’ is the whole
complex plane in our case.
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Hence

-"P i V 2 ""-2"i"

1':
%~%~%,

(A:145) t
Thus
(A1146) l§1('r) = — -£5 —|— -——- V #2 -—- 20-21‘

and
(A2147) = —- 03 — — V ,u.2 -—- 2621'

where the sign of 1/ is determined so that the real part of
‘V p2 —- 20-2-r is positive. Substituting these values for £1 (1-) and £2(-r)
in (A:14l), (A:142), and (A:144), we obtain if/*(-r), :,b**(r), and ql/(1-) in
the case when z is normally distributed. According to formula (3 :43),
an approximation to L is given by

A-‘* - 1
(A2148) L *"'--I F?

my

Wlien z is normally distributed we have

(A:1-49) h = 16?-
It is of interest to consider the following two lirniting cases: (1)

B = 0 and A is a finite positive value; (2) B is a finite positive value
and A = -|--=<>_ It can be shown that E(n) will be finite in case (1)
only if E(=) > 0. Similarly, E(n) will be finite in case (2) only if
E(z) < O. Thus, in case (1) we shall assume that E(z) > O, and in
case (2) we shall assume that E(z) < 0. To obtain the characteristic
function 1,!/(1') of n in case (1), we have to determine the limiting value
Of the right-hand member of (A144) when B —> 0. For this purpose
we shall first derive the limiting value of B"(')/BM’) = B"(')_“(') when
B -—> O. Since in case (1) E(z) is assumed to be > O, the quantity
h = lim £2 (1') must be negative, as has been shown in Section A.2.1.

Hendgofor small -r the real part of t2(1-) is negative. On the other hand,
the real part of t1(1') approaches 0 as 1' -——> 0. Thus, for small -r the
I-ea] part, of ¢2(-r) — t1('r) is negative, and, therefore,

(A:150) lim I B‘="’_“"’| = +°°
B=O

From (A:150) and from the relation gig | B'=<*> | = w, it follows that
with B -—> 0 the right-hand member of (A:144) converges to

(A:151) A"“""
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Thus, if E(z) > 0 the characteristic function of n in case (1) is given
by (A:151). “Then z is normally distributed, t1 (1') is given by (A:146).
Hence, for normally distributed 2 with p. > O the characteristic func-
tion of n in case (1) is given by

.s._1.../_i(A:152) A" *'“ "2 M’
In case (2) we have assumed that E(z) < 0. Hence i2(-1') and

t2(-r) — t1('r) will have a positive real part for small 1-. Thus,
(A:153) lim ‘ A_f2("r) ‘ = i A¢z(r)—¢1(r) | = + co

A== on A=I =9 ,

From (A1153) it follows that the limiting value of the right-hand mem-
ber of (A:1-44) when A —> no is given by

(A1154) B““"’)
Thus, if E(z) < O, the characteristic function of n in case (2) is

given by (A:154).
The moments of n can be obtained by differentiating the character-

istic function of n. For any positive integer r the 1-th moment of n is
given by

(A:155) E(n") = €%1,&(1").

We can also obtain the conditional moments of n in the subpopula-
tion of samples for which Zn L5 log B, as well as in the subpopulation
of samples for which Zn g log A. Let E*(n") denote the conditional
expected value of n’ in the subpopulation Z... g log B, and let E**(n")
denote the expected value of n’ in the subpopulation Zn 3-‘; log A.
Then we have

d’ d’E*<n') = -—¢*c) and E**<n') = —¢**<-T)
drr drr

where 1,!/"‘(-r) and 1!/**(-r) are the conditional characteristic functions
given in (A:l~11) and (A:1~12).

_ d" d’It may be of interest to note that ?- 1,D*('r), ? 1;/**(-r), and, there-
T T

df

fore, also E(n") = $1,!/(1-) can be obtained from identity (A:138) di-
T

rectly by successive differentiation. In fact, (A2138) can be written as

(A1156) LB‘¢*[— log ¢>(z)] + (1 - L)A‘¢**[— log ¢(1)] = 1
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Taking the first r derivatives of (A:156) with respect to t at t = 0
and t = h, we obtain a system of 21' linear equations in the 2r un-

J’

knowns 5?;-,.1,b*(1-) and £2-i_—-,.1,&**(1-) -0 (j = 1, - - -, r) from which
-r=O —

. d¢""('r)these unknowns can be determined. For exainple T and
T -r-IO

dxl/** (T)
df f=c

tive of (A:156) with respect to t we obtain

(A:157) L(log B)B=¢*(T) - LB‘ Mt) 5-ll-p*(T) +
M df '0) d¢**<)(1 - L)(log .4).1'¢**(-.-) - (1 - L)A‘ :6) df 3 0

[T = -— log ¢>(i)l

can be determined as follows. Taking the first deriva-

Letting t = 0 and t = h we obtain the equations
¢'(0) cw/*<-)

(A.158) L log B —- L 45(0) JT +
1'=O

¢'(0) d¢**('r)(1 - L) logA -A (1 —- L) M0) dr- - r=_o= 0
and

(A159) L(1os B)B’* - LB” 5!-"(h) d¢*(T) 0+ (1 — I/)(1-as AM" -¢>(h) dr 1'-='
¢'(h) d1P**(1') _

(1 _ L)Ah'¢(h)L dr -r=O-_ 0

from which -(£l%(—d-T2 and £632 can be determined.
T 'r==O d1’ T=o

A.5.2 Derivation of Exact Formulas When z Can Take Only a Finite
Number of Integral Mulfiples of a Constant

We shall use here the notation defined in Section AA without any
further explanation. Let 1;/,-(-r) denote the characteristic function of
the conditional distribution of n in the subpopulation of samples for
which Zn = 641 (1; = 1, - - -, g). The equation in t

(A160) ¢(¢) = 6"
has gr rogts t1(7')_,, - ' ', is-(1') $11011

(A161) @“"""* = 141- (i == 1, ~-. 9)
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The fundamental identity (A:16) can be written as

(A162) zg,e==“¢,[- log ¢(1)] = 1
j-I

Substituting t,~(-r) for 1! in (A:162), we obtain

(A163) 2:,-6*“-*">"‘~1».-<~r> = 1 c = 1. 9)
3 1

These equations are linear in the unknowns 1,!/1(1), - - - , 1]/,,(-r), and the
determinant of these equations is given by

E1ecll1(r)d _ _ _ £geC:f1(r)d

6-::1£1(r)d _ _ ' ef-'g32(T}d<A=1e> at->=
£18-c|£;(-r)d _ . _ €gec;£;(r)d

Obviously, 6(0) = £152 - - - £gA. Hence, if E; ;=5 O (i = 1, - - -, g) and
A as 0, then 6(0) 95 O, and consequently 6(1) 95 O for any -r with sufli-
ciently small absolute value. Thus, 1&1 (-1-), - - -, 11/8 (r) can be obtained
by solving the linear equations (A:l63).1 The characteristic function
~J»(-r) of the unconditional distribution of n is given by

(A165) 44-1-> = Zs.~:».(-r)
-i= 1

For any positive integer r, the exact rth moment of n, i.e., E(n’), is
given by the rth derivative of 1]/(-r) with respect to 1- at 1' = 0.

A.B APPROXIIJATE DISTRIBUTION OF n WHEN z IS NORMALLY DIS-
TRIBUTED

A.6.1 The Case W'hen B = 0 and A Is Finite

In this case we have assumed that E(z) = n > O. Then the ap-
proximate characteristic function of n, if the excess of Zn over the
boundaries is neglected, is given by (A:152).. Let

#2
(A:166) -m = — n

2112
‘This method of determining 11/1(1), - --, \,pg(r} requires the computation of

the roots of equation (A:160). This can be avoided, as Girshick has shown in
his paper mentioned in Section A.4, if a device is used similar to that applied by
him for determining £1, - - -, E, (see Section AA).
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Then the characteristic function of m is given by

(A:167) gm) = 6*"-"1?"
where

an
(A:168) c = —2 > O

0'

and

(A:169) a; = log A

The sign of the square root in (A:167) is determined so that the real
part of ‘V 1 —— t is positive. The distribution of m is given by

(A:170) e°u" i/§')_"" dt

Let _

(A:171) G(c, m) = j:w e"°"1—-‘"’”‘ dz
and

1 "° 1 _ ~/Q-M. = __ -?A-- = dt(A.172) H(c,m) 21”; Ii” .._-_--1__te
Since

1 d _¢v’1"I‘¢.._,,-.7 ___ 1 ( 6 ___ ) -—c‘V'1—t-ml(A-173) Q5“ -27:-'21 2\/Z "" “’
we have _

..i I"
____ 1 -6-\/1-—l—1'n¢ =

(A:174) -g-H(C, W) '— mG(¢, m) '-' 2m; [6 ]_£u '0

From (A:171) and (A:172) we obtain
6H(c, m)

(A:175) ace + G01.» m) = 0
From (A174) and (A:175) it follows that

CH( )+maH(c:m) 0
'5 C: 77?’ ac

Hence 2
C

(A:177) log H(¢=,m) -7 --lg I 1@g?\(m)

where )\(m) is some function of m only. Thus
c2

(A=17s) H(<=, m) = >~(m)e 4'"
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Now we shall determine )\(m). We have
1 ‘° 1-———,.___ *"“dt

2Ti\[iw 1--fie

Since (1 — t)_% is the characteristic function of %x2 where X2 has the
X2-distribution with one degree of freedom, the right-hand side of
(A:179) is equal to

(A5179) )\(m) = H(0, m) =

1 if?!

P(%)% "
Hence

(A:180) )¢('m) I_(%)1\/1; e'_’”

From (A2178) and (A:179) we obtain

(A:181) H(c,m) —' 1__(_%)1&e_:7‘__m

From (A:174) and (A:181) we obtain
cl

C —-—- — m
(A1182) G(c, m) — 2P(%)m% e 4m

Hence the distribution of m is given by
C2

(A:183) F(m)dm =- 2l_(;)m%e_% ‘L dm (0 g m <. co)

Let m = (c/2)m*. Then the distribution of m* is given by
C2

__ c 1
(A184) D(m#) dmr = __._._iJ.__.______, 6. E (mi +m#_2) dm=|=we

x/E - 5(l,-,, +m*—2)
\/21r(m*)%

The function (1/mi‘) + m* — 2 is non-negative and is equal to 0 only
when m* = 1. If c is large, then D(m*) is exceedingly small for values
of mi‘ not close to 1- EXP3-Ilding (1/'m*) + m* -—- 2 in a Taylor series
3.l‘011Ild m* = 1, ‘We obtain

1(A:l85) E; + 141* 7* 2 = (‘"1-* -7' U2 + higher order terms
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Hence for large c

(A;186) D(m*) dm* ~ 6" (5') <'"*-D’ d,,,_,,-=

i.e., if c is large m* is nearly normally distributed with mean equal to
1 and standard deviation 1/

A.6.2 The Case When B > 0 and A = w

In thfm case we have assumed that E(z) = p. -< 0. It can easily be
shown that the distribution of m = (11.2/2o'2)'n is now given by the ex-
pression we obtain from (A:183) if we substitute (p/<72) log B for 0.

A.6.3 The Case “Then B > O and A Is Finite

In this case the approximate characteristic function of n, if the
excess of Zn over the boundaries is neglected, is given by (A:144)
where t1(-r) and t2(-r) are equal to the right-hand members of (A:146)
and (A:147), respectively. Let

2,1-1 P'-
m=2~03n and d=——;§

Then the characteristic function of m is given by
Ah; + Bk; ___ Ah2 __ Bhl.

(A:187) -Hz) — A AME.-..7(_ AMBM
where

(A188) hl = d(1 " " 1 *1), 712 =d(1 + V1 —t)
and t is an imaginary variable. Letting Ad = Z, Ba = E, GTO = 51
and db = 5, the characteristic function of am can be written as

(A:189) _ _ _
I-ah-(e_E\/1:1 __ 853»/'_1'_-——£) + E('eb\/fl _ e—b\"1—£)

t*—" .*....’—-A;-= ;-of "LiAB(e(5_a)V1_g __ e(F: b) 1 1)

_ _- —::- -_--./":- - —~./-: -_ ‘H/—-TA(e cn/1 z __e(2a b) 1 z) +B(ea 1 :_e(=1 263 1?!)
S it I I I i _ e2(E-3)\-71:) I

It will be sufficient to consider only the case when 1.1 > O, since the
case when ,u < 0 can be treated in a similar way. Then at < 0 and
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b > 0. Since the real part of +‘\/ 1 — t is greater than or equal to 1,
we have
(A190) I62“-i"’1T*"| < 1
for any imaginary value of t. Let

(A:191) T = e2<E"®‘/T‘
Then an

1 .(A192) -—- = T’1 - T
From (A:189) and (A:192) it follows that (Ht) can be written in the
form of an infinite series:

(A:193) »;&(¢) = Z¢~,e"’*-""17?
1-=1

where A; and r,- are constants and M > 0. Each term of this series is
a characteristic function of the form given in (A2167) except for a
proportionality factor. Let F.;(m) be the rfistribution of m correspond-
ing to the characteristic function e"‘_*"‘/1”‘. Then F,-(m) can be ob-
tained from (A:183) by substituting A; for c. Since we may integrate
the right-hand member of (A:193) term by term, the distribution of
m is given by

7'1‘(A:194) F(m) dm = [ £21 5 F;(m):| dm

A.6.4 Some Remarks
Since m is a discrete variable, it may seem paradoxical that we

obtained a probability density function for m. However, the explana-
tion lies in the fact that we neglected e = Zn — Zn and this quantity
is 0 only in the limiting case when ,u and a approach 0.

If \,u| and <7 are sufficiently small as compared with logA and
I log B \, the distribution of m given in (A2194) will be a good approxi-
mation to the exact distribution of m, even if z is not normally dis-
tributed. The reason for this can be indicated as follows. Let

‘tr

(A:195) 35* = E zj (1; = 1, 2, . . .’ ad ing)
i'=(=‘—1ir+1

where 7- is a given positive integer. Since the variates z,- are inde-
pendently distributed, each having the same distribution, under some
weak conditions the variates 2,-* ('5 = 1, 2 - - - ad inf) will be n arl. . * ' ' e Ynormally distributed for large 7'. Hence, considering the cumulative
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Silms Z-:59: = 31* -I" 32* -|-' ' '+ 312* (T: = 1, Z, - - -, ad inf.), the distribu-
tion given in (A:194) is applicable with good approximation, provided
that T I 11 I and ‘\/in are small compared with log A and I logB| so
that the difference e* = Z,,* — Z,,* can be neglected.

It would be desirable to derive limits for the error in the cumulative
distribution of m caused by neglecting Zn — Z,,_ N0 Sufih limits have
yet been obtained.

A.7 EFFICIENCY or THE SEQUENTIAL PROBABILITY RATIO TEST
Let S be any sequential test for testing H0 against H1 such that

the probability of an error of the first kind is cr, and the probability
of an error of the second kind is B, and the probability that the
test procedure will eventually terminate is 1. Let S’ be the se-
quential probability ratio test whose strength is equal to that of S.
We shall prove that the sequential probability ratio test is an optimum
test, i.e., that E’,-(n | s) g E,-(n | s’) (r = 0, 1), if for s’ the excess of
Zn over log A and log B can be neglected.‘ This excess is exactly 0
if z can take only the values d and —d and if IogA and log B are
integral multiples of d. In any other case the excess will not be iden-
tically O. However, if I E(z) I and the standard deviation 0-, of 2 are
sufficiently small, the excess of Zn over log A and log B is negligible.

For any random variable u, we shall denote by E,-*(u I S) the con-
ditional expected value of u under the hypothesis H,- ('5 = 0, 1) and
under the restriction that H0 is accepted. Similarly, let E¢**(u I S)
be the conditional expected value of u under the hypothesis H;
(ii = 0, 1) and under the restriction that I171 is accepted. In the nota-
tions for these expected values, the symbol S stands for the sequential
test used. Let Q,-(S) denote the totality of all samples for which the
test S leads to the acceptance of H;. Then we have

, pl. P3LQ<>(8)] B
(M99) E” (E-ills) PDlQ0(S)l 1--A

,, $3 P1[c1<s>1 1 - B
(A997) E“ (p0..|‘9)P@[Q1<s>1 A

, 3.3. aiQ@<s>1 1- A
(A999) 9‘ (p1..|’9) P1[Q0(S)l B
and

.... ?_’2=.. i9PlQ1<S>1  ‘I
(99199) E‘ (p1.|‘9) P1[Q1(S)] 1-‘I3

1 E’,-(n IS) denotes the expected value of n. when H; is tiue (6 ==- 9,-) and the sequen
tial test S is used.
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To prove the optiinum property of the sequential probability ratio
test, we shall first derive two lemmas.

Lernma A2. For any random variable a the inequality

(A:200) eE<“’ s Ea")
holds.

Proof. Inequality (A:200) can be written as
(A =201) 1 g E(¢"')
where a’ = 1.1. — E(u.). Lemma A.2 is proved if we show that (A :201)
holds for any random variable a’ with zero mean. Expanding e“' in a
Taylor series around u’ = O, we obtain

(A:202) e“' = 1 + a’ —|- %u’2ei(“')

where £(u’) lies between O and u’. Hence

(A:203) E(e"') = 1 + 5-E[u'%*‘"”] g 1
and lemma A.2 is proved.

Lernma A.3. Let S be a sequential test such that there exists a finite
integer N with the property that the number n of observations required for
the test is g N. Then 2

E; (log & I S)
P011

(A1204) Er(?'1»IS) = iv? (5 = 0, 1)
E=:(Z)

The proof is omitted, since it is essentially the same as that of
equation (A:69) for the sequential probability ratio test.

On the basis of lemmas A2 and A.3 we shall be able to derive the
following theorem.

Theorem: Let S be any sequential test for which the probability of an
error of the first kind is at, the probability of an error of the second kind
is B, and the probability that the test procedure will eventually terminate
is equal to 1. Then

(A1205) E0(n I S) 2 ——1—I:(1 — <1) log ——L + or log
and E0(z) 1 — a or

(A1200) Ei('"- I S) 2. "-1- [B logi —l— (1 — B) log
E1(z) 1 -—- or a

9Tb‘? Validity Of (A1204) has been established under very general conditions
even when the probability that n ."> N is positive for any N’. See the i1uthor’s
article, “Some Generalizations of the Theory of Cuniiilzitive Sunis,“ The Annals oj
Ma!hemati'cal Statistics, Vol. 16 (1945), and D. l3lI1{‘l~i's'-‘fill, “(_)n an Equation of
‘V9-‘din Th-B Annals of i'lfathe1riri!i'r.:a£ Stri!i'sti'rs, Vol. 17 (ll)-Hi).
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Proof. First we shall prove the theorem in the case when there
exists a finite integer N such that n never exceeds N. According to
lemma A.3 we have

(A:207) E0(n I S) = -1? E0 (log E-E5 I S)
E0(Z) P01:

1 Tl fl= 1- [(1 - a)E0* (logétl | s) + aE,;,** (logzl | s) I
330(3) Pan Po» -

and
1 pln(A:208) E'1(n I S) = E5 E1 (log -3? I S)

1 On

1 1|. =1= —- IaE1* (1og3’-‘— I S) + <1 - fi)E1**(1<>g 13-18)]
E1(z) P01; PO11

From equations (A:196) through (A:199) and lemma A.2 we obtain
the inequalities

p n B(A:209) E0* (log -1-Is) s log i-
pfin 1 '— a

n 1 '-_ B(A210) E0“ (log pi I S) 5 log --——
pfln Q

n P 1'1 1 —(A:211) E1*(1@g?-°- | .5’) = --E1* (l<r>s—1- I S) 2 log—i
P pfln 61 n

and

(A:212) E1** (log @ I S) = —*E1** (105 £2 I S) .52 log —-2-—
Pln p0n 1 —' 6

Since E0(z) < O, (A:205) follows from (A:207), (A:209), and (A:210).
Similarly, since E1(z) > O, (A206) follows from (A:208), (A:211), and
(A:212). This proves the theorem when a finite integer N exists such
that ‘n é N.

To prove the theorem for any sequential test S of strength (a, 6),
let SN be the sequential test we obtain by truncating S at the Ntll
observation if no decision is reached before the Nth observation. Let
(ow, By) be the strength of SN. Then we have

(A213) E0(n I S) Z EM" I SN)

_—-Z —a: o ~* e a'0 -—-——--.> 1 [(1 )1 '6” 4 1 1_'8'vI
_E.;;(z) N g1—o:_,\,r A g cm
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and
(A:214) E1(n | s) g E1(n | st)

1 Ii 51v 1 — BM
Z E,-1"(Z'—)' .3N10g1 __aN d (1 —!3N) 105'-"-;1?"_:I

Since lini ago = or and lim 151,; = 6, inequalities (A:205) and (A:206)
Nci cl: N= ‘I?

follow from (A:213) and (A214). Hence the proof of the theorem is
completed.

If for the sequential probability ratio test S’ the excess of the cumu-
lative sum Zn over the boundaries log A and log B is 0, E'0(n S’) is
exactly equal to the right-hand member of (A:205) and E1(n S’) is
exactly equal to the right-hand member of (A:206). Hence, in this
case, S’ is exactly an optimum test. If both I E(z) I and 0'2 are small,
the expected value of the excess over the boundaries will also be
small and, therefore, E0(n I S’) and E1(nIS’) will be only slightly
larger than the right-hand members of (A1205) and (A:206), respec-
tively. Thus, in such a case, the sequential probability ratio test is,
if not exactly, very nearly an optimum test.‘-"

If 61 approaches B0, then the ratios of the upper limits of E0 (n I S’)
and E1(n I S’), as iniplied by (A:77) and (A178), to the right-hand
members of (A:205) and (A:206), respectively, converge to 1. Thus,
the efficiency of the sequential probability ratio test, if not exactly 1,
converges to 1 when 6; -—> 60.‘ The upper bounds for E0(n I S’) and
E1(n I S’) given in (A:77) and (A:78) determine lower bounds for the
efficiency of the sequential probability ratio test S’.

A.8 DETERINEIIINATION OF AN OPTIMUM WEIGHT FUNCTION 10(9) IN
SOME SPECIAL CASES OF TESTING SIMPLE HYPOTHESES ‘WTTFI
NO RESTRICTIONS ON THE POSSIBLE ALTERNATIVE VALUES OF

THE PARAMETERS

A.8.1 A Class of Cases for Which an Optimum Weight Function w(6)
Can Be Determined by a Simple Procedure

Let (91, ' ' '1 9:.-) = (610, - - -, 61,0) be the simple hypothesis H0 to be
tested and denote the distribution of as by f(.r,61, - - -, 6).). Assume
the boundary of the zone w, of preference for rejection is a surface in
the parameter space and denote it by S,-. Assume, further, that it is

“Tlie author conjectures that the sequential probability ratio test is exactly an
optimum test even if the excess of Zn over the boundaries is not O. However, he
did not succeed in proving this.

"' For the definition of the efficiency of a sequential test see Section 2.4.1.
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possible to find a non—negative function 22(6) of the parameter 6 such
that the surface integral 1*

(A:215) L1.-(a) as = 1
and the sequential probability ratio test based on the ratio

fJf(r==1,61, -—-. 0.) ---res, 9.. -~-. @.>»<o as
A:21 phi -.- ~~r A» A

( PUR J-($1: 610: ' ' ' 1 6360) ' ' ' -f(-Tn: 910: ' ' '1 6360)

satisfies the following two conditions (for any values A and B): (1)
The probability 6(6) of committing an error of the second kind (of
accepting H0 when 6 is true) is constant over the surface S,-; (2) for
any point 6 in the interior of w,-, the value of 6(6) does not exceed the
constant value of 13(6) on the surface S...

We shall now show that v(6) may be regarded as an optimum weight
function in the sense defined in Section 4.1.3, and the probability ratio
test based on the ratio (A:216) provides a solution to our problem.
In fact, the weight function 22(6) over the surface S, can be considered
a liiniting case of a weight function 10(6) which takes the value O for
any 6 in the interior of cor whose distance from the boundary exceeds
some positive A, with A approaching O in the lhnit. It follows from
conditions (1) and (2) that for the weight function 11(6) the maximum
of 6(6) in 11.1,. is equal to the weighted integral of 6(6), i.e., to

fB(6)v(6) dS. Considerinow any other weight function w*(6) and
31-

denote the resulting probability of an error of the second kind by
,6*(6) when w*(6) is used instead of 12(6). It has been shown in Section
4.1.3 that the following relations hold with sufficient approxiination
for practical purposes:

B(.-4 — 1)(A:217) frw*(9)B*(9)d9 =_[,y<@>@<@>dsf A B
Cd

Hence the maxinium of B*(6) in cur is '2 B(A —- 1)/(A - B). The
optimum property of the weight function 11(6) follows then from the
fact that the maximum of 22(6) is equal to B(A —— 1)/(A —- B).

In several important statistical problems one can easily find a weight
function 11(6) such that conditions (1) and (2) are fulfilled. ‘We shall
show, for example, that such a weight function 0(6) can easily be de-
termined for testing the means of normally distributed variables with

1 dS denotes the infinitesimal surface element.
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known variances. After the weight function 22(6) has been found, for
practical purposes we may let A = (1 --~ 15')/or and B = B/(1 — or)
where oz is the required value of the probability of an error of the first
kind and B is the required upper lirnit for 5(6).

Although we have so far assumed that X is a single random vari-
able, all the results remain obviously valid when X is a random vector,
i.e., X represents a set of p (p > 1) random variables X1, - - -, X,,-
The only change in the formulas is that the ath observation xq will
have to be replaced by a set (:r1.,, - - - , xpa) of p values where :c,~,, repre-
sents the ath observation on X,;.

A.8.2 Application to Testing the Means of Independently and Nor-
mally Distributed Random Variables with Known Variances

Let X1, - - -, X1., be is normally and independently distributed ran-
dom variables with a common known variance <12. The mean values
61, - - -, 6;, are assumed to be unknown. Suppose that it is required
to test the hypothesis that (61, - - -, 6;.) = (610, - - -, 6,1,0). Assume that
the zone m, of preference for rejection is given by

+\/(H1 — 61°)” +- --+ (91. - cf)" e ac
where 6 is some given positive value. Then the boundary S, of w,- is
a sphere with center 6° = (610, - - -, 6;,°) and radius 66. Let v(6) be
constant over S, and equal to the reciprocal of the area of S..- We
shall show that for this weight function conditions (1) and (2) of the
preceding section are fulfilled. For this purpose, we shall first prove
that the ratio (A:2l6) is a monotonically increasing function of
(£1 — 61°)2 + ~ - - + (:5), —- 6;.°)2 where 52,; is the arithmetic mean of the
observations on X,-. In fact, in our case the ratio (A:216) reduces to

1 I1: n
- 53 2 2 (1F1'a—9il2

C 6 " 1°"'=‘1 dS F-F1"-6='°)(0a——6-1°)S “E 7 .__._._

(A5213) if 1 1 ~ -2 he -—- ce_%"i2J‘e 1 G2 dS8- 5;, 212o=1..—@.-°1 S.

where c is equal to the reciprocal of the area of S... Let r, denote
2 (531? ""' 9i0)2_ '1 U2 A and let p(6) (O é P E 1r) denote the angle be-

tween the ‘-sector (511 '"- 910, ' ' '1 it — 91¢“) and the vector (61 — 910»
- * -, 61¢ -—- 61¢ ). Then (A:218) can be written as

(A;219) ce—%fl6*J_ 8717.1: 6 coo l.0(6)] ds
Sr
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Because of the symmetry of the sphere, the value of (A :219) will not
be changed if we substitute 7(6) for p(6), where 7(6) (0 g 7 5 1r) de-
notes the angle between the vector 6 —- 6° and an arbitrarily chosen
fixed vector u. From this it follows that the value of (A:219) depends
only on 1",.

Now we shall show that (A :2l9) is a strictly increasing function of
r_.,,. For this purpose we merely have to show that

(A :220) I(rm) =Ie“"‘ 6 °°“ ["’(B’i dS
31-

is a strictly increasing function of 1-,. We have

dl .(A221) ---(U =fn5 cos ['y(6)]c""6°°“’*(9’] as
dr, Sr

Denote by S’, the subset of S, in which 0 é 7(6) .5 1r/2, and by 8",»
the subset in which 1r/2 < 7(6) é 1r. Because of the symmetry of the
the sphere we have

(A:222) I n a cos [1r(6)]e'“"f°°° W" asS...’
Zf n 6 cos [W _ ,Y(6)]enr¢6co-B[r--7(6)]

S’.-

- —f n 5 cos [*y(6)]c_""‘ 5 °°° hie’) d'S
8',‘

Hence
 _-32 Z n ii’ cos 51": CO5 17(3)] _ 6"-it 57': COB ["l'(a)l)

1"; 1'

The right-hand side of (A:223) is positive. IIence,_we have proved
that expression (A:219) or (A:218) is a strictly increasing function of rz.

We shall now show that 6(6) is constant over any sphere S.-(d)
with center 6° and radius d and that it decreases monotonically with
increasing d. For this purpose let 3/1, - - -, ?/to be all Orthogonal
linear transformation of 1:1 -610, ---, In '- 9:1 S0 that EH11) -'=
\/(61 — 610)‘? -‘I-' ' ‘ + (fit — 9A=0)2 and E(3/1') = 0 (5 = 2, '1 mt Smce
171’-’ +- - -+ 171.” = (£1 — 01°)” +- - -+ (re -- 9:9)” and $11106 (A619)
sequence of expressions (A:219) formed for the sequence of integers
,1 = 1, 2, . . -, etc., has a joint distribution which depends only 01-'1
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'\/(61 —- 61°)2 +~ - -+ (Gk —- 6;,°)2. Hence 5(6) is constant on any
sphere S,.(d). Since (A:219) is a strictly monotonic function of T2, it
can be shown that 8(9) is monotonically decreasing with increasing d.
Hence, conditions (1) and (2) of the preceding section are fulfilled and
we can test the hypothesis that 6 = 6° by the sequential probability
ratio test based on the ratio (A2218).

If is = 1, i.e., if we test the mean value of a single random ‘variable
X, the sphere S, is a null—dimensional sphere consisting of the two
points 91 = 50 and 62 = -60- and (A:216) reduces to the ratio of p1,,
to pan given by (4:8) and (4:9), respectively, in Section 4.1.4.

A.9 DETERMINATION OF OPTIMUM WEIGHT FUNCTIONS 104(6) AND
w,(B) IN SOME SPECIAL CASES OF TESTING COMPOSITE HYPOTHESES

A.9.1 A Class of Cases for Which Optimum Weight Functions w_.,(6)
and w,(6) Can Be Determined by a Simple Procedure

Let f(:c, 61, - - - , 6k) denote the distribution of :1: involving lc unknown
parameters 61, - - - , Bk. Suppose we wish to test. the composite hypoth-
esis HH that the parameter point 8 lies in the subset w of the parameter
space. Let ma denote the zone of preference for acceptance and co, the
zone of preference for rejection. Assume that the boundary of w, is
a surface S,-. Suppose that it is possible to find two weight functions
00(6) and v,(B) such that

fva(6) d6 = 1, fv,(6) dS, = 1
Wu Sr

and that the sequential probability ratio test based on the ratio

Lv,(6)| |f(:rc,, 61, -- -, 6;‘-) dS,-

(A;224) P1"- ' t “=1 t -
Po "

Jva(6)l |f(x,,, 61, - - -, Bk) d6
w“ a=1

satisfies the following conditions (for any values A and B): (1) a(6) is
Constant in we; (2) 6(6) is constant over Sri (3) for any point 6 in the
interior of wr, the value of 6(6) does not exceed the constant value of
5(6) on S,..

Vi/e shall now show that 11,, (I9) and v,-(6) may be regarded as optimum
weight functions in the sense defined in Section 4.2.2. For this pur-
P059, let wa(9) and w,.(t:?) be any other weight functions and let a*(6)
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and B*(6) be the resulting probabilities of errors of the first and second
kinds when w,,(6) and w,.(6) are used. Since, as has been shown,

(A:225) I tI*(8)’i.!)a(Q) .19 = lg
and 6

B(A — 1)La*(@)w,.<@> as A _ B  
hold with good approxiination, we see that in ma the maxiinum of
a:*(B) g (1 — B)/(A — B), and in w,- the maximum of B*(6) g
B(A — 1)/ (A B) with good approximation. But if v_,,(6) and
v,.(6) are used, it follows from conditions (1), (2), and (3) that (with
good approximation) the nziaximum of a(6) in ma is equal to
(1 — B)/(A — B) and the maximum of 6(6) in w,. is equal to
B(A — 1)/ (A — B). Hence these weight functions are optimum in
the sense defined in Section 4.2.2.

In some special but important statistical problems one can easily
find weight functions v,,_(6) and v,-(6) which satisfy conditions (1), (2),
and (3). It will be seen in the next section that such weight functions
can easily be constructed when the mean of a normal distribution with
unknown variance is being tested. Again, for practical purposes we
may let A = (1 — 13)/or and B = B/(1 — ac), where oz is the required
upper bound of a(6) in 0.1,, and B is the required upper bound of 6(6)
in cu,-.

A.9.2 Application to Testing the Mean of a Normal Distribution with
Unknown Variance (Sequential t-Test)

Let X be a normally distributed random variable with unknown
mean 6 and unknown variance 0'2. Suppose we wish to test the hy-
pothesis that 6 = 60. Furthermore, assume that oi, is given by the set

9 ._-

of all points (6, 0') for which w-'92- Z 5, while ma consists of all
O"

points (60, cr). Then the boundary S, of co,» consists of all points (6, 0')
6 —- 6 . . . . .

for which -7-2 = 6, i.e., it contains the points (6, cr) for which

either 6 -= 60 + 56 or 6 = 60 — 60.
For any positive value c we define the weight functions v,,,,(<:r) and

v,-,,(cr) as follows: vac(¢-7) = 1/c if 0 g 0' 5 c and equals O for all other
values of 0. The weight function v,-6(0) is equal to 1/2c if 0 é cr 5 0
and 6 = 60 :l:5cr and equal to 0 otherwise. Let
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(A:226)
— L E(:i: -6)’1 G

pin =j;vrc(a) H5; 6 2,2 da
' (21r)2o'"

.-* = ‘L. L (Is E; 6.... 2% 2(::q-0|;—6a)1 + i|__ 6... -5% 2';(:z¢—6o+6:r):) dc

fl 11 fl- 26 0 0' 0(2102
and

1 1 *1 1
—i" (37cI"' )2(A327) PM = ii; J; 36 2,2! at dc

(21192
Then

1 ‘=1 -incl: -e -50"): --1-so: -a+a¢)=§f—.<-B "“ +6 “° Wpln__ 0'7A:228 — ,,( ) pan J‘ -Ln e_ E5 E(:|:¢—-60): da

c cr

We consider the liniiting case when c -+ =0. Thus
1 °'° 1 - i 2(=,,--9 -as)’ - -13 2:(=,,-0 +.s¢)“

P §L_§@2” ° +62“ ° )&rIn
"—_— 2 an 1 2
pun I 2;‘ e— W E(I¢l""8l]) do.

U 0'

The sequential probability ratio test based on the ratio (A:229) pro-
vides a solution to our problem if it can be shown to have the follow-
ing three properties: (l) o:(6, 0') is constant in ma; (2) ,6(6, 0') is a func-

. 6 —— 6‘ . . . .tion of ———o alone; (3) ,6(6, J) is monotonically decreasing with
O’

. . la—%increasing —-—--—-
0'

Zr.
To prove these three properties, let at denote £51? and S2 denote

n
E(:c,,, — :t)2. Since the joint distribution of a sequence of expressions

:1‘: — 6 _ _
-——§—2 corresponding to consecutive values of n depends only on

6 — 6
| "-—a—-9 , the first two properties are proved if we show that the ratio

(A2229) is a single-valued function of i-E%@



206 APPENDIX

First we show that the numerator of the ratio (A:229) is a homo-
geneous function of ($1 — 60, 2:2 — 60, - - -, :i:,, — 60) of degree
--(n — 1). In fact, making the transformation er = M we obtain

'° 1 - -13 22(}uI:¢—7x6g—6i:r)2 - -1-5 20.1“-m¢+ae)=L ‘F03 2w +8 20'

M 1 ——1'—(z—6—)2 -—-L :z:¢— 2=1; W(6 was G 0 ac +6 2‘zx( 0u+a:i)dAt

1 “ 1 —-1-z( -0 -an“ -in ,.-0 +a:)’
. =,T-—1.I<>I F(e 2” Z“ 0 +6 2" x O ldfi

This proves that the numerator of (A:229) is a homogeneous function
of 11:1 —- 60, - - -, :r,,, -— 60 of degree —(n — 1). Similarly, it can be
shown that the denominator of (A:229) is also a homogeneous func-
tion of degree —(n — 1). Thus, the ratio (A:229) is a homogeneous
function of zero degree in the variables :01 — 60, - - -, a:,, — 60.

It can be verified that (A :229) is a function of only the two expres-
sions E(;i:,,, - 60)” and Z(:i:,,, —— 60), i.e.,

(A:230) €—:)—n- = ¢>[E(:v.,, — 6c)2, E($a -" 90)]

Let 1, = I '\/Z(;¢,,, -- 60)” Since (A:230) is a homogeneous function
of zero degree in :z:1 -— 60, - - -, xn — 60, its value is not changed by
substituting (xa — 60)/v for 117:: "- 90- Hence

p1,, xa — 60 2 E(:z:,,,, -— 60)] _ I: n(:i‘: —— 90)]
(A2231) = 1 * U _ ¢ 1: U

Since ¢[Z(:i:,, —- 6‘o)2, '-E($a —' 90)] = ¢lE(Ie — 90)2> z(93c _ 90)]: we
see that 2

pin '_ 60) ]___ = ,;, ______2m_..
PO11. U

.. __ 2 - _.. 9
Since £:i-3—€i'l- is a single-valued function of 5-‘Si’ , we have proved

2)

that 22: is a single-valued function of i 1% . Hence properties (1)
P011

and (2) are proved. . _ _ _
In order to prove property (3) of the sequential probability rat10

test based on the ratio (A:229), it is sufficient to show that (A:229)
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. . - — 6 _ " — 6 .
is a strictly increasing functlon of £—é——0- . Since if 1s a

_ 1 6 2

strictly increasing function of , we have only to show that
- 2

(A:229) is a strictly increasing function of . The latter

statement is proved i.f we show that (A :229) increases with increasing
value of lat — 60] while v is kept fixed. For a fixed value of 1: the
denominator of (A :229) is constant. Thus, we merely have to show
that the numerator of (A:229) increases with increasing |:E — 60|
while v is kept fixed. This follows easily from the fact that

@—om _ <5-em
c °' +6 °'

is a strictly increasing function of I :1‘? — 60
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as defective or non-defective, 88

for specified upper limit of mean of
quality characteristic, 117

for specified upper limit of variability
of quality characteristic, 125

Acceptance number for sequential prob-
ability ratio test, of binomial dis-
tribution, 92

of double dichotomies, 111
of mean of normal distribution, 120,

137
of standard deviation of normal dis-

tribution, 127
AaNoLn, K., 84
ASN function, see Average sample

number function
Average sample number function, 25

as basis for selection of sequential
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derivation of approximation formula
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exact formula of, 182
increase in, due to approximate values

of A and B, 65
of multi-valued decision, 141
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of test of mean of normal distribu-

tion, 123
of test of standard deviation of nor-

mal distribution, 131
upper and lower limits for, 172

Averaging function, 148

BARNARD, G. A., 4
Bmcrxv, \VxL.'rEa, 1
Binomial distribution, 88
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50 and 1;; for, 164
£9 and £19 for, 179

Brawnxmu, Z. ‘W., 169
Bt.Acxw1~:1.1. I. 197“
Baowu, Gsbnds 'W., 3, 43;;

C.d.f., see Cumulative distribution func-
tion

Comparison of two production proc-
esses, when quality characteristic
has binomial distribution, 106

when quality characteristic has nor-
mal distribution, 86

Comparison of two sequential tests, 34
Confidence coefficient, of interval, 151

of region, 152
Confidence interval, 151
Confidence region, 152
Conjugate distribution, 176
Critical region, 14

choice of, 16
most powerful, 17
power of, 17
size of, 17
uniformly most powerful, 20

Cumulative distribution function, 6
continuous, 8
step function, 8

Cumulative sum Zn, exact distribution
of, 181

CURTISS, J. H., 92n

Density function, 9
Distribution, of a random variable, 10
Dooos, H. F., 1
Double dichot-omics, 106

classical test procedure for, 107
exact non-sequential test for, 107
sequential test procedure for, 109

Effective units, 106
Eflitriency, of current test procedure, 35

of productiml process, 109
of sequential probability ratio test

199
of sequential test, 34

Error of the first kind, 16
wcig,l1t.et'l average of, 81

Error of the sccoml kind, 16
weighted average of, 74, 81

209
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decision, 142

for test of hypothesis, 28
simplified form of, 144

Estimation, current theory of, 151
sequential procedure of, 153

pling plan for, operating charac-
teristics of, 141

optimum, 143n
risk function of, 143

Expected value. ll Nsncm, JERzY, 15, 7611, 151
mean 11 Neyman-Pearson theory of tests of hy-
moments, 1 1 potheses, 1 6
variance, 11 Normal distribution, 10

FISHER, R. A., 107
FREEMAN, HAROLD, 3n
FRIEDMAN, Murrow, 2, 48n
Fundamental identity, 159

Grasrncrc, M. A., 84, 98, 133n, 182, 19111
GIRsHIc1£'s problem, 84
Graphical procedure for sequential prob-

ability ratio test, of binomial dis-
tribution, 93

of double dichotomies, 111
of mean of normal distribution, 120
of standard deviation of norlnal dis-

tribution, 128
Grouping, effect of, in tests of binomial

distribution, 101
in tests of double dichotomies, 116
on CC and ASN curves, 103

HOTELLING, Hanonn, 2
Hypothesis, see Statistical hypothesis

Intercepts of acceptance and rejection
lines of sequential probability
ratio test, of binomial distribu-
tion, 94

of double dichotomies, 113
of mean of normal distribution, 121
of standard deviation of normal

distribution, 129

Mxnxnxuonrs, P. C., 2
Mean value of a random variable, ll
Moments of a random variable, 11
Multi-valued decision, 138 Operating characteristics, of multi -

error weight functions for, 142
sequential sampling plan for, 139

current test of mean of, 18
number of observations required

by, 54
test of difierence of two standard

deviations, 86
test of mean of, with known variance,

77, 134
with unknown variance, 83, 204

test of means of several independent
normal variables, 201

test that mean of, is below given
value, 80, 117

test that standard deviation of, is
below given value, 125

59 and 119 f0I‘, 155
2.9 and 5'9 for, 179

Observations, dependent, 43
from finite population, 13, 43
independent, 13
joint probability distribution of, 14

OC function, see Operating character-
istic function

Operating characteristic function, 24
derivation of approximation formula

of, 48, 116
exact formula of, 182
of test of binomial distribution, 95
of test of double dichotomies, 113
of test of mean of normal distribu-

tion, 122
of test of standard deviation of normal

distribution, 129
requirements imposed on, 31
upper and lower limits for, 162

valued decision, 141

ASN function of, 141 Parameter, of a distribution, 11
class C, 146 Parameter point, 24
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Parameter point, importance of wrong Saving in number of observations by
decision as function of, 27, 142

Parameter space, 28
use of sequential probability
ratio test, 54

subdivision of, into three zones, 28 Scnuvm-an, CAPTAIN G. L., 2
P1-zaason, Econ S., 15, 76n Sequential estimation, 153
Population, 7 Sequential probability ratio test, 37

finite, 7
infinite, 8

Probability density function, 9
Probability distribution, 10

joint, 14

Quality control, to maintain production
standard, 134

when upper limit of mean of qual-
ity characteristic is specified, 117

when upper limit of variability of
quality characteristic is specified, ,
125

Random selection, 5
Random variable, 5

cumulative distribution function of 6,
discrete, 10
probability distribution of, 10

Rejection number of sequential prob-
ability ratio test, of binomial dis-
tribution, 92

of double dichotomies, 111
of mean of normal distribution, 120,

137
of standard deviation of normal dis-

tribution, 128
Risk function, 142

as basis of selection of sequential
sampling plan, 143

R.UMIG, H. G., 1

Sample, 13
effective, 23
ineffective, 23
of type O, 40
of type 1 41

applications of, 88
ASN function of, 52
deterrnination of constants of, in

practice, 44
efficiency of, 199
for binomial distribution, 90
for dependent observations, 43
for double dichotomies, 110
for normal distribution, testing means

of several independent variables,
201

testing that mean equals specified
value, variance being known, 77,
134

testing that mean equals specified
value, variance being unknown,
83, 204

testing that mean is below given
value, 118

testing that standard deviation is
below given value, 126

fundamental identity, 159
fundamental inequalities among con-

stants of, 42
increase in number of observations

needed by, due to approximate
A and B, 65

independence of, from distribution
problems, 48

OC function of, 48
optimum property of, 196
probability of termination of, before

fixed number of trials, 58
procedure for, 38
termination of, 157
truncation of 61

S I _ Sequential sampling plan, fgr rnultj-
ample number n, approximate char- valucd decision, 139

acteristic function of, 186 ' Sequential w-51;, 2'3
approximate distribution of, I91 I admiggible, 32
appruxlnlate m0m'i31"li/5 Of. 139 ASN function as basis for select-ion
exact characteristic function of, 191 , of, 33
exact moments of, 191 ' ASN fum;-1;,-,,~, U; 25

5-lmnpli-i Space: 22 I CUlT.lpfl.I'1SOl'l. of two tests, 34
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Sequential test, current test procedure
as particular case of, 35

efficiency of, 35
OC function of, 24
optimum, 35
principles for selection of, 27
strength of, 34
uniformly best, 34

Sequential t-test, 83, 204
Slope of acceptance and rejection lines

of sequential probability ratio
test, of binomial distribution, 94

of double dichotornies, 113
of mean of normal distribution, 121
of standard deviation of normal dis-

tribution, 128
Standard deviation, 11
Statistical hypothesis, ll; see also Test

of statistical hypothesis
alternative, 16
approximation of composite hypoth-

esis by simple hypothesis, 71
composite, 13
null, 16
simple, 13

Statistical Research Group, Columbia

Test of composite hypothesis, 80
class C of sequential probability ratio

tests, 82
Girshick’s problem, 84
special case of, testing that unknown

parameter is below given value,
78

weight functions for, 81
Test of simple hypothesis, 70

class C of sequential probability ratio
tests, 76

weight functions for, 74
with no restrictions on alternatives,

73
with one-sided alternatives, 72

Test of statistical hypothesis, 14
as decision between two courses of

action, 20
as special case of multi-valued deci-

sion problem, 139
comparison between current and se-

quential procedurc for, 35, 54
Neyman-Pearson theory of, 16
nmnbcr of observations required I3;

20
sequential procedure for, 22

University, 2, 8811 , Truncation, 61
STEIN, C., 133n, 153n 1 effect on risks of error, 64
Srocaman, C. M., 3, 4811 i for binomial distribution, 104
Strength of test procedure, 34

Table, of average percentage saving in
size of sample, 57

of effect of truncation on risks of
error, 64

of increase in expected number of ob-
servations duc to approximation
of test constants, 68

of lower bound of probability that
sequential analysis will terniinate
within given number of trials, 60

Tabular procedure for sequential prob-
ability ratio test, of binomial
distribution, 92

of double dichotornics, 111
of mean of normal distribution, 120
of standard deviation of normal dis-

tribution, 127
Termination of sequential probability

ratio test. 157

Universe, 7

Variance, 11

VVALD, ABRAHAM, 3n
\VALLIs, W. ALLEN, 2, 176n
\Veight functions, for test of COII1p0Sl'il-'.

hypothesis, 81
choice of, 82
optimum, 203

for test of simple hypothesis, 74
choice of, 76
optimum, 200

Zone of preference for acceptance, for
multi-valued decision problem,
144

for test of hypothesis, 28
Zone of preference for rejection for test

of hypothesis. 28
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AMERICA'S OLD MASTERS, James T. Flexner. Four men emerged unexpectedly
from provincial 18th century America to leadership in European art: Benjamin
West, J. S. Copley, C. R. Peale, Gilbert Stuart. Brilliant coverage of lives and con-
tributions. Reviscd, 1967 edition. 69 plates. 365pp. of text.

21806-6 Paperbound $3.00

FIRST Frowr-zas or Oua Wiroenusss: AMERICAN PAINTING, TI-IE COI..ONiAL
PERIOD, James T. Flexncr. Painters, and regional painting traditions from earliest
Colonial times up to the emcrgcncc of Copley, West and Peale Sr., Foster, Gustavus
Hcssclius, Fcl-cc, John Smibert and many anonymous painters in the primitive manner.
Engaging presentation, with 162 illustrations. xxii -|— 368pp.

22180-6 Paperbound $5.50

THE L1o1-rr or DISTANT Sxnzsz AMERJCAN Pam-rruc, 1760-1835, James T. Flex-
ner. The great generation of early American painters goes to Europe to learn and
to teach: West, Copley. Gilbert Stuart and others. Allston, Trumbull, Morse; also
contemporary American painters-—primitives, derivatives, acad-emics—who remained
in America. 102 illustrations. "xiii + 306pp. 22179-2 Paperbound $5.50

A HISTORY or THE RISE awn Pnooasss or ‘r1-1:; A1115 or DESIGN IN THE Uwrrso
STATES, William Dunlap. Much the richest mine of information on early American
painters, sculptors, architects, cngravcrs, miniaturists, etc. The only source of in-
formation for scores of artists, the major primary source for many others. Unabridged
reprint of rare original 1834 edition, with new introduction by James T. Flexncr,
and 594 new illustrations. Edited by Rita Weiss. 65/3 x 95/’3.

21695-0, 21696-9, 21697-7 Three volumes, Paperbound $15 .00

Eeocns or C1-nwass AND Javanese ART, Ernest F. Fenollosa. From primitive
Chinese art to the 20th century, thorough history, explanation of every important art
period and form, including Japanese woodcuts; main stress on China and japan, but
Tibct, Korea also included. Still uncxccllcd for its detailed, rich coverage of cul-
tural background, aesthetic elements, diffusion studies, particularly of the historical
period. 2nd, 1913 edition. 242 illustrations. Iii + 439pp. of text.

20364-6, 20365-4 Two volumes, Papcrbound $6-0'9

T1-IE GENTLE ART or Ivfaxiwo Ewamres, James A. M. Whistler. Greatest wit of his
day defiatcs Oscar Wilde, Ruskin, Swinburne; strikes back at inane critics, exhibi-
tions, art journalism; aesthetics of impressionist revolution in most striking form.
Highly readable classic by great painter. Reproduction of edition designed by
Whistler. Introduction by Alfred Werner. xxxvi + 33-app.

21875-9 Paperbound S3-D0
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Visual. ILLUSIONS: Tr-mm Causes, CHARACTERISTICS, awn APPLICATIONS. Mat-
thew Luckiesh. Thorough description and discussion of optical illusion, geometric
and perspective, particularly; size and shape distortions, illusions of color, of motion;
natural illusions; use of illusion in art and magic, industry, etc. 1*»-Iost useful today
with op art, also for classical art. Scores of effects illustrated. Introduction by
William H- Ittleson. 100 illustrations. xxi + 252pp.

21530-X Paperbound $2.00

A I-Iarvoaoorc or Aivarromv FOR Am" Sruoewrs, Arthur Thomson. Thorough, vir-
tually exhaustive coverage of skeletal structure, musculature, etc. Full text, supple-
mented by anatomical diagrams and drawings and by photographs of undraped
figures. Unique in its comparison of male and female forms, pointing out clifferences
of contour, texture, form. 211 figures, 40 drawings, 86 photographs. xx + 459pp.
53/3 ac 8%. 21163-0 Paperbound $3.50

150 lvlrxsreaptecns or Dar-xw1.\:o, Selected by Anthony Toney. Full page reproduc-
tions of drawings from the early 16th to the end of the 18th century, all beautifully
reproduced: Rembrandt, Is-Iichelangelo, Diirer, Fragonard, Urs, Graf, \Wouwerman_
many others. First-rate browsing book, model book for artists. xviii —{- 150pp.
83/Q 1-r 11%. 21032-4 Paperbound $2.50

THE LATER ‘Womc OF AUBREY Beaaosrev, Aubrey Beardsley. Exotic, erotic,
ironic masterpieces in full maturity: Comedy Ballet, Venus and Tannhauser, Pierrot.
Lysistrata, Rape of the Lock, Savoy material, Ali Baba, Volpone, etc. This material
revolutionized the art world, and is still powerful, fresh, brilliant. With The Earl)-
li’/oré, all Beardsley's finest work. 174 plates, 2 in color. xiv + 176pp. 81/3 x ll.

21817-1 Paperbound $3.00

DRAWINGS OF REMBRANDT, Rembrandt van Rijn. Complete reproduction of fabu-
lously rare edition by Lippmann and Hofstede de Groot. completely reedited, up-
dated, improved by Prof. Seymour Slive, Fogg Ik-Iuseum. Portraits, Biblical sketches,
landscapes, Oriental types, nudes, episodes from classical mythology—All Rem-
brandt's fertile genius. Also selection of drawings by his pupils and followers.
"Stunning volumes," Srrtrrrdrzy Rer'r'eu.'. 550 illustrations. l:~::-tviii + 552pp.
91/3 x12%. 21485-0, 21480-9 Two volumes, Paperbound $10.00

Tl-[E DISASTERS OF WAR, Francisco Goya. One of the masterpieces of \X/c-stern civi-
li2ation—-83 etchings that record Goya's shattering, bitter reaction to the Napoleonic
war that swept through Spain after the insurrection of 1808 and to war in general-
Reprint of the first edition, with three additional plates from Boston's ll-Iuseum of
Fine Arts. All plates facsimile size. Introduction by Philip Hofer, FL)gg I\Iuseum.
'~' + 97PP- 9% is 8%. 21872-4 Pap-L-rbouncl 5.2.00
GRAPHIC WORKS OF CJDILON REDON. Largest collection of Redo-n's graphic w0rl<s
ever assembled: 1'?2 lithographs, 28 etchings and engravings, 9 drawings. These
include some of his most famous works. All the plates from C)d.ifr.-.-2 Re"a'or:.' or-“r'n’ re
grrrpbiqrre romplel, plus additional plates. New introduction and caption translations
by Alfred Werner. 209 illustrations. xxvii -|— 2()9pp_ 91,.-is X 131/,_

21966-8 Paperbound $-1.50
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Dasrorv BY Accroerrr; A Boorc or "Acc:mz1-n".sr. Esrsc-rs" FOR An-rrsrs am:
DESIGNERS, James F. O'Brien. Create your own unique, striking, imaginative effects
by “controlled accident" interaction of materials: paints and lacquers, oil and water
based paints, splatter, crackling materials, shatter, similar items. Everything you do
will be different; first book on this limitless art, so useful to both fine artist and
commercial artist. Full instructions. 192 plates showing --accidents," 8 in color.
viii + 215p-p. 8% at 111/4. 21942-9 Paperbound $3-75

THE BOOK OF Sroms, Rudolf Koch. Famed German type designer draws 493 beau-
tiful symbols: religious, mystical, alchemical, imperial, property marks, runes, etc.
Remarkable fusion of traditional and modern. Good for suggestions of timelessness,
smartness, modernity. Text. vi + 104pp. 61/5 x 91/1;.

20162-7 Paperbound $1.25

HISTORY OF INDIAN AND INDONESIAN ART, Ananda K. Coomaraswamy. An un-
abridged republication of one of the finest books by a great scholar in Eastern art.
Rich in descriptive material, history, social backgrounds; Sunga reliefs, Rajput
paintings, Gupta temples, Burmese frescoes, textiles, jewelry, sculpture, etc. 400
photos. viii -|— 423pp. 6% x 9%. 21456-2 Paperbound $5.00

Prurarrrva ART, Franz. Boas. America's foremost anthropologist surveys textiles,
ceramics, woodcarving, basketry, metalwork, etc.; patterns, technology, creation of
symbols, style origins. All areas of world, but very full on Northwest Coast Indians.
More than 350 illustrations of baskets, boxes, totem poles, weapons, etc. 378 pp.

20025-6 Paperbound $3.00

TI-IE GENTLE MAN AND CABINET Maicerts Draecroa, Thomas Chippendale. Full
reprint (third edition, 1762) of most influential furniture book of all time, by
master cabinetmaker. 200 plates, illustrating chairs, sofas, mirrors, tables, cabinets,
plus 24 photographs of surviving pieces. Biographical introduction by N. Bienen-
stock. vi + 249pp. 97/5 x 12%. 21601-2 Paperbound $4-00

Arvrearcarv ANTIQUE FURNITURE, Edgar G. Miller, _]r. The basic coverage of all
American furniture before 1840. Individual chapters cover type of furniture—
clocks, tables, sideboards, etc.—-chronologically, with inexhaustible wealth of data.
More than 2100 photographs, all identified, commented on. Essential to all early
American collectors. Introduction by H. E. Keyes. vi + 1106p-p. 77/3 x 103/1;.

21599-7, 21600-4 Two volumes, Paperbound$11..00

Pauusvrvama Durcir Astaarcaw Fouc ART, Henry J. Kauffman. 279 photos,
28 drawings of tulipware, Fraktur script, painted tinware, toys, flowered furniture,
quilts, samplers, hex signs, house interiors, etc. Full descriptive text. Excellent for
tourist, rewarding for designer, collector. Map. 146pp. 77/3 x 10%.

21205-X Paperbound $2.50

EARLY New ENGLAND Gaavesroue Ruamwos, Edmund V. Gillon, Jr. 45 photo-
graphs, 226 carefully reproduced rubbings show heavily symbolic, sometrrnes
macabre early gravestones, up to early 19th century. Remarkable early American
primitive art, occasionally strikingly beautiful; always powerful. Text- xxvi -{-
20-;pp_ gs/8 X 111/(,_ 21380-3 Paperbound $5.50



CATALOGUE -OF DOVER BOOKS

ALPHABETS AND Om~uiMEN'rs, Ernst Lehner. ‘W/ell-known pictorial source for
decorative alphabets, script examples, cartouches, frames, decorative title pages, calli-
graphic initials, borders, similar material. 14th to 19th century, mostly European.
Useful in almost any graphic arts designing, varied styles. 750 illustrations. 256pp.
7 x 1()_ 21905-4 Paperbound $4.00

PAINTING! A CREATIVE APPROACH, Norman Colquhoun. For the beginner simple
guide provides an instructive approach to painting: major stumbling blocks for
beginner; overcoming them, technical points; paints and pigments; oil painting;
watercolor and other media and color- New section on "plastic" paints. Glossary.
Formerly Pain: Your Own Pirtrnrer. 221pp. 22000-I Paperbound $1.75

T1-IE ENJOYMENT AND USE OF COLOR, Walter Sargent. Explanation of the rela-
tions between colors themselves and between colors in nature and art, including
hundreds of little-known facts about color values, intensities, effects of high and
low illumination, complementary colors. It-Iany practical hints for painters, references
to great masters. 7 color plates, 29 illustrations. x + 2.74pp.

20944-X Paperbound $2.75

THE NOTEBooi<s OF LEONARDO DA VINCI, compiled and edited by jean Paul
Richter. 1566 extracts from original manuscripts reveal the full range of Leonardo's
versatile genius: all his writings on painting, sculpture, architecture, anatomy.
astronomy, geography, topography, physiology, mining, music, etc., in both Italian
and English, with 186 plates of manuscript pages and more than 500 additional
drawings. Includes studies for the Last Supper, the lost Sforza monument, and
other works. Total of xlvii + 866pp. 7%; x 10%.

22572-O, 22573-9 Two volumes, Paperbound $11.00

MONTGOMERY WARD CATALOGUE OF 1895. Tea gowns, yards of flannel and
pillow-case lace, stereoscopes, books of gospel hymns, the New Improved Singer
Sewing Machine, side saddles, milk skimmers, straight-edged razors, high-button
shoes, spittoons, and on and on . . . listing some 25,000 items, practically all illus-
trated. Essential to the shoppers of the 1890's, it is our truest record of the spirit of
the period. Unaltered reprint of Issue No. 57, Spring and Summer 1895. Introduc-
tion by Boris Emmet. Innumerable illustrations. xiii + 624pp. 81/2 x 115/1;.

22377-9 Paperbound $6.95

THE CRYSTAL PALACE EXHIBITION ILLUSTRATED CATALOGUE (LONDON, 1851).
One of the wonders of the modern world--the Crystal Palace Exhibition in which
all the nations of the civilized world exhibited their achievements in the arts and
sciences-_-—presented in an equally important illustrated catalogue. I\-[ore than 1700
items pictured with accompanying text—cc-ramics. textiles, (.'i1St-iriin wnrl-r, carpets.
pianos, sleds, razors, wall-papers, billiard tables, beehives, Sil\-L‘l'\‘-.'.ll‘L‘ and liundreds
of other artifacts--represent the focal point of Victorian cultiii-c in the \>'L*'c*stei-n
_\X/orld. Probably the largest collection of Victorian decorative art ever assembled-—
lfldlSpEflSfll.')lfi {Of antiquarians flfltl designers, [__Tn;1[-)1-j¢_"]g¢-cl |'(;p|_1l‘)|i(_‘;1tiQ[1 inf the

ATFJQUFHHI Cfilillflgue of the Great Exhibition of 1851, with all terminal ess.iys.
New introduction by john Gloag, F.S.A. xxxiv -|— 426pp. 9 x 12.

22503-8 Paperbound $5.01)
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A HISTORY OF COSTUME, Carl Kohler- Definitive history, based on surviving pieces
of clothing primarily, and paintings, statues, etc. secondarily. Highly readable text,
supplemented by 594 illustrations of costumes of the ancient Iviediterranean peoples,
Greece and Rome, the Teutonic prehistoric period; costumes of the Middle Ages,
Renaissance, Baroque, 18th and 19th centuries. Clear, measured patterns are pro-
vided for many clothing articles. Approach is practical throughout. Enlarged by
Emma von Sichart. 464p-p. 21030-8 Paperbound $3.50

ORIENTAL Runs, ANTIQUE nun Mooeaw, ‘Walter A. I-lawley. A complete and
authoritative treatise on the Oriental rug—where they a-re made, by whom and how,
designs and symbols, characteristics in detail of the six major groups, how to dis-
tinguish them and how to buy them. Detailed technical data is provided on periods,
weaves, warps, wefts, textures, sides, ends and knots, although no technical back-
ground is required for an understanding. I1 color plates, 80 halftones, 4 maps.
vi ~|- 320pp. 6%», x 91/3. 22366-5 Paperbound $5.00

TEN BOOKS on ARCHITECTURE, Vitruvius. By any standards the most important
book on architecture ever written. Early Roman discussion of aesthetics of building,
construction methods, orders, sites, and every other aspect of architecture has in-
spired, instructed architecture for about 2,000 years. Stands behind Palladio,
I\-Iichelangelo, Bramante- ‘X/ren, countless others- Definitive I'\-Iorris H. It-{organ
translation. 68 illustrations. xii + 331pp. 20645-9 Paperbound $3.00

THE FOUR BOOKS OF Aaci-ii"ri=.c'ruae, Andrea Palladio. Translated into every
major Western European language in the two centuries following its publication in
1570, this has been one of the most influential books in the history of architecture.
Complete reprint of the 1758 Isaac Ware edition- New introduction by Adolf
Placzek, Columbia Univ- 216 plates. xxii + l10pp. of text- 91/2 x 12%.

21308-0 Clothbound $12.50

STICKS AND STONES: A Sruov oe Aiutzaicaiv ARCHITECTURE AND CIVILIZATION,
Lewis Iv{umford.One of the great classics of American cultural history. American
architecture from the medieval-inspired earliest forms to the early 20th century;
evolution of structure and style, and reciprocal influences on environment. 21 photo-
graphic illustrations. 2?>8pp. 20202-X P11PfiI‘b0lll1"-l $2-U9

'1"He AbtERICAN Bi-JiLoi=:R's COL-IPANION, Asher Benjamin. The most widely used
early 19th century architectural style and source book, for colonial up into Greek
Revival periods. Extensive development of geometry of carpentering. construction
of sashes, frames, doors, stairs; plans and elevations of domestic and other buildings.
Hundreds of thousands of houses were built according to this book, now invaluable
to historians, architects, restorers, etc. 1827 edition. 59 plates. ll4pp. 77':/3 x 103/4.22236-5 Paperbound $5.50

DUTCH Houses Irv "run HUDSON Var-rt-:v BEFORE 1776, Helen Wilkinson Rey-
nolds. The standard survey of the Dutch colonial house and outbuildings, with con-
structional features, decoration, and local history associated with individual home-
steads. Introduction by Franklin D. Roosevelt. Map. 150 illustrations. 469PP-
(gys x 91/_'4_ 21469-9 Paperbounc! $5.00



CATALOGUE OF DOVER BOOKS

Tna Aact-zrracruara or Courrrav Houses, Andrew J. Downing. Together with
Van:-:'s Villa: and Cottage: this is the basic book for Hudson River Gothic architec-
ture of the middle Victorian period. Full, sound discussions of general aspects of
housing, architecture, style, decoration, furnishing, together with scores of detailed
house plans, illustrations of specific buildings, accompanied by full text. Perhaps
the most influential single American architectural book. 1850 edition. Introduction
by _I. Stewart Johnson. 321 figures, 54 architectural designs. xvi + S60pp.

22003-6 Paperbound S-L00

Los'r EXAMPLES OF Co1.oNm1. Aacmrecruae, John Merad Howells- Full-page
photographs of buildings that have disappeared or been so altered as to be denatured,
including many designed by major early American architects. 245 plates. xvii +
248pp. 73/3:-r 103/4. 21143-6 Paperbound $5.51)

DOLIESTIC Aacurrecrune or-‘ THE AMERICAN Corowtes awn OF THE Eaarv
REPUBLIC, Fiske Kimball. Foremost architect and restorer of \.‘Villian1sburg and
Monticello covers nearly 200 homes between 1620-1825. Architectural details, con-
struction, style features, special fixtures, floor plans, etc- Generally considered finest
work in its area. 219 illustrations of houses. doom.-ays, vvindows, capital mantels.
xx -|— 314pp. 7773 x 10-15.". 21743-4 Paperbound $4.00

EARLY AMERICAN ROOMS: 1650-1858, edited by Russell Havres Kettell. Tour of 1.2
rooms, each representative of a dificrent era in American history and each furnished,
decorated, designed and occupied in the style of the era. 72 plans and elevations,
8-page color section, etc., show fabrics, wall papers, rtrrangements, etc. Full de-
scriptive text. xvii -|— 200pp. of text. 83/3 x 111/4.

21633-0 Paperbound 5‘-3,00

THE FITZWILLIALI VIRGINAL BOOK, edited by J. Fuller l\-"Iaitland and W. B. Squire.
Full modern printing of famous early 17th-century ms. volume of 300 works by
Morley, Byrd, Bull, Gibbons, etc. For piano or other modern keyboard instrument;
easy to read format. Xlfiivi + 938pp- 8% 1-; 11_

21068-5, 21069-3 Two volumes, PapcrboundSl0.(]0

KEYBOARD lviuslc, Johann Sebastian Bach. Bach Gesellschaft edition. A rich
selection of Bach's masterpieces for the harpsichord: the six English Suites, six
French Suites, the six Partitas (Clavieriibung part I), the Goldberg Variations
(_Clavieri.ibung part IV), the fifteen Two-Part Inventions and the fifteen Three-Part
Stnfonias. Clearly reproduced on large sheets with ample margins; eminently play-
'1b|@- Vi -|— 512PP- 31/3 J-I 11- 22560-4 Paperbound $5.00

Tire Music or Bacu: AN lmraooucrrou, Charles Sanford Terry. A fine, non-
technical introduction to Bach's music, both instrumental and vocal. Covers organ
music, chamber music, passion music, other types. Analyzes themes, developments,
'""°vfl¢l0flS- X + 11491:». 21075-8 Paperbound $1.50

Been-rovrzm AND I-{Is NINE Svnrvnomns, Sir George Grove. Noted British musi-
cologist provides best history, analysis, commentary on symphonies. Very thorough,
rigorously accurate; necessary to both advanced student and amateur music lover.
436 musical passages. vii -|— 40? pp. 2()53.1-.1 PJPL-fbflund 5.375
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JOHANN SEBASTIAN BACH, Philipp Spitta. One of the great classics of musicology,
this definitive analysis of Bach’s music (and life) has never been surpassed. Lucid,
nontechnical analyses of hundreds of pieces (30 pages devoted to St. Matthew Pas-
sion, 26 to B Minor Mass). Also includes major analysis of 18th-century music.
450 musical exarnples. 40-page musical supplement. Total of xx -|— 1799pp.

(EUK) 22278-0, 22279-9 Two volumes, Clothbound $17.50

MOZART AND HIS PIANO CONCERTOs, Cuthbert Girdlestone. The only full-length
study of an important area of Mozart's creativity. Provides detailed analyses of all
23 concertos, traces inspirational sources. 417 musical examples. Second edition.
5o9pp. 21271-8 Paperbouncl $3.50

T1-IE Peaerzc-r WAGNERITE: A COMMENTARY ON THE N1BLUNo's RING, George
Bernard Shaw. Brilliant and still relevant criticism in remarkable essays on
Wagner's Ring cycle, Shaw's ideas on political and social ideology behind the
plots, role of Leitmotifs, vocal requisites, etc. Prefaces. xxi -1- 136pp.

(USO) 21707-8 Paperbound $1.75

DON GIOVANNI, W. A. Mozart. Complete libretto, modern English translation;
biographies of composer and librettist; accounts of early performances and critical
reaction. Lavishly illustrated. All the material you need to understand and
appreciate this great work. Dover Opera Guide and Libretto Series; translated
and introduced by Ellen Bleiler. 92 illustrations. 209pp.

21134-7 Paperbound $2.00

BASIC ELECTRICITY, U. S. Bureau of Naval Personel. Originally a training course,
best non-technical coverage of basic theory of electricity and its applications. Funda-
mental concepts, batteries, circuits, conductors and wiring techniques, AC and DC,
inductance and capacitance, generators, motors, transformers, magnetic amplifiers,
synchros, servomechanisms, etc. Also covers blue-prints, electrical diagrams, etc.
Many questions. with answers. 549 illufilrflliiflflfi. X —l— 445pP- 6‘/3 X 9%-20973-3 Paperbound $3.50

REPRODUCTION OF SOUND, Edgar Villchur. Thorough coverage for laymen of
high fidelity systems, reproducing systems in general, needles, amplifiers, preamps,
loudspeakers, feedback, explaining physical background. "A rare talent for making
technicalities vividly comprehensible," R- Darrell, Hig/.1 Fidelity. 69 figures.
iv _|.. 92pp_ 21515-6 Paperbound $1.55

HEAR ME Taricm’ TO YA: THE Srortv or Jazz as To1.o av THE MEN ‘W1-to
MADE IT, Nat Shapiro and Nat Hentoff. Louis Armstrong, Fats Waller, Jo Jones.
Clarence Williams, Billy Holiday, Duke Ellington, Jelly Roll Morton and dozens
of other jazz greats tell how it was in Chicago's South Side, New Orleans, depres-
sion Harlem and the modern West Coast as jazz was born and grew. xvi -|— 429PP-

21726-4 Paperbound $5.00

FABLES OF Aesop, translated by Sir Roger L’Estrange. A reproduction of the Y6-IY
rare 1931 Paris edition; a selection of the most interesting fables, together with 50
imaginative drawings by Alexander Calder. v + 128pp. 61/2x91/4. V21780-9 Paperbound $1.50
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AGAINST THE GRAIN (A REBOURS), joris K. Huysmans. Filled with weird images,
evidences of a bizarre imagination, exotic experiments with hallucinatory drugs,
rich tastes and smells and the diversions of its sybarite hero Duc Jean des Esseintes,
this classic novel pushed 19th-century literary decadence to its limits. Full un-
abridged edition. Do not confuse this with abridged editions generally sold- Intro-
duction by Havelock Ellis. xlix -|— 206pp. 22190-3 Paperbound $2.50

VARIORUM SHAKESPEARE: .l'IAMLE'l‘. Edited by Horace I-I. Furness; a landmark
of American scholarship. Exhaustive footnotes and appendices treat all doubtful
words and phrases, as well as suggested critical emendations throughout the play's
history. First volume contains editor's own text, collated with all Quartos and
Folios. Second volume contains full first Quarto, translations of Shakespeare's
sources (Belleforest, and Saxo Grammaticus), Der Bestrafte Bruderrnord, and many
essays on critical and historical points of interest by major authorities of past and
present. Includes details of staging and costuming over the years. By far the
best edition available for serious students of Shakespeare. Total of xx -{— 90Spp.

21004-9, 21005-7, 2 volumes, Paperbound $7.00

A LIFE OF \X/ILI.IA1\t SHAKESPEARE, Sir Sidney Lee. This is the standard life of
Shakespeare, summarizing everything known about Shakespeare and his plays.
Incredibly rich in material, broad in coverage, clear and judicious, it has served
thousands as the best introduction to Shakespeare. 1951 edition. 9 plates.
xxix + 792pp. 21967-4 Paperbound $3.75

MASTERS OF THE DRALIA, john Gassner. l\-lost comprehensive history of the drama
in print, covering every tradition from Greeks to modern Europe and America,
including India, Far East, etc. Covers more than 800 dramatists, 2000 plays, with
biographical material, plot summaries, theatre history, criticism, etc. "Best of its
kind in English," New Reprrbfic. 77 illustrations. xxii -|— 890pp.

20100-7 Clothbound $10.00

T1-rs Evo1.uTIoN or THE ENGLISH LANGUAGE, George Mr-Knight. The growth
of English, from the 14th century to the present. Unusual, non-technical account
presents basic information in very interesting form: sound shifts, change in grammar
and syntax, vocabulary growth, similar topics. Abundantly illustratec".F‘with quota-
tions. Formerly A-lodervz Errglfr/3 in Hive Mniéirzg. xii + 590pp.

21932-1 Paperbound S3-50

AN ETYMOLOGICAL DICTIONARY or MODERN ENGLISH, Ernest Weekley. Fullest,
richest work of its sort, by foremost British lexicographer. Detailed word histories,
including many colloquial and archaic words; extensive quotations. Do not con-
fuse this with the Concise Etymological Dictionary, which is much abridged. Total
of xxvii -|— 830p-p. 61/2 x 9%,

21875-2, 21874-0 Two volumes, Pap-erbound $7.90

FLATLAND: A ROMANCE or l\-{ANY Dnu1=.NsIoNs, E. A. Abbott. Classic of
science-fiction explores ramifications of life in a two-dimensional world, and what
happens when a three-dimensional being intrudes. Amusing reading, but also use-
ful as introduction to thought about hyperspace. Introduction by Banesh Hoffmann.
16 illustrations. xx + I03pp. 20001-9 Paperbound $1.00
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POEMS OF ANNE BRADSTREET, edited with an introduction by Robert Hutchinson.
A new selection of poems by America's first poet and perhaps the first significant
woman poet in the English language. 48 poems display her development in works
of considerable variety—love poems, domestic poems, religious meditations, formal
elegies, "quaternions," etc. Notes, bibliography. viii -|— 222pp.

22160-1 Paperbound $2.50

THREE GOTHIC Noviats: THE CASTLE or Oraawro BY HORACE ‘W/t1.1>oLB;
VATHEK av \>VILLIA1‘~[ BECKFORD; THE Vaixtpvits av jomv POLIDORI, win-i Pano-
i\ii~:i~¢"r or A Novi=.i_ BY Loan BYRON, edited by E. F. Bleiler. The first Gothic
novel, by Walpole; the finest Oriental tale in English, by Beckford; powerful
Romantic supernatural story in versions by Polidori and Byron. All extremely
important in history of literature; all still exciting, packed with supernatural
thrills, ghosts, haunted castles, magic, etc. xl -1- 291pp.

21252-7 Paperbound $2.50

THE BEST TALES OF HOFI-‘MANN, E. T. A. Hofimann. 10 of I-Ioffmanrfs most
important stories, in modern re-editings of standard translations: Nutcracker and
the King of L/Iice, Signor Formica, Automata, The Sandman, Rath Krespel, The
Golden Flowerpot, Ivlaster Ivfartin the Cooper, The Iviines of Falun, The King's
Betrothed A Neat Year's Eve Adventure. 7 illustrations by Hoffmann. Edited
by E. F. l3leiler. xi-txiic + 419pp. 21793-0 Paperbound 53-90

Giiosr awn Honaoa STORIES or Asiaaose BIERCE, Ambrose Bierce. 23 strikingly
modern stories of the horrors latent in the human mind: The Eyes of the Panther,
The Damned Thing An Occurrence at Owl Creek Bridge, An lnhabitant of Carcosa,
etc., plus the dream-essay, Visions of the Night. Edited by E. F. Bleiler. xxii
+ 199pp. 20767-6 Paperbound $1.50

B1251" GHos"r STORIES or _]'. S. LEFANU, _I. Sheridan LeFanu. Finest stories by
Victorian master often considered greatest supernatural writer of all. Carmilla,
Green Tea The Haunted Baronet, The Familiar, and 12 others. Mfost never before

ilable iii the U S A Edited by F F Bleiler. 8 illustrations from Victorianava . . . . .. .
publications. xvii + 467pp. 20415-4 Paperbound $3.00

l\-'IATHEh-IATICAL Fouwolvriorvs or INFORMATION Ti-ii-:oRY. A. I. Khinchin. Com-
prehensive introduction to work of Shannon, Ivfcllviillan, Feinstein and Khinchin,
placing these investigations on -.1 rigorous mathematical basis. Covers entropy
concept in probability theory, uniqueness theorem, Shannon's inequality, ergodic
sources, the E property, martingale concept, noise, Feinstein's fundamental lemma,
Shanon's first and second theorems. Translated by R. A. bilverman and I\’I. D.
Friedman. iii + 120pp. 60434-9 Paperbound $2.00

SEvEN SCIENCE FICTION l\Ic>vEi_$, H. G. \X/ells. The standard collection of the
great novels. Complete, unabridged. Firs: 11-Ierz m I/be fllaon, Irlmzd of Dr. ltilereaw,

' ' ‘L-I /1'1: In the Dri)-IlF’r:r of I/Je 1V0:-ids, Food 0)‘ fire Gods, Irrz-urble Nlrizz, TIIJIF r ac 1 e, _
f rive Come: Not only science fiction fans, but every educated person owes it to0 -

himself to read these novels. 1015pp. (USO) 20264-X Clothbound $6.00
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Lasr limo FIRST MEN AND STAR MAKER, Two SCIENCE FICTION Novisis, Olaf
Stapledon. Greatest future histories in science fiction. In the first, human intelli-
gence is the "hero," through strange paths of evolution, interplanetary invasions,
incredible technologies, near extinctions and reemergences. Star lvlaker describes the
quest of a band of star rovers for intelligence itself, through time and space: weird
inhuman civilizations, crustacean minds, symbiotic worlds, etc. Complete, un-
abridged. v + 438pp. (USO) 21962-3 Paperbound $2.50

THREE PROP!-IETIC N0vEI..s, H. G. \WELI.s. Stages of a consistently planned future
for mankind. Woe): Ibo Sleeper lVruée.r, and A Srory of the De)": to Come, anticipate
Bm-tie New World and 1984', in the 21st Century; The Tirrre fllarbirze, only com-
plete version in print, shows farther future and the end of mankind. All show
Wells's greatest gifts as storyteller and novelist. Edited by E. F. Bleiler. x
+ 335pp. (USO) 20605-X. Paperbound $2.50

TI-IE DEvIL’s DICTIONARY, Ambrose Bierce. America's own Oscar \X/ilde——-
Ambrose Bierce—-ofliers his barbed iconoclastic wisdom in over 1,000 definitions
hailed by H- L. Mencken as "some of the most gorgeous witticisrns in the English
language." 145pp. 20487-1 Paperbound $1.25

ll-{Ax AND IVIORJTZ, ‘X/ilhelm Busch. Great children's classic, father of comic
strip, of two bad boys, Ivlai-: and hloritz. Also Ker and Plunk (Plisch und Plumm),
Cat and Mouse, Deceitful Henry, Ice-Peter, The Boy and the Pipe, and five other
pieces. Original German, with English translation. Edited by H. Arthur Klein;
translations by various hands and H. Arthur Klein. vi -|— 216pp.

20181-3 Paperbound $2.00

PIGS Is PIGS AND OTHER FAVORITES, Ellis Parker Butler. The title story is one
of the best humor short stories, as 1»-like Flannery obfuscates biology and English.
Also included, That Pup of 1*»/Iurchison's, The Great American Pie Company, and
Perkins of Portland. 14 illustrations. v -|— 109pp. 21532-6 Paperbound $1.25

TIIE PETERKLIN PAPERS, Lucretia P. I-Iale. It takes genius to be as stupidly mad as
the Peterkins, as they decide to become wise, celebrate the "Fourth," keep a cow,
and otherwise strain the resources of the Lady from Philadelphia. Basic book of
American humor. 153 illustrations. 219pp. 20794-5 Paperbound 32.00

PERRAUL'I"s FAIRY TALES, translated by A. E. Johnson and S. R. Littlewood, with
34 full-page illustrations by Gustave Dore. All the original Perrault stories——
Cinderella, Sleeping Beauty, Bluebeard, Little Red Riding Hood, Puss in Boots, Tom
Thumb, etc.-——with their witty verse morals and the magnificent illustrations of
Dore. One of the five or six great books of European fairy tales. viii + 117pp.
31/3 X 11. 22311-6 Paperbound $2.00

OLo HUNGARIAN FAIRY TALES, Baroness Orczy. Favorites translated and adapted
bl’ flulhfif Df the Scarlet Pimpt-reel". Eight fairy tales include "The Suitors of Princess
Fire-Fly," "The Twin Hunchbacks,” "l\»1'r. Cuttlefislfs l..ove Story," ant] "The
Enchanted Cat." This little volume of magic and adventure will captivate children
as it has for generations. 90 drawings by Iviontagu Barstow. ')6pp.

(USO) 22295-4 Paperbound $1.95

In —

ll

l
l’

'5



CATALOGUE OF DOVER BOOKS

TI-IE RED FAIRY Boolc, Andrew Lang. Lang's color fairy books have long been
children's favorites. This volume includes Rapunzel, jack and the Bean-stalk and
35 other stories, familiar and unfamiliar. 4 plates, 93 illustrations X + 367pp.

21673-X Paperbound $2.50

THE BLUE FAIRY Boo:-c, Andrew Lang. Lang’s tales come from all countries and all
times. Here are 37 tales from Grimm, the Arabian Nights, Greek Mythology, and
other fascinating sources. 8 plates, 130 illustrations. xi -|— 390pp.

21437-0 Paperbound $2.50

HOUSEHOLD Sroiuizs av THE BROTHERS GRII»iI~i. Classic English-language edition
of the well-known tales —- Rumpelstiltsl-tin, Snow White, Hansel and Gretel, The
Twelve Brothers, Faithful john, Rapunzel, Tom Thumb (52 stories in all). Trans-
lated into simple, straightforward English by Lucy Crane. Ornamented with head-
pieces, vignettes, elaborate decorative initials and a dozen full-page illustrations by
Walter Crane. x + 269pp. 21080-4 Paperbound $2.00

TI-IE LIERRY ADVENTURES OF ROBIN HOOD, Howard Pyle. The finest modern ver-
sions of the traditional ballads and tales about the great English outlaw. Howard
Pyle's complete prose version, with every word, every illustration of the first edition.
Do not confuse this facsimile of the original (1885) with modern editions that
change text or illustrations. 25 plates plus many page decorations. xxii -|— 296pp.

22043-5 Paperbound $2.50

TI-IE Sroav OF KING ARTI-Iua AND His KNlGH1‘5, Howard Pyle- The finest chil-
dren's version of the life of King Arthur; brilliantly retold by Pyle, with 48 of his
most imaginative illustrations. xviii -|— 513pp- 61/3 X 91/I4. g

21445-1 Paperbound $2.50

THE WONDERFUL WIZARD OF OZ, L. Frank Baum. America's finest children's
book in facsimile of first edition with all Denslow illustrations in full color. The
edition a child should have. Introduction by Martin Gardner. 25 color plates,
scores of drawings. iv -|— 267pp. 20691—2 Papfirbfiufld $2-59

THE MARvELOUs LAND OF Oz, L. Frank Baum. The second Oz book, every bit as
imaginative as the Wizard. The hero is a boy named Tip, but the Scarecrow and the
T'n Woodman are back, as is the Oz magic. 16 color plates, 120 drawings by john1

R. Neill. 287pp. 20692-0 Paperbound $2-59

THE MAGICAL 1'1/IONARCH OF M0, L. Frank Baum. Remarkable adventures in a land
even stranger than Oz. The best of Baum's books not in the Oz series. 15 color
plates and dozens of drawings by Frank Verbeck. xviii + 237pp.

21892-9 Paperbound $2-25

THE BAD CHILo's Booic or BEAsrs, Mona BEASTS FOR WoRsE CI-IILDREN. A
' l ' s in one volume-INIQRAL ALPHABET, Hilaire Belloc. '1hree complete humor c assic ' _

Be kind to the frog, and do not call him names . . . and 28 other whimsical animafi.
F miliar favorites and some not so well known. Illustrated by Basil Blacklwe
1;5pp_ (USO) 20749-8 Paperbound bl-59
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EAST O’ THE SUN AND WEST O‘ THE MOON, George W. Dasent. Considered the
best of all translations of these Norwegian folk tales, this collection has been enjoyed
by generations of children (and follclorists too). Includes True and Untrue, Why the
Sea is Salt, East O‘ the Sun and West O’ the Moon, Why the Bear is Stumpy-Tailed,
Boots and the Troll, The Cock and the Hen, Rich Peter the Pedlar, and 52 more.
The only edition with all 59 tales. 77 illustrations by Erik Werenskiold and Theodor
Kittelsen. xv -|— 418pp. 22521-6 Paperbound $3.50

GO0Ps AND How To BE THEM, Gelett Burgess. Classic of tongue-in-cheek humor,
masquerading as etiquette book. 87 verses, twice as many cartoons, show mis-
chievous Goops as they demonstrate to children virtues of table manners, neatness,
courtesy, etc. Favorite for generations. viii -|— 88pp. 61/2 x 9%.

22233-0 Paperbound $1.25

ALlCE's ADVENTURES UNDER GROUND, Lewis Carroll. The first version, quite
different from the final Alive in IF/o.uderlawd, printed out by Carroll himself with
his own illustrations. Complete facsimile of the “million dollar" manuscript Carroll
gave to Alice Liddell in 1864. Introduction by It/Iartin Gardner. viii -|— 96pp. Title
and dedication pages in color. 21482-6 Paperbound $1.25

THE BROWNIES, THEIR BOOK, Palmer COX. Small as mice, cunning as foxes, exu-
berant and full of mischief, the Brownies go to the zoo, toy shop, seashore, circus,
etc., in 24 verse adventures and 266 illustrations. Long a favorite, since their first
appearance in St. Nicholas Magazine. xi + l44pp. 6'5/3 x 91/4.

21265-3 Paperbound $1.75

SONGS OF CHILDHOOD, Walter De La Mare. Published (under the pseudonym
Walter Ramal) when De La Mare was only 29, this charming collection has long
been a favorite children's book. A facsimile of the first edition in paper, the 47 poems
capture the simplicity of the nursery rhyme and the ballad, including such lyrics as
[Met Eve, Tartary, The Silver Penny. vii + 106pp. (USO) 21922-0 Paperbound

$1.25
THE COMPLETE NONSENSE 01-‘ EDWARD LEAR, Edward Lear. The finest 19th-century
humorist-cartoonist in full: all nonsense limericks, zany alphabets, Owl and Pussy-
Cfif. songs, nonsense botany, and more than 500 illustrations by Lear himself. Edited
bl’ H0lb1'0Ok Jackson. xxix + 28'/'pp. (USO) 20167-8 Paperbound $2.00

BILLY \lVHIs1<ERs: THE AUTOBIOGRAPHY OF A GOAT, Frances Trego IX-Iontgomery.
A favorite of children since the early 20th century, here are the escapades of that
rambunctious, irresistible and mischievous goat—BilIy Whiskers. lvluch in the
spirit of Pete’: Bad Bey, this is a book that children never tire of reading or hearing.
All the original familiar illustrations by W. H. Fry are included: 6 color plates,
18 black and white drawings. 159pp. 22345-0 Paperbound $2.00

MOTHER GOOSE MELODIES. Faithful republication of the fabulously rare D-Iunroe
and Francis "copyright 1833" Boston edition—the most important 1'\/[Other Goose
collection, usually referred to as the "original." Familiar rhymes plus many rare
OQQ5. with wonderful old woodcut illustrations. Edited by E. F. Bleiler. l28PP-
4'/2 K 63/a- 225??-1 Paperbound S1-00
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Two LITTLE Savaoes; BEING THE Anvsmruaes or Two Bovs ‘W1-io LIVED Af.
INDIANS AND WHAT THFY LEARNED, Ernest Thompson Seton. Great classic ca
nature and boyhood provides a vast range of woodlore in most palatable form, a
genuinely entertaining story. Two farm boys build a teepee in woods and live in ii
for a month, working out Indian solutions to living problems. star lore, birds anc
animals, plants, etc. 293 illustrations. vii + 286pp.

20985-7 Paperbound $2.50
i

PETER PiPi2R:s PRACTICAL PRINCIPLES or PLAIN 8; PERFECT PRONUNCIATION.
Alliterativc-_]ingles and tongue-twisters of surprising charm, that made their first
appearance in America about 1830. Republished in full with the spirited woodcut
illustrations from this earliest American edition. 32pp. 41/2 x 6%.

22560-7 Paperbound $1.00

SCIENCE EXPERIMENTS awn Ail'vfUSEl'i-£ENTS FOR CHILDREN, Charles Vivian. 73 easy
experiments, requiring only materials found at home or easily available, such as
candles, coins, steel wool, etc-; illustrate basic phenomena like vacuum, simple
chemical reaction, etc- All safe. 1'»/Iodern, well-planned. Formerly Science Garner
for C/51'/drezr. 102 photos, numerous drawings. 96pp. 61/3 x 9%.

21856-2 Paperbound $1.25

AN INTRODUCTION TO CIIESS I\-Iovi"-.s AND TACTICS Si1~.ii=-1.‘: EXPLAINED, Leonard
Barden. Informal intermediate introduction, quite strong in explaining reasons for
moves. Covers basic material, tactics, important openings, traps, positional play in
middle game, end game. Attempts to isolate patterns and recurrent configurations.
Formerly Chen. 58 figures. 102pp. (USO) 21210-6 Paperbound $1.25

I_.ASKER'S IHANUAL OF CHESS, Dr. Emanuel Lasker. Lasker ivas not only one of the
five great Wiirld Champions, he was also one of the abiest expo:-iitors, theorists, and
analysts. In many ways, his Ivlanual, permeated with his philosophy of battle, filled
with keen insights, is one of the greatest works ever written on chess. Filled with
analyzed games by the great players. A single-volume library that will profit almost
any chess player, beginner or master. 308 diagrams. xli X 349pp.

20640-8 Paperbound $2.75

'l'iiF. PM-{ASTER BOOK OF l.\'I:\'I'l“lIil\1r\TlC1'LI- RHCREATIONS, Fred Schuh. In opinion of
rnariy the finest vvorlc ever prepared on mathematical puzzles. stunts, recreations;
exhaustively thorough explanations of mathematics involved. analysis of effects,
citation of puzzles and games. l\-Iathematics involved is elementary. Translated bv
F. Gobel. 194 figures. xxiv + 430pp. 22134-2 Paperbound $3.50

ii-'lr\Tl-IEMATICS, hlnoic AND l\-[YsTi£|i\', Miifllfl Gardner. Puzzle editor for Scientific
American explains mathematics behind various rnystifying tri<.'l<s: card tricks, stag;
"mind reading," coin and match tricks. counting out gaines, _i.;c-ometric dissection-
etc. Probability st.-ts, theory of numbers clearly explained. Also provides more that
400 tricks, guaranteerl to ----~-1» *‘~-*‘ ""-- ' ‘ 135 illustrations. xii -|— 176pP- I

' ‘ 20335-2 Paperbound $1.??-
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VIATHEMTATICAI. Puzzres FOR BEGINNERS AND ENTHUSIASTS, Geoffrey Mott-Smith.
.89 puzzles from easy to difficult——invo1ving arithmetic, logic, algebra, properties
f digits, probability, etc.-—for enjoyment and mental stimulus. Explanation of
iathernatical principles behind the puzzles. 135 illustrations. viii -}— 248pp.

20198-8 Paperbound $1.75

PAPER FOLDING FOR BEGINNERS, William D. II-Iurray and Francis J. Rigney. Easiest
Jook on the market, clearest instructions on making interesting, beautiful origami.

1 Sail boats, cups, roosters, frogs that move legs, bonbon boxes, standing birds, etc.
40 projects; more than 275 diagrams and photographs. 94pp.
- 20715-7 Paperbound $1.00

TRICKS AND Games ON THE Pooi. TABLE, Fred Herrmann. 79 tricks and gar:-ies—
some solitaires, some for two or more players, some competitive games——-to entertain
you between formal games. l\-Iystifying shots and throws, unusual carorns, tricks
involving such props as cork, coins, a hat, etc. Formerly Farr: 0.»: i‘/Je P001 Table.
77 figures. 95pp. 21814-7 Paperbound $1.25

HAND Si-iaoows To BE THROWN Upon‘ T1-IE WALL: A Ssrues OF Nov:-:1. AND
Aivrusino FIGURES Fonmeo BY THE HAND, Henry Bursill. Delightful picturebook
from great-grandfather's day shows how to make 18 different hand shadows: a bird
that flies, duck that quacks, dog that wags his tail, camel, goose, deer, boy, turtle,
etc. Only book of its sort. vi + 33pp. 61/; K 91/4. 21779-5 Paperbound $1.00

‘Win-rr1.ii-io AND VVOODCARVING_, E. J. Tangerrnan. 18th printing of best book on
market. "If you can cut a potato you can carve" toys and puzzles, chains, chessmen,
caricatures, masks, frames, woodcut blocks, surface patterns, much more. Information
on tools, woods, techniques. Also goes into serious wood sculpture from Iviiddle
Ages to present, East and West. 464 photos, figures. X -|— 293pp.

20965-2 Paperbound $2.00

HISTORY OF PHILOSOPHY, Julian Marias. Possibly the clearest, most easily followed,
best planned, most useful one-volume history of philosophy on the market; neither
skimpy nor overfull. Full details on system of every major philosopher and dozens
of less important thinkers from pre-Socratics up to Existentialism and later. Strong
on many European figures usually omitted. Has gone through dozens of editions in
Europe. 1966 edition, translated by Stanley Appelbaum and Clarence Strowbridge.
XW11 + 505PP- 21759-6 Paperbound $3.50

YOGA: A SciE_1\i'ru=ic EVAI-UAT1ON, Kovoor T. Be-hanan. Scientific but non-technical
study. of physiological results of yoga exercises; done under auspices of Yale U.
Relations to Indian thought, to psychoanalysis, etc. 16 photos. it:-ciii + 270pp.

20505-3 Paperbound $2.50

"rice: Jzzbject to cbrzrzge it-':'!Zi0;;: izozirg,
available 1115 3'0“? i-‘>001-C dealer or write for free catalogue to Dept. GI, Dover
ublications, Inc., 180 Varick St., N. Y., N. Y. 10014. Dover publishes |Ticirc,- than
50_bUOk5 Each Y¢i1_1' on 5€l(-‘I11-'1‘-‘. f:li:mentary anti zltlviincecl inatlicmatics. biology,

W 11-1511‘. Hff. literary history, social sciences and other areas.

/i1. °i?""€"'F”Y


