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PREFACE

This book presents the theory of a recently developed method of
statistical inference, that of sequential analysis. An effort has been
made to keep the exposition on a level that will make most of the book,
with the exception of the Appendix, understandable to readers whose
mathematical background does not go beyond college algebra and a
first course in calculus. Some knowledge of probability and statistics
1s desirable for the understanding of the book, although not essential,
for a brief review is given of the fundamental concepts, such as random
variables, probability distributions, and statistical hypotheses.

To facilitate the reading of the book for those who have no advanced
mathematical training, some concessions are made to generality and
occasionally even to rigor. Furthermore, mathematical derivations
of somewhat intricate nature are put into the Appendix, the reading
of which may be omitted without impairing the understanding of the
rest of the book.

This book contains an expanded exposition of the ideas and results
I published in two technical papers on this subject, one of which
appeared in 1944 and the other in 19435, as well as some further devel op-
ments. Such developments, for example, are: the discussion of multi-
valued decisions and estimation in Part III ; Improvements in the
limits for the average number of observations required by a sequential
test; and limits for the effect of grouping in the binomial case. Some
recent results of M. A. Girshick are included and, 1n the discussion of
certain applications in Part II, use is made of some simplifications con-
tained in a publication of the Statistical Research Group of Columbia
University dealing with these applications.

Nearly all tables in the book were computed by the Statistical
Research Group of Columbia, University while I was a consultant to
the group. A few sections of my two forementioned publications have
been incorporated in this book, mostly in the Appendix, without sub-
stantial changes.

I wish to express my indebtedness to Milton Friedman and W. Allen
Wallis, who proposed the problem of sequential analysis to me in
March, 1943. It was their clear formulation of the problem that gave
me the incentive to start the investigations leading to the present

v
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developments. I also wish to express my thanks to the Social Science
Research Council for their help, which facilitated the publication of
this book. I am indebted to Mr. Mortimer Spiegelman of the Metro-
politan Life Insurance Company for his careful reading of the manu-
script and for making several valuable suggestions. Thanks are due

also to Mrs. E. Bowker who prepared the manuscript with particular
care.

A. W.
Columbia Universily
March, 1947
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INTRODUCTION

Sequential analysis is a method of statistical inference whose charac-
teristic feature is that the number of observations required by the
procedure is not determined in advance of the experiment. The deci-
sion to terminate the experiment depends, at each stage, on the results
of the observations previously made. A merit of the sequential method,
as applied to testing statistical hypotheses, is that test procedures can
be constructed which require, on the average, a substantially smaller
number of observations than equally reliable test, procedures based on
a predetermined number of observations.

This book presents the theory of a particular method of sequential
analysis, the so-called sequential probability ratio test, which was de-
vised by the author in 1943 mainly for the purpose of testing statistical
hypotheses. A comparison of this particular sequential test procedure
with any other (sequential or non-sequential) is shown, in Section A.7,
to effect the greatest possible saving in the average number of observa-
tions, when used for testing a simple hypothesis against a single alter-
native. The sequential probability ratio test frequently results in a
saving of about 50 per cent in the number of observations over the
most efficient test procedure based on a fixed number of observations.

The first idea of a sequential test procedure, i.e., a test for which the
number of observations is not determined in advance but is dependent
on the outcome of the observations as they are made, goes back to
H. F. Dodge and H. G. Romig ! who constructed a double sampling
procedure. According to this scheme the decision whether or not a
second sample should be drawn depends on the outcome of the obser-
vations in the first sample. Whereas this method allows for only two
samples, Walter Bartky devised a multiple sampling scheme for the
particular case of testing the mean of a binomial distribution.? His
scheme is closely related to the test procedure that results from the
application of the sequential probability ratio test to this particular
case. The reason that Dodge and Romig introduced their double

'H. F. Dodge and H. G. Romig, “A Method of Sampling Inspection,” The
Bell System Technical Journal, Vol. 8 (1929), pp. 613-631.

* Walter Bartky, “Multiple Sampling with Constant Probability,” The Annals
of Mathematical Statistics, Vol. 14 (1943), pp. 363-377.
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2 INTRODUCTION

sampling method, and Bartky his multiple sampling scheme was, of
course, the recognition of the fact that they require, on the average,
a smaller number of observations than ‘‘single’’ sampling.

The occasional practice of designing a large scale experiment in suc-
cessive stages may be regarded as a forerunner of sequential analysis.
The idea of such chain experiments was briefly discussed by Harold
Hotelling.? A very interesting example of this type 1s the series of
sample censuses of area of jute in Bengal carried out under the direc-
tion of P. C. Mahalanobis.4 Sample censuses, steadily increasing in
size, were taken primarily for the purpose of obtaining preliminary in-
formation about the parameters to be estimated. This information
was then used for designing the final sampling of the whole immense
jute area in Bengal.

The problem of sequential analysis arose in the Statistical Research
Group of Columbia University ® in connection with some comments
made by Captain G. L. Schuyler of the Bureau of Ordnance, Navy
Department. Milton Friedman and W. Allen Wallis recognized the
great potentialities and the far-reaching consequences that sequential
analysis might have for the further development of theoretical sta-
tistics. In particular, they conjectured that a sequential test proce-
dure might be constructed which would control the possible errors
committed by wrong decisions exactly to the same extent as the best
current procedure based on a predetermined number of observations,
and at the same time would require, on the average, a substantially
smaller number of observations than the fixed number of observations
needed for the current procedure.® Friedman and Wallis also exhib-
ited a few examples of sequential modifications of current test pro-
cedures resulting, in some cases, In an increase of efficiency. It was
at this stage that they proposed the problem of sequential analysis to
the author. This gave the incentive for the author’s investigations
which then led to the development of the sequential probability ratio
test.

3s Harold Hotelling, ‘“Experimental Determination of the Maximum of a Func-
tion,” The Annals of Mathematical Statistics, Vol. 12 (1941), pp. 20—45.

« P. C. Mahalanobis, ““A Sample Survey of the Acreage under Jute in Bengal,
with Discussion on Planning of Experiments,” Proceedings of the 2nd Indian Sta-
tistical Conference, Calcutta, Statistical Publishing Society (1940).

s During World War II the Statistical Research Group operated under a con-
tract with the Office of Scientific Research and Development and was directed
by the Applied Mathematics Panel of the National Defense Research Committee.

6 Bartky’s multiple sampling scheme for testing the mean of a binomial distribu-
tion provides an example of such a sequential test. His results were not known to
Friedman and Wallis at that time, since they were published nearly a year later.



INTRODUCTION 3

Because of the usefulness of the sequential probability ratio test in
development work on military and naval equipment, it was classified
Restricted within the meaning of the Espionage Act. The author was
requested to submit his findings in a restricted report? dated Se}:s-
tember, 1943.2 In this report the sequential probability ratio test is
devised and the basic theory is given. To facilitate the use of this
new technique by the Army and the Navy, the Statistical Research
Group issued a second report in July, 1944, which gives an elementary
non-mathematical exposition of the applications of the sequential prob-
ability ratio test and contains a considerable number of tables, charts,
and computational simplifications to facilitate applications.®

Further advances in the theory of the sequential probability ratio
test were made in 1944. The operating characteristic (OC) curve of
the sequential probability ratio test for the case of a binomial distri-
bution was found by Milton Friedman and George W. Brown (inde-
pendently of each other), and slightly earlier by C. M. Stockman in
England.’ The author then obtained the general OC curve for any
sequential probability ratio test.!X A few months later a general
theory of cumulative sums was developed 2 which gives not only the
OC curve of any sequential probability ratio test but also the charac-
teristic function of the number of observations required by the test
and various other results.

The material in the author’s report together with the new advances
made in 1944 were published by him in a paper, “Sequential Tests of
Statistical Hypotheses,”” in The Annals of Mathematical Statistics, J une,
1945. The Statistical Research Group issued a revised edition !* of its

? Abraham Wald, “Sequential Analysis of Statistical Data- Theory,”’ a report
submitted by the Statistical Research Group, Columbia University, to the Applied
Mathematics Panel, National Defense Research Committee, Sept., 1943.

® The restricted classification was removed in May, 1945.

® Harold Freeman, “Sequential Analysis of Statistical Data: Applications,” a
report submitted by the Statistical Research Group, Columbia University, to the
Applied Mathematics Panel, National Defense Research Committee, July, 1944.

1 C. M. Stockman, “A Method of Obtaining an Approximation for the Operating
Characteristic of a Wald Sequential Probability Ratio Test Applied to a Binomial
Distribution,”’ (British) Ministry of Supply, Advisory Service on Statistical
Method and Quality Control, Technical Report, Series “R,”’ No. QC./R/19.

! Abraham Wald, “A General Method of Deriving the Operating Characteristics
of any Sequential Probability Ratio Test,”” unpublished memorandum submitted
to the Statistical Research Group, Columbig, University, April, 1944.

2 Abraham Wald, “On Cumulative Sums of Random Variables,” The Annals
of Mathematical Statzstics, Vol. 15 (Sept., 1944).

? The authorship of the revised edition, which was published by the Columbia
University Press, Sept., 1945, is ascribed to the group as a whole.



4 INTRODUCTION

original report. The revised edition includes a discussion of the oper-
ating characteristic and average sample number curves for various
applications of the sequential probability ratio test.

Independently of the development in this country and about the
same time, G. A. Barnard recognized the merits of a sequential method
of testing.'* He treated the problem of double dichotomies, using a
sequential method of testing which, however, differs from the one that
results from the application of the sequential probability ratio test.

This book consists of three parts and an Appendix. Part I contains
a discussion of the general theory of the sequential probability ratio
test. Part 11 discusses applications of the general theory given in
Part I. These applications are given primarily to illustrate the gen-
eral theory and to bring out some points of theoretical interest which
are specific to these applications. Accordingly, computational simpli-
fications are not stressed much and hardly any tables are given.!®
Part III outlines briefly a possible approach to the problem of sequen-
tial multi-valued decisions and estimation. This field is largely un-
explored and further progress is still a matter of future developments.
To facilitate the use of the book by readers with no advanced mathe-
matical training, mathematical derivations of somewhat intricate na-
ture are included in the Appendix.

14 G. A. Barnard, “Economy in Sampling with Reference to Engineering Experi-
mentation,’’ (British) Ministry of Supply, Advisory Service on Statistical Method
and Quality Control, Technical Report, Series “R,”” No. Q.C./R/7.

15 For a more complete and detailed discussion of these applications the reader
is referred to the revised edition of the publication of the Statistical Research
Group mentioned before.



PART I. GENERAL THFEORY

Chapter 1. ELEMENTS OF THE CURRENT THEORY OF
TESTING STATISTICAL HYPOTHESES

1.1 Random Variables and Probability Distributions

1.1.1 Notion of a Random Variable

The outcome of an experiment or the reading of a measurement is
usually a variable quantity or, more briefly, a variable, since generally
1t can take different values. For example, repeated measurements on
the length of a bar will yield, in general, different values. F requently,
1t will be possible to make probability statements concerning the out-
come of an experiment or the reading of a measurement. Consider,
for example, the experiment consisting of the throw of a die whose sides
are numbered from 1 to 6. Here the outcome of the experiment may be
any mntegral number from 1to 6. Various probability statements regard-
ing the outcome of the experiment can be made. For example, the prob-
ability that the outcome will be equal to 5 is equal to 1§, or the prob-
ability that the outcome will be less than 4 is equal to 14, and so forth.
Probability statements can also be made about the outcome of the
following experiment: Suppose that an individual is selected at random
from a group of 1000 individuals and that his height is then measured.
The probability that the height of the selected individual will be less
than 68 inches is equal to o000 times the number of individuals in the
group whose heights are less than 68 inches.

A variable z is called a random variable if for any given value ¢ a
definite probability can be ascribed to the event that x will take a value
less than ¢. A general class of experiments where the outcome is a
random variable in the sense of the above definition may be described
as follows. Consider a class of N objects (or individuals) and some
measurable characteristic of these objects, such as weight, diameter, or
hardness. Suppose that the value = of this characteristic varies from
object to object in the class. The experiment consists in selecting at
random one object from the class of N objects, and then measuring
t_he value x of the characteristic of the selected object. Random selec-
tion is selection of an object in such a way that each object in the
class of N objects has an equal chance of being chosen. The outcome

S5



6 CURRENT THEORY OF TESTING HYPOTHESES

x of such an experiment is a. random variable, since a probability can
be ascribed to the event that x will take a value less than ¢, for any
given value ¢. This probability is, in fact, equal to N./N, where N,
is the number of objects in the class for which the characteristic undex
consideration has a value less than ¢. An interesting special case is
that in which the characteristic under consideration can take only two
values. Such a situation arises, for instance, in the case of a manufac-
tured product where each unit is classified in one of two categories:
defective or non-defective. We shall ascribe the value O to a non-
defective unit and the value 1 to a defective unit. Then the charac-
teristic under consideration, i.e., the characteristic of being defective
or non-defective, can take only the values 0 and 1. Consider a lot
consisting of NN units and let N,z be the number of defectives in the lot.
If the experiment consists in inspecting a single unit drawn at random
from the lot, the outcome zx of the experiment is a random variable
which can take only the values O and 1. The probability that x = O
is equal to (N — Nga4)/N, and the probability that x = 1 is equal to
Ng/N. .

1.1.2 Cumulative Distribution Function (c.d.f.) of a Random Vari-

able

Let z be a random variable and denote by F(¢) the probability that
z will take a value less than a given value ¢£. Then F(¢) is a function
of ¢ which is called the cumulative distribution function of x. Since

F) T

Fia. 1

any probability must lie between 0 and 1, we must have 0 = F(¢) = 1
for all values of ¢. If {; and ¢, are two values such that ¢; < £, then the
probability that x < ¢ is greater than or equal to the probability that
xr < t;, i.e., F({t) = F(4). In other words, F(¢) cannot decrease as
¢t increases. A typical form of a c.d.f. F(¢) is shown in Fig. 1 where ¢
is measured along the horizontal axis and F(¢) along the vertical axis.



RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 7

For any given values a and b (@ < b) we can easily derive the value
of the probability that a = x < b from the c.d.f. F(¢). In fact, the
event that < a and the event that a = x < b are mutually exclu-
sive. Hence, the probability that one of these events will occur is
equal to the sum of the two probabilities: the probability that z < a
and the probability that @ = < b. Thus, we have

(1:1) (probability that either z < aora = z < b)
= (probability that x < @) + (probability that ¢ < z < b)

Since the probability that either z < @ or @ < 2 < b is the same as
the probability that * < b, we obtain, from (1:1),
(1:2) F(b) = F(a) + (probability that @ < z < b)

Hence, the probability that a < x < b is equal to Fb) — F(a).

A simple interpretation of the c.d.f. F(¢) can be given if the random
variable z is the value of a measurement on an object selected at ran-
dom from a given group of N objects. As mentioned in Section 1.1.1,
in this case the probability that the observed value of satisfies some
equality or inequality relationship, such as z = c,orxz <c,ora <z
< b, is equal to the proportion of objects in the group of N objects
for which the value of z satisfies the equality or inequality in question.
Thus, F(¢) is simply equal to the proportion of objects in the group
for which z < ¢£. With this interpretation of probability, the validity
of (1:2) becomes self-evident. It merely says this: The proportion of
objects for which =z < b is equal to the proportion of objects for which
z < a plus the proportion of objects for which g = x < b. The group
of N objects is frequently called population or universe. So far we have
considered only populations which contain a finite number of objects.
Such populations are called finite populations.

The interpretation of the probability that a certain relation (equality
or inequality) holds as the proportion of objects in the population for
which the value of z satisfies that relation proves useful in many
instances and we shall employ it frequently. However, if we restrict
ourselves to finite populations, such an interpretation is not always
possible. In fact, the c.d.f.’s which arise from finite populations are
of a special nature. Suppose that N is the number of objects in the
Population. Then the random variable x can take at most N different
values. Let a,, ---, ay; be the different values z can take, arranged in
ascending order of magnitude, ie., a; < gy, < -.-. < ayr. Clearly,
M = N. If the value of = 1s the same for several objects, then M7 < N
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The c.d.f. of x will be a step function of the type shown in Fig. 2. The
distribution function makes exactly M jumps and the magnitude of
each jump is equal to 1/N or an integral multiple of 1/N. A c.d.f.
represented by a continuous curve, as shown in Fig. 1, is certainly not
of this type. Thus, if the c.d.f. is given by a continuous curve, the
interpretation of probabilities as proportions of a finite population is
not possible. However, any c.d.f. can be approximated arbitrarily
closely by a c.d.f. arising from a finite population, if the number & of
objects in the population is sufficiently large. Thus, any c.d.f. can be

F{t)
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regarded as a limiting form of a c.d.f. arising from a finite population
when the number of objects in the population is increased indefinitely.
This means that if we admit infinite populations! (populations with
infinitely many objects), the interpretation of any probability as a
certain proportion of an underlying population is always possible. Of
course, the notion of an infinite population is only an abstraction con-
structed merely for the purpose of simplifying the theory. To give an
example of an underlying infinite population, consider a measurement
on the length of a bar, the outcome of which is regarded as a random
variable z having a c¢.d.f. F(¢). Then the underlying infinite popula-
tion may be thought of as an infinite sequence of repeated measure-
ments on the length of the bar, and the actually observed measurement
is considered an element drawn from this population. Sometimes the
underlying population is finite, but the number N of objects in the

1 By an infinite population we mean an ordered infinite sequence of objects,
O,, Os, - -+, ad inf. A certain measurable characteristic of these objects is considered
and the value z of this characteristic is assumed to vary from object to object.
By the proportion of objects in the infinite population for which z satisfies a given
relation (equality or inequality) we mean the limiting value of the corresponding
proportion in the finite population (0O,, ---, Ox) as N increases indefinitely.
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population is so large that we may find it more convenient to treat
the problem as if N were infinity, i.e., as if the population were infinite.
Suppose, for example, that we are interested in the height distribution
of all male individuals of age 20 and above living in the United S ates.
The number of such individuals is so large that considerable mathe-
matical simplification may be achieved by treating the population of
such Individuals as if it were infinite.

1.1.3 Probability Density Function
Let F(¢) be the c.d.f. of a random variable z. As we have seen in

oy A A .
Section 1.1.2, the probability that ¢ — > =x <t > (A >0) is given

by F (t -+ %) — F (t — %) The limiting value f(¢) of the ratio

F_’(““%);F(_‘_—%)

iting value exists,? is called the probability density of the random vari-
able x at the value z = ¢t. The probability density f(¢) is a function of
¢t and is called the probability density function of the random variable
z. It follows from the definition of the probability density f(¢) that
for small positive values A the product S A is a good approximation

as A approaches 0, provided that such a lim-

to the probability that z will lie in the interval ¢ - > A probability

density function does not always exist. If the random variable x is
discrete, i.e., if z can take only discrete values, the c¢.d.f. is a step func-
tion and no probability density function exists.

The probability that z will take a value within the interval from
L to & (&, < {3) can be obtained by Integrating the probability density
function f(¢) from ¢ to ¢; i.e., the probability in question is given by

1) de

. . F —
*The existence of the limiting value of (¢ + ﬁ; O, i1s required, where

A may be positive or negative and may approach O in any arbitrary manner.
The existence of this limiting value implies the existence of the limiting value of

“'(‘+§);F(‘-§)

h—




10 CURRENT THEORY OF TESTING HYPOTHESES

One of the most important probability density functions is the so-
called normal probability density function, which is given by

1 — o (t— )2

J@) = 7o © 2e

where ¢ and o are some constant values. If a random wvariable z has
a probability density function f(¢) given by (1:3), we say that z is
normally distributed, or x has a normal distribution. The shape of a
normal curve is shown in Fig. 3, where ¢ is measured along the hori-
zontal axis and f(¢) along the vertical axis.

(1:3)

f(ori

Normal curve
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1.1.4 Discrete Random Variables

A random variable z is called discrete if it can take only discrete
values. Any variable which can take only a finite number of different
values is, of course, a discrete variable. A variable which can take
infinitely many values may still be discrete. For example, if the vari-
able z is restricted to integral values, z is discrete. The c.d.f. of a dis-
crete random variable is a step function, as shown in Fig. 2. Thus, a
discrete random variable has no probability density function, but
admits an elementary probability law f(¢), where f(f) denotes the
probability that z = ¢.

In what follows we shall consider only random variables which
either admit a probability density function or have a discrete distri-
bution. By the probability distribution, or more briefly distribution,
f(@), of a random variable z, we shall always mean the probability
density function of z, if a probability density function exists. If xz is
a discrete random variable, f(¢) will denote the probability that x = &
We shall sometimes refer to the distribution f(¢) of x also as the popu-
lation distribution of z, or the distribution of x in the population.
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1.1.5 Expected Value and Higher Moments of a Random Variable

Suppose that z is a random variable which has a discrete distribu-
tion. Let f(¢{) denote the distribution of z, i.e., f(¢) is the probability
that x = {. Then the expected value of z, in symbols FE(x), is de-
fined by

(1:4) E@) = D t1®)

where the summation is to be taken over all possible values ¢ of =z.
Interpreting the probability f({) as the proportion of objects in the
population for which x = ¢, we see from (1:4) that the expected value
E(x) of z is the same as the mean value of 2 in the population. If z
1s a continuous variable which admits a probability density function
J(¢), then the expected value of x is given by

+ w
(1:5) E(x) =j:_m tf(t) dt

The expected value of z is often called also the population mean, or
mean of z.

A function ¢(z) of a random variable z is itself a random variable.
For any positive integer r and for any constant ¢, the expected value
of (x — ¢)” is called the rth population moment of z referred to the
value ¢. Of special interest is the case in which ¢ — E(zx). The ex-
pected value of [z — E(z)]” is called the rth moment of z referred to
the mean. The second moment referred to the mean, 1.e., the expected
value of [x — E(x)]?, is also called the variance of . The square root
of the variance is called the standard deviation.

Consider the normal probability density function

L 2
1 o Zo2 W
‘\/Ercr

where 1 and o are constants (c > 0). Let 2 be a random variable
whose distribution is given by (1:6). That the expected value of z

1s then equal to x and the variance of z is equal to ¢° can easily be
verified.

(1:6) f(@t) =

1.2 Notion of a Statistical Hypothesis

1.2.1 Unknown Parameters of a Distribution

Let = be a random variable. A statistical problem arises when the
distribution of z is not known and we want to draw some inference
concerning the unknown distribution of z on the basis of a limited
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number of observations on z. Frequently, the distribution of x is not
entirely unknown, i.e., some partial knowledge of the distribution of
r is available a priori. To illustrate this we shall consider the two
following examples.

Example 1. Consider a lot consisting of N units of a certain manufactured
product. Suppose that each unit is classified in one of the two categories, defective
and non-defective. The value O is assigned to each non-defective unit and the
value 1 to each defective unit. One unit is drawn at random from the lot and 1s
inspected. The outcome z of this experiment is a random variable which can take
only the values 0 and 1. Denote by p the proportion of defectives in the lot.
Then the probability that z = 1 is equal to p and the probability that £ = 0 is
equal to 1 — p. Thus, if the value of p were known, the distribution of x would be
completely known. Usually p is unknown and we want to make some inference
regarding the value of p by inspecting a limited number of units drawn from the lot.
If p is unknown, we have only partial knowledge of the distribution of z; we know
merely that z is restricted to the values 0 and 1. In this case p is considered an
unknown parameter which can have any value between O and 1. We shall also
say that the distribution of z involves an unknown parameter p. Thus in this
example the distribution of z is known except for the value of an unknown para-
meter p.

Example 2. Suppose that the length of a bar is measured with an instrument
for which the error of measurement is known to be normally distributed. The
outcome z of such a measurement is then a normally distributed random variable,
i.e., the distribution of z is given by the normal density function

‘\/E;a*

Usually the mean x and the variance o2 of the distribution are unknown. These
quantities are also called the parameters of the normnal distribution. The mean u
can take any real value and o? can take any positive value. Thus, in this example
too, the distribution function 1s known except for the values of the parameters

« and ¢? involved in the distribution function.

A general situation similar to that given in Examples 1 and 2 may
be described as follows: The functional form of the distribution funciion
is known and merely the values of a finite number of parameters tnvolved
in the distribution function are unknown; i.e., the distribution function
is known except for the values of a finute number of parameters. In Ex-
ample 1 the only unknown parameter is the proportion p of defectives
in the lot. In Example 2 there are two unknown parameters, the mean
« and the variance o”.

In what follows we shall assume that the distribution of the random
variable z is known except for the values of a finite number of param-

eters.
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1.2.2 Simple and Composite Hypotheses

Let 64, - - -, 6 be the unknown parameters of the distribution of the
random variable z under consideration. A statement about the values
of 8, - - -, 6x is called a stmple hypothesis if it determines uniquely the
values of all & parameters. It is called a composite hypothests if it is
consistent with more than one value for some parameter. For ex-
ample, if there are two unknown parameters, 8, and 8-, involved in
the distribution of z, the hypothesis that 6, = 2and 8; = 4 is a simple
hypothesis, since it specifies completely the values of the unknown
parameters. On the other hand, the hypothesis that 6; = 6, 1s com-
posite. In Example 1 the statement that the unknown proportion p
of defectives is equal to .2 is a simple hypothesis. On the other hand,
the statement that p lies between .1 and .3 is a composite hypothesis.
In Example 2 the statement that ¢ = 3 would be a composite hypoth-
esis, since it does not specify the value of the unknown variance o2.

In general, the parameters 6,, ---, 6, will not be subject to any
a priori restrictions; i.e., they may take any values. However, the
parameters may in some cases be restricted to certain intervals. For
instance, if one of the unknown parameters is the standard deviation,
this parameter is restricted to positive values. In other cases, the
parameter may be able to take only a finite number of discrete values.

1.3 Outline of the Current Procedure for Testing Statistical Hypoth-
eses

1.3.1 The Sample

Let z be a random variable and suppose that we wish to test a
hypothesis concerning the unknown parameters of the distribution of
z. The decision to accept or reject the hypothesis in question is always
made on the basis of a finite number of observations on z. A set of a
finite number of observations on z is called a sample. The number of
observations contained in the sample is called the size of the sample.

We shall be concerned mostly with the case in which the successive
observations on z are independent in the probability sense. The suc-
cessive observations z,, - - "» Tn ON x are sald to be independent in the
probability sense if the (conditional) probability distribution of the zth
observation z; (; = 2, - -+, n), when the values of the preceding obser-
vations x;, -+ -, x,_, are known, is not affected by these values. This
condition cannot be strictly fulfilled if the successive observations are
drawn from a finite population. Consider, for instance, the case dis-
cussed in Example 1 on page 12. Suppose that two successive units
are drawn at random from the lot.  Denote by z; the value of z for
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the first unit and by zs the value of x for the second unit. The distri-
bution of z; is clearly given as follows: the probability that x; = 0 is
1 — p and the probability that z; = 1 1s equal to p. The distribution
of z,, when the value of z; is known, 1s given as follows: if z; = 0,
then the probability that zo = 1 is equal to p/N /(N — 1) and the prob-
ability that zo = 0is equal to 1 — [pN/(N — 1)]. On the other hand,
if z; = 1, the probability that xz; = 1 1s equal to (pN — 1)/(N — 1)
and the probability that zo = 0 is equal to 1 — [((pN —1)/(N — 1)L
Thus, the probability distribution of z2 is affected by the outcome of
xy. For similar reasons no strict independence can prevail in any other
case in which the successive observations are drawn from a finite popu-
lation. However, if the number of objects in the finite population 1S
sufficiently large, the dependence is only slight and can be neglected.

Let r be a discrete random variable, and denote the distribution of
x by f(1), i.e., f(¢) is the probability that x = . Let z1, ---, Tn be a
set of n independent observations on x. Because of the independence
of the observations, the probability of obtaining a sample equal to the
observed one is given by the product

flx)f(x2) - - - f(xn)

This product is also called the joint probability distribution of the
observations xy, ** *, Tn-

If = is a continuous random variable admitting a probability density
function f(z), then the joint density function of n independent obser-
vations zy, * - -, T ON X 1S glVen by the product

flx)f(x2) - - - f(@n)

1.3.2 The General Nature of a Test Procedure

Denote by n the number of observations on the basis of which the
acceptance or rejection of the hypothesis in question 1s to be decided.
Any possible outcome of n successive observations is a sample of size n.
A test procedure leading to the acceptance or rejection of the hypoth-
esis in question is simply a rule specifying, for each possible sample of
size n, whether the hypothesis should be rejected or accepted on the
basis of that sample. This may also be expressed as follows: A test
procedure is simply a subdivision of the totality of all possible samples
of size n into two mutually exclusive parts, say part 1 and part 2,
together with the application of the rule that the hypothesis be re-
jected if the observed sample is contained in part 1 and that the
hypothesis be accepted if the observed sample is contained in part 2.
Part 1 is also called the critical region. Since part 2 is the totality ot
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all samples of size » which are not included in part 1, part 2 is uniquely
determined by part 1. Thus, choosing a test procedure is equivalent
to determining a critical region.

As an illustration, we shall discuss a few examples. Suppose that a
lot consisting of NV units of a manufactured product is submitted for
acceptance 1nspection. Assume that each unit is classified in one of
the two categories: defective and non-defective. The proportion p of
defectives in the lot is assumed to be unknown. Let Po be a value
between 0 and 1 such that we prefer to accept the lot if the proportion
p of defectives is = po and we prefer to reject the lot if P > po. Sup-
pose that a sample of » units, drawn at random from the lot, is inspected
and on the basis of this sample a decision is to be made to accept the
lot or reject it. In other words, on the basis of the inspection of the
sample of n units a decision is to be made to accept the hypothesis
P = po or reject it. The critical region generally used in this case is
defined as follows: The hypothesis that P = po 1s rejected, i.e., the lot
1s rejected, if, and only if, the proportion of defectives in the observed
sample of » units exceeds a suitably chosen numerical constant c.

Another example: Suppose that the length of a bar is measured with
an instrument for which the error of measurement 1s known to be
normally distributed with variance equal to unity. Thus, the outcome
z of a measurement is a normally distributed random variable with
mean u equal to the true length of the bar and variance unity. Let
the hypothesis to be tested be the statement that the true length of
the bar is equal to a specified value to. This hypothesis is to be tested
on the basis of a sample consisting of n independent measurements
%1, * -+, Tn on the length of the bar. The critical region generally used
for this purpose is defined as follows: The hypothesis that p = ug is
rejected if, and only if, the sample observed is such that | £ — uo | = ¢
where £ denotes the arithmetic mean of the n observations and ¢ is a
suitably chosen numerical constant.

There are, in general, infinitely many possibilities for choosing a
critical region. For instance, in the example just discussed we could
have used the median, or the geometric mean, or the harmonic mean,
Or some other mean of the observations instead of the arithmetic mean.
The various critical regions cannot be regarded as equally good and
the fundamental problem in testing hypotheses is to set up principles
for the proper choice of the critical region. Such principles have been
advanced by Jerzy Neyman and Egon S. Pearson. In the next section
we shall discuss briefly the basic idea of the Neyman-Pearson theory.3

"See, for example, J. Neyman and E. S. Pearson, Statistical Resecarch Memoirs
University College, London, Vol. I (1936), pp. 1-37.
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1.3.3 Principles for Choosing a Critical Region

The principles formulated by Neyman and Pearson for the proper
choice of a critical region constituted an advance of fundamental im-
portance in the theory of testing hypotheses. The purpose of this
section is to indicate briefly the basic idea of the Neyman-Pearson
theory.

A simple case of particular theoretical interest arises when only one
unknown parameter # is involved in the distribution of the random
variable z under consideration, and 6 can take only two values, 8o and
6,. The basic idea of the Neyman-Pearson theory can be indicated
even in this simple case. Therefore, in the rest of this section, as
well as in the following section, 1.3.4, we shall restrict ourselves to
the case of a single parameter & which can take only two values,
90 and 4.

For any value @ of the parameter, let f(z, ) denote the distribution
of z. We shall denote f(z, 8o) by fo(z) and f(x, 6;) by fi(z). Suppose
that it is desired to test the hypothesis that 8 = 6,. We shall refer to
this hypothesis as the null hypothesis and denote it by Ho. The hy-
pothesis that 8 = 6; will be called the alternative hypothesis and will
be denoted by H;. Thus, we shall deal with the problem of testing the
hypothesis Ho against the alternative hypothesis H; on the basis of
a sample of n independent observations z;, +* -, Zn ON X.

As a basis for choosing among critical regions the following consider-
ations have been advanced by Neyman and Pearson: In accepting or
rejecting Hy, we may commit errors of two kinds. We commit an
error of the first kind if we reject Ho when it 1s true; we commit an
error of the second kind if we accept Ho when H, is true. After a
particular critical region W has been chosen, the probability of com-
mitting an error of the first kind, as well as the probability of commit~-
ing an error of the second kind, is uniquely determined. The probability
of committing an error of the first kind is equal to the probability,
determined on the assumption that Hg is true, that the observed
sample will be included in the critical region W. The probability of
committing an error of the second kind is equal to the probability, de-
termined on the assumption that H; 1s true, that the observed sample
will fall outside the critical region W. FYor any given critical region
W we shall denote the probability of an error of the first kind by «
and the probability of an error of the second kind by 8.

The probabilities « and 8 have the following important practical
interpretation: Suppose we draw a large number of samples of size N.
Let M be the number of such samples drawn. Suppose that for each
of these M samples we reject Ho if the sample is included in W and
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accept H if the sample lies outside W. In this way we make I/ state-
ments of rejection or acceptance. Some of these statements will 1n
general be wrong. If Hg, is true and if M is large, the probability is
nearly 1 (i.e., it is practically certain) that the proportion of wrong
statements (i.e., the number of wrong statements divided by M) will
be approximately «. If H, is true, the probability is nearly 1 that the
proportion of wrong statements will be approximately 8. Thus, we
can say that in the long run the proportion of wrong statements will
be « if Hy is true and B if H, is true.

It 1s clear that one critical region W is more desirable than another
if it has smaller values of o and 8. Although either « or 8 can be made
arbitrarily small by a proper choice of the critical region W, it is im-
possible to make both « and 8 arbitrarily small for a fixed value of n,
1.e., a fixed sample size. To illustrate this point, consider the follow-
Ing two extreme cases: (1) W is empty, i.e., we always accept H, ir-
respective of the outcome of the sample. In this case @ = 0 and 8 = 1.
(2) W is the totality of all possible samples, i.e., we always reject Hy.
In this case « = 1 and 8 = 0. If, for some reason, we decide to con-
sider only eritical regions W for which « has a given fixed value, the
choice of W is based on the f ollowing principle, introduced by Neyman
and Pearson: Restricting ourselves to regions W for which « has a, fixed
value, we choose that one for which 8 is a minimum.

The quantity « is called the size of the critical region, and the
quantity 1 — 8, the power of the ecritical region. A critical region
which has the highest power in the class of all regions of equal size
IS & most powerful region. Since minimizing B8 is the same as
maximizing 1 — 3, the Neyman-Pearson principle concerning the
f.:hoice of the critical region W can be formulated as follows: Restrict-
g ourselves to regions of a fixed size a, we choose that one which is
most powerful.

' For a fixed sample size, the probability g8 is a (single-valued) funec-

tl_on of «, say B(a), if a most powerful critical region is used. Thus,
given the number of observations on which the test is based, one of
the quantities o and B can still be chosen arbitrarily. The Neyman-
Pearson theory leaves the question of this choice open. It is clear
that if « is small, B8(«) is in general large, and if « is large, B(a) is in
genef-al small.  The choice of a (or 8) will be greatly influenced by the
relative importance of the errors of the first and second kinds in each
particular application. Suppose, for example, that the loss caused by
an error of the first kind is one dollar and the loss caused by an error
of the second kind is merely one cent. Then a smull o and a large 3
will be preferable to a large o and a small 8.
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Neyman and Pearson show that a region consisting of all samples
(z,, - - -, xn) which satisfy the inequality

fl(xl)fl(IZ) - o+ f1(Tn) > I

(1:7) >
Jo(x)folx2) - - fo(zn)

is a most powerful critical region for testing the hypothesis Hy against
the alternative hypothesis H;. The term %k on the right-hand side of
(1:7) is a constant chosen so that the region will have the required
size «. The reason why the critical region defined by (1:7) is most
powerful can be indicated as follows: For simplicity suppose that the
probability distributions under Ho and H, are discrete. Thus,
fi(x)f(z2) - - - fi(zn) (Z = 0, 1) denotes the probability of obtaining a
sample equal to the observed one. The critical region defined by (1:7)
can be built up by starting with a sample E' = (z;, 2%, - -, Tn')

fi(zy) - - fi(zr)
fo(z1) -+ - fo(xn)

E?2 = (2,2, -+, £,2) is included for which

takes its maximum value. Then a sample

fi(zy) - - - fi(xa)
fo(x1) - - - fo(xn)

maximum value in the set of samples which is left after & ! has been re-
moved from the totality of all possible samples. In general, after » sam-
ples E', - - -, E” have been included in the critical region, a sample E7+’

for which

takes its

is added for which Hi(xy) - - - S1(Za) takes its maximum value in the

So(z1) - - folxn)

set of samples (zy, - -+, ») which are left after E!, ---, E” have been
removed from the totality of all samples. This construction is con-
tinued until the size of the region reaches the desired value «.* Since
at any stage of the construction the last sample included in the critical
region has the largest probability under H, per unit probability under
H, as compared with any other sample not yet included in the region,
it can be seen that the probability measure of the critical region under
H,, i.e., the power of the critical region, is greater than or equal to the
power of any other region of equal size.

Let us illustrate the principle for choosing a critical region by appli-
cation to a simple and familiar case. Let Ho be the hypothesis that
~ is normally distributed with mean 6o and variance unity. Let H, be
the hypothesis that z is normally distributed with mean 6; and vari-

4 If z is a discrete variable, it may happen that, at the last stage of the construc-
tion, at the inclusion of the last sample in the critical region, the size of the region
increases from a value below « to a value somewhat greater than c.
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ance unity. Assume 8; > 6,. For testing Hy against H, we shall have
Si(z1) - - - fi(zy)
Jo(z1) - -+ fo(zn)

n
1 -4 2 (Ia—ﬂl)z
e a=1

to determine the ratio Since

Ji(z1) -+ fi(za) = n
(2m)2
and

Jo(z1) - - - fo(zn) =
(27)

the inequality (1:7) can be written as

n
=36 D) (za—81)2
e a=1]

(1:8)

IV

k

n
—1% D] (Za—00)2
e a=1

Taking the logarithm on both sides of this inequality, we obtain

2Z(@a — 00)° — §Z(za — 6;)2 = (6, — 60)Z%a + (60> — 6,%) = log &

Hence

- log k — 3n(8,% — 6,2)
(1:9) z Te = —B 62 (; ) _ k" (say)
1 — 6o

a=1
Inequality (1:9) can be written as

(1:10) = (= %) = v 70 = k" (say)
n n

Now we shall determine the value of ¥’ such that the eritical region
defined by the inequality (1:10) has the size o — 05. Since under the
hypothesis H, the random variable [Z(x, — 6y)]/n is normally distrib-
uted with zero mean and variance 1/n, we see from a table of the
normal distribution that 47’ — 1.64/+/n. Thus, the most powerful
region of size .05 consists of all samples for which the inequality

Z(xe — 6 1.64
(1:11) (z o) >

e

n A
holds.

This is a familiar result. Long before Neyman and Pearson devel-
oped their theory of testing hypotheses, it had been the practice to
use the critical region (1:11) for testing the hypothesis that g — 8o
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against alternative values ¢ > 6. A remarkable feature of the region
given by (1:11) is that it does not depend on the alternative value 8;.
In the derivation of (1:11) merely the inequality 6; > 8, was used.
Hence, the test defined by the region (1:11) is most powerful with
respect to all alternatives 6 > 6o, i.e., it is a unzformly most powerful
test when the alternatives are restricted to values greater than #&o.

1.3.4 Number of Observations Necessary if a and B Have Pre-
assigned Values

In the preceding section we assumed that o and the sample size n
were given and we were looking for a critical region for which B8 was
a minimum. In this section we shall assume that « and 8 are given
and our problem is to determine the minimum value of n for which
the power of the most powerful region of size « 1s greater than or equal
to1l — B. _

Let B, denote the probability of an error of the second kind associ-
ated with a most powerful critical region of size « when the test is
based on n observations. It can be shown that 8, decreases, or at least
does not increase, with increasing n. In general, 8, will approach 0
as n increases indefinitely. Denote by n(«, 8) the smallest value of n
for which 8, = 8. If we want a test procedure such that the prob-
ability of an error of the first kind is equal to « and the probability
of an error of the second kind does not exceed B, then according to the
current theory we must draw a sample of size n = n(«, B). If we use
a, most powerful critical region, we nced a sample of size n = n(«a, 8)-

1.3.56 Testing a Hypothesis Viewed as a Decision between Two
Courses of Action

It happens frequently in practice that we have to decide between
two courses of action, say action 1 and action 2, and the preference
for one or the other action depends on the value of an unknown param-
oter 8 of the distribution of a random variable z. Denote by « the
set of all values of 8 for which action 2 is not preferable to action 1.
Thus, for any value € not contained in w we prefer action 2 to action 1.
The problem of deciding between these two actions on the basis of a
sample of n independent observations on x may be formulated as a
problem of testing the hypothesis /{ that the true value of 8 1s con-
tained in the set w. If the test procedure leads to the acceptance of
H we take action 1, and if it leads to the rejection of H we take ac-
tion 2.

Consider, for example, the following problem. A lot consisting of a
large number of units of a manufactured product is submitted for
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acceptance inspection. Suppose that the proportion p of defectives
in the lot is unknown. There are two courses of action: acceptance of
the lot and rejection of the lot. In general, there will exist a particular
value p’ of p such that if the true proportion of defectives is < p’ we
prefer acceptance and if p > p’ we prefer rejection. If p = p’ we are
indifferent which action is taken. Suppose that a decision is to be
made on the basis of a sample of n» units drawn at random from the
lot. This problem may be viewed as a problem of testing the hypoth-
esis H that p = p’ on the basis of a sample drawn from the lot. The
lot is accepted or rejected according as H is accepted or rejected.

As mentioned in Section 1.3.3, the choice of «, i.e., the size of the
critical region, 1s greatly influenced by the relative importance we
attach to errors of the first and second kinds. If the problem of test-
ing a hypothesis arises out of the problem of deciding between certain
two courses of action, the relative importance of the errors of the first
and second kinds may be judged by considering the practical conse-
quences of taking one action when the value of the parameter is such
that the other action would have been preferable.



Chapter 2. SEQUENTIAL TEST OF A STATISTICAL
HYPOTHESIS: GENERAL DISCUSSION

2.1 Notion of a Sequential Test

In the current theory of testing hypotheses the number of observa-
tions, i.e., the size of the sample on which the test is based, is treated
as a constant for any particular problem. An essential feature of the
sequential test, as distinguished from the current test procedure, 1S
that the number of observations required by the sequential test de-
pends on the outcome of the observations and is, therefore, not pre-
determined, but a random variable.

The sequential method of testing a hypothesis H may be described
as follows. A rule is given for making one of the following three deci-
sions at any stage of the experiment (at the mth trial for each integral
value of m): (1) to accept the hypothesis H, (2) to reject the hypothesis
H, (3) to continue the experiment by making an additional observa-
tion. Thus, such a test procedure is carried out sequentially. On the
basis of the first observation one of the aforementioned three decisions
is made. If the first or second decision is made, the process is termi-
nated. If the third decision is made, a second trial is performed.
Again, on the basis of the first two observations one of the three deci-
sions is made. If the third decision is made, a third trial is performed,
and so on. The process is continued until either the first or the second
decision is made. The number n of observations required by such a
test procedure is a random variable, since the value of n depends on
the outcome of the observations.

For each positive integral value m, we shall denote by Af,, the to-
tality of all possible samples (xy, - -, T,n) of size m. We shall also
refer to M,, as the m-dimensional sample space. A rule for making
one of the three decisions at any stage of the experiment can be de-
seribed as follows. For each integral value m, the m-dimensional sample
space is split into three mutually exclusive parts, R,°, R,'. and R,,.
After the first observation z; has been drawn, the hypothesis H that
is being tested is accepted if z; lies in R,°%: H is rejected if x, lies In
R,':; or a second observation 1s made if x,; lies in R;. If the third
decision is made and a second observation zp drawn, H 1is accepted,
H is rejected, or a third observation is drawn, according as the ob-
served sample (z;, 22) lies in %, .1, or Ro. If (xy, x2) lies In [Py

22
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a third observation z3 is drawn and one of the three decisions is made
according as (z1, 2, x3) lies in R3°, R;!, or R3, and so on. This process
is stopped when, and only when, either the first or the second decision
is made.! Thus, a sequential test is completely defined by defining
the sets R,.°, R,!, and R,, for all positive integral values 7. Since
R,° R,', and R,, are mutually exclusive and add up to the whole
sample space A,,, it is sufficient to define any two of the sets R,.°,
R,.', and R,,.. Any one of the three sets R,°, R,!, and R, consists
precisely of all those samples which are not contained in the other two.
We shall call a sample (x,, - - -, z,,) ineffective if it contains an initial
segment (z,, :- -, z,,/), where m’ < m, such that (x1, -+, Tm+) lies in
R,,.° or in R,.'. A sample which is not ineffective 1will be said to be
an effective sample. Clearly, for a sequential test procedure we shall
have an effective sample at any stage of the experiment. Thus, in
defining the sets R,°% R,', and R,, we may disregard ineffective sam-
Ples. In other words, it is sufficient to state in which of the sets R,.°,
R,', and R,, each effective sample (z,, ---, z,,) should be included,
since ineffective samples cannot occur during the sequential process.
The following is a simple example of a sequential test. Suppose that
a lot consisting of a large number of units of a manufactured product
is submitted for acceptance inspection. Each unit is classified in one
of the two categories: defective and non-defective. The proportion D
of defectives in the lot is unknown. The lot is considered acceptable
if p = a given value p’. If p > p’ we prefer to reject the lot. Thus,
we are Interested in testing the hypothesis H that p < p’. The follow-
ing procedure of testing H is a simple example of a sequential test.
Let ng denote a given integer. If the first no units inspected are non-
defective, we stop inspection and the lot is accepted (H is accepted).
If for some value m < ng the mth unit inspected is found defective,
no further units are inspected and the lot is rejected (H is rejected).
We shall assign the value 0O to any non-defective unit and the value 1
to any defective unit. In this example, a sample (z,, - - *y Tm) 1S ef-

fective if and only if m = ng and 2z, = -.. = Tm— = 0. R,,° con-
tains no effective sample for m < ng, 1.e., acceptance is not possible
for m < mny,. R,° contains only one effective sample: (0,0, ---,0).

For any m < ny the set R,,' contains exactly one effective sample:
0,0, ---,0,1).

The sets R,.°, R,,}, and Bpn(m=1,2 ...) defining a sequential test
can be chosen in many ways, and a fundamental problem in the theory
of sequential tests is that of a proper choice of these sets. To formulate

! We shall consider only sequential tests for which the probability is one that the
Process will eventually terminate,
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principles for a proper choice of the sets R,,°, R,,", and B, it is neces-
sary to study the consequences of any particular choice. This will be
done in the next section.

2.2 Consequences of the Choice of Any Particular Sequential Test

2.2.1 The Operating Characteristic Function

After a particular sequential test has been adopted, i.e., a particular
choice of the sets R,.°, R,!, and R,, m = 1,2, ---) has been made,
the probability that.the process will terminate with the acceptance of
the hypothesis Hy under test depends only on the distribution of the
random variable z under consideration. As before, it is assumed that
the distribution of z is known except for the values of a finite number
of parameters, 6,, - - -, 8, say. Thus, the distribution of z is given
by a function f(x, 8;, - - - 6;) where the functional form f is known, but
the true values of the parameters 8,, - - -, 8; are unknown. To simphfy
notation, we shall use the letter § without subscript to denote the set
of all k parameters 8,, - - -, 8. We shall refer to § as a parameter point,
since @ can be represented geometrically by a point with the coordi-
nates 8, - - -, 8. Since the distribution of z is determined by the
parameter point 8, the probability of accepting Hy will be a function
of 8. This function will be denoted by L(6) and will be called the
operating characteristic (OC) function. If there is only one unknown
parameter ¢ the function L(8) can be plotted as a curve, 8 being meas-
ured along the horizontal axis and L(6) along the vertical axis. Since
we shall consider only tests for which the probability that the proce-
dure will eventually terminate is equal to 1, the probability of reject-
ing Ho is equal to 1 — L(8).

The OC function is very closely related to the notion of the power
function in the current theory of tests. For any parameter point &
which is not consistent with the null hypothesis Hg, the power of the
test is defined as the probability of rejecting Ho when € is the true
point. Thus, for any ¢ not consistent with Hy the power of the test
is equal to 1 — L(8).

To illustrate the meaning of an OC function, we shall compute the
OC function of the particular sequential test given as an example 1n
the preceding section. In that example the only unknown parameter
is &8 = p, where p denotes the proportion of defectives in the lot. The
lot is accepted if, and only if, the first ng units inspected are non-
defective. The probability that the first unit inspected i1s non-defective
is equal to 1 — p. On the assumption that the size of the lot is suf-
ficiently large as compared with 7o, the successive observations may
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be treated as being independent. Then the probability that all ng
units will be non-defective is equal to (1 — p)™. Thus, the operating
characteristic function is given by

Lp) =1 —p)™

This function can be plotted, as shown in Fig. 4, by measuring p
along the horizontal axis and L(p) along the vertical axis.

AL(p)
1

= =
0 1 D
Fiag. 4

The OC function describes what the sequential test procedure ac-
complishes. For any parameter point # the probability of making a
correct decision can be obtained immediately from the OC function.
If the parameter point 6 is consistent with the hypothesis H, to be
tested, then the probability of making a correct decision is equal to
L(6). If the true parameter point 6 is not consistent with the hypoth-
esis Hy, the probability of making a correct decision is equal to
1 — L(#). Clearly, an OC function is considered more favorable the
higher the value of L(8) for 6 consistent with Hy and the lower the
value of L(6) for 6 not consistent with H,.

2.2.2 The Average (Expected) Sample Number (ASN) Function of
a Sequential Test

We have pointed out before that the number of observations re-
quired by a sequential test is not predetermined, but is a random vari-
able, because at any stage of the experiment the decision to terminate
the process depends on the results of the observations made so far.
For example, for the particular sequential test discussed in the pre-
ceding section, the number of observations required by the test may
be anything from 1 to n,. If no defects are found during the sampling
process, we shall make n, observations. On the other hand, if the
first ,m — 1 units inspected are non-defective and the mth unit is de-
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fective for some value m < ng, then the total number of observations
made will be equal to m.

We shall denote by n the number of observations required by the
sequential test. Then n is a random variable. Carrying out the same
sequential test procedure repeatedly, we shall obtain, in general, dif-
ferent values for n. Of particular interest is the expected value of n
(the average value of n in the long run, when the same test procedure
is applied repeatedly). For any given test procedure the expected
value of n depends only on the distribution of . Since the distribu-
tion of x is determined by the parameter point 8, the expected value
of n depends only on 6. For any given parameter point 6, we shall
denote the expected value of n by Fp(n). If there is only one unknown
parameter 6 the function Es(n) can be plotted as a curve, 6 being meas-
ured along the horizontal axis and Ey(n) along the vertical axis. We
shall refer to the average sample number function Es(n) briefly as the
ASN function.

As an example, we shall compute the ASN function for the particular
sequential test discussed in the preceding section. For any positive
integral value m < np, the probability that the test will be terminated
at the mth observation is given by (1 — p)™ !'p. We shall inspect ng
units if and only if the first »p — 1 units are found non-defective.
Thus, the probability that the test will require exactly ng observations
is equal to (1 — p)™~'. Hence, the expected value of n is given by

rip— 1

Ey(n) = D _mp(1 — p)"7* + no(l — P!

m=1

The graph of the ASN function will be of the type shown in Fig. 5.

E tn)

.
0 1 p
Fia. 5

An OC function and an ASN function are associated with each test
procedure. These two functions are perhaps the most important con-
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sequences of a test procedure. The OC function describes how well
the test procedure achieves its objective of making correct decisions,
and the ASN function represents the price we have to pay, in terms
of the number of observations required for the test. Thus, in judging
the relative merits of two different test procedures, we shall compare
the OC and ASN functions of these two tests.

2.3 Principles for the Selection of a Sequential Test

2.3.1 Degree of Preference for Acceptance or Rejection of the Null
Hypothesis H; as a Function of the Parameter 0

In order to set up principles for the selection of a sequential test
it 1s necessary to investigate the dependence of the preference for re-
Jection or acceptance of the null hypothesis Hp on the parameter point
6. Denote by w the set of all those parameter points 8 which are con-
sistent- with Hy, i.e., Hg is precisely the statement that the true pa-
rameter point is included in the set w. For example, if there is only
one unknown parameter  and if H, is the hypothesis that €& is less
than or equal to a certain particular value 6o, w 1s the set of all values
¢ for which 6 < 6,. Since a correct decision is preferred to a wrong
decision, we can say that acceptance of H, is preferred whenever @ is
in w, and rejection of H, is preferred whenever 8 is outside w.

The mere statement of preference for acceptance or rejection of H,
1s not yet a sufficient guide for the selection of a proper sequential test.
For this purpose it is necessary to know something about the degree
of preference for acceptance or rejection as a function of the parameter
point 6.

We shall denote by & the set of all parameter points which lie outside
w. A point 8 will be said to be on the boundary of w, or a boundary
point of w, if any arbitrarily small neighborhood of 6 contains points
of w as well as of @. The totality of all boundary points of w will be
called the boundary of w. If, for example, there is only one unknown
parameter and w is defined by 8 =< 6,, then 0o 1s the only boundary point
of w. If w is the set of all values 8 for which 6y < 8 < 6, then both 6o
and 6, are boundary points. If the true parameter point 6 lies in w
but is near the boundary of w, the preference for acceptance of Hq will,
In general, be only slight. Similarly, if the true point € lies in & but
near the boundary of w, the preference for rejection of Hy will be only
slight. In other words, the rejection of Hg 1s not considered to be a
serious error if 8 is in w but near the boundary. Similarly, the accept-
ance of Hy is not considered a serious error 1f € is in & but near the
boundary of w. If the true point @ lies exactly on the boundary of w,
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there will be, in general, no definite preference for one or the other
action, i.e., it will be indifferent to us whether the hypothesis Hyo is
accepted or rejected. |

In general, it will be possible to subdivide the totality of all param-
eter points (paramecter space) into three mutually exclusive zones: a
zone consisting of all points @ for which acceptance of Hy is strongly
preferred; a zone consisting of points & for which rejection of Ho is
strongly preferred; and a zone consisting of all points # which are not
included in either of the first two zones, i.e., the third zone consists
of all points 6 for which neither acceptance nor rejection of Hpg is
strongly preferred. We shall refer to the first zone as the zone of
preference for acceptance, to the second zone as the zone of preference
for rejection, and to the third zone as the zone of indifference. The
zone of preference for acceptance will always be a subset of w and the
zone of preference for rejection will be a subset of @. The zone of in-
difference will usually consist of points of w and @ which are near the
boundary or on the boundary of w.

Although the subdivision of the parameter space into three zones as
deseribed above is used as a basis for the selection of a sequential test,
it cannot be considered a statistical problem. Such a subdivision is
made in each case on the basis of practical considerations concerning
the consequences of a wrong decision.

The subdivision of the parameter space into the above-mentioned
three zones gives a somewhat sketchy picture of the degree of pref-
erence for acceptance or rejection as a function of the parameter 6.
A more refined description of the degree of preference for one or the
other action can be given in terms of two functions wo (8) and w, (8),
where wgs(8) expresses the relative importance of, i.e., the loss caused
by, the error of accepting fo when @ is true, and w,; (8) expresses the
relative importance of the error of rejecting Ho when 8 is true. The
function we(8) = 0 for any 8 in w, since for such points 8 the accept-
ance of Hy is a correct decision. For any & in @, we(f) will have a
positive value which will, in general, increase with increasing distance
of 8 from the boundary of w. Similarly, w,(6) = 0 for all 8 in @ and
w,(8) > 0 for all § In w. Again, w;(8) will, in general, increase with
increasing distance of 8 from the boundary of w. Our subdivision of
the parameter space into three zones may be interpreted as being
equivalent to choosing the functions wo(8) and w,(8) as follows:
wo(8) = O when @ is in the zone of preference for acceptance or in the
zone of indifference. For any 6 in the zone of preference for rejection,
wo(8) has a high positive value, say co, indicating that the loss caused
by acceptance is of practical importance. Similarly, w,(6) = O for any
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6 in the zone of preference for rejection or in the zone of indifference.
For any ¢ in the zone of preference for acceptance, w, () has some high
value, say c¢;, indicating that the loss caused by rejection of H, is of
practical importance. Although a refined description of the depend-
ence of the degree of preference for one or the other action on 8 may
occasionally require the use of continuous functions we(8) and w, (@),
the step functions implied by the subdivision of the parameter space
into three zones will give a sufficiently good approximation for most
practical purposes. They also have the advantage of great simplicity.
Thus, in what follows we shall assume that the dependence of the
preference for one or the other action on 6 is deseribed by a subdivision
of the parameter space into three zones of the type mentioned above.

As an illustration, we shall discuss briefly a few examples. Consider
first the case in which a lot consisting of a large number of units of 3
manufactured product is submitted for acceptance inspection. Assum-
ing that the units are classified in one of the two categories, defective
and non-defective, the preference for acceptance or rejection of the lot
depends only on the proportion p of defectives in the lot, which is
unknown. In this case there is only one unknown parameter 8 which
is equal to the proportion p of defectives in the lot. It will, in general,
be possible to select two values Po and p; (o < p;) such that for any
P = po the rejection of the lot is an error of practical importance, for
any p = p; the acceptance of the lot is considered a wrong decision of
practical importance, whereas for any value p between p; and »; there
1s no strong preference for either action. Thus, the zone of indifference
may be defined as the interval from Po to p,, the zone of preference for
acceptance as the set consisting of all values ? = po, and the zone of
preference for rejection as the set of all values P = p;.

As a second example, consider the case in which the hardness z of
a certain product varies from unit to unit such that * may be con-
sidered a normally distributed variable in the population of all units
produced. Suppose that the mean value @ of z is unknown but that
the standard deviation of = is known. Assume that the most desir-
able value of 8 is 6, and that the product becomes less desirable as
the absolute deviation | 8 — 65 | between the true mean and the most
desirable value 8, becomes greater. Suppose that the problem is to
decide whether the product should be put on the market or not. In
such a case, it will, in general, be possible to find a positive value ¢
such that if | 8 — g, ] < ¢ we prefer to put the product on the market,
and if | 8 — @, | > ¢ we prefer to withhold the product. For |6 — g, |
= ¢, we are indifferent which action is taken. Thus, the hypothesis
Hy may be defined as the hypothesis that | 8 — g, | < ¢. We shall not
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define the zone of indifference by the equation I 8 — 6g | = ¢, since if
| 6 — 6, | differs only slightly from ¢, the preference for one action over
the other is only slight and of no practical importance. However, it will
be possible to find a positive value A such that, if | 8 — 60| < ¢ — A,
we strongly prefer to accept Ho (to put the product on the market)
and, if | 8 — 6| > ¢ + A, we strongly prefer to reject Ho (not to put
the product on the market) whereas, if ¢ — A = | 8 — 6| = ¢+ A,
no strong preference is given to either action. Thus, the zone of indif-
ference may be defined by the inequality ¢ — A = [ g — 6| = c+ A,
the zone of preference for acceptance by |8 — 8| < ¢ — A, and the
zone of preference for rejection by |8 — 60| > ¢ + A.

In each of the previous two examples there was only one unknown
parameter. We shall now consider an example where there are two
unknown parameters. Suppose that a lot consisting of a large num-
ber of units of a manufactured product is submitted for acceptance
inspection. Assume that the characteristic of the product in which
we are interested is the resistance to pressure, which is a measurable
quantity z. It is assumed that x varies from unit to unit in the lot
and has a normal distribution with unknown mean u and unknown
standard deviation o. Let L be a value such that acceptance of the
lot is strongly preferred if the proportion of units in the lot with
resistance z = L does not exceed .01, rejection of the lot is strongly

oA
Zone of preference
for rejection
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preferred if the proportion of units in the lot for which z < L exceeds
.05, and no strong preference exists for either action if the proportion
of units in the lot with z < L lies between .01 and .05. The propor-
tion of units with z =< L is greater than or equal to .05 if, and only if,
(u — L)/o = A1, and the proportion of such units is < .01 if, and only
if, (uw — L)/o = A2 (A1 < A2). The values A; and A can be obtained
from a table of the normal distribution. Thus the zone of preference
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for rejection is given by the set of all values u and ¢ for which
(0 — L)/o = N\, the zone of preference for acceptance is given by
(v — L)/a = Az, and the zone of indifference is given by A\; < (& — L) /o
< A2. These three zones are represented in Fig. 6, where u is measured
along the horizontal axis and o along the vertical axis. The zone of
indifference is bounded by two straight lines which go through the
point L on the abscissa axis and have slopes 1/A; and 1/, respectively.

2.3.2 Requirements Imposed on the OC Function

Suppose that the hypothesis H, to be tested states that the true
parameter point § lies in a given set w of parameter points. Then we
wish to make the probability of accepting H, as high as possible when
¢ lies in w, and as low as possible when € is outside w. Since the prob-
ability of accepting Hy is by definition equal to the OC funection L(8),
an OC function is considered more desirable the higher the value of
L(6) for any ¢ in w and the lower the value of L(8) for any 6 outside w.
An ideal OC function would be given by a function L(6) such that
L@) = 1 for any 6 in w and L(®) = O for any @ outside w. Suppose,
for example, that there is only one unknown parameter 8 and the
hypothesis to be tested is the statement that @ = 6p. Then, an ideal
OC function, as shown in Fig. 7, would be given by a function 1.(8)
such that L(@) = 1 for 8 < 6, and L(8) = 0 for 8 > 6,.

Lio)A
Example of an ideal
O C function
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0 8, ~ o
Fia. 7

rI"he ideal form of the OC function can never be achieved on the
basis of incomplete information about 6 supplied by a random sample
t:lra.wn from the population, but it can be approached arbitrarily closely
if we are willing to take a sufficiently large sample.

The nearer the OC funection 1s to the ideal function and the smaller
the expected number of observations required, the more desirable is
the sequential test. These two desirable features of a test are some-
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what in conflict, since the closer we approach the ideal form of the
OC function, the larger, in general, will be the number of observations
required by the test. To achieve a compromise between these two
conflicting desiderata, we may proceed as follows. First we formulate
requirements concerning the closeness of the OC function to the ideal
function and then consider only tests which satisfy these requirements.
From these tests we try to select one for which the expected number
of observations required by the test is as small as possible. To impose
the desired conditions on the OC function first and then to minimize
with respect to the expected number of observations does not seem to
be an unreasonable procedure, since the OC function is perhaps of
primary importance.

To formulate requirements on the OC function, we shall make use
of the subdivision of the parameter space into the three zones discussed
in the preceding section. Since in the zone of indifference there is no
strong preference for one or the other action, we shall not impose any
conditions on the behavior of L(8) within the zone of indifference. In
the zones of preference for acceptance and rejection the requirements
on the OC function may reasonably be stated as follows. For any 6
in the zone of preference for acceptance the probability of rejecting
the hypothesis H,, i.e., the value of 1 — L{8), should be less than or
equal to a preassigned value «, and for any 8 in the zone of preference
for rejection the probability of accepting Ho, i.e., the value of L(8),
should be less than or equal to a preassigned value 8.

We can summarize the requirements imposed on the OC function
as follows. First the parameter space is subdivided into three mutually
exclusive zones: a zone of preference for acceptance, a zone of prefer-
ence for rejection, and a zone of indifference. Then two positive values
« and B, both < 1, are selected. The requirements imposed on the
OC function are then given by the two following conditions:

(2:1) 1 — L@ = aforany 6 In the zone of preference for acceptance

(2:2) L) = B for any ¢ in the zone of preference for rejection

—
s —

Condition (2:1) can also be written as
(2:3) L@ = 1 — «a for any 6 in the zone of preference for acceptance

The subdivision of the parameter space into three zones, as well as
the choice of the values « and B, 1s to be made on the basis of
practical considerations in each particular case. We shall say that a
sequential test is admissible 1f it satisfies the requirements (2:2)

and (2:3).
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A typical OC function satisfying the conditions (2:2) and (2:3) is
shown 1n Fig. 8, where there is only one unknown parameter 8 and the
zone of preference for acceptance is defined by ¢ < 6,, and the zone of
preference for rejection is defined by 6 = 8,. (6, < 6,.)

L) A

Ficg. 8

2.3.3 The ASN Function as a Basis for the Selection of a Sequen-
tial Test

After the parameter space has been subdivided into three zones and
the quantities « and 8 have been chosen, we consider only tests which
are admissible, i.e., tests which satisfy the conditions (2:2) and (2:3).
Clearly, we wish to select a sequential test for which the expected value
of the number of observations required by the test is as small as pos-
sible. This expected value Ey(n) depends, as we have seen in Section
2.2.2, on the parameter point 8. In section 2.2.2 we referred to the
function FEy(n) as the ASN function of the test.

The expected value Zy(n) of the number of observations to be made
depends, of course, also on the particular sequential test used. To put
this dependence in evidence, we shall occasionally use the symbol
Eg(n I S) to denote the value Ey4(n) when the sequential test S is applied.

It is of particular interest to consider for any particular 8 the mini-
mum ? value of Ey(n I S) with respect to S where S may be any admis-
sible sequential test. This minimum value, in symbols Min E,(n | S),

S

depends only on @. Clearly, for any admissible sequential test S’ we
have

Ey(n|8) = Min Ey(n | S)
S
If an admissible sequential test S, exists for which the expected value
of the number of observations is minimized for all 8, i.e., for which

* If the minimum value does not exist, we can take the greatest lower bound with
respect to S.
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Es(n | So) = Min Esy(n | S) for ail 0, then Sy may be regarded as a
S

“uniformly best’’ test. In general, however, no uniformly best test
exists,® i.e., it will not be possible to minimize the expected value of
the required number of observations simultaneously for ail 8. Thus,
in such cases some compromise principle is to be adopted for the selec-
tion of a sequential test. We do not propose to enter into a discussion
of the various possible compromise principles that could be advanced,
since the wvarious possibilities have not yet been fully investigated.
However, for the particular, but theoretically very interesting, case
when a simple hypothesis is tested against a single alternative, the
situation has been clarified and we shall discuss it in some detail in

the next section.

2.4 The Case When a Simple Hypothesis H; Is Tested against a
Single Alternative H,;

2.4.1 Efficiency of a Sequential Test

We shall consider only two values of the parameter 8, say 6o and é,.
Let H, be the hypothesis that 8§ = 8, and let H; denote the hypothesis
that 8§ = 6;. We shall refer to Hy as the null hypothesis and to , as
the alternative hypothesis. With any sequential test of the hypothesis
Ho against the alternative hypothesis H; there will be associated two
numbers « and 8 between 0 and 1 such that if Hjp is true the prob-
ability is « that we shall commit an error of the first kind (we shall
reject Hg), and if H, is true the probability is 8 that we shall commit
an error of the second kind (we shall accept Ho). Two sequential tests
S and S’ will be said to be of equal strength if the values « and B
associated with S are equal to the corresponding values o’ and B as-
sociated with S/. If a < o’ and 8 = B/, orif « = o' and 8 < 8/, we
shall say that S is stronger than S’ (S” is weaker than S). If a<dod
and 8 > 8, or if « > o and 8 < B’, we shall say that the strength of
S is not comparable to that of S’. _

Restricting ourselves to sequential tests of a given strength (a, B),
a test may be regarded as more desirable the smaller the expected
number of observations required by the test. If S and S’ are two
sequential tests of equal strength such that Eg (n | S) = Es,(n | S’) and
Es(n | S) < Eo(n|S), or Eg(n|S) < Ee(n|S) and Ep (n | S) =
Es (n | S), the test S will be considered preferable to S’. If a test
S, exists such that Eg ,(n \ So) = Ep (0 | S) and Fy, (n [ So) = Ly (n | S)

$ The situation here is similar to that in the Neyman-Pearson theory of testing
hypotheses, where uniformly most powerful tests exist only in exceptional cases.
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for all tests S of strength equal to that of Sy, we shall say that Sj is an
optimum test. ‘

We shall denote by no(«, 8) the minimum value of Ej (n |.S) with
respect to S, and by 7n;(«, 8) the minimum value of Ep (n [ S) with
respect to S, where S may be any sequential test of strength («, 8).4
Then for any sequential test S of strength (o, 8) we have Ey (n ] S) =
no(a, 8) and Ejp (n | S) = ni(«, B). A sequential test S of strength
(o, 8) 1s an optimum test if Ep (n | S) = no(a, B) and Ep (n [S) =
n1 (e, B). The existence of an optimum test has not been proved.
However, it will be shown in Section A.7 of the Appendix that for the
so-called sequential probability ratio test Sy of strength («, 8), defined
in Chapter 3, the ratios

Ey,(n | So) and Ey,(n | So)
no(«, 8) ny (e, B)

can exceed 1 only by very small quantities which can be neglected for
practical purposes. Thus, for all practical purposes, the sequential
probability ratio test may be regarded as an optimum test.®’ In Sec-
tion A.7 it is also shown that the ratios (2 :4) converge to 1 as 8, ap-
proaches €.

We shall define the efficiency of a sequential test S of strength («, B)

n[)(ﬂ', ﬁ) . ({31 (C-’t, ﬁ)
T (n I 5 when H, is true, and by B (n | 5
true. Clearly, the efficiency of a sequential test under H 0, as well as
under H,, lies always between O and 1. The greater the efficiency of
a sequential test of a given strength the more desirable it is. An opti-
mum test has the efficiency 1 under H,, as well as under H,. The se-
quential probability ratio test for testing Hy against H; is shown in
Section A.7 to have an efficiency, if not exactly, very nearly equal to 1
under H, as well as under f1,. As mentioned before, in Section A.7
1t is shown that the efficiency of the sequential probability ratio test
approaches 1 under H, as well as under H,, when 6; approaches 6,.

(2:4)

by the ratio when H, is

2.4.2 Efficiency of the Current Test Procedure, Viewed as a Par-
ticular Case of a Sequential Test

The current test procedure may be regarded as a particular case of
a sequential test. In fact, if N denotes the fixed number of observa-
tions used in the current procedure and if Wy denotes the critical region,

‘ If the minimum value with respect to S does not exist, we take the greatest
lower bound.

":The author conjectures that the sequential probability ratio test is exactly an
optimum test, but he did not succeed In proving this.
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i.e., Wx is the totality of all those samples of size N for which the
hypothesis under test is rejected, then the current procedure may be
regarded as a sequential test defined as follows. For all positive inte-
gral values m < N, the regions R,.°, R, are the empty subsets of the
m-dimensional sample space M,., and R,, = M,,. Form = N, Ry' is
equal to Wy, Rx® is equal to the totality of all samples of size N not
contained in By!, and Ry is the empty set. Thus, for the current test
procedure we have Eg,(n) = Es (n) = N.

It will be shown later that the efficiency of the current test for test-
ing Ho against H, based on the most powerful critical region, is rather
low. Frequently it is below 4. In other words, an optimum sequen-
tial test can attain the same « and B8 as the current most powerful test
on the basis of an expected number of observations much smaller than
the fixed number of observations needed for the current most powerful
test.

In Chapter 3 a simple sequential test procedure for testing Ho against
H, will be proposed. It is called the sequential probability ratio test,
which for practical purposes can be regarded as an optimum sequential
test. It will be seen that these sequential tests usually lead to average
savings of about 50 per cent in the number of trials as compared with
the current most powerful test.



Chapter 3. THE SEQUENTIAL FROBABILITY RATIO TEST
FOR TESTING A SIMPLE HYPOTHESIS H, AGAINST A SINGLE
ALTERNATIVE H,

3.1 Definition of the Sequential Probability Ratio Test

Let f(x, 8) denote the distribution of the random variable x under
consideration.! Let Hy be the hypothesis that 8 = 6,, and & 1 the hy-
pothesis that 8 = #,. Thus, the distribution of x is given by f(z, 6,)
when Hy is true, and by f(x, 6;) when H; is true. We shall denote the
successive observations on x by zy, 2o, - - -, etc.

As mentioned before, we consider only two cases: (1) x admits a
probability density function; (2) «z has a discrete distribution. It 1s
our intention to cover both cases simultaneously. However, the diffi-
culty arises that some statements will have to be formulated slightly
differently, depending on whether =z admits a density function or x has
a discrete distribution. This difference in formulation is caused mostly
by the fact that “probability density’’ in the continuous case is to be
replaced by ‘“‘probability’’ in the discrete case. For the sake of brevity,
we shall occasionally use the word ““probability’’ to mean “probability
density’’ in the continuous case, if this can be done without dan ger of
confusion. With this understanding it will frequently be possible to
cover the discrete, as well as the continuous, case with a single statement.

For any positive integral value m the probability that a sample
Z1, ***, Tm 1s obtained is given by

plm - f(xll 61) e f(xm: 81)
when H, is true, and by

Pom = f(xln 90) et f(irm: 90)
when Hg is true.

The sequential probability ratio test for testing Hy against H, is
defined as follows: Two positive constants A and B (B < A) are chosen.
At each stage of the experiment (at the mth trial for any integral
value m), the probability ratio Pim/Pom is computed. If

Pim
(3:1) B<—< A
Pom
1 f(z, 8) denotes the probability density function of x, If a density function exists.

If z has a discrete distribution, f(z, 8) denotes the probability that the random
vanable under consideration takes the value z.

37
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the experiment is continued by taking an additional observation. If

(3 :2) Pim A
Pom

IV

the process is terminated with the rejection of Hy (acceptance of Hy).
If

(3:3) Pim
pﬂm

the process is terminated with the acceptance of Hy.2

The constants A and B are to be determined so that the test will
have the prescribed strength («, 8). The relations among the quan-
tities «, B, 4, and B will be discussed in the next section.

For purposes of practical computation, it is much more convenient
to compute the logarithm of the ratio P1m/Pom than the ratio pim/Pom

‘tself. The reason for this is that log (pim/Pom) can be written as the
sum of m terms, 1.e.,

B

IV

m xi, 6 f(xm, @ )
(3:4) log Prm _ lﬂgf( 1, 61) F---+ log -
Pom f(xl ’ BU) f(zm,: 3‘0)
We shall denote the 7th term ir this sum by z;, ie.,
f(xi;r 91)
(3:5 z; = log
) f(xil:.! 60)
The test procedure is carried out as follows, the quantities z; (z =
1, 2, - --) being used: At each stage of the experiment (at the mth trial
for each integral value of m), the cumulative sum z; + - - - + 2, 1S com-
puted. If
(3:6) log B < 2 4+ -tz <log A

the experiment is continued by taking an additional observation. If
2y + -z = log A
the process is terminated with the rejection of Ho. If
2, +-- -+ zm = log B
the process is terminated with the acceptance of Hy.
2 If for a particular sample pim = pom = 0, wWe shall define the value of the ratic

D1m/ Pom as 1. If for some sample (1, --+, Tm) we have p1m > 0 but pom = 0
inequality (3:2) is considered fulfilled and Hp is rejected.
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A few simple illustrations will help to make the procedure more con-
crete. Suppose that the random variable z can take only two values,
O and 1. We shall denote the probability that x = 1 by p, the value
of which is assumed to be unknown. Thus, p is the unknown param-
eter of the distribution. The distribution of z is given by the function
Sf(x, p) which is defined only for two values of z, namely z = 0 and
x=1. f(1,p) = p and f(O,p) = 1 — p. Let Hy be the hypothesis
that p = po and H, the hypothesis that p = p; (p; # po). Then

Ty
Z; = logf( P1) = log& if r; =1
S(x:, po) Po
1 —
= log P if x; =0
1 — po
Hence,
s * pl 1 — pl
(3:7) 21+t 2m = m*log— + (m — m*) log
Po 1 — po

where m* denotes the number of ones in the sequence of the first m
observations. We accept H, if

1 —
m* log P1 + (m — m*) log o = log B
Po 1 — po
We reject Hy (accept H,) if
1 —
m* log& + (m — m*) log P = log A
Po 1 — po

We continue the experiment by taking an additional observation if

P 1 —
log B <m*log——}-+ (m — m*) log o1 < log A

Po I — po

The expression (3:7) can, of course, be obtained cumulatively. If an
observation is a one, the constant log (p1/po) is added to the preceding
value of (3:7) to obtain the new value. If the observation is a Zero,
the constant log (1 — 1)/ (1 — pgo) is added.

As a second example, consider the problem of testing a hypothesis
al’?out the mean of a normal distribution. L.et x be a normally dis-
tributed random variable with unknown mean 6 and unit variance.



40 THE SEQUENTIAL PROBABILITY RATIO TEST

Let Ho be the hypothesis that 8 = 6 and H; the hypothesis that
6 = 91. Then

1 2
Jz, 60) = —7== e~ W00
27
and
1 — Y(z—81)?2
f(ﬂ:, 01) - ‘\/ET €
Hence,
f(xi} 61) 1
Z; = logf(x_ 80) = (68 — Oo)z: + > (602 — 61°)
and ’

Pim ke m
_ . _ _ Z : _ mo.2 __ a2
log Pom z1 + -+ zm (31 30) xr; + 2 (6o 61 )

i=1

If
6y — 6o) zm :3?1: + = (652 — 6,%) = log A
1 2 -

the process is terminated with the rejection of Hyg. If

“ m
(6, — 6o) E :I?a. -+ > (602 — 0,%) =< log B
1

the process is terminated with the acceptance of Hg. If

zm:_ m .2 _ a2
10gB<(81—gu) - .'.'E;+ 2(9{) 81){10gA

the experiment is continued by taking an additional observation.
Again, log (P1m/Pom) can be computed cumulatively if after each ob-
servation z; we compute (61 — Bo)T: + 15(6,2 — 6,°) and add it to the
preceding value of log (P1m/ Pom) -

3.2 Fundamental Relations among the Quantities a, B, 4, and B

In this section we shall derive certain inequalities satisfied by the
quantities «, 8, 4, and B which will provide the basis for determining
the constants A and B in the sequential probability ratio test.

We shall say a sample (z3, - - -, x,) is of type O if

Pim _ fzy, 1) - -+ f(@Xm, 61)
Pom S(x1, 6o) - - - f(xm, 80)
Pin
Pon

B < < Aform=1,---,n —1

and

IA

B
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Similarly, we shall say a sample (z;, * -+, z,) is of type 1 if

,9 et ~m:9
B(-ifﬂ:f(m1 ) S 1){Af0rm=1,"',n—1

pOm f(:'rlj 60) e f(‘r’"” 9(})
Pin
Pon

Thus, a sample of type O leads to the acceptance of H, and a sample
of type 1 leads to the acceptance of H, (rejection of Hy).

Clearly, for any given sample (z,, -+ , 2,) of type 1 the probability
of obtaining such a sample is at least A times as large under hypothesis
H, as under hypothesis Hy. Thus, the probability measure of the
totality of all samples of type 1 is also at least A times as large under
H, asunder H,. The probability measure of the totality of all samples
of type 1 is the same as the probability that the sequential process will
terminate with the acceptance of H, (rejection of Hy). But the latter
probability is equal to « when H, is true and to 1 — 8 when H,; is
true® Thus, we obtain the inequality

and
> A

—

(3:8) l — 8 = A«
This inequality can be written as
1 —
(3:9) A = 8
(8 4

Thus, (1 — 8)/« is an upper limit for A4.

A lower limit for B can be derived in a similar way. In fact, for
any given sample (z;, ---, z,) of type O the probability of obtaining
such a sample under H, is at most B times as large as the probability
of obtaining such a sample when H, is true. Thus, also the probability
of accepting H, is at most B times as large when H, is true as when
Hy is true. Since the probability of accepting Hy is 1 — « when Hy
1s true and 8 when H, is true, we obtain the inequality

(3:10) B=(1A—a)B
This inequality can be written as
(3:11) B = a

l — &

Thus, 8/(1 — «) is a lower limit for B.

¥ The pr-t}bability that Hy will be accepted when H, is true is by definition equal
to 8. Section A.1 of the Appendix shows that the probability is one that the sequen-

tial process will eventually terminate. Thus, the probability that Ho will be rejected
when H, is true must be equal to 1 — 8
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Inequalities (3:8) and (3:10) can also be written as

o 1
3:12 <
( ) 1—8 A
and
(3:13) ad = B
l — o

These inequalities are of considerable value in practical applications,
since they furnish upper limits for « and g8 for given values of A and
B. For example, it follows from these inequalities that

1
3:14 <
( ) « =~
and
(3:15) 8 =B

It may be of interest to represent graphically the totality of all
pairs (e, 8) which satisfy the inequalities (3:12) and (3:13). Any pair

> o

Fiag. 9

(«, 8) can be represented by a point in the plane with abscissa « and
ordinate 8. Consider the straight lines 1, and L. in the plane given

by the equations

(3:16) ad =1 —8
and
(3:17) g8 =Bl —a)

respectively. The line L, intersects the abscissa axis at « = (1/4)
and the ordinate axis at 8 = 1. Similarly, the line Ls intersects the

abscissa axis at @ = 1 and the ordinate axis at 8 = B. The region
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consisting of all points («, 8) which satisfy the inequalities (3:12) and
(3:13) 1s the interior and the boundary of the quadrilateral determined
by the lines L,, L,, and the coordinate axes. This region is shown by
the shaded area in Fig. 9. |

The 1nequalities (3:12) and (3:13) have been derived under the as-
sumption that the successive observations z;, 23, -- -, ete., are inde-
pendent observations on xz. The assumption of the independence of
the observations has been used in showing that the probability is one
that the sequential process will eventually terminate.? The rest of the
derivation, however, remains valid also when the successive observa-
tions are dependent, i.e., when the conditional distribution of the zth
observation z; is affected by the outcome of the preceding observations
Z1, * -, zy—1. If the successive observations are not independent, the
probability that a sample (x4, ---, z,,) will be obtalned, i.e., the joint
distribution of (2, -+, ), is no longer given by the product
f(x1, 8)f(x2,6) - - - f(xm, 8), but by a more general function Pmlx1, «*«, Tm).
Thus, in dealing with dependent observations, the null hypoth-
esis Ho will be the statement that the distribution of the sample

(1, * - -, Tm) is given by some function pg,(z;, - - -, Tm), and the alter-
native hypothesis H; will be the statement that this distribution is
given by some other function py,,(z,, - - -, Zm). We can construct the

sequential probability ratio test for testing H, against A, in the same
way as for independent observations. That is to say, we select two
constants A and B (B < A) and continue taking observations as long
Pim(xy, - - -, Tom)
Pom(Z1, ** ), Tm)
ratio pim/Pom = A or < B, we terminate the sequential process. H,
1s accepted if pim/Pom =< B and H, 1s accepted if pi,n/Pom = A. The
fundamental inequalities (3:12) and (3:13) remain valid for such a test
procedure in spite of the dependence of the successive observations,
provided that the probability is one that the procedure will eventually
terminate. It can be shown that for a very general class of joint dis-
tributions pg,, (24, - - -, z,,) and P1im(Zy1, -+ -, ) the probability is one
that the procedure will eventually terminate. Thus, the validity of
the inequalities (3:12) and (3:13) 1s by no means restricted to the case

of independent observations. They are generally valid also for de-
pendent observations.

as B <

< 4. The first time that the probability

A §imple case of dependent observations arises when we sample from
a f?mte population. Suppose, for example, that a lot consisting of N
units of a manufactured product is submitted for acceptance inspection.

¢ See Section A.1 in the Appendix.
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Let D be the number of defectives in the lot, which is assumed to be
unknown. To each defective unit we assign the value 1 and to each
non-defective unit the value 0. Then the distribution of a single ob-
servation z is given by f(z, p) where f(1, p) = p, f(0,p) = 1 — p, and
p = D/N. The successive observations are, however, not independ-
ent. For example, if x; = 1, the distribution of z; is given by

D — 1 - C . . . .
f (Ig, ), while if z; = 0, the distribution of z is given by
i

N — 1
D
N — 1
ber of ones) in the set of the first 7 observations z;, - --, s, the joint

distribution of (21, - - -, Tm) 1s given by °

18
3 )( D)( D—dl) ( D—dg) p D—-dm—l)
— - LI Im’
Pm fxlnyxz’ﬁr_l T\*™ N 2 N —m+1

Suppose that the hypothesis Hqo is that D is equal to some specified
value Lo, and H; is the hypothesis that D is equal to some value D,
(D; > Dg). Then the distribution of (1, * - -, Tm) under Hg is given by

. Do ( Do —d1> f(:r Dﬂ_dm—l)
(3:19) }?Um-—f(-rl:?\?)f X2, N — 1 N —m 4 1

and the distribution under H; by

D1) ( Dl—dl) (= Dl_dm—l)
(320) Plm ﬁf('ll:? S\ x2, N —1 m’N—m—i—l

The sequential probability ratio test for testing Ho against H, is based
on the ratio pim/Pom. Inspection continues as long as B < pim/Pom
< A. The lot is accepted if pn/Pom = B and the lot is rejected if
Dim/Pom = A. The fundamental inequalities (3:12) and (3:13) remain
valid for this test procedure in spite of the dependence of the obser-
vations.

To, If we denote by d; the number of defectives (the num-

3.3 Determination of the Constants A and B in Practice

Suppose that we wish to have a test procedure of strength (e, 8).
Then our problem is to determine the constants A and B such that
the resulting test will have the desired strength (a, 8). Let us denote
by A(«, 8) and B(«, 8) the values of A and B, respectively, for which
the test has the required strength («, B3). The exact determination of

5 This formula is valid as long as dm—1 = D.
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the values A(«, 8) and B(«, 8) is usually very laborious.S However,
the fundamental inequalities derived in the preceding section permit
an approximate determination of A and B which will suffice for most
practical purposes. From (3:9) and (3:11) it follows that

. 1 — 8
(3:21) A, B) = -
and
8
(3:22) B(a, 8) =
l — «

We shall propose to put A = (1 — 8)/a = a(e, B), say, and B =
B/(1 — &) = b(e, B), say, and we shall investigate the consequences
of this determination of A and B. From (3 :21) and (3:22) it follows
that the value a(a, 8) chosen for 4 is greater than or equal to the
exact value A(e«, 8), and the value b(«, 8) chosen for B is less than or
equal to the exact value B(ea, 8). Then, letting A = a(«, B8) instead
of A(a, B) and B = b(a, B) instead of B(«, 8) will, in general, change
the probabilities of errors of the first and second kinds. If A were
put equal to a value greater than A(a, 8), and if B were put equal
to B(«, B8), then the resulting probability of an error of the first kind
would be less than «, but the probability of an error of the second kind
would be slightly larger than 3. Similarly, if we were to use the exact
value A(«q, 8) for A, but a value B below the exact value B(«, 8), the
resulting probability of an error of the second kind would be less than
B, and the probability of an error of the first kind would be slightly
greater than «. Thus, if a value A is used which is higher than the
exact value A(a, 8) and a value B is used which is lower than the
exact value B(a, 8), it is not clear what the resultimg effect on the
probabilities of errors of the first and second kinds will be. Let us
denote by a’ and B8’ the resulting probabilities of errors of the first and

second kinds when 4 = q(a, 8) and B = b(a, 8). From (3:12) and
(3:13) it follows that

(3:23) * 1 _ e

1 — ‘3’ CI(CE, ﬁ) 1 — B
and
(3:24) 7 = b(a, B) = £

1l — a l — «

® The results in Section A.4 of the Appendix can be used for deriving arbitrarily
close approximations to the values A4 (a, 8) and B(a, 8).



46 THE SEQUENTIAL PROBABILITY RATIO TEST

From these inequalities it follows that

(3:25) o < —m
1 —8
and
B8
(3:26) B =
(1 — @)

Multiplying (3:23) by (1 — 8)(1 — B8) and (3:24) by (1 — &)(1 — a’)
and adding the two resulting inequalities, we obtain

(3:27) o« +B =a+8B

Inequalities (3:25), (3:26), and (3 .27) give valuable upper limits for
o' and B8’. The values a and 8 will usually be small in practical appli-
cations. Most frequently they will lie in the range from .01 to .05.
Thus, «/(1 — B8) and B/(1 — «) will be very nearly equal to « and B,
respectively. It follows then from (3:25) and (3:26) that the amount
by which o may exceed «, or 8° may exceed 8 is very small and can
be neglected for all practical purposes. Moreover, (3:27) shows that
at least one of the inequalities o’ = « and 8" = 6 must hold exactly.
In other words, by using a(«, 8) and b(a, 8) instead of A(a, 8) and
B(«, B), respectively, at most one of the probabilities @ and 8 may be
increased.

Thus, we may conclude: The use of a(e, B) and b(«, B) instead of
A(a, B) and B(e, B), respectively, cannot result in any appreciable 1n-
crease in the value of either o or B. In other words, for all practical pur-
poses the test corresponding to A = ala, B) and B = b(e, B) provides al
least the same protection against wrong decisions as the test corresponding
to A = A(a, B) and B = B(«, 3).

Our discussion so far leaves still open the possibility that the use
of a(e, B) and b(«, B) instead of A («, 8) and B(«, B), respectively, may
result in an appreciable decrease of «, or B, or both. If this were so,
t+ would mean only that the test corresponding to 4 = a(e, B) and
B = b(a, B) would provide a better protection against wrong decisions
than the test corresponding to A = A(a, 8) and B = B(a, B). Thus,
the only disadvantage that may arise from using a(a, 8) and b(a, B)
instead of A(«, 8) and B(e, 8), respectively, is that it may result in
an appreciable increase in the number of observations required by the
toest. In fact, since a(a, 8) = A(a, B) and b(a, 8) = B(e, 8), the num-
ber of observations required by the test corresponding to 4 = a(a, B)
and B = b(e, B) can never be smaller than the number of observations
required by the test corresponding to A = A(«, 8) and B = B(«a, 8)-
Thus, if the increase in the necessary number of observations caused
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by the use of a(«, 8) and b(e, 8) instead of A(a, 8) and B(a, 8) can
be shown to be only slight and of no practical consequence, the test
corresponding to A = a(a, 8) and B = b(a, 8) serves the purpose just
as well, and the determination of the exact values A4 (e, 8) and B(«, B)
is of little interest.

We shall now indicate the reasons why the increase in the necessary
number of observations caused by the use of a(a, 8) and b(«, B) instead
of the exact values A («, 8) and B(e, 8) will generally be only slight.”
The reason that (3:21) and (3:22) are inequalities instead of equalities
is that the sequential process may terminate with Pim/Pom > A or
Pim/Pom < B. If at the final stage pi1m/Pom Were exactly equal to A4
or B, then A(a, 8) and B(«, 8) would be exactly equal to (1 — B8)/«
and 8/(1 — «), respectively. On the other hand, a possible excess of
P1m/Pom over the boundaries 4 and B at the termination of the test
procedure is caused only by the discontinuity of the number of obser-
vations, i.e., by the fact that the number of observations can take only
integral values. Thus, if fractional observations were possible, i.e., if
the number m of observations were a continuous variable, pi1m/Pom
would also be a continuous function of m and consequently A («, B)
and B(«, 8) would be exactly equal to a(e, 8) and b(a, B), respectively.
That the increase in the necessary number of trials caused by the use
of a(a, 8) and b(«, 8) will generally be slight is strongly indicated by
the fact that the discrepancy between A («, B) and a(e, B), as well as
that between B(«, 8) and b(«, B), arises only from the discontinuity
of the number of observations. In Section 3.9 we give upper estimates
of the increase in the expected number of trials caused by the use of
a({a, 8) and b(a, B). Numerical computations given in that section
show that the increase is slight. It may be added that the nearer the
distribution Sf(z, 6;) is to the distribution f(z, 6p) the smaller will be this
Increase in the expected number of trials. The reason for this is that
the nearer f(z, 8,) is to f(x, 65), the smaller the expected excess of
Pim/Pom Over the boundaries 4 and B and, therefore, also the smaller
the discrepancy between A(e, 8) and a(a, 8) as well as that between
B(ax, 8) and b(q, B). If f(x, 6,) approaches f(z, 8g) the exact values
A(e, 8) and B(a, B) converge to a(a, 8) and b(«, B), respectively.

Hence, if experimentation is not excessively costly, for all practical
purposes the following procedure may be adopted: If a sequential test
s desired such that the probability of an error of the first kind does not
exceed o, and the probability of an error of the second kind does not exceed
Byput A = (1 — B/ and B — B/(1 — «) and carry out the sequential
probability ratio test as defined by the tnequalities (3:1), (3 2), and (3:3).

; ) i :
For a more complete discussion sec Section 3.9.
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The fact that for practical purposes we may put A = a(e, 8) and
B = b(a, B) brings out a surprising feature of the sequential test as
compared with current tests. Whereas current tests cannot be carried
out without finding the probability distribution of the statistic on
which the test is based, there are no distribution problems in carrying
out a sequential test. In fact, a(e, 8) and b(«, 8) depend on « and 8
only, and the ratio pim/Pom can be calculated from the data of the
problem without solving any distribution problems. Distribution
problems arise in connection with the sequential process only if it is
desired to find the probability distribution of the number of trials
necessary for reaching a final decision. But this is of secondary im-
portance as long as we know that the sequential test on the average .
leads to a saving in the number of observations.

3.4 The OC Function of the Sequential Probability Ratio Test ®

Since the sequential probability ratio test for testing the hypothesis
Hy against the hypothesis H; will be applied to problems when the
parameter 8 can take values = 6o and > 6, it is of interest to derive
the whole operating characteristic function L.(8) of the test. For con-
venience, we shall treat the case of a single unknown parameter 6 1n
this section and in Section 3.5. The results can be extended without
difficulty to any number of parameters. In Section 2.2.1, L(#) has
been defined as the probability that the sequential process will termi-
nate with the acceptance of Ho when 6 is the true value of the param-
eter. In this section we shall indicate the derivation of an approxi-
mation formula for L(8), neglecting the excess of Pim/Pom over the
boundaries 4 and B at the termination of the process. A rigorous
derivation (using a different method) together with upper and lower
limits for the OC function will be given in Section A.2.3 of the Appendix.

Consider the expression

f(I: 61) k(9
(3:28) [ ]

f(.’E, eﬂ)

For each value 6, the value of A(8) 1s determined so that h(8) = O
and the expected value of the expression (3:28) is equal to 1, 1.e.,

+e f(x! 91) h(@) .
(3:29a) j‘_m [f(il?, 90)] f(z, 0) dz =1

8 As mentioned in the Introduction, the operating characteristic function for the
special case of a binomial distribution was found by Milton Friedman and George
W. Brown independently of each other, and slightly earlier by C. M. Stockman in
England. The derivation of the OC function in the general case is due to the author
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if f(x, 6) is the probability density function, or

h(8)
(3:29b) 2. [f &, 01 ] flz, 0) = 1
T f(:l’:, 30)

if x has a discrete distribution (the summation is taken over all pos-

sible values of ). It is shown in Section A.2.1 of the Appendix that

under some slight restriction on the nature of the distribution function

f(z, 6), there exists exactly one value k(8) > 0 such that (3 :29) is fulfilled.
Hence, for any given value 8, the function of z given by

h(8)
(3:30) f*(z, 80 = [f(:r, 61)]

x, 6

_ L J(z, 6o) /( 0)
18 a distribution function.

Since h(8) = 0, there are two possibilities: 2(8) > O or h(@) < 0. We
shall first consider the case when h() > 0.

Let H denote the hypothesis that f(z, 6) is the true distribution of
x and H* the hypothesis that f*(z, ) is the true distribution of z.
Consider the sequential probability ratio test S* for testing A against
H* defined as follows: Continue taking observations as long as

BH® J*(x1, 0) < - - f*(xpm, 6)

J(x1, 0) -+ - f(zm, 6)
Accept the hypothesis H if

(3 231) < Ah(g)

(332) f*(xls 8) tt T f*(-rmr 9) < BR®)

J(x1,80) - - f(xp, 6)
Reject the hypothesis I (accept H*) if

(3:33) S5 x1, ) - - - [*(xm, 6) = AR®

Since J(x1,8) - -- flz,, 6)

(3:34) f*(z, 6) _ [f(-r, 91)].&(5)
J(z, 0) J(x, o)

and. since h(8) > 0, the inequalities (3:31), (3:32), and (3:33) are
equivalent to

(3:35) B {{(Ihﬁh) < f(@m, 61) < A
f(z1, 60) - - - f(xm, 80)
(3:36) Jixy, 61) - - - f(@m, 61) < B
and J(xy, 80) - - - f(zpm, 60)
(3:37) f(xr, 01) -« - f(zm, 6) - 4

J(x1, 00) - -« f(zm, 6o)
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But these inequalities are identical with those defining the sequential
probability ratio test S for testing Ho against H,, when the constants
A and B are used. Thus, if the test S* leads to the acceptance of H,
the test S leads to the acceptance of Hy, and if S* leads to the rejection
of H, then S also leads to the rejection of Ho. Irom this, it follows
that the probability of accepting o when 8 is true, i.e., the value of
L(6), is the same as the probability that the test S* will lead to the
acceptance of H when f(x, 8) is the true distribution of =x.

To calculate the latter probability we shall apply the formulas (3:9)
and (3:11) to the test procedure S*. Denote by o the probability that
S* will lead to the rejection of # when H is true, and by 8’ the prob-
ability that S* leads to the acceptance of H when H* is true. Apply-
ing the formulas (3:9) and (3:11) to the test procedure S* we obtain

(3:38) AM® < ! _"6
o
and
(3:39) B*»® = i
1 — &

When the excess over the boundaries at the termination of the proc-
ess is neglected, the equality sign holds in (3:38) and (3:39), that 1s,°

(3:40) Ah(ﬂ) —~ 1 __’ﬂ
[ 4
and
(3:41) B ad -
l] —

From (3:40) and (3:41) we obtain

1 — Bk(&}
(3:42) a ~ AR ® BR®
Since o’ = 1 — L(8), we get

AM® 1

(3:43) L(9) ™ QMO _ gh®

The case h(8) < 0 can be treated in a similar way. We obtain the
same result, i.e., the approximation formula (3:43) remains valid also
when A(8) < O.

® The symbol — indicates an approximate equality.
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It is interesting to note that h(6y) = 1 and h(8;) = —1. This fol-
lows easily from (3:29b).

As an 1llustration, we shall determine Z.(8) for the binomial case when
z can take only the values 0 and 1 and the distribution f(z, ) is given

as follows: f(1,0) = # and f(0,6) = 1 — 8. Then equation (3:29b) can
be written as

81 h(8) 1 —_ 91 h(ﬂ)
3:44 8| — 1 — 86 ) = ]
@44 @) +a-o(G=2

To plot the OC function, it is not necessary to solve equation (3:44)

with respect to 2(8). We may consider A~ = k(8) a parameter and solve
(3:44) with respect to 8. Then we obtain

L (1 — 91)"
1 — 6
61\" 1 — 6:\*
(%) B (1 _ 30)
Ifwelet A = (1 —B)/aand B = g/(1 — «), (3:43) can be written as

() -
(3:46) L) ~ - -

() -G
o l — «
For any arbitrarily chosen value h, the point [0, L(8)], computed from

(3:45) and (3:46), will be a point on the OC function. The OC func-

tion can be drawn by plotting a sufficiently large number of points
6, L(6)] corresponding to various values of A.

A typical OC function for the bmomial case is shown in Fig. 10.

(3:45) g =

L) A
1

Fia. 10
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We shall now compute L(8) when x is normally distributed with un-

known mean € and known variance ¢°. In this case we have

1 b (x—8)2

f(z, 6) = 2 2o

The quantity k(8) is the non-zero root of the equation

- 1 -
— 5 (@—0)2 7| RO
T 1 —%ﬂ(z—ﬂ)’ (1

2a2
Jo__ ¢ 1
— = 2mo — 53 (x—00)?
€ i a

(3:47) dr = 1

Evaluating the above integral and solving the equation with respect
to h(8), we obtain
6, + 6o — 26

8, — o

(3:48) h(g) =

An approximation to the OC function 1s obtained from (3:43) by sub-
stituting (8, + 60 — 208)/(61 — 8o) for 2(9).

3.6 The ASN Function of a Sequential Probability Ratio Test

Let n denote the number of observations required by the test and
let Eo(n) be the expected value of n when 6 is the true value of the
parameter. This expected value Eo(n) is a function of 8 which we have
called the average sample number function, or briefly the ASN func-
tion. In this section we shall outline the derivation of an approxima-
tion formula for the ASN function, neglecting the excess of pim/Pom
over the boundaries A and B at the termination of the sequential
process. A more complete discussion together with upper and lower
limits for the ASN function is given in Section A.3 of the Appendix.

Let N be an integer sufficiently large to allow the probability that
n = N to be neglected.’® Thus we shall assume that = < N. Then

we can write
(3.49) Z]_‘I‘"'_l_z.t\r:(zl_l_"'+zn)+(zn+1 +“'+ZN)

where

f(xa, 91)
Og
f(Za, 60)

10 Tt is shown in Section A.3.1 that no error is involved in assuming this, since we
pass to the limit when N approaches .

(3 50) Ra = 1
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Taking expected values on both sides of (3:49), we obtain
(3:51) NE@E) = EzZ1+ - -+ 22) + E(zZungr +-- -+ 2x)

where

(3:52) z =1 f(z, 61)

8 (@, 60)

Since, for &« > n, the random variable z, is distributed independently

of n, the expected value of z,,; +---+4 2y is equal to the expected
value of (N — n) times the expected value of a single z, i.e.,

B353) E(@ay1 +---+2n5) = E(N —n)E@E) = NE() — En)E(2).
From (3:51) and (3:53) it follows that

(3:54) E(z +--- +z,) — EM)E(E) =0

Hence

(3:55) E(n) = 22 ¥ 1 2
FE(z)

if E£(z) = 0.

If 6 is the true value of the parameter, then E(n) = Es(n) by the
definition of the symbol Es(n). We shall denote by Eg(z) the expected
value E(z) of z when 6 is the true value of the parameter. If the excess
of the probability ratio P1m/Pom Over the boundaries A and B at the
termination of the sequential process is neglected, the random variable
(z1 +---4 2,) can take only the values log A and log B with the
probabilities 1 — 7() and L(8), respectively. Hence

(3:56)  E(zy +---+ 2,) ~L(®) log B + [1 — L(6)] log 4
From (3:55) and (3:56) we obtain the approximation formula
L) log B + [1 — L(6)] log A

Fg(2)

In the preceding section we have computed explicitly the formula
L(6) for the binomial and normal case. Thus, to obtain the explicit
formula for E4(n), we need only compute £y3(z). In the binomial case,
1.e., when f(x,8) = 60 forxz = 1 and f(z,8) = 1 — @ for x = 0, we have

3:5%) E (2) = I [1 (=, 6‘1)] — ol f(1, 6,1) L1 — o)1 £(0, 6,)
8 ’ ng(:r, 6o) ng(l,ﬂo) ( ) ng(o, o)

0 1 — 0
6log — + (1 — 6) log :
80 1—90

(3:57) Ep(n) ~

I
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In the normal case, i.e., when

1 - (z—0)2
x, ) = 207
f(z, 6) fo
we have
f(xl 91)
3:59 z =1 = 2(8, — 6 802 — 642
( ) Dgf(x, 6 247 (2(61 o)x + 6o 1“]
Hence,
1
(3:60) Eg(z) = 502 [2(6; — 60)8 + 60° — 6,°]

3.6 Saving in the Number of Observations Effected by the Use of

the Sequential Probability Ratio Test instead of the Current
Test Procedure

In this section we shall assume that Ho is the hypothesis that the
random variable z under consideration is normally distributed with
mean 8, and variance unity, while H; is the hypothesis that = is nor-
mally distributed with mean 8; and variance unity. We may assume
without loss of generality that 6, < 8;,. We shall compare the ex-
pected number of observations required by the sequential probability
ratio test of strength («, 8) for testing Ho against H, with the fixed
number of observations needed for the current most powerful test to
attain the same strength (o, 8)-

We shall denote by n(«, 8) the fixed number of observations re-
quired by the current test to attain the strength (o, 8). The current
most powerful test procedure for testing Ho against H, is carried out
as follows. The hypothesis Hp is accepted if the arithmetic mean Z of
the observations zi, - * -, £» (the number 7 of observations is deter-
mined in advance) is less than or equal to a preassigned constant d,
and Hg is rejected (H, is accepted) if £ exceeds d. The constant d
and the fixed number n of observations are to be determined so that
the test will have the required strength («, B). For any given n and d
the corresponding strength of the test can be determined as follows.
Since # = d is equivalent to the inequality NV 1(E — 6p) = V' n(d — 80),
the probability that £ = d is the same as the probability that
V(& — 60) = AV/n(d — 8g). The random variable y = v/ n(Z — 6o)
is normally distributed with mean O and variance unity if Hy is true.
Thus, the probability that £ = d when H, is true, i.e., the probability
that we shall accept Ho when i 1s true, is equal to the probability
that ¥ = v/n(d — 6o). We shall denote by G(¢) the probability that
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a normally distributed random variable with mean 0 and variance
unity will take a value less than ¢, i.e.,

1 ¢ 2
: G{) = e
(3:61) © V27 .ﬁ -
Then the probability that we shall accept Hy when Hj is true is equal

to G[v/n(d — 65)]. Since the probability that we shall accept H, when
Hgy i1s true is 1 — a by definition, we have

(3:62) Gvnd —6)] =1 — «

To determine the value of 8 corresponding to given n and d, we shall
write the inequality £ = d in the equivalent form /n(z — 6,) <
vV'n(d — 8,). By definition, 8 is the probability that we shall accept
Hy when H, is true. But the latter probability is the same as the
probability that £ < d, i.e., that Vn(E —8) = vV nld — 8:), when H,
1s true. But when H, is true this probability is equal to G\ n(d — 8,)].
Thus, we have

Hence, to obtain a test of the required strength («, 8), we have to
choose the quantities n and d so that equations (3:62) and (3:63) are
fulfilled. Let Ay be the value for which G(Xo) = 1 — a and let A, be
the value for which G(A;) = 8. The values Ao and A; can be obtained

from a table of the normal distribution. Then equations (3:62) and
(3:63) can be written as

2

|

dx

(3:64) Vn(d — 8p) = Ag
and
(3:65) Vn(d — 8,) = A,
Subtracting equation (3:64) from equation (3:65) we obtain
(3:66) ‘\/‘?_1(30 — 01) = A\ — Ao
Thus,
(3:67) n = n(a, B8) = (A1~ 2o)®
(6o — 6,)?

If this expression is not an integer, n(a, 8) is the smallest integer in
excess.

We shall now determine the expected number of observations re-
quired by the sequential probability ratio test of strength («, 8) and
we shall compare it with the fixed number n(«a, B) of observations re-
quired by the current test as given in formula (3:67). In the sequen-
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tial test we shall use the approximation formulas for 4 and B, 1.e.,
we shall let A and B equal (1 — 8)/« and 8/(1 — «), respectively, in-
stead of the exact values A(«, 8) and B(«, 8), respectively. It has
been shown in Section 3.2 that (1 — 8)/a = A(a, 8) and B8/(1 — «)
< B(a, ). Thus, by letting A = (1 — 8)/a and B = 8/(1 — «) In-
stead of using the exact values A(«a, 8) and B(«, 8), we can only In-
crease the number of observations required by the sequential test.
Consequently, the saving effected by the sequential test of strength
(e, B) as compared with the current test cannot be smaller than the
saving which results from the sequential test obtained by using the
approximation formulas A = (1 — 8)/aand B = 8/(1 — a).

We shall assume that | 8, — 8 | is small so that the approximation
formula (3:57) for the expected value of n can be used. Since L(8g)
— 1 — « and L(8,) = B, we obtain from (3:57)

Blog B+ (1 —B)log A

(3:68) Ei(n) = XE

and log B + «log A
]l — « o

(3:69) Eo(n) = ( ) log o8

Eq(z)

where E;(n) denotes the expected value of n when H;1s true (zZ=20,1).
As can easily be verified,

(3:70) E(z) = 160 — 61)°

and

(3:71) Eo(z) = —3(6 — 61)?

From (3:67), (3:68), (3:69), (3:70), and (3:71) we obtain
(3:72) nb;:fz) - _2 3 (8log B + (1 — ) log A]
and

(3:73) Eo(n) == - [—(1 — ) log B — alog A]

n(a, B) (A1 — No)?

: ) IZ,(n) Eo(n)
It is interesting to note that the ratios d

an
n{a, B) n(a, B)
pendent of the parameter values 8p and 8,. The average saving of the

Ey(n) ]
n(a, B)
] per cent if Hg 1s true.

are inde-

sequential test as compared with the current test is 100 [1
FEo(n)
n(a, B)

per cent if 77, 1s true, and 100 [1
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Ei(n)
n(a, 3)

] , for several values of a and g.

In Table 1, panel A shows the value of 100 [l ] , and panel B

Eqo(n)
n(rx, 13)

Because of the symmetry of the normal distribution, panel B is ob-
tained from panel A simply by interchanging « and 3.

shows the value of 100 [1

TABLE 1

AVERAGE PERCENTAGE SAVING IN S1ZE OF SAMPLE WITH SEQUENTIAL ANALYSIS,
AS CoMPARED wWITH CURRENT Most PoweErFUL TEST FOR TESTING MEAN
OF A NORMALLY DISTRIBUTED VARIATE

A. When alternative hypothesis is true:
|

N«
\ .01 .02 .03 .04 .05
8
01

. 58 60 61 62 63
.02 o4 56 57 58 59
.03 ol 53 54 95 35
.04 49 50 51 52 53
.05 47 49 S0 50 51

|

B. When null hypothesis is true:

N «
\ .01 .02 .03 .04 .05
ﬂ —
.01 58 54 51 49 47
.02 60 56 53 50 49
.03 61 57 54 51 50
.04 62 58 55 52 50
.05 63 59 55 53 51

As the table shows, for the range of « and 8 from .01 to .05 (the
range most frequently employed), the sequential test results in an aver-
age saving of at least 47 per cent in the necessary number of observa-
tions as compared with the current test. The true saving is slightly
higher than shown in the table, since £.;(n) (z = 0, 1) calculated under
the condition that 4 — (1 —B8)/aand B = 8/(1 — a) is greater than
£;(n) calculated under the condition that A = A(a,B) and B = B(«, B).
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3.7 Lower Limit of the Probability That the Sequential Test Will
Terminate with a Number of Trials Less Than or Equal to a
Given Number

In Section A.6 an approximate formula ! for the probability distri-
bution of the number of observations required by the sequential test

f(x! 9l) .

is derived in the case in which z = log 7z, 6 is normally distributed.
y VD

It is pointed out that the same distribution function of n can be
regarded as an approximation to the exact distribution even when z
is not normally distributed, provided that the absolute value of E(z)
and the standard deviation of z are sufficiently small as compared with
log A and log B. Although the distribution of n given in Section A.6
could be used to determine the probability that n =< no for any fixed
integer np, we shall prefer to derive a lower limit for this probability
by a different method for the following reasons. (1) The computation
of the lower limit given in this section is very simple, whereas the use
of the distribution function given in Section A.6 would require labo-
rious computations, since that distribution function has not yet been
tabulated. (2) If ng is fairly large and if o and B are small, as they
usually are in practice, the lower bound given in this section will be
fairly near the exact value.

For any given positive integer let P.:(n = ng) denote the probability
that n < ng when H, is true, i.e., when 8 = 8; (z = 0, 1).22 We want
to derive a lower bound for P;(n = no). It will be assumed that ng 18
sufficiently large so that the sum 2z, +-- -+ 2», Mmay be regarded as
normally distributed even when the distribution of z is not normal.'?

a=1

ng
If E 2z, = log A, then we certainly have n < mno. Similarly, if
70

E z., =< log B, we must have n = npo. Hence

a=1

(3:74) Py ( E :za = log A) =Pi(n = nop)
a=1

and e

(3:75) P z zo = log B) = Po(n = no)

a=1
11 See formulas (A:166), (A:183) and (A:194). N
12 In general, for any relation R we use the symbol P;(R) to denote the probability

that B holds when H; is true. B
13 According to well-known theorems in the theory of probability, the sum of a

large number of independent random variables is nearly normally distributed under
very general conditions.
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. Tio
The inequality E « = log A can be written as
a=1

ng

Zza — noll1(2)

g log A — noE
(3:76) = = OEL T molu ()

vV ooy (2) - V1901 (2)

where o1(z) denotes the standard deviation of z when H, is true. The
left-hand member of (3:76) is normally distributed with mean 0 and
variance unity when H; is true. For any value A we shall denote by
G(A) the probability that a normally distributed random variable with
mean 0 and variance unity will take a value less than A. Thus, the
probability that such a random variable takes a value = A is given by
1 — G(A). Hence the probability that (3:76) holds when & 1 1s true is
equal to 1 — G[A;(n9)] where

(3:77) A(ng) =

IOgA —_ ?’lgEl (Z)
V101 (2)

But the probability that (3:76) holds when H 1 1s true is equal to
P1(Zzo = log A). Thus,

no

(3:78) Pi(D zazlogA) = 1 — GlAy(no)]

a=1]

Because of (3:74), we obtain
1 — G\(ng)] = Pi(n £ ng)

Thus, 1 — G[A;(no)] is a lower limit of the probability that n < n,,
when H, is true.

To obtain a lower limit for Py(n < no), we rewrite the inequality

no

2o« = log B in the form

a=1]
flo

_S_ :za — ROE[}(Z) l B E' ( )
3:79) ==1 < 0BT — Moliolz)
379 Vi@ T e o) say

where 04(z) denotes the standard deviation of z when H, is true. Since
the left-hand member of (3:79) is normally distributed with mean O

and variance unity when H, is true, the probability that (3:79) holds
when H, is true is equal to G[Ao(ng)]. Hence,

no

(3:80) PO(ZZQ: = log B) = G ()]

a=]
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Because of (3:75), we then have
(3:81) G[Xo(n0)] = Po(n = no)

Thus G[Ao(n0)] is a lower bound of the probability that n = no when
Hg is true.

When log A = log (1 — B)/a and log B = log 8/(1 — «), Table 2
shows the values of the lower bounds of Po(n = ng) and Pi(n = ngp)
corresponding to different pairs («, 8) and different values of no. In
these calculations it has been assumed that the distribution under Hy
is a normal distribution with mean 0 and variance unity, and the dis-
tribution under H, is a normal distribution with mean & and variance
unity. For each pair («, 8) the value of ¢ has been determined from
(3:67) so that the number of observations needed for the current most
powerful test of strength («, 8) is equal to 1000.

TABLE 2

LowerR BOUND OF THE PROBABILITY THAT A SEQUENTIAL ANALYSIS WiILL
TERMINATE WITHIN VARIOUS INUMBERS OF TRIALS, WHEN THE MosT
PowerrFUL CurreNT TEsT REQUIRES EXACTLY 1000 TRIALS

a = .01 and 8 = .01 a = .01 and g8 = .05 a = .05 and 8 = .05
Number
| e Null Alterna- Null Alterna- | Nl
1als ive . : 3
hypothesis hypothesis hypothesis hypothesis hypothesis hypothesis
true true true
true true true
1000 .910 .910 . 799 .891 773 773
1200 . 050 .950 .871 .932 .837 .837
1400 LO72 .972 .916 . 957 .883 .883
1600 . 985 .985 . 946 .972 .915 .915
1800 . 991 .991 . 965 . 982 . 938 .938
2000 . 995 . 995 977 . 989 . 955 .955
2200 .997 . 997 .9S5 . 993 . 967 . 967
2400 . 999 . 999 . 990 . 995 .976 . 976
2600 . 999 . 999 . 994 . 997 .982 . 982
2800 1.00 1.00 . 996 .998 . 987 . 087
3000 1.00 1.00 . 997 . 999 . 990 . 990
The probabilities given are lower bounds for the true probabilities. They relate

to a test of the mean of a normally distributed variate,
null and alternative hypothesis being adjusted for

<o that the number of trials required under the most power

1000.

each pair

the difference between the
of values of « and 8

ful current test is exactly
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3.8 Truncation of the Sequential Test Procedure

Although it is shown in Section A.1 that the probability is 1 that
the sequential test procedure will eventually terminate, it is occasion-
ally desirable to set a definite upper limit, say ng, for the number of
observations. This can be achieved by truncating the sequential proc-
ess at n = ny, 1.e., by giving a new rule for the acceptance or rejection
of Hy at the ngth trial if the sequential process did not lead to a final
decision for n = ny. A simple and reasonable rule for truncation at
the noth trial seems to be the following: If the sequential probability
ratio test does not lead to a final decision for n < ng, accept H, at the

no no

noth trial when log B < Zza = 0, and reject Hy when 0 < Z2o <
a=1 a=1
log A.

By truncating the sequential process at the ngth trial we shall, how-
ever, change the probabilities of errors of the first and second kinds.
Let @ and 8 be the probabilities of errors of the first and second kinds
if the sequential test is not truncated. The effect of the truncation
on « and 8 will, of course, depend on the value of n,. The larger ng,
the smaller will be the effect of truncation on « and B. We shall denote
the resulting probabilities of errors of the first and second kinds by
a(ng) and B(ng), respectively, if the sequential process is truncated at
n = no. In this section we shall derive upper bounds for a{ng) and
B(ng).

‘T'o obtain an upper bound for «(n,) we have to consider the cases
in which the truncated process leads to the rejection of H,, while the
non-truncated process leads to the acceptance of Hy.  Denote by
po(no) the probability under H, of obtaining a sample such that the
truncated process leads to the rejection of H,, while the non-truncated
process leads to the acceptance of H,. Then, we clearly have

(3:82) a(ng) = a + po(ng)

The reason that in (3:82) the inequality sign holds instead of the
equality sign is that there may be samples for which the truncated
process leads to the acceptance of H,, while the non-truncated process
leads to the rejection of Hy. To obtain an upper bound for a(ng), we
merely need to derive an upper bound for pg(ng). By definition,
po(np) 1s the probability under H, that for the successive observations

21, 22, ---, etc.. the following three conditions are simultaneously
fulfilled :
(2) log B < 2 < log A forn=1,--- ny — 1

a=1]
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no

(22) 0< E 2o < log A
a=1
(22) When the sequential process is continued beyond 7, it termi-
nates with the acceptance of Hy.

Denote by po(ng) the probability under Ho that condition (27) will
be fulfilled, i.e.,

(3 .83) ‘ﬁo(ﬂu) = Po(o < E Zo < log A)
a=1
Since the probability that condition (77) is fulfilled cannot be smaller

than the probability that all three conditions are fulfilled simultane-
ously, we have

po(no) = po(n0)
and, therefore,

(3:84) a(ng) = a + po(no)

Thus, « + Bo(n0) is an upper bound for «(7o), which can easily be
computed, as will be shown later. To obtain an upper bound for
B(ne) we shall denote by pi1(n0) the probability (under H;) that the
successive observations will be such that the truncated process leads
to the acceptance of Hp, while the non-truncated process leads to the
rejection of Hy. In other words, p1(no) is the probability under H,
that the successive observations will satisfy the following three condi-
tions simultaneously:

mn

(7) log B < 2. < logA formn=1,--+,70 — 1
a=1

(22) log B < E zZa =0
a=1

(z727) If the process is continued beyond the ngth trial, it terminates
with the acceptance of H;.
Clearly

(3:85) B(ng) = B + p1(no)

Since it is difficult to determine the value of p; (ng), we shall derive
a simple upper bound for it. Let 51 (no) be the probability under
that condition (2%) is fulfilled, i.e.,

(3:86) p1(ng) = Pi(log B< 2 :za =< 0)

a=1
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Then 51(ng) = p1(np) and we have

(3:87) B(no) = B + p1(no)
We shall now show how po(ne) and 5,(ng) can be computed. We
shall assume that ng is sufficiently large so that z; + - - - + Zn, May be

regarded as a normally distributed variable. When H; is true (z =
0, 1) the expected value of z; +-- -+ z,, is equal to n¢&;(2) and the

standard deviation of z; +--- 4 2z,, is equal to \/7g0:(z) where o:(2)
denotes the standard deviation of z when H; is true. To compute

no
po(no), we shall write the inequality 0 < 2 z2o < log A in the follow-

a=1
ing form:
(3 88) _nOED(z) < 2y +---+ Cne — ?'Z(]E(](Z) < l(}g A — noE{)(Z)
' Vv Ngoo(2) VvV 1goo(2) \V ngog(z)
Let
(3:80) —nolly(2) _log A — noly(2)

— d v. —
1T Vngooz) P 2 \ ngog(z)

Since the middle term in (3:88) is normally distributed with zero mean
and unit variance when H, is true, the probability that (3:88) is ful-
filled when Hj is true is equal to G(v2) — G(v;) where G(») denotes the

probability that a normally distributed variable with mean 0 and vari-
ance unity will take a value < ». Thus,

(3:90) Po(no) = G(v2) — G(vy)

To eompute 5,(ny), we shall write the inequality log B < E Za =0

a =]

in the following form:

(3:91) log B — nof\(2) < 21 -t 2p, — Nk (2) - —nogld (2)

N \/ ngoy (2) V ngoy (z) ~ V'ngoi(z)
et
log B — noldy(z) —nolYy(2)
3:92 = — — 0
( ) 78 \/ﬂoﬂi (z) and v ‘\/”001 (2)

Since the middle term in (3:91) is normally distributed with mean 0

and variance unity when H, 1s true, the probability (under #,) that
(3:91) holds is equal to G(v4) — G(¥3). Hence,

(3:93) p1(ng) = G(vy) — G(v3)
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Our results can thus be summarized as follows:

(3:94) a(ng) = a + G@2) — G(1)
and
(3:95) B(ng) = B+ Gvy) — G(v3)

where v, v2, v3, and v4 are given In (3:89) and (3:92). These upper
bounds may considerably exceed «a(np) and B(ng), respectively. It
would be desirable to find closer limits.

Table 3 shows the values of the upper bounds of a(ng) and g(no)
given in (3:94) and (3:95) corresponding to different pairs («, 8) and
different values of ng. In these calculations we have put log A =

TABLE 3

ErrFecT ON RIsks OF ERROR OF TRUNCATING A SEQUENTIAL ANALYSIS
AT A PREDETERMINED NUMBER OF TRIALS

a = .01 and g = .01 a = .01 and 8 = .05 a = .05 and 8 = .05
Number
of Upper Upper Upper Upper Upper Upper
Trials bound of | bound of bound of | bound of || bound of | bound of
effective effective effective effective effective effective
ey B o B Fos B
1000 .020 .020 .033 .070 .095 .095
1200 .015 .015 .024 .063 .082 .082
1400 .013 .013 .019 .058 .072 072
1600 .012 .012 .016 .055 .066 . 066
1800 .011 .011 .014 .053 . 062 .062
2000 .010 .010 .012 .052 .058 .058
2200 .010 .010 .012 .0561 . 056 .056
2400 .010 .010 .011 .051 . 055 .055
2600 .010 .010 .011 .051 .053 .053
2800 .010 .010 .010 .050 033 | .053
3000 .010 .010 .010 .050 . 052 .052

If the sequential analysis is based on the values « and @ shown, but a decision
is made at 7o trials even when the normal sequential criteria would require a8 con-
tinuation of the process, the realized values «(no) and B(n0) will not exceed the
tabular entrics. The table relates to a test of the mean of a normally distributed
variate, the difference between the null and alternative hypotheses being adjusted
for each pair («, 8) so that the number of trials req uired by the current test is 1000.
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log (1 — B)/a and log B = log 8/(1 — «), and assumed that the dis-
tribution under Hy is normal with mean 0 and variance unity, and the
distribution under H, is normal with mean 6 and variance unity. For
each pair (e, 8) the value of 8 has been determined so that the number
of observations required by the current most powerful test of strength
(e, B) is equal to 1000.

It seems to the author that the upper limits given in (3:94) and
(3:95) are considerably above the true a(ng) and B(ng), respectively,
when 79 is not much higher than the value of n needed for the current
most powerful test.

3.9 Increase in the Expected Number of Observations Caused by
Replacing the Exact Values A(a, B) and B(a, B) by 1 — B)/a
and B/(1 — a), Respectively

The quantities A(«, 8) and B(e, 8) denote the values of A and B
for which the probabilities of errors of the first and second kinds asso-
ciated with the sequential probability ratio test are exactly « and 3,
respectively. In Section 3.3 it has been recommended that A(«, B)
and B(a,8) be replaced by a(e,8) = (1 — B8)/a and bla, B) =
B/(1 — «), respectively. This may slightly increase the expected num-
ber of observations, since ala, B) =2 A(a, 8) and b(a, B) < B(a, B).14
The present section gives estimates of the amount of such increase in
the expected number of observations.

In Section 3.5 the following approximation formula has been ob-
tained for the expected number of observations:

L(6) log B 4+ [1 — L(6)]log A

Ey(z)

Since L(8;) = 1 — « and L.(6:) = B, we obtain from (3:96)

(1 —a)log B + alog A

(3:97) Eo(n) ~
Io(2)

and

(3:98) Eyn) ~ P2l B 4+ (1 —p)log A
7, (2)

£;(n) denotes the expected value of n when é; 1s true.

1 See inequalities (3:21) and (3:22).
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Thus, the changes AEy(n) and AE;(n) in the expected values Ey(n)

and E,(n) caused by using a(a, 8) and b(«, 8) instead of A(«, 8) and
B(e, 8), respectively, are given by |

{(1 — a)[log b(e, B) — log B(a, B)] +}

(3:99)  AEo(n) ~ allog a(a, 8) — log A(a, B)]

Ey(z)
b(a: 6) a(a, B)
1 —a)l ol
— ( ) O_g__B(C‘f: B) ©8 A, B)
Eo(2)
and
Jlﬁ[log b(x, B) — log B(a, B)] + ]‘
(3:100) AE,(n) ~ - — Ollogal B) — log A= F)]
E,(z)
b(ﬂf, -6) ﬂ.(ﬂi, ﬁ)
I L1 —p8)1
) B log Bl B) ( B) OgA(g,_B)_
Ei(z)

Formulas (3:99) and (3:100) are, of course, approximation formulas,
since (3:97) and (3:98) are approximations. However, if the error In
the formulas (3:97) and (3:98), i.e., if the differences

(1 —a)logB + alog A

(3:101a) Fo(n) o)
and

B 1 — log A
(3:101b) By — 2108 + Q=8 log

Ey(z)

were exactly independent of the quantities A and B, then in (3:99) and
(3:100) the equality sign would hold exactly. It can be shown that
small changes in A and B affect the differences (3:101) exceedingly
little, and, therefore, (3:99) and (3:100) are very close approximations.

We shall derive upper bounds for the right-hand members of (3 :99)

b(a: ﬁ) a(a: nB)
and (3:100). Since Ep(z) and log are negative,'” while log
( ° B(a, 6) A, B)

is positive, we have

15 Tt is remarked at the end of Section A.2.1 that E(z) and a certain quantity ho
defined there have opposite signs. Since ho = 11f Hy is true, and ho = —1 if Hyi1s
true. it follows that Eo(z) < 0 and E,(z) > 0.
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b(e, 6) a(a, £) o, B)
(1= ) log B(m, DR T S 1Y
(3:102) Eo(2) < Fo(2)
1 b, B)
Eq(z) 08 B(a, B)
| ‘ a(a, B) . : b(a, B)
Similarly, since £, (z) and log Ala B) are positive, while log Bl B)
is negative, we have
(o, B) (e, B) a(e, B)
(3:103) ST I Io%f(“f.l < YO
E (2) £1(z)
o1 o a(c, B)

E ) ° A(a, B)

1 a(e, B)
Thus, for all practical purposes - log 1s an upper bound for
£ 1 (Z) A (&r ﬁ)
1 1 b(a, B)

Og 1s an upper bound for A ,(n). The exact
Eo(z) Bla, B) ’

?

values A (a, 8) and B(«, 8) not being known, we cannot vet use these

AﬁEl (ﬂ.) and

limits. Since E,(z) > 0, an upper limit of — log ale, B) is obtained
11 (2) A (e, B)
by substituting for ale, £) an upper bound of ale, B) . Similarly,
A (O'.’, ﬁ) A (ay B)

1 b(a, B)
log
Lo(z) B(a, B

’

b, B) b, B) _

substituting for — =~ 4 lower bound of
Ii(ﬂ'r ﬁ) B(ﬂf, B)

From equations (A :29) and (A:30) in the Appendix one can derive
the following inequalities:

since Fy(z) < 0, an upper limit of

can be obtained by

(3:104) (e, B) = &g,
A(a, 3)
and
b(a, B)
(3:105 - >
) B(a,8) =

where the quantities ¢ and 7y are defined by equations (A:27) and
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(A:28).1% The quantities §s and ns have been explicitly computed for
binomial and normal distributions.

Thus, we arrive at the following result: For all practical purposes
we may regard (log 8,)/E:(2) as an upper bound for AFE,(n) and
(log 7s,)/Eo(z) as an upper bound for AEy(n).

TABLE 4

INCREASE IN EXPECTED NUMBER OF OBSERVATIONS RESULTING FRGM
APPROXIMATIONS IN CRITERIA FOR TERMINATING A SEQUENTIAL

PROCESS
Number of
Observations Needed a = .01 a = .01 a = .05
for the Current g = .01 8 = .05 g = .05
Most Powerful Test

10 1.1 1.3 1.6

30 1.9 2.2 2.7

100 3.4 4.0 4.9

200 4.9 5.7 6.9

500 7.7 9.0 10.9

1000 10.8 12.7 15.4

The tabular entries may, for practical purposes, be treated as upper bounds of
the exact increases. The table relates to a test of the mean of a normally distributed
variate, the difference between the null and alternative hypotheses being adjusted
for cach pair of values of « and 8 so that the number of trials required under the

best current test is as shown in the left-hand column.

16 This can be seen as follows: Substituting A (e, 8) for A, B(«, 8) for B, and 6o
for 8, we obtain from (A:29) and (A:30)

[B(n:: ﬁ)]htaﬂ}ﬂau = Eﬂu*
and
Eg** = [A(a, B))"OV5,

Since we let A = A(«, 8) and B = B{«, 8), we have L{(6) = 1 — « and L(&) = 6.
It follows from this and the two equations which are obtained from (A:18) by

substituting 8o and €; for ¢ that

8 = b{a, B) and Ey** = 1—8

l — o o

Bt = = a(a, 8)

Since A(8) = 1, we obtain
B(CL’, ﬁ)’?ﬂ'u = b(ﬂ!, 16) and a(ai ﬁ) = A(CI‘.', ﬁ)aﬂﬂ
from which (3:104) and (3:105) follow.
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As an example, consider the case in which the distribution under
Hg is normal with zero mean and unit variance, and the distribution
under A, is normal with mean 6 and variance unity. Since for the
normal distribution 7y = 1/8 [see equation (A:51)] and —Ey (z) =
E,(z), the upper bound of AEy(n) is the same as the upper bound of
AE,(n). This upper bound depends only on the value of 8. For any
pair («, 8) and for any positive integer m there exists exactly one value
of 8 such that m observations are needed for the current most powerful
test of strength («, 8). Thus, with each integer m and pair («, 8)
there is associated exactly one value of 8. Table 4 shows the common
upper bound of AF (n) and AE,(n) calculated for values of ¢ corre-
sponding to different paire («, 8) and integers m.



Chapter 4. OUTLINE OF A THEORY OF SEQUENTIAL TESTS
OF SIMPLE AND COMPOSITE HYPOTHESES AGAINST A SET
OF ALTERNATIVES

In Chapter 3 we were concerned mainly with the theoretical case of
testing a simple hypothesis H, against a single alternative H;. In
problems arising in applications, the unknown parameter, or param-
eters, can usually take infinitely many wvalues. In this chapter we
shall discuss sequential tests of simple and composite hypotheses
against infinitely many alternatives.

4.1 Tests of Simple Hypotheses

4.1.1 Introductory Remarks

A simple hvpothesis has been defined as a statement which specifies
completely the values of all the unknown parameters. We should like
to make some remarks concerning the conditions under which a test
of a simple hypothesis is meaningful and appropriate. For this pur-
pose it will be sufficient to consider the case in which there is only one
unknown parameter ¢ involved in the distribution of the random vari-
able z under consideration. A simple hypothesis is then a statement
that @ i1s equal to some specified value 6.

In applications the problem of testing a hypothesis usually arises
as follows: There are two alternative courses of action, say action 1
and action 2, between which a decision is to be made, and the prefer-
ence for one or the other action depends on the value of the parameter
9. Let w denote the set of all values of @ for which action 1 is preferred
to action 2: then action 2 is preferred to action 1 for all values ¢ out-
side w.! Let 77, be the hypothesis that @ is contained in w. Then the
problem of deciding between the two courses of action can be formu-
lated as the problem of testing the hypothesis {,. If H, is accepted
we take action 1 and if H,, is rejected we take action 2. If the degree
of preference for one or the other action varies continuously with the
value of 8, the set w cannot consist of a single value 6p. In fact, if w
were to contain only the single value 8y, it would mean that we prefer
action 1 when 8 = 6, and we prefer action 2 for any € # 6, no matter

! For values @ on the boundary of « it will usually be inconsequential which

action i1s taken.
70
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how near 6 is to 6. Thus, we would have a discontinuity in our prefer-
ence scale at 8 = 6,.

We see that the problem of testing a simple hypothesis arises, strictly
speaking, only if there is a discontinuity in our preference scale for
actions 1 and 2. While a discontinuity in the preference scale is, of
course, possible, 1t will occur rather seldom. A discontinuity in the
preference scale may occur, for example, if we want to test the validity
of some hypothetical scientific theory which implies that the param-
eter # must have a specified value 63. In such a case any deviation of
the value of 6 from 6y, no matter how small, is of importance, since it
invalidates the hypothetical theory in question.

Whenever the degree of preference for one or the other action varies
continuously with the value of 6, the hypothesis to be tested will have
to be, strictly speaking, a composite one. Nevertheless, frequently it
will be expedient to approximate the composite hypothesis by a simple
one, since the latter is usually a simpler problem to treat. As an illus-
tration, consider the following example: Suppose that the hardness z
of a material varies from unit to unit and is normally distributed with
a known variance. The mean value 8 of z is, however, unknown. Sup-
pose that 6, is considered to be the most desirable value of 8 and the
material is considered less desirable the greater | 8 — 6, |. Let action
1 be acceptance of the material and action 2, rejection of the material.
Preference for acceptance is strongest when ¢ = 63. The preference
for acceptance will decrease steadily as | 8 — 6y | increases. There will
be a positive value & such that for | 6 — 60| > & rejection of the mate-
rial is preferred and the degree of preference for rejection increases
with increasing value of |8 — 90' iIn the domain IB - 6'0[ > 5. If
|6 — b0 | = s, 1.e., if the quality of the product is just on the margin,
neither action is preferable to the other. In such a situation the proper
hypothesis to be tested is the composite hypothesis that [ 8 — 89 | < 4.
However, if § is small, the composite hypothesis may be replaced for
Practical purposes by the simple hypothesis that 8 = 8,. The test of
the. hypothesis that 8 = 6, will have nearly the same operating charac-
teristic function as the test of the hypothesis that |8 — 6, | = &, for
the following reasons. To test the hypothesis that |8 — 6, | = 6 we
subdivide the 6-axis into three zones: zone of preference for acceptance,
zone of preference for rejection, and zone of indifference. As explained
In Section 2.3.1, the zone of preference for acceptance consists of all
Va'lues‘; ¢ for which acceptance is strongly preferred, i1.e., for which the
I‘t?_]e?tlon of the material is considered an error of practical importance.
Similarly, the zone of preference for rejection consists of all those values
8 for which rejection is strongly preferred, whereas for values @ in the
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indifierent zone the preference for one action over the other is only
slight and we do not care particularly which action is taken. In our
example the three zones may reasonably be defined as follows. We
select two positive values 65 << é and 8§; > 8. The zone of preference
for acceptance is given by | & — 6 | = &g, the zone of preference for
rejection by ]ﬂ — 80[ = &1, and the zone of indifference by é§; <
|8 — 6| < 8;. The test procedure will then be constructed so that
the probability of rejection will not exceed a preassigned value « when-
ever & i1s in the zone of preference for acceptance, and the probability
of acceptance will not exceed a preassigned value 8 whenever € is in
the zone of preference for rejection.? Now if we replace the original
composite hypothesis by the simple hypothesis that 8 = 6,5, the zone
of preference for acceptance will consist of the single value ¢ = 6.
The zone of preference for rejection may be defined, as before, by
| & — 65| = 8,. The zone of indifference is then given by 0 < | 6 — 6o |
< 6;. The test procedure for testing that 8 = 65 will then satisfy the
requirement that the probability of rejecting the hypothesis i1s « when
8 = 6, and the probability of accepting the hypothesis does not exceed
B whenever \ 8 — 6 | > §,. If 8y is very small, the test of the hypoth-
esis that 8 = 8p will satisfy the requirements imposed on the test of
the original composite hypothesis with close approximation, since the
probability of rejecting the hypothesis will be nearly equal to a for
values € in a sufficiently small neighborhood of 8,. Thus, for practical
purposes we may replace the original composite hypothesis by the
simple hypothesis that 8 = 6.

As we have seen, a test of a simple hypothesis will occur in applica-
tions in two cases: (1) when there is a discontinuity in the preference
seale and the problem calls for testing a simple hypothesis in the strict
sense (these cases are rare); (2) when the problem is such that 1t calls
for testing a composite hypothesis and it is approximated by a simple
hypothesis merely for the sake of simplicity.

In terms of the zones of preference for acceptance, of preference for
rejection, and of indifference, the simple hypothesis may be character-
ized by the condition that the zone of preference for acceptance con-

sists of a single point.

4.1.2 Test of a Simple Hypothesis against One-Sided Alternatives

We shall discuss here the simple case in which there is only one un-
known parameter & and the hypothesis that 8 = 8, is tested against
alternative values of @ which lie on one side of 6y, say > 6. In other
words, only values of 8 > 6, are considered admissible alternatives to

2 In this connection see Secction 2.3.2.
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the hypothesis to be tested. In this case the zone of preference for
acceptance consists of the single value 8. The degree of preference
for rejection of the hypothesis will generally increase with increasing
value of # in the domain 6 > 8,. It will, therefore, be possible to find
a value 6, > 6p such that the acceptance of the hypothesis is con-
sidered an error of practical importance whenever ¢ = 6;, while for
values @ > 6y but < 8; the acceptance of the hypothesis is an error of
no particular practical consequence. Thus, the zone of preference for
rejection may be defined by 6 = 8,, and the zone of indifference by
6 < 68 < 6,.

According to Section 2.3.2 we shall impose the following require-
ments on the OC function of the test. The probability that the hy-
pothesis will be rejected should be equal to a preassigned value « when
¢ = 6p. The probability of accepting the hypothesis should not exceed
a preassigned value 8 whenever 8 = 6,.

In most of the important cases occurring in practice, such as when
z has a normal, binomial, or Poisson distribution, and so on, the se-
quential probability ratio test of strength («, 8) for testing the hy-
pothesis that 8 = 8, against the single alternative 8; will satisfy the
imposed requirements, since the probability of an error of the second
kind will decrease steadily with increasing values of ¢ in the domain
6 = 6;. Thus, in all these cases the sequential probability ratio test
for testing the hypothesis that 8§ = 6, against a properly chosen alter-
native 8, provides a satisfactory solution to our problem.

The case in which the alternative values of 6 are restricted to values
O < 6y instead of values > 6y is entirely analogous and need not be
discussed separately.

4.1.3 Test of a Simple Hypothesis with No Restrictions on the
Alternative Values of the Unknown Parameters

In this section we shall deal with the following general problem: The
distribution of z involves %2 unknown parameters 8;, ---, 8 and the
hypothesis 7, to be tested is that 61, - -+, 0r are equal to some
specified values 6,°, - - ., 6,°, respectively. The set of k& parameters
(61, -, 68;) will be denoted by 6 without any subscript and will
be referred to as a parameter point. The use of a superscript to the
let_ter 8, such as 6° or 6!, etc., will indicate that a particular parameter
Point is meant. Our hypothesis H can thus be expressed by stating
that the unknown parameter point 8 1s equal to the particular param-
eter point 6°.

As we have seen in the preceding section, the zone of preference for
acceptance consists of the single parameter point 8°. Denote the zone
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of preference for rejection by w,. This will usually be the set of all
points € whose ‘“distance’” (defined in some sense) from 6° is greater
than or equal to some given positive value. The requirements imposed
on the OC function of the test, as formulated in Section 2.3.2, can then
be stated as follows: The probability that Hy will be rejected when
8 = 6° should be equal to a preassigned value « and the probability
that Hy will be accepted should not exceed a preassigned value 8 for
any parameter point ¢ in the zone w;.

Before we discuss the problem of constructing a proper sequential
test satisfying the above requirements, we shall consider the problem
of finding a proper test procedure satisfying the following modified
requirements. For any ¢ in w, let 8(8) denote the probability that Hy
will be accepted when 6 is the true parameter point. Thus 8(8) is the
probability of an error of the second kind when 8 is true. Our original
requirement was that 8(6) should not exceed a preassigned value g8 for
all 8 in w,. Instead we shall now require that the weighted average of
B(8), weighted with a given weight function w(8), should be equal to

8, 1.e.,

(4:1) B(@)w(6) dé6 = B
where w(@) = O for all ¢ in w, and 3
(4:2) w(@) dé = 1

The requirement that the probability of rejecting Hy when Hjg is true
be equal to a preassigned « is maintained as before. A proper sequen-
tial test procedure satisfying these modified requirements can easily
be constructed. Let po» be the probability distribution of the sample

(1, - - -, xn) when Hjy 1s true, l.e.,
(4 '3) Pon — f(:r:l: 810: Ty Bko)f(IZ: 9101 T T 8!:0) e f(xn: 910: "t gko)
Furthermore, let p1» be defined by

(4:4) Pin — f(xlj 911 Tty Bk) =t f(:r"n: 61: "t ek)w(e) do

Thus, p1» is a weighted average of the probability distribution flimc-
tions f(xy, 61, -+, 0k) =+ [(Zn, 01, -, 8r) corresponding to wvarious
parameter points 6 in w,. As such, pin itself is a probability distribu-

3 The weight function w(8) may also be discrete. A single formula valid for both,
continuous and discrete, weight functions could be given by using Stieltje’s integrals

in (4:1) and (4:2).
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tion function of the sample (x,, ---, x,).* Let H; denote the hypoth-
esis that the distribution of the sample (x,, ---, xz,) is given by p1»
defined in (4:4). Then H; is a simple hypothesis, since it specifies
completely the distribution. Consider the sequential probability ratio
test of strength («, 8) for testing Hy against the simple alternative
hypothesis H,. This procedure is given as follows. Reject H if

(4:5) Pin > 4
Pon

accept Hp if

(4:6) Pi» < B
Pon

and take an additional observation if

(4:7) B<Pn - 4

Pon

The expressions pg. and p;. are given by (4:3) and (4:4), respectively,
and the constants A and B are to be chosen so that the test will have
the required strength («, 8). As we have seen in Section 3.3, for most
practical purposes we may use the approximation formulas A =
(1 —8)/aand B =8/(1 — a).b

The sequential probability ratio test defined by (4:5), (4:6), and
(4:7) can be shown to satisfy the relation (4:1). Thus, this probability
ratio test may be regarded as a satisfactory solution to our problem if
our requirement is that the probability of an error of the first kind
should be « and that 8(8) should satisfy (4:1).

In practical problems, however, it seems more reasonable to main-
tain the original requirements. That is to say, we shall want a test
procedure such that the probability B(8) of accepting H, does not
t.axceed B for all parameter points ¢ in the zone w,, and the probability
Is « that we shall reject Ho when 6 = 6°. There are, in general, infi-
nitely many sequential tests which satisfy these requirements, and we

want to select one for which the expected number of observations is
as small as possible.

* The distribution of the sample (zy, ---, ) will be precisely given by p, if
“’f(‘:ﬂ;tssume that 6 in w, has a probability distribution given by the density function
w(0).

“Althc-}lgh the successive observations z;, zs, ---, etc., are not independent
when H, is true (P1n cannot be represented as a product of n factors where the ath

factor dep.:_-nds only on z,), the results and conclusion in Sections 3.2 and 3.3
Témain valid, as pointed out in Section 3.2.
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Although a thorough investigation of this problem has not yet been
made, the following approach may perhaps be reasonable. First we
restrict ourselves to the class C of sequential probability ratio tests
based on the ratio pj»/po», Where po. is given by (4:3) and p;» by
(4:4), corresponding to an arbitrary non-negative weight function w(8)
satisfying (4:2).¢ Thus, the class C contains at least as many tests as
there are possible weight functions w(#) satisfying (4:2). A test in
class C i1s uniquely determined by choosing a particular weight func-
tion w(8) and particular values for A and B. The test procedure is
then carried out in the usual way. Hgy is accepted if p1./Pon = B,
Hg is rejected if pi,./pon = A, and an additional observation is made
if B < p1n/pon < A. The restriction to the class C of sequential tests
1s suggested by the fact that we have been led to these tests by the
requirement that some weighted average of the probabilities of errors
of the second kind be equal to a given value 8.

Accepting the restriction that the sequential test should be a mem-
ber of the class C, we still need a principle for choosing the weight
function w(f). Suppose that the quantities A and B have already
been determined. Let us then examine what would be a reasonable
choice of w(8). After A and B have been chosen, the probability «a of
making an error of the first kind is also determined for practical pur-
poses and the choice of w(8) will not affect it.? Thus, the choice of
w(8) will affect only B(8). A weight function w(f) may be regarded
the more favorable the smaller the maximum value of 8(6) with respect
to @ (0 is, of course, restricted to points in w,). Thus, the following
choice of w(8) seems reasonable: For given values of A and B the weight
function w(8) is chosen for which the maxtmum of B(6) with respect to ¢
(0 restricted to poinis in w,) takes its smallest value. When this principle
for the choice of w(#) is adopted, « and the maximum of g(6) with
respect to 8 (6 in w,) will depend only on the quantities 4 and B.

¢ Instead of defining p1» by some weighted average of the type given in (4:4), it
would seem equally reasonable to define pi» as the maximum of f(zy, 8)- - Sf(zxn, 0)
with respect to @ where @ is restricted to points in w,. Then the ratio pin/pon would
coincide with the so-called likelihood ratio introduced by J. Neyman and E. Pearson
and widely used in current test procedures. Our reason for preferring weighted
averages is that the theory of such tests seems to be considerably simpler. If
p1» were defined by the maximum with respect to @ in wy, P1n would no longer be a

probability distribution. _
7 In fact, with good approximation the following relations hold: (1 — B/ a = A

and B/(1 — a) = B where B = f B(8)w(8) d8. Solving these equations with
L

respect to « and 8 we obtain a = (1 — B)/(A — B)and B = [B(A — 1)]/(4 — B).
Thus, « and 3 depend only on A and B.
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These values A and B are then determined so that the probability of
an error of the first kind has the desired value « and the maximum
of 8(8) with respect to 8 is equal to the required value 8.

There is no general method yet available for the determination of
an optimum weight function w(f) in the sense defined above. For
some special but important cases, however, such a weight function has
been determined. This point is discussed in Section A.8.

4.1.4 Application of the General Procedure to Testing the Mean
of a Normal Distribution with Known Variance

In this section we shall consider the problem of testing the simple
hypothesis H; that the mean & of a normal distribution with known
variance is equal to a particular value 8. The acceptance of Hy will
not be considered a serious error if 8 = 63 but is near 8,. However,
there will be, in general, a positive value § such that the acceptance
of Hy is considered an error of practical importance if (and only if)
9 — 6,

o

= §, where ¢ denotes the known standard deviation of the

distribution. Thus, the region of preference for rejection may be de-

8 — 6
o

preference for acceptance will consist of the single value 6,5, and the

region of indifference will be the set of all values 8 for which 0 <

8 — 8,
(43

The probability density of the sample (z;, ---, x,) under Hy is
given by

fined as the set of all values ¢ for which = §. The region of

< 0.

(4:8) PDon

|
®
:
|

According to the general theory discussed in the preceding section,
P1n 1s defined as some weighted average of the probability density cor-
responding to various values of 8 in the zone of preference for rejec-
tion. It is shown in Section A.8.2 that an optimum weighted average
is the simple average of the two density functions: the density func-
Fion corresponding to § = 6, — 80 and the density function correspond-
Ing to 6 = 6, + 86¢. Thus,

1 _ 2 1 502
(49) Din _l[ 1 —ﬁafl(xa 8o+ ba) . 1 o 20 Z(xa—~0Fo 5*?)]

- ¢ I .
(2m7)20™ (27)2s™
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The test is then carried out as follows. We continue taking obser-
vations as long as B < p1./pon < A. If p1n/Pon = A, we reject Hy.
If p1./pPon = B, we accept Hy. To make the probability of an error
of the first kind equal to « and the maximum of 8(8) (in the domain
8 — 6Og

g
A=((1—8)/axand B = 3/(1 — «).

A more detailed discussion of this test procedure is given in Part 11,
Chapter 9.

v

6) equal to B, for all practical purposes we may put

4.2 Tests of Composite Hypotheses

4.2.1 Discussion of an Important Special Case

A frequent and important problem is that of testing the hypothesis
H that the unknown parameter 8 does not exceed a specified value 6’.3
‘This problem is of particular importance in quality control of manu-
factured products. The importance of an error of the first kind (re-
jection of H when H is true), or that of an error of the second kind
(acceptance of i when H is false), will usually vary with the value of
8. For example, if 8 is only slightly below 6’ the rejection of H will
not be considered a serious error. Similarly, if 8 is only slightly above
¢’ the acceptance of H will not be considered a serious error. In gen-
eral, the importance of an error of the first kind will increase steadily
with decreasing value of 8 in the domain 8 = 6’, and the importance
of an error of the second kind will increase steadily with increasing
value of & in the domain ¢ > 6’. Thus, it will be possible to find two
values 6o < € and 6, > 6’ such that an error of the first kind is con-
sidered of practical importance whenever 8 =< 8y, and an error of the
second kind is considered of practical importance whenever 8 = 6,
whereas for values 68 between 8, and 8; we do not care particularly
which decision is made. Hence the zone of preference for acceptance
may be defined as consisting of all values 8§ = 6y, the zone of preference
for rejection as the set of values 8 for which ¢ = 6,, and the zone of
indifference as the set of all values 8 for which 6y < 8 < 8;. In such
a situation we shall want a test procedure for which the probability
of an error of the first kind is less than or equal to a preassigned «
whenever 8 < 65, and the probability of an error of the second kind is
less than or equal to a preassigned 8 whenever § = 6;,. In most of the
important cases occurring in practice, such as when x has a normal,
binomial, or Poisson distribution, and so on, the sequential probability

8 It is assumed here that there is only one unknown parameter ¢ involved in the
distribution of z.
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ratio test of strength («, 8) for testing the hypothesis that 6 = 6,
against the single alternative that 6 = 6, will have the desired prop-
erties and provides a satisfactory solution to the problem. If the
sequential probability ratio test leads to the acceptance of the hypoth-
esis that 8 = 65, we accept the original hypothesis that 8 < 8’, and if
the probability ratio test leads to the rejection of the hypothesis that
8 = 8y, we reject the original hypothesis that 8 =< ¢’.

As an 1illustration, we shall discuss briefly one or two examples.
Suppose that a lot consisting of a large number of units of a manu-
factured product is submitted for acceptance inspection. We shall
assume that each unit is classified in one of the two categories: de-
fective and non-defective. The proportion p of defectives in the lot
i1s assumed to be unknown. The preference for acceptance or rejec-
tion of the lot will, of course, depend on the value of p. It will be
possible, in general, to select two values of p, say po and p; (po < P1)
such that the rejection of the lot is considered an error of practical
importance whenever p < po, and the acceptance of the lot is an error
of practical importance whenever p = p;; for values p between p, and
P1 we do not care particularly which decision is made. Thus, the zone
of preference for acceptance is given by p = po, the zone of preference
for rejection by p = p,, and the zone of indifference consists of values
P for which po < p < p;. Hence, we shall want a test procedure for
which the probability of rejecting the lot is less than or equal to a
preassigned value a« whenever p < po, and the probability of accept-
ing the lot is less than or equal to a preassigned value 8 whenever
P = p1- Such a test procedure is given by the sequential probability
ratio test of strength («, 8) for testing the hypothesis that p = po
against the single alternative that p = p;. To compute the proba-
bility ratio P1»/Pon for this problem, we shall denote by d, the number
of defectives found in the first n units inspected. The probability of
obtaining a sample equal to the observed one is given by

(4:10)
When P = P1, ﬂ-nd by

Pin = 21(1 — p)" %

(4:11) Pon = Po™™(1 — po)™ %"
when p = p,.° Then
- 1 -
(4:12) log Pin _ d, log oy (n — dy) log o
DPon Po I — po

? FOITD:uiaS (4:10) and (4:11) are strictly valid only if the lot contains infinitely
Eﬂﬂy units. It is assumed that the lot contains a large number of units so that
ese formulas can be used with good approximation.
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The test procedure is carried out as follows. We continue inspec-
tion as long as log B < log (p1»/P0on) < log A. If log (p1n/Pon) =
log A, inspection is terminated with the rejection of the lot, and if
log (p1n/Por) = log B, inspection is terminated with the acceptance of
the lot. For practical purposes we may put A = (1 — 8)/a and B =
B/(1 — a).

A detailed discussion of the problem of acceptance inspection when
each unit is classified either as defective or as non-defective is given
in Part II in Chapter 5.

Another example for testing a hypothesis that ¢ < 8" is the case
when 6 is the unknown mean of a normal distribution with known
variance.'? Again it will be possible to select two values 8, < ¢’ and
8, > 6’ such that an error of the first kind is considered of practical
importance whenever 6 =< 6y, an error of the second kind is of prac-
tical importance whenever 8 = 6,; for values 8 between 6y and 8, we
do not care particularly which decision is made. In such a situation
we shall want a test procedure for which the probability of committing
an error of the first kind is less than or equal to some preassigned value
a whenever 8 =< 8o, and the probability of committing an error of the
second kind does not exceed a preassigned value 8 whenever 8 = 6;.
These conditions will be satisfied by the sequential probability ratio
test of strength («, 8) for testing the hypothesis that 8 = 6 against
the single alternative hypothesis that 8§ = 6;,. The probability density

of the sample (x;, -+, ) 1s given by
(4:13) Pon = = e_"'?%* P e =00
(2m) 2™
when 6 = 6y, and by
1 — L Z@a—0)?
(4:14) Pin = € o
(2m)2¢™

when 6 = 6,. We continue taking observations as long as B <
Din/Pon < A. If p1./Pon = A, we reject the hypothesis that ¢ = &,
and if pi1n/Pon = B we accept the hypothesis that 8 = 8’. Agamn, we

put A = (1 — B8)/aand B = B8/(1 — «).

4.2 92 Outline of the Test Procedure in the General Case

In testing a composite hypothesis H, that the parameter point @ lies
in a subset w of the parameter space, the parameter space 1s again
subdivided into three mutually exclusive zones: the zone of preference

10 This problem is discussed in detail in Part II, Chapter 7.
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for acceptance w,, the zone of preference for rejection w,, and the zone
of indifference. The zone of preference for acceptance will now con-
sist of more than one parameter point, as distinguished from the case
of testing a simple hypothesis.

For any test procedure the probability of an error of the first kind
(rejecting H, when f, 1s true) will, 1n general, vary with the param-
eter point in w. For any parameter point 6 in w we shall denote by
a(f) the probability that H., will be rejected when 6 is true. Simi-
larly, the probability of an error of the second kind (accepting H, when
it is false) is a function B8(8) defined for all points € outside w.

According to the requirements formulated in Section 2.3.2, we shall
want a test procedure such that «(8) will not exceed a preassigned
value a for all # in the zone w,, and B(8) will not exceed a preassigned
value 8 for all 8 in the zone w,. Before discussing the problem of
finding a proper test procedure satisfying these requirements, we shall
again consider, as in the case of the simple hypothesis, the following
modified problem: Let w,(0) and w,(8) be two non-negative functions
of 8, called weight functions, such that

(4:15) wa(8) dd = 1 and w,(0) do = 1

LA Wy

Suppose that we wish to construct a sequential test such that the

weighted average f a(@)wa(8) do of the probabilities of errors of the

wa

first kind is equal to a given value «, and the weighted average

fﬁ(ﬂ)wr(ﬂ) dé of the probabilities of errors of the second kind is a

given value 8.

A proper sequential test satisfying these modified requirements can
be constructed as follows. Let pon and p;, be defined by

(4:16) Pon = f(.'l'f'1, 61, Tt Bk) e f(-rn, 81, T T, Gk)u*’a(g) 6
and ’

(4*17) Pin =ff(:z:1, 81, - - B;,:) v f(~rn; 01, - -, Bl)wr(o) do

where Sz, 8, -
8 1s true.
distributio

1, * -, 0x) denotes the probability distribution of x when
The functions Por and p;, can be interpreted as probability
ns of the sample (z;, - - -, »). Denote by #y* the hypoth-

n 3 Tes]or . . -
for bTGi]; “mg:ht functions wa(#) and w,.(0) may also be discrete. Formulas valid
intemcy continuous and discrete welight functions could be given by using Stieltje’s

graisin (4:15) and subsequent equations.
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esis that the distribution of the sample (z;, - - -, z,) is given by (4:16),
and by H,;* the hypothesis that the distribution of (z;, - - -, z,) is given
by (4:17). The sequential probability ratio test of strength («, 8) for
testing Ho* against H* provides a solution to our problem. If the
constants A and B in this sequential test are chosen so that the prob-
ability is a that we reject Hy* when Hy* is true, and the probability
is 8 that we accept Hy* when H,* is true, then for this sequential test
we have

wqe(8)a(8) dé

wa

I
R

and

|

[ w@8@ a0 -8
To make the strength of the test of Hy* against H;* equal to («, 8),
again, for practical purposes, we may put 4 = (1 — 8)/a and B =

B/(1 — a).

To construct a sequential test procedure satisfying the requirements

(4:18) a(f) = a for all 8 In w,
and
(4:19) B(8) = B for all @ in w,

we shall restrict ourselves to sequential probability ratio tests for which
pon and Py, are given by (4:16) and (4:17), respectively, and wa(6)
and w,(8) may be any weight functions satisfying (4:15). Denote by
C the class of all such tests corresponding to all possible weight func-
tions w,(8) and w,(8). To select a proper test from the class C which
satisfies the requirements (4:18) and (4:19), our procedure will be sim-
ilar to that in the case of simple hypotheses, as discussed in Section
4.1.3. A test in class C is uniquely determined by the choice of the
constants A and B and by the weight functions w,(8) and w,(6). Thus,
the maximum of «(8) with respect to # in the zone w,, as well as the
maximum of 3(8) with respect to 8 in the zone w,, is determined uniquely
by A, B, w.(8), and w,(8). Denote these maxima by o[A, B, wa, W]
and B[A, B, w., w,], respectively. For given values A and B, the
weight functions w.(8) and w,(6) may be regarded the more desirable
the smaller they make oA, B, w,, w,] and B[A, B, wa, w,]. Thus, if 1t
is possible to find weight functions w,(6) and w,(6) for which both
oA, B, wa, w,] and B8[A, B, w,, w,] are simultaneously minimized, they
may be regarded as optimum weight functions. It is shown in Section
A.O that in some important special cases, such as testing the mean of
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a normal distribution with unknown variance, optimum weight func-
tions of the type described above do exist. However, it is not known
whether they generally exist. If it is not possible to minimize both
alA, B, w,, w,;] and B[A, B, w,, w,] simultaneously, it may be reason-
able to choose wg(f) and w,(8) such that some average of the two
values alA, B, w,, w,] and B[A, B, we, w,], or the maximum of these
two values, is minimized.

If the principle described above for choosing the weight functions
wq(8) and w,(0) is adopted, the maximum of «(8) in the zone w, and
the maximum of B8(6) in the zone w, will depend only on 4 and B.
Finally the constants A and B are determined so that these two max-
ima are equal to « and B, respectively.

There 1s no general method yet available for constructing weight
functions w,(#) and w.(6) which are optimum in the sense defined
above. In some special cases, however, such weight functions have
been constructed.!?

4.2.3 Application of the General Procedure to Testing the Mean
of a Normal Distribution with Unknown Variance (Sequen-
tial £-Test)

A frequent and important problem in applications is that of testing
the hypothesis 7/ that the unknown mean @ of a normal distribution
1s equal to some specified value 6, when nothing is known about the
variance ¢~ of the distribution. If the true value @ differs only slightly
from 8, i.e., if | 6 — 6, l is only a small fraction of the standard devi-
ation o, the acceptance of I will usually not be considered an error of
practical consequence. However, the importance of an error committed
by accepting 7/ when 8 == 6, will, In general, increase with Increasing
o — 8,

g

value of Thus, it will be possible to find a positive value

6 such that the acceptance of ¥/ is considered an error of practical
0 — 6y

importance only when

. = §. Accordingly, the three zones in

the parameter space will be defined as follows. The zone w, of prefer-

ence for acceptance consists of all points (8, ¢) for which 8 = 6,, i.e.,

wq consists of all points (8, ¢) where ¢ can take any positive value.

Fl~ . - - . -

I'he zone w, of preference for rejection consists of all points (0, ¢) for
. 0 — 6o

which

g

= 8. Finally the zone of indifference contains all

& — 0,

a

points (8, o) for which 0 < < é.

12 See Section ALQ.
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The probability density of a sample (x4, - - -, £».) drawn from a nor-
mal distribution with mean 6 and standard deviation ¢ is given by

1 - _
1 ~ 52 20 Za—0)?
(2#}50"’

As in the general procedure described in the preceding section, the test
procedure will be based on the ratio p;,/Po» Where pg, is some weighted
average value of p, corresponding to various points (8, ¢) in w,, and
P1n 1S some welghted average of p, corresponding to various points
(8, ¢) In w,. It 1s shown in Section A.9 that by choosing the weight
functions w,(8) and w,(8) according to the principles described in the
preceding section we are led to the following ratio: 13

1 2 1 — 5,2 E (za — 00— 80) % —_ ﬁ E (Za—00+350)2

> ‘L — [e a=1 + e =1 ] do
(4:21) Pin _ — — - —

Pon f ‘Ln e—m Z(za—00) do
0 o

The test procedure is then carried out as follows. Additional observa-
tions are taken as long as B < p1»/pon < A. The hypothesis H is
rejected if p1n/Pon = A and the hypothesis  is accepted if pi1./Pon
< B. To satisfy the requirements (4:18) and (4:19) for practical pur-
poses we may let A = (1 — 8)/aand B = 8/(1 — «).

4.2.4 A Particular Class of Problems Treated by Girshick 4

A class of problems treated by M. A. Girshick may be formulated
as follows. Let r; and x> be two independent random variables. The
distribution (elementary probability law) of x; is given by f(xi, 61)
and that of o2 by f(x2, 62), where the function f is known but the values
of the parameters 6; and 8> are unknown. The problem is to test the
hypothesis Z that 8; = 0, against the alternative hypothesis A’ that
6, > 0.

The type of problem described above occurs frequently in applica-
tions. For example, let  denote some quality characteristic, such as
hardness, tensile strength, or weight, of 2 manufactured product. Sup-

13 Considerable work on the evaluation of this ratio to bring it to a suitable
form for tabulation was done by K. Arnold while he was a member of the Statistical
Research Group of Columbia University. Tables for the computation of this ratio
have been prepared by the Mathematieal Tables Project, New York.

14 M. A. Girshick, “Contributions to the Theory of Sequential Analysis,” The
Annals of Mathematical Statistics, Vol. 17 (1946).
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pose that the distribution of x in the population of units produced has
a known functional form f(x, 68), but the value of the parameter @ is
unknown. Suppose, furthermore, that there are two competing proc-
esses of production under consideration by the manufacturer. Let 6,
denote the value of 6 when process 1 is used, and 8, when process 2
i1s used. Both values, 8; and &5, are unknown. If the product is con-
sidered the more desirable the greater the value of ¢, the problem of
deciding between the two competing processes reduces to that of test-
ing the hypothesis H that 8, =< 6,. Process 1 is chosen if H is rejected,
and process 2 is chosen if H is accepted.

The following procedure for testing the hypothesis A has been pro-
posed by Girshick. We choose a particular value 6,° of 8; and a par-
ticular value 6,° of 8, where 8,¢ < 6,°. Let Hy denote the hypothesis
that the joint distribution of z; and zs is given by f(z,, 6:°)f(z2, 62°%),
and let H; be the alternative hypothesis that the joint distribution of
r; and zp is given by f(z;, 6:°)f(x2, 6,°). We then set up the sequen-
tial probability ratio test for testing the simple hypothesis H, against
the simple alternative H,. The hypothesis H is accepted or rejected
accordingly as the sequential probability ratio test leads to the accept-
ance or rejection of Hy. Thus, to carry out the test procedure, two
constants A and B are chosen and the ratio

(4:22) Pim _ f(z11, 62°)f(x21, 1°) - - - f(Z1m, 02°)f(Z2m, 61°)
Pom  J(Z11, 619)f (221, 62°) - - - f(Z1my 61°)f(Z2m, 627)

1s computed at each stage of the experiment. Here z,, denotes the
ath observation on z; (z = 1, 2). It is assumed that the observations
are taken in pairs, where each pair consists of an observation on x;
and an observation on x2. Experimentation is continued as long as
Fhe ratio pim/pon lies between B and A. The hypothesis H is accepted
X 2im/Dom < B, and the hypothesis H is rejected if pym/Pom = A.

It has been shown by Girshick that in many important cases the
a.bow? test procedure will have the following property: There exists a
function v = v(fy, 82) such that » may be regarded as a reasonable
measure of the difference between 6, and 8, and the probability of
accepting H depends only on the value of v. The function v satisfies,
furthermore, the conditions - (1) v(0,, 62) = O when 6; = 82; (2) v(6,, 62)
< 0 when 6’2‘ > 015 B) v(6y, 62) = —v(6s, 6,).
lowing conq'l?b & 5027, A, and B may be made on the basis of the fol-

Sluerations: I.et § be a positive value such that the accept-

ance of ] : :
H is regarded as an error of practical importance whenever
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v = §, the rejection of H is regarded as an error of practical importance
whenever v = —§; for values v between —é and é we do not care par-
ticularly which decision is made. Thus, we shall want a test procedure
for which the probability of rejecting A will not exceed a preassigned
value @ whenever » £ —§ and the probability of accepting H will not
exceed a preassigned value 8 whenever v = 8. The test procedure will
have the desired properties if the quantities 8,2, 6,°, A, and B are
chosen so that v(8,%, 8,°) = —& and the sequential probability ratio
test for testing Hy against £, has the strength («, 8). For all prac-
tical purposes we may let A = (1 — 8)/x and B = 8/(1 — «).

As an illustration, we shall consider the following example. Suppose
that one of two production processes is to be chosen. Suppose, further,
that the quality characteristic under consideration is normally distrib-
uted with known mean and unknown standard deviation ¢; when proc-
ess 1 is used, and that the distribution is normal with the same mean
but unknown standard deviation g2 when process 2 is used. The proc-
ess that leads to a smaller standard deviation is preferred. Thus, the
manufacturer is interested in testing the hypothesis H that o; = o3.
There is no loss of generality in assuming that the known means are
equal to 0. Let Hy be the hypothesis that oy = o1° and o2 = 3%, and
H, the hypothesis that o; = 02" and o = 1% (01° < ¢2°). Then the
probability ratio for testing Ho against H, is given by

P1 (24-0)‘1'_2,,0: [Z(Iln — Z2a%))
(4:23) m _ Geon ~sean) 2,
Pom

where z;, denotes the ath observation from the population correspond-

ing to process <.
As Girshick has shown, the probability that the sequential prob-
ability ratio test of Ho against H; will terminate with the acceptance

of Hy depends only on the value of

1 1 1
(4:24) v(oy, 02) = “‘( > 2)

2 ga o]
This quantity may be regarded as a reasonable measure of the devi-
ation of o, from ¢,. Suppose we want a test procedure satisfying the

following conditions: The probability of rejecting should not exceed

1 oy :
« whenever %(—-1—2- — — ) = —3&, and the probability of accepting H
o2

2
o1

1/ 1 1
should not exceed B8 whenever §( 5 2) > 5. 'Then we choose
g9 o
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:° and ¢2° so that

(4:25)

(o~ o) -
2 \(02%)? (,92/

The probability ratio given in (4:23) becomes then equal to

(4:26)

1
When 3 log

procedure can be carried out as follows.
observations as long as

(4:27)

Pim

Pom

We accept H if

(4:28)
and reject H if

(4:29)

m
plm é 2 (:1;:’—‘112“’)
—_— ea=1

Pom

= Z(T1a° — ZT2.2) is used instead of :%’5 , the test
Om
We continue taking pairs of

log B “ log A
< T a2 — a2 <
s aZ. 1: (z1 Toa") 5




PART II. APPLICATION OF THE GENERAL THEORY TO
SPECIAL CASES'!?

Chapter 5. TESTING THE MEAN OF A BINOMIAL DISTRI-
BUTION (ACCEPTANCE INSPECTION OF A LOT WHERE
EACH UNIT IS CLASSIFIED INTO ONE OF TWO CATEGORIES)

5.1 Formulation of the Problem

Let x be a random variable which can take only the values 0 and 1.
Denote by p the (unknown) probability that z takes the value 1. We
shall deal here with the problem of testing the hypothesis that p does
not exceed some specified value p’.

This problem arises, for example, in acceptance inspection of a lot
consisting of a large number of units of a manufactured product. Sup-
pose that each unit is classified in one of the two categories: defective
and non-defective. We shall assign the value 0 to any non-defective
unit and the value 1 to any defective unit. Let p denote the unknown
proportion of defectives in the lot. Then the result x of the inspection
of a unit drawn at random from the lot can take only the values 1
and 0 with probabilities p and 1 — p, respectively. Usually it will be
possible to specify some value p’ such that we would like to accept the
lot whenever p = p’ and we would like to reject the lot whenever
p > p’. Thus, the problem of deciding whether the lot is to be ac-
cepted or rejected on the basis of a random sample may be formulated
as the problem of testing the hypothesis p = p’ against the alternative
hypothesis that p > p’.

Since acceptance inspection of manufactured products is perhaps
one of the most important applications of testing the mean of a bi-
nomial distribution, in what follows we shall use the terminology cus-

1 The special cases treated here are discussed mainly to illustrate the general
theory and to bring out points of theoretical interest specific to these applications.
Accordingly, computational procedurcs and simplifications are not stressed much
and hardly any tables are given. A more detailed and non-mathematical discussion
of these applications, together with a number of tables, charts, and computational
simplifications, is contained in ‘‘Sequential Analysis of Statistical Data: Applif:a-
tions,” a report prepared by the Statistical Research Group of Columbia University
and published by Columbia University Press, Sept., 1945. This report will be
referred to hereafter simply as SRG 255.

88
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tomary in acceptance inspection. This, of course, does not mean that
the test procedure is not applicable to other cases as well. In the
terminology of acceptance inspection, our problem may be stated as
follows: A proper sampling plan (test procedure) is to be devised for
deciding whether the lot submitted for inspection should be accepted
or rejected.

6.2 Tolerated Risks of Making Wrong Decisions

Any sampling plan which does not provide for complete inspection
of the lot may lead to a wrong decision. That is, we may accept the
lot when p > p’, or we may reject the lot when p =< p’. Since com-
plete inspection is frequently not feasible, or too costly, we are willing
to tolerate some risks of making wrong decisions. In order to devise
a proper sampling plan, it is necessary to state the maximum risks of
wrong decisions that we are willing to tolerate.

If p = p’, the quality of the lot is just on the margin and we are
indifferent which decision is made. For p > p’, we prefer to reject the
lot and this preference increases with increasing value of p. Forp < p’,
we prefer to accept the lot and this preference increases with decreas-
ing value of p. If p is only slightly above p’, the preference for rejec-
tion is only slight and acceptance of the lot will not be regarded as an
error of practical consequence. Similarly, if p is only slightly below
p’, rejection of the lot is not a serious error. T hus, it will be possible
to specify two values py and p;, po below p’ and p, above p’, such that
acceptance of the lot is regarded as an error of practical consequence
if (and only if) p = p,, and rejection of the lot is regarded as an error
of practical importance if (and only if) p = po. If p lies between pg
and p; we do not care particularly which decision is made.

After the two values py and p; have been chosen, the risks of mak-
Ing wrong decisions which we are willing to tolerate may reasonably
be formulated as follows: The probability of rejecting the lot should
not exceed some small preassigned value o whenever P = Ppo, and the
probability of accepting the lot should not exceed some small pre-
assigned value 8 whenever p = p,.

Thus, the tolerated risks are characterized by four numbers, pg, P,
«, and 8. The choice of these four quantities is not a statistical prob-
lem. They will be selected on the basis of practical considerations in
each particular case. A proper sampling plan can be determined, as

w}ill be shown in the next section, after these four quantities have been
chosen.
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6.3 The Sequential Probability Ratio Test Corresponding to the
Quantities po, p1, a, and B

5.3.1 Derivation of Algebraic Formulas for the Test Criterion

A sampling plan satisfying the conditions that the probability of
rejecting the lot does not exceed a« whenever p =< py, and the prob-
ability of accepting the lot does not exceed 8 whenever p = p,, is given
by the sequential probability ratio test of strength (o, 8) for testing
the hypothesis p = po against the hypothesis p = p,. This test is
defined as follows (see Section 3.1): Let z; denote the result of the
inspection of the zth unit; that is, z; = 1 if the 7zth unit inspected is
found defective, and z; = 0 otherwise. If p denotes the proportion
of defectives in the lot, the probability of obtaining a sample equal
to the observed (z;, - - -, z.») 1s given by

(5:1) pd"‘(l . p)ﬂ‘l—dm

where d,, denotes the number of defectives in the first m units in-
spected.? Under the hypothesis that p = p; the probability (5:1) be-
comes equal to

(5:2) Pim = P19"(1 — py)™ %

and under the hypothesis that p = po the probability (6:1) becomes
equal to

(5:3) Pom = DPo"™(1 — po)™ o

The sequential probability ratio test is carried out as follows. At ea.c_h
stage of the inspection, at the inspection of the mth unit for each posi-

tive integral value m, we compute

m P 1 — >
(5:4) log 2™ — 4. log 22 4+ (m — d) log
Pom Po 1 — po
Inspection is continued as long as
B Pim 1 — 13
(5:5) log < log — < log
l — « Pom 184

2 The lot is assumed to be sufficiently large so that the successive observations
z, z2, - -, etc., may be regarded as independent.
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Inspection is terminated the first time that (5:5) does not hold. If
at this final stage we have

(5:6) log Pim = log
Pom @
the lot is rejected, and if
(5:7) log?—lf < log id
Pom l —

the lot is accepted.?
Inequalities (5:5), (5:6), and (5:7) can easily be seen to be equiva-
lent to the following inequalities:

B 1 — po
log log
l — o 1 — 1
(5:8) + m — A, <
P1 1 — p P1 1 — m
log — — log log — — log
Po 1 — po Po 1 — po
1 —28 1 —
log log Po
o 1 — p
1 tom 1
p — —
log — — log 1 log o log o1
Po 1 — po Po 1 — po
1 -8 1 — po
log log N
o J—
(5:9)  dpy = - 1 + m ‘;"
Po 1 — po Po 1 — po
and
5] 1 —
log ] log — Po
D1 — 1 —
log — — log P log P1_ log P1
Po 1 — po Po 1 — po

For each valufa of m we shall denote the right-hand member of (56:10)
by a., and call it acceptance number. Similarly, we shall denote the

? There is a slight approximation involved in the use of the constants log [8/(1 —a)]
and log ((1 — 8)/a]. For further details see Section 3.3.
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right-hand member of (5:9) by 7r,, and call it rejection number. For
purposes of practical computations, the use of the inequalities (5:8),
(56:9), and (5:10) seems to be much more convenient than the use of
the original inequalities (5:5), (5:6), and (56:7).# On the basis of in-
equalities (5:8), (5:9), and (5:10), the sequential probability ratio test
1s carried out as follows. At each stage of the inspection we compute
the acceptance number a,, and the rejection number r,,. Inspection
is continued as long as a,, < d,, < 7». The first time that d,, does not
lie between the acceptance and rejection numbers, inspection is termi-
nated. If d,, = 7, the lot is rejected, and if d,, =< a,, the lot is ac-
cepted.

85.3.2 Tabular Procedure for Carrying Out the Test
The acceptance number

B 1 — po
log - log
l — o 1 — p
(5:11) @p = ————— o ——
1 1 — o P1 1 — ;1
log — — log log — — log
Po 1 — po Po 1 — po
and the rejection number
1 — 8 1 — Do
log log
(8% 1 — P1
(5:12) Tm = + M —
21 1 — » P1 1 — »>
log — — log log — — log
Po 1 — po Po 1 — po

depend only on the quantities po, 1, @, and 8. Thus, they can be
computed and tabulated before inspection starts. If a, 1s not an
integer, we may replace it by the largest integer < a,,. Similarly, if
r. is not an integer, we may replace it by the smallest integer
> Tme-

As an illustration, consider the following example. Let po = .1,
p; = .3, « = .02, and B8 = .03. The acceptance and rejection num-

bers, as well as the results of the observations, in an experiment are

¢« The use of the inequalities (5:8), (5:9), and (5:10) instead of (5:5), (5:6), .and
(5:7) was first suggested by J. H. Curtiss. In SRG 255 similar transformations
of the inequalities defining the test procedure have been used in other problems

as well.
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given in Table 5. In this example, inspection is terminated at m =
22 with the rejection of the lot.

TABLE 5

m adm
Number Number
of Units A;qcz;tg:rce of Defects
Inspected Observed

Tm
Rejection
Number

CRIOOO B W -~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

NN UG I D OB DD bt pd ek ek it e (OO
COCORPVPXXWRANNNNITNBODRDDNN NN DD

WNNNNNNH==H,=000000"

6.3.3 Graphical Procedure for Carrying Out the Test

The test procedure can also be carried out graphically. The num-
ber m of observations is measured along the horizontal axis and the
number d,, of defects along the vertical axis. The points (m, a,,) lie
on a straight line L, since a,, is a linear function of . Similarly the
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points (m, rn) lie on a straight line L;. The intercept of L, is given by

8
log "
(5:13) ho = =
P1 1 — o1
log — — log
Po 1 — po
and the intercept of L, is given by
1 —
log d
(5:14) hy = =
P1 1 — 1
log — — log
Po 1 — po

The lines Ly and L, are parallel and the common slope is equal to

1 — po
log "
(5:15) § = e
21 1 — o
log — — log
Po 1 — o

The two straight lines Lo and L; are drawn before inspection starts.
The points (m, d,,) are plotted as inspection goes on. We continue
inspecting additional units as long as the point (m, d,,) lies between
the lines Ly and L;. Inspection is terminated the first time that the
point (m, d,.) does not lie between the lines Lg and IL,. If (m, d,,) lies
on Ly or below, the lot is accepted. If (m, d,,) lies on L; or above, the
lot is rejected.

Figure 11 shows the graphical procedure for the example given in
Section 5.3.2.

Ad,
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5.4 The Operating Characteristic (OC) Function L(p) of the Test 5

6.4.1 Determination of L(p) for Some Special Values of p

As defined in Section 2.2.1, the value of the OC function L(p) for
each p is equal to the probability that the lot will be accept_:ed wh‘en
P 18 the true proportion of defectives in the lot. One can easily verify
that

(5:16) LO) =1 and L) =0

Since the test procedure is so set up that the probability is 1 — «
that the lot will be accepted when p = py, and the probability is 8
that the lot will be accepted when p = p,, we have

(5:17) L(®o) =1 —a and L(p,) =8
1 — po
log
1 —
When P = § = =——— —_—
1 1 — oy
log — — log
Po 1 — po
we obtain from equation (3:43)
1 — 8
log
(5:18) L(s) = x - hy
| 1 —28 B hi + | ko l
log + | log ———
o l — o

where kg and h; are the intercepts of the lines Ly and L,.¢

Thus, five points on the OC curve corresponding to p = 0, 1, po, p1,
and s can immediately be determined. Since L(p) is monotonically
decreasing with increasing p, the five points will determine fairly
closely the shape of the whole OC curve. This will frequently be suf-

ficient for practical purposes and there will be no need to compute L(p)
for additional values of P.

® The formulas given in this section involve an approximation caused by neglecting
the excess of d,, over the boundaries am and 7, at the termination of the test proce-
dure. For details see Sections 3.4 and A.2.3. An exact formula for L(p) is given
1n Section 5.4.3 for the special case in which the slope s of the decision lines is equal
to the reciprocal of an integer.

®* When p = g, the value of A in formula (3:43) is equal to 0. The limiting value of
log A

log A + |log B|
equal to the right-hand member of (5:18),since 4 = (1 — 8)/aand B = B/(1 — a).

the right-hand member of (3:43), when A — 0, is equal to which is
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5.4.2 Determination of L(p) over the Whole Range of p
It has been shown in Chapter 3, equations (3:45) and (3:46), that 7

-
S

where % is determined by the equation
1 — (1 — P1)h
L — po/
SO

1 — po
To compute the OC curve, it is not necessary to solve equation
(6:20) in A. For any arbitrarily chosen value A, the values of p and
L(p) may be computed from (5:19) and (5:20). The point [p, L(p)]
computed in this way will be a point on the OC curve. The OC curve

can be drawn by plotting a sufficiently large number of points [p, L(p)]
corresponding to various values of A. Figure 12 shows a typical OC

curve.

(5:19) L(p) =

(5:20)

A Lp)
1

0 1 p
Fia. 12

The range of £ in (5:19) and (5:20) is from — « to + <. It can be
verified that the right-hand member of (5:19) is increasing with in-
creasing k, and the right-hand member of (5:20) is decreasing with in-
creasing h. The five values of p considered in Section 5.4.1, that is,
p = 0, po, S, P1, 1, correspond to the valuesof o = +«,1,0, —1, — =,
respectively, as can be seen from (5:20). Letting A = 4+, 1, 0, —1,

7 In the formulas given in SRG 255, p. 2.50, the quantities p and L(p) are ex-
pressed in terms of another parameter z which is functionally related to A.
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— oo In (5:19), we obtain the corresponding five values of L (p) which
coincide with those given in Section 5.4.1.

If the part of the OC curve corresponding to positive values of A
has been determined, the computation of the part of the OC curve
corresponding to negative values of h can be simplified.® To show this,
let 2 be a given positive value and let [p, L(p)] be the corresponding
point on the OC curve. Let [p’, L(p’)] denote the point on the OC
curve corresponding to —h. Then we have

(2°) -
=9 -G

(I‘B)h(lfa)h[ =) -1
V) -2
G _)_ D)

(1_,1 1 -8

() ;
- () e AL,

(5:21) L) =

Similarly,

P Bl i ) B 3] e L 9
G®-627 =
((=2) -
Xk

® A similar simplification is given in SRG 255, p.
parameter x used there.

2.50, with reference to the
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Thus, the point [p’, L(p")] corresponding to —A ean be computed from
the point [p, L(p)] corresponding to 2 by using the simple relations

P’ (:)hp and L(p’) = ( g )hL(p).

5.4.3 Exact Formula for L(») When the Reciprocal of the Slope of
the Decision Lines Is an Integer

The quantity 2z, i.e., the logarithm of the probability ratio for
a single observation, can take only the values log (p1/720s) and
log [(1 — p1)/(1 — po)]. It follows from (5:15) that

1 1 —
log?-}— = (-—— — 1) log 2o
Po S 1 —

where s is the slope of the decision lines. Assume that 1/s is an in-
teger. Then the two values of z are integral multiples of d =
log [(1 — po)/(1 — p1)], namely, —d and [(1/s) — 1]d, and the results
in the last part of Section A.4 can be used to determine the exact OC
curve.? On the basis of these results one can show that

R s
1= 1 (ui — I)I—_[(ut . uj)
J s

)7 —
I e R e

2¢ o e

EE L

where A and B are the constants used in the sequential test,!® the
symbol [k] denotes the smallest integer = %, and u,, us, - - -, u, are the

roots of the equation 3

1
1 —pu-+p 1 1

— —

ul

I

A different method for deriving an exact formula for Z(p) was given
by M. A. Girshick in The Annals of Mathematical Statistics, Vol. 17
(1946). His method does not require the computation of the roots

Uy, * "y, ul.
5
®* To reduce this case to the case discussed in the last part of Sectign A.4, one
merely has to consider the test corresponding to z*, A* and B* where z* = —z,
log A* = — log B and log B* = — log A.
10 To obtain a test of strength («, 8), we used the approximate values A =
(1 —B8)/aand B = 8/(1 — «).



THE AVERAGE SAMPLE NUMBER FUNCTION 99

5.6 The Average Sample Number (ASN) Function of the Test

Let n denote the number of observations required by the test pro-
cedure. Then 7 is a random variable, since it depends on the outcome
of the observations. The expected value of n depends on the propor-
tion of defectives in the lot and is denoted by E,(n). This can be
plotted as a curve, p being measured along the horizontal axis and
E,(n) along the vertical axis. A typical ASN curve is shown in Fig.
13. This curve is called the ASN curve of the test (see Section 2.2.2
for a general definition of the ASN curve).

f E,(n)

FiGg. 13

The general formula for the ASN function of a sequential probability

ratio test 1s derived in Section 3.5. The approximation formula (3:57)
applied to the binomial case gives !

L(p) log B + (1 — L(p)) log A

D1 1 —
plog— + (1 — p) log 71
Do 1 — po

where A = (1 — B8)/a, B = 8/(1 — ), and L(p) denotes the prob-
ability that inspection terminates with the acceptance of the lot.
Using this formula, we shall compute £,(n) for p = 0, py, 1, and 1.
Since L(0) = 1, the value of E,(n) is given by

(5:23) E,(n) =

B8
log
l — «
1 — py
log —
1 — po

‘ ! The right-hand member of (5:23) can be expressed as a function of L(p). the
Intercepts, and the slope of the decision lines. See SRG 255, p. 2.63.
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1E!l.rhnta-,n);{) = 0. For p = po, we have L(p) = 1 — a and we obtain from
5:23

(1 — @ logl - « log

(5:25) B, (n) =

For p = p;, we have L(p) = 8 and we obtain from (5:23)

B8 1 —8
B log + (1 — B) log
l] — & Do
(5:26) E, (n) =
p —
P1 14:}g---—]l + (1 — p1) log ik
Po 1 — po

Since L(1) = 0, we obtain from (5:23)

1 —8
log
(54
(527) Ep(n) —
41
log —
Po
when p = 1.

Using formula (A:99) in the Appendix, we can compute the value
of £,(n) when p is equal to the common slope s of the acceptance and

rejection lines, i.e., when 12

1 — Po
log
1 — p;
p —— = 8
P1 1 — m
Iog — — log
1 — Lo
From (A:99) we obtain
— (log ) (log )
.28) E.(n) - =
©®: " E.)

where E,(z?) is the expected value of z° and z is a random variable
which can take only the values log (p1/20) and log [(1 — p;)/{(1 — po)]

12 The value s of p corresponds to the value 8’ in formula (A:99). It can be shown
that s lies between po and p;. Formula (A:99), and therefore also (5:28), involves
an approximation caused by neglecting the excess of the cumulative sum over the

boundaries.
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with probabilities s and 1 — s, respectively. Thus

2 1 —m 2
S (log E) + (1 — ) (log )
Po 1 — po
2 1 — 2 1 — z
P1 pl) ] . ( m)
] + | log
o[ Qoee) = (os =7, -

1 — 1 — p1\?
)(lﬂngEl + log P1) -+ (log )
1 — 1 Po 1 — Do 1 — Po

(5:29) E,(z°)

|
a—
Q
08
p—d
I
g~
o

The determination of the five points of the OC curve, as given in
(5:24), (5:25), (5:26), (5:27), and (6:30), may frequently suffice in
practice, since these five points already give a fairly good idea of the
shape of the whole curve. The ASN curve generally increases as p
increases from 0 to po, and decreases as P Increases from p; to 1. In
the interval (py, ;) the ASN curve generally increases as p increases
from po to some value p’, and decreases as p increases from p’ to p,.
The value p’ is generally equal to s or is very near s.

If 1t is desired to plot the ASN curve over the whole range of p, it
1S necessary first to compute the OC function L(p). The value of
£,(n) can then easily be determined from (5:23) for any value p.

6.6 Observations Taken in Groups

6.6.1 General Discussion

For practical reasons it may sometimes be preferable to take the
observations in groups, rather than singly. That is, the test procedure
1s carried out as follows. A group ¢g; consisting of » units is drawn
from the lot. If the number of defectives d, in this group ¢; 1s less than
or equal to the acceptance number @,, Inspection terminates with the
acceptance of the lot. 1If d, is greater than or equal to the rejection
number 7r,, inspection terminates with the rejection of the lot. If



102 TESTING THE MEAN OF A BINOMIAL DISTRIBUTION

a, < d, < r, asecond group g2 of v units is drawn. Again, the lot is
accepted if the total number of defectives ds, in the two groups is less
than or equal to az,, the lot is rejected if ds, = 73,, and a third group
gz of v units 1s drawn if ay, < ds, < r2,. This process is continued
until either rejection or acceptance of the lot is decided. Thus, when
the observations are taken in groups of » units, the number d,, of
defectives found is compared with the corresponding acceptance num-
ber a,, and rejection number 7,, only for m = v, 2v, 3v, - - -, ete.

The purpose of this section is to make some comments on®the effect
of grouping on the OC and ASN curves of the samplhing plan. Clearly,
grouping can only increase the number of observations required by the
test. For, suppose that inspection terminates at the nth unit when
observations are taken singly. If n is equal to an integral multiple of
v, i.e., n = kv, then the number of groups inspected, when observations
are taken in groups, will be precisely equal to %, and the total number
of units inspected will be the same as when observations are taken
singly. However, if kv < n < (k + 1)», grouping will cause an in-
crease in the amount of inspection, since we shall have to inspect at
least (K + 1) groups, that is, at least (& + 1)» units. It may even
happen that we shall have to inspect more than (k¥ + 1) groups. This
will be the case when d, lies outside the interval (a,, r»), but ex4+nv
< dir+1v < Tk4no. Thus, the increase in the expected number of
units inspected caused by grouping may even exceed v 1In some cases.

Regarding the effect of grouping on the OC curve, the following
remarks may be made. Putting 4 = (1 — 8)/a and B = 8/(1 — a),
the probability «” of rejecting the lot when p = po and the probability
3’ of accepting the lot when p = p; will be only approximately equal
to « and 8, respectively, even if the observations are taken singly.
This was pointed out in Section 3.3, where the following inequalities
were derived:

«@ /5]
and B =
1 — &3 ] — «

IIA

(5:31) o’

[t can easily be verified that these inequalities also remain valid when
the observations are taken in groups. The quantities « and g are
usually very small and «/(1 — 8) and 8/(1 — «) are very nearly equal
to « and B, respectively. Thus, also in case of grouping, the realized
values o and B8’ cannot exceed the intended values « and 3, respec-
tively, except by an exceedingly small quantity which can be neglected
for all practical purposes. This means that, for all practical purposes,
grouping will not decrease the protection against wrong decisions pro-
vided by the test. The only possible effect of practical significance that
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may be caused by grouping is that it may make o’ or 8’ substantially
smaller than the intended values « and 8. This feature of grouping
compensates, to some extent, for the increase in the number of ob-
servations.

It may be of interest to remark that, if the number » of units in a
group is equal to the reciprocal of the common slope s of the accept-
ance and rejection lines and if the intercepts of these lines are integers,
the OC curve is not affected at all by grouping.’® This can be seen as
follows: Because s = 1/d, we have an4q = a,, + 1 and Tmagd =
m + 1. Furthermore, since the intercepts of the acceptance and re-
Jection lines are assumed to be integers, a,, and r,, have integral values
for any m which is an integral multiple of ». If item-by-item inspec-
tien leads to acceptance of the lot at the nth item, then n must be an
integral multiple of », and therefore inspection in groups of » will also
lead to acceptance. If item-by-item inspection leads to rejection of
the lot at the nth item, then we have d,, = .. Let n’ be the smallest
integral multiple of v greater than or equal to n. Then d,, = Tnr, SINCE
d. is an integer, d, — r, = 1, and r,» — r, < 1. Henced, = rn, and
mspection in groups will also terminate with rejection of the lot. Thus,
Inspection in groups leads to exactly the same decision as item-by-
item inspection and consequently grouping does not affect the OC curve.

5.6.2 Upper and Lower Limits for the Effect of Grouping on the
OC and ASN Curves

Upper and lower limits for the effect of grouping on the OC and ASN
curves can be obtained by considering the following three auxiliary
sequential sampling plans. Let ko be the intercept of the acceptance
line, h; the intercept of the rejection line, and s the common slope in
the given sampling plan. The first auxiliary plan is obtained by
changing hy to ho* = hy — vs and leaving h; and s unchanged. The
second auxiliary plan is obtained by changing h; to A* = A, + Vs,
leaving hg and s unchanged. Finally, the third auxiliary plan corre-
sponds to the intercepts hg*, h,*, and slope s. Let L;(p) denote the
OC function and E,; (n) the ASN function of the auxiliary plan 7, when
item-by-item inspection is used (z =1, 2,3). Furthermore, let L(p)
denote the OC function and Ep(n) the ASN function of the given plan
when item-by-item inspection is used. When inspection is made in
groups the OC and ASN functions are affected,' and we shall denote
them by L(p) and E,(n) respectively.

13 See also SRG 255, p. 2.30.

. 14 Except, in the case of the OC function, when the number of units in the group
1s the reciprocal of the slope, as stated in Section 5.6.1.
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It can easily be seen that whenever the first auxiliary plan (using
item-by-item inspection) leads to the acceptance of the lot, the orig-
inal plan (taking observations in groups) also leads to acceptance.
The converse 1s, however, not necessarily true. That 1s, 1t may happen
that the auxiliary plan leads to rejection of the lot, whereas the original
plan leads to acceptance. Thus, we have

(5:32) L,(p) = L(p)

Similarly, one can verify that whenever the second auxiliary plan
(using item-by-item inspection) leads to rejection of the lot, the orig-
inal plan (using grouping) also leads to rejection. Hence

(6:33) 1 — Lo(p) =1 — L(p)
This can be written as

(5:34) L(p) = Lax(p)
From (5:32) and (5:34) we obtain

(5:35) Li(p) = L(p) = L2(p)

To derive an upper limit for E,(n) we shall make use of the third
auxiliary plan. If this plan (using item-by-item inspection) terminates
at the inspection of the n»th unit, the original plan (using grouping)
must terminate at the latest with the inspection of the group in which
the nth item is included.’® Hence, the number n’ of units inspected
when the original plan is used cannot exceed n + ». From this it
follows that -

(5:30) Byn) S Epan) + v
Since E,(n) = Ep(n), we obtain the limits
(5:37) Ep(n) = Ep(n) = Epz(n) +v

Limits for L(p) and £,(n) could also be derived by using the method
described in Sections A.2.3 and A.3.1 of the Appendix. The limits
given in (5:35) and (5:37) will be rather close when pi1/Po and
(1 — p1)/(1 — po) are near 1 and vs does not exceed 1.

5.7 Truncation of the Test Procedure

The sequential sampling plan does not provide any definite upper
bound for the number n of units to be inspected. Any large value of
n is possible, but the probability is small that n will exceed twice or

15 T, is possible, of course, that inspection terminates with an earlier group.
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three times its expected value. It is sometimes desirable to set a
definite upper bound 7, for n, excluding even a small probability that
n may exceed n9. This can be done by truncating the sequential proc-
ess at n = ng. That is to say, we terminate the process at n = ng
even if the regular sequential rule does not lead to a final decision for
n = ng. The following seems to be a reasonable rule for deciding
acceptance or rejection of the lot at n = ny if no decision is reached
for n = ng with the regular sequential procedure: If d,, =
(@n, + 72,)/2 we reject the lot, and if d,, < (@rny, + 7T2,)/2 we accept
the lot.

Truncation and its effect on the OC curve are discussed in Section
3.8. If mp is put as high as three times the expected value of n, the
effect of truncation on the OC curve is negligibly small, since the
probability is nearly 1 that the regular sequential procedure will termi-
nate for n < n,.



Chapter 6. TESTING THE DIFFERENCE BETWEEN THE
MEANS OF TWO BINOMIAL DISTRIBUTIONS (DOUBLE
DICHOTOMIES)

6.1 Formulation of the Problem

Suppose that we want to compare the effectiveness of two produc-
tion processes where the effectiveness of a production process 1s meas-
ured in terms of the proportion of effective units in the sequence pro-
duced. We shall say that a unit is effective if it has a certain desirable
property, for example, if it withstands a certain strain. Let p; be the
proportion of effectives if process 1 is used, and p, the proportion of
effectives if process 2 is used. In other words, p; is the probability
that a unit produced will be effective if process 1 is used, and p: is the
probability that a unit produced will be effective if process 2 is used.
Suppose that the manufacturer does not know the values of p, and
p2, and that process 1 is in operation. If p; = p2, the manufacturer
wants to retain process 1. However, if p; < pe, especially if p; is
substantially smaller than p2, the manufacturer would like to replace
process 1 by process 2. Thus, we are interested in testing the hypoth-
esis that p; = p2 against the alternative that p; < ps.

A more general formulation of the problem can be stated as follows.
Consider two binomial distributions. Let p; be the probability of a
success in a single trial according to the first binomial distribution,
and let p2 be the probability of a success in a single trial according to
the second binomial distribution. We shall use the symbol 1 for suc-
cess and the symbol O for failure. Suppose that the probabilities pi
and p, are unknown. We consider the problem of testing the hypoth-
esis that p; = p2 on the basis of a sample consisting of NV, observations
from the first binomial distribution and N, observations from the
second binomial distribution. Since in many experiments the case
N; = N, is mainly of interest, and since this case (as we shall see
later) makes an exact and simplified mathematical treatment of the
problem possible, in what follows we shall assume that NV, = N, =N
(say). Thus, on the basis of the outcome of the two series of NV inde-
pendent trials we have to decide whether the hypothesis p1 £ P2

should be accepted or rejected.
106
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6.2 The Classical Method

The classical solution of the problem for large N is given as follows.
Let S; be the number of successes 1n the first set of N trials (drawn
from the first binomial distribution), and let .S, be the number of suc-
cesses 1n the second set of N trials (drawn from the second binomial
population). Denote (S; + S2)/2N by pand 1 — 5 by g. Then for
large N the expression

S — S
(6:1) 2 :
V2N 5§
1s normally distributed with zero mean and unit variance if p; = p..

Suppose that the level of significance we wish to choose is ««. Let A,
be the value for which the probability that a normal variate with zero
mean and unit variance will exceed A, is equal to «. (For example, if
a = .05, A\ = 1.64.) Thus, if p, = p,, the probability that the ex-
pression (6:1) will exceed A\, is equal to «. If p; > po, the probability
that the expression (6:1) will exceed A, is less than «. According to
the classical method, the hypothesis that p; = p, is rejected if the
observed value of (6:1) exceeds A,. This method involves an approxi-
mation, since the distribution of (6:1) is not exactly normal (for small
N it is far from normal). For small N an exact method has been pro-
posed by R. A. Fisher which, however, involves cumbersome calcula-
tions. In Section 6.3 we shall suggest another (non-sequential)
method which is exact and is fairly simple to apply as far as compu-
tations are concerned. The latter method has the further advantage
of being suitable for sequential analysis, to which existing methods
are not readily adaptable.

6.3 An Exact Non-Sequential Method

Let a,, - - -, axy be the results in the first set of N trials, and b,, ---, by
the results in the second set of N trials. These results are arranged in
the order observed. Consider the sequence of N pairs:

(62) (tll, bl), "ty (ah'; bx)

Let {; be the number of pairs (1, 0) and # the number of pairs (0, 1)
In this sequence. We consider only the pairs (0, 1) and (1, 0) and base
the test on them.

Let @ be the outcome of an observation from the first population,
and b the outcome of an observation from the second population.
The probability that (a, b) = (1, 0) is equal to p;(1 — ps), and the
probability that (a, ) = (0, 1) is equal to (1 — p,)p.. Hence, know
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ing that (a, b) is equal to one of the pairs (0, 1) and (1, 0), the (condi-
tional) probability that it is equal to (0, 1) is given by

(1 — pU)p2
p1(1 — p2) + p2(1 — p1)
and the (conditional) probability that it is equal to (1, 0) is given by

(6:3) P =

p1(1 — p2)
p1(l —p2) + (1 — p)p2

Hence, when only the pairs (1, 0) and (0, 1) are considered, the variate
t> is distributed like the number of successes in a sequence of ¢ =
t; + t> independent trials, the probability of a success In a single trial
being equal to p. One can easily verify that p = 5 if p1 = pq,
p < 14 if py > p2, and p > 14 if p; < p2. Thus, the hypothesis to
be tested, i.e., the hypothesis that p; = p», is equivalent to the hypoth-
esis that p < 14. Thus, we can test the hypothesis that p; = p2 by
testing the hypothesis that p = 14 on the basis of the observed value
of t,. Since the distribution of ¢, is the same as the distribution of the
number of successes in ¢ = {; + t» independent trials (¢ is treated as a
constant and the probability of a success in a single trial is equal to
p), the test procedure can be carried out in the usual manner. If we
want a level of significance a, a critical value 7T is chosen so that for
p = 14 the probability that {2 = 7T is equal to a. The hypothesis that
p = 14 is rejected if and only if the observed i; is greater than or equal
to the critical value 7. The value of 7 can be obtained from a table
of the binomial distribution. If ¢ is large, {2 is nearly normally dis-
tributed, and the critical value 7" can be obtained from a table of the
normal distribution.

This procedure thus provides a simple test of the hypothesis that
p1 = p2. The question arises whether the efficiency of this method is
as high as that of the classical method. It would seem that the method
suggested here cannot be a most efficient procedure, since the values
of t; and {» depend on the order of the elements in the sequences
(ay, - -+, an) and (b;, -+, bx), and there is no particular reason to
arrange them in the order observed. However, it has been shown *
that the loss in efficiency as compared with the classical method 1is
negligible if the number N of trials is large.”

(6:4) 1 —p =

1 See the author’s report, Sequential Analysis of Statistical Data: Theory, sub-
mitted to the Applied Mathematics Panel, National Defense Research Committee,
Sept., 1943.

2 The author believes that the loss in efficiency is slight even when N is small,
although no exact investigation of this case has been made.
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It should be pointed out that the procedure for testing the hypoth-
esis that p; = p2 can be used also for testing the hypothesis that
p1 = p2 if the alternative hypotheses are restricted to p, > P1.

In addition to simplicity and exactness, the present method seems
superior to the classical one in the following respect. Suppose that
(contrary to the original assumption) the probability of a success varies
from trial to trial. Let p,‘” denote the probability of success in the
1th trial of the first set, and let p>*’ denote the probability of success
in the zth trial in the second set (z =1, ---, N). Assume that the
probabilities p,‘” and p>‘ are entirely unknown and we wish to test
the hypothesis that p,¥ — p,V = ... = p/ @™ _ 5, M = 0. 1In this
case the classical method is not applicable, but the present method
provides a correct procedure. Such a situation may arise, for instance,
if we want to test the hypothesis that the probability of a success
(hitting the target) is the same for two different guns. In the course
of the experiments the probability of a hit may change because of ex-
ternal conditions such as wind or disposition of the gunner. However,
these external conditions are likely to affect both guns equally if the
trials are made alternately (or approximately alternately), so that if
the two guns are equally good we have p,¥ = p,® (i =1, --- N).

6.4 Sequential Test of the Hypothesis That p;, = p,

6.4.1 Risks That We Are Willing to Tolerate of Making Wrong
Decisions

In order to devise a proper sequential test for testing the hypothesis
that p; = p,, we have to state first what risks of making wrong deci-
sions we are willing to tolerate. The efficiency of production process 1
may be measured by the ratio of effectives to ineffectives produced,
e, by &y = p,/(1 — py). Production process 1 may be regarded the
more efficient the larger the value of k. Similarly, the efficiency of
production process 2 may be measured by A, = p2/(1 — p2). The
relative superiority of production process 2 over process 1 can ther
reasonably be measured by the ratio of ks to &y, 1.e., by

i\.’ 2 1 —

ki p1(l — p2)

If v = 1, the two processes are equally good. If w > 1, process 2 is
superior to process 1, and if v < I, process 1 is superior to process 2.
Thus, the manufacturer will, in general, be able to select two values
of u, up and uy, say (ug < u1), such that the rejection of process 1 in
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favor of process 2 is considered an error of practical importance when-
ever the true value of © = wug, and the maintenance of process 1 is con-
sidered an error of practical importance whenever w = u%;. If u lies
between up and u;, the manufacturer does not care particularly which
decision is made.

Clearly, we will always have uo < u;. If the transition from pro-
duction process 1 to process 2 involves some cost or other inconven-
jences, it seems reasonable to put up = 1 (or wp may even be slightly
greater than 1). This choice of %o really means that we consider the
rejection of process 1 a serious error whenever this process is not infe-
rior to process 2. On the other hand, if the transition from process 1
to process 2 does not involve any inconveniences, the rejection of proc-
ess 1 in favor of 2 cannot be a serious error when the two processes are
equally efficient, i.e., when w = 1. Thus, in such a case 1t seems reason-
able to choose up somewhat below 1.

After the quantities %o and u; have been chosen the risks that we
are willing to tolerate may reasonably be expressed in the following
form: The probability of rejecting process 1 should not exceed a pre-
assigned value « whenever © = up, and the probability of maintaining
process 1 should not exceed a preassigned value 8 whenever u = ;.
Thus, the risks that we are willing to tolerate are characterized by the
four quantities wug, u;, @, and G.

6.4.2 The Sequential Probability Ratio Test Corresponding to the
Quantities uy, u¥;, a, and B
After the four quantities ug, u;, «, and 8 have been chosen, a proper
sequential test can be carried out as follows. The (conditional) prob-
ability that we obtain a pair (0, 1), as given in (6:3), can be expressed
as a function of ». In fact

(1 — p1)p2
(1 — p1)p2 p1{1 — p2) U
(6.6) P = = — —
p1{(1 — p2) + p2(1 — P1) 1 4 p2(1 D1) 1 + =
l p1(1 — p2)

Let H, denote the hypothesis that p = uo/(1 + uo), and H,; the
hypothesis that p = u; /(1 + %;). A proper sequential test satisfying
our requirements concerning tolerated risks is the sequential prob-
ability ratio test of Ho against #,. The acceptance and rejection num-
bers for this sequential test can be obtained from (5:11) and (5:12) by
substituting uo/(1 + up) for po, u /(1 + u,) for py, and ¢ = 4 —+ 2
for m.
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Thus, for each value of ¢ the acceptance number is given by

B 1 4+
log log
l — o 1+ Up
(6:7) a; = = — e { —
log u; — log wug log u; — log ug

and the rejection number is given by

1 — [3 1 -+ (251
log log
o 1 + uo
(6 :8) Ty = { —
log u; — log ug log ©; — log ug
These acceptance numbers a, and rejection numbers r, (¢ = 1,2, ---)

are best tabulated before experimentation starts. The sequential test
i1s then carried out as follows. The observations are taken in pairs
where each pair consists of an observation from the first process and
an observation from the second process. We continue taking pairs as
long as a, < ¢, < r,. The first time that ¢, does not lie between the
acceptance and rejection numbers, experimentation is terminated.
Process 1 is maintained if at this final stage {3 < a,, and process 1 is
rejected in favor of 2 if £, = r,.

As an illustration, the following example is given. Let %, = 1.3,
u; = 3, a« = .03, and 8 = .10. The observed pairs (0, 1) and (1, 0)
In an experiment, and the rejection and acceptance numbers, are given
in Table 6. In this example, the sampling process is terminated at
t = 18 with the retention of process 1.

The test procedure can also be carried out graphically as shown in
Fig. 14. The total number ¢ of pairs (0, 1) and (1, 0) is measured along

244 ¢,

18
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the horizontal axis. The points (¢, a;) will lie on a straight line L,
since a; is a linear function of ¢. The points (¢, r,) will lie on a parallel
lIine I.;. We draw the lines Ly and I; and plot the points (¢, &) as

TABLE 6
¢ t2
Number Pairs Ac:; N, Number re
of Pairs | (0, 1), (1, 0) P of Pairs | Rejection
(0, 1), (1, 0) | Observed Nf'l':n"ger ©, 1) Number
Observed Observed
1 0, 1) 1
2 (0, 1) 2
3 (1, 0) 2
4 (1, 0) .. 2
5 (1, 0) 0 2
6 0, 1) 1 3
7 (1, 0) 1 3
8 ©, 1) 2 4
9 (0, 1) 3 L 5
10 (1, 0) 3 5
11 0, 1) 4 6 ..
12 (0, 1) 5 7 ..
13 (0, 1) 5 8 13
14 (1, 0) 6 8 14
15 (1, 0) 7 8 14
16 ©, 1) 7 9 15
17 (1, 0) 8 9 16
18 1, 0) 9 9 16
19 9 17
20 10 18
21 11 18
22 11 19
23 12 20
24 13 20
25 13 21
206 14 22
27 15 22
28 15 23
29 16 24

experimentation goes on. The first time that the point (¢, £2) is not
within the lines L, and L; experimentation 1s terminated. Process 1
'« maintained if at the final stage (¢, £2) lies on Ly or below, and proc-
ess 1 is rejected if (2, £2) lies on L, or above.



SEQUENTIAL TEST OF THE HYPOTHESIS THAT p, = p; 113

The intercept of line L, is given by
B

l — @
log u; — log ug
and the intercept of L, is given by

log

(6:9) ho =

1 —28
14 4
log u; — log uo
The common slope of the two lines is equal to

1+u1
1 +uo_
log u; — log ug

6.4.3 The Operating Characteristic Curve of the Test

For any value u of the ratio ks/k,, we shall denote by L(u) the
probability of maintaining process 1. Clearly, L(w) is a function of .
This function L(u) is called the operating characteristic function of the
test. It can be obtained from equations (5:19) and (5 :20) by substi-
tuting wo/(1 + o) for pp and u;/(1 + u;) for p;. These equations

log

(6:10) h; =

log

(6:11) s =

are: 3 a
1 —_—
(7)) -
(6:12 L =
) () (o (2
l — o
and
. (I -+ uo)h
(6:13) i e
1 + (u1(1+u0)) (l‘f‘uﬂ 8
‘ug(]. -+ ?.Ll) 1 + Uy
Equation (6:13) can be written as
1 (1 + uo\?
(6:14) U = —— —
(%1(1 —+ %p) h_
uo (1 + 2y)

: ‘In t,l_m formulas given in SRG 255, p. 3.38, the quantities © and L(u) are ex
pressed in terms of a “dummy”’ variable z which is functionally related to A.
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For any given value A we compute % and L(u) from the equations
(6:12) and (6:14). The point [«, L(uw)] obtained in this way will be a
point of the OC curve. By calculating the points [u, L(u)] for a suffi-
ciently large number of values of 2, the OC curve can be drawn.

We shall compute [u, L(x)] for A = — o, —1, 0, 1, 4+ . Since
1 j_:: < 1 and 23 i:?; > 1, we obtain from (6:12) and (6:14)
(6:15) #u= o and L) =0 whenh = —
(6:16) ©u=0 and L) =1 whenh = +

Furthermore we obtain

(6:17) w =% and L(u) =8 when h = —1
and
(6:18) w=1u and L(u) =1 —a whenh = -1

For A = 0, the expressions v and L(u) have the form 0/0. The
limiting values of u and L(ux) when A — 0 can be obtained by differen-
tiating numerator and denominator at 2 = 0. Then we have

1 + 24 1 — 8
logl T log
Uo o
6:19 = - and ZL(w) =
6:19) u w1+ wo) () e LB 1oy P
o
guo(l —+ u;) o ] — «

when 2 = 0.

These five points on the OC curve already determine roughly the
shape of the curve. It can be seen that u is a decreasing function of
h and L(w) is an increasing function of 2. Hence L(u) is a decreasing
function of #. As u varies from 0 to wuwgy, L(u) decreases from 1 to
1 — «. In the interval from %o to %;, L(u) decreases from 1 — « to
8, and as u varies from u; to + «, the OC function L(u) decreases
from B8 to O.

6.4.4 The Average Amount of Inspection Required by the Test

For any value u of the ratio kz/k;, let E,(#) denote the expected
value of the total number of pairs (0, 1) and (1, 0) required by the
test. The value of E.(¢) can be obtained from (5:23) by substituting
E.(1) for E,(n), L(w) for L(p), uo/(1 + uo) for po, w1/(1 + ) for p1,
and »/(1 + w) for p. Thus*

¢ The right-hand member of (6:20) can be expressed as a function of L(w), the
intercepts and the slope of the decision lines. See SRG 255, p. 3.41.
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B 1 —8
L(w) log F (1 — L(w)) log
(6'20) I (g) = ——1-_-—0:-—— a—"
' “ U u1(1 —+ ug) 1 1 +u0
log I log

142 “wul+u)  14+u °1+ u

To compute the expected value of the total number of pairs (in-
cluding also the pairs (0, 0) and (i, 1)), we merely have to divide the
right-hand side of equation (6:20) by p;(1 — p2) + p2(1 — py).

Since L(0) = 1 and L(=) = 0, we obtain from (6:20)

B
log
(6:21) . = - L - - when v = 0
' “ 1 <+ U
log L5
u
and 1
1 —8
log
(6:22) E () — — r —  Wwhenu =
wuy (1 4+ 2g)
log
uo(l + u1)
Since L(up) = 1 — « and L(w,;) = 8, it follows from (6:20) that
1 —
(l—a)loglﬁ - « log i
(6:23) FE, () = ——— ot Sl
g 141(1 + Hn) 1 1 —+ U
log # log
1 4 uo uo(l + uy) 1 4+ uo 1 + uy
and 5 . 5
Blogl — + (1 — B8) log
(6:24) E, @) = = — -
(751 ul(l -+ ’Hu) 1 1 4+ Up
log l log

1 + (251 uo(l -+ ?J,l) 1 + U1 1 -+ U,

| In Section 5.5 we have computed the expected value of n when D
1s equal to the slope of the acceptance and rejection lines. This corre-
sponds to the case when w/(1 + u) = s, 1.e., u = s/(1 — s), where the
slope s is given in (6:11). The value of £, for u = s/(1 — s) ean
be obtained from the right-hand member of (6:30), replacing p,; by
ul/(l -+ u]) and Po by uo/(l -+ LED). Thus

(0-2) (1o~ 7)
— | log ——— log
l — « o

(6:25) E s () =—

1—s (1 + wg) 1 +
log log
uo(l + uy) 1 + wuo
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The determination of the five values of ¥,(¢), as given in (6:21)
through (6:25), may frequently suffice in practice, since these five
points generally give a fairly good idea of the shape of the whole curve.

6.4.56 Observations Taken in Groups

In applications it may happen that, at each stage in the sequential
process, instead of drawing a single observation we draw a group of
v observations from each of the binomial distributions. Hence, instead
of a single pair, we have two groups of » observations. The effect of
grouping on the OC and ASN curves has been discussed in Section 5.6
and the results obtained there can be applied to the case under con-
sideration here. If the order of observations in each group of v is re-
corded, we can establish the number of pairs (0, 1) and the number of
pairs (1, 0) for each pair of groups of » observations. In such a case
the test can be carried out as described in Section 6.4.2, since after
each pair of groups of » observations we can compute ¢ and ¢{. How-
ever, if the order of observations in such groups is not recorded, the
difficulty arises that we are not able to determine the values of ¢ and
> needed for the test procedure.

It has been shown ® that in such a case we may replace ¢ and ¢; by
certain estimates of ¢ and ¢; without affecting seriously the probability
of making an incorrect decision. The estimates of ¢; and ¢; (and thereby
also an estimate of ¢ = ¢, + ¢>) are obtained as follows. Let v; be the
number of successes in the group of v observations drawn from the first
binomial distribution, and let v be the number of successes in the
group of v observations drawn from the second binomial distribution.
Then for this pair of groups of » observations we estimate the number
of pairs (1, 0) to be v; — (v;v2/v) and the number of pairs (0, 1) to be

vo — (vyv2/v). Thus, an estimate of ¢; 1s obtained by summing »;
— (v,v2/v) over all pairs of groups observed, and that of ¢; is obtained by
summing ve — (v122/v) over all pairs of groups observed.

For the effect of grouping on the OC and ASN curves, the results
of Section 5.6 can be applied, since the test procedure discussed here
reduces to that considered in Section 5.6 when p = w/(1 + w),
m =t + > = t, and d,, = {s.

5§ See the author’s report, Sequential Analysis of Statistical Data: Theory, sub-
mitted to the Applied Mathematics Panel, National Defense Research Committee,
Sept., 1943.



Chapter 7. TESTING THAT THE MEAN OF A NORMAL DIS-
TRIBUTION WITH KNOWN STANDARD DEVIATION FALLS
SHORT OF A GIVEN VALUE

7.1 Formulation of the Problem

Let x be a random variable which is normally distributed with un-
known mean ¢ and known standard deviation ¢. In this section we
shall deal with the problem of testing the hypothesis that @ is less than
or equal to some specified value §’.

Such a problem arises frequently, for example, in quality control and
acceptance inspection. Suppose that a lot consisting of a large number
of units of a manufactured product is submitted for acceptance inspec-
tion. The number of units in the lot is assumed to be sufficiently large
so that the lot may be treated as containing infinitely many units.
Suppose that the result of an observation is a measurement xr of some
quality characteristic of the unit, such as the weight, or hardness, or
tensile strength. The value of z will, in general, vary from unit to
unit. It is assumed that x is normally distributed with a known stand-
ard deviation ¢ but unknown mean 6. Suppose, furthermore, that the
product is considered the more desirable the smaller the value of 8.
Then it will, in general, be possible to designate a particular value §’
such that we prefer to accept the lot if 8 < 68’ and we prefer to reject
the lot if @ > ¢’. Thus, in such a situation, we are interested in de-
vising a sampling plan to test the hypothesis that 8 < ¢.

Since quality control and acceptance inspection is an important field
of application for such test procedures, we shall continue the discus-
sion using the terminology of acceptance inspection. This, of course,

shou_ld not be interpreted as a restriction on the general validity and
applicability of the test procedure.

7.2 Tolerated Risks of Making Wrong Decision

If ¢ = ¢, we are indifferent whether the lot is accepted or rejected.
The preference for acceptance increases with decreasing value of @ in
the domain 8 < 6’, and the preference for rejection increases with 1n-
creasing value of ¢ in the domain 8 > ¢’ Thus, it will be possible, in

general, to find two values 6, and 8, (6p < ¢’ and 6, > 6’) such that
117
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rejection of the lot i1s considered an error of practical consequence if
8 < 8o, and acceptance of the lot is considered an error of practical
consequence if 8§ = 6;; for values 8 between 6o and 6; we do not care
particularly which decision is taken. Using the terminology introduced
in Section 2.3.1, we may say that the zone of preference for acceptance
consists of all values @ for which 8 = 6y, the zone of preference for re-
jection is the set of all values 8 for which ¢ = 6,, and the zone of in-
difference consists of all values ¢ between 63 and #6,.

After the two values 6p and 8; have been chosen the risks that we
are willing to tolerate may reasonably be expressed as follows.! The
probability of rejecting the lot should not exceed a small preassigned
value « whenever 8 < 6y, and the probability of accepting the lot
should not exceed a small preassigned value 8 whenever 6§ = 6,. Thus,
the risks that we are willing to tolerate are characterized by the four
numbers 8g, 8;, «, and 8.

7.3 The Sequential Probability Ratio Test Corresponding to the
Quantities GO! B], a, and B

The requirements regarding the tolerated risks are satisfied by the
sequential probability ratio test of strength («, 8) for testing the hy-
pothesis that 8 = 6, against the alternative that 8 = 6,. This sequen-
tial test is given as follows. Let z;, xg, - -+, etc., be the successive
observations on z. The probability density of the sample (1, - - -, Zm)
is given by

m

(7:1) Pom = ——5—¢ 222, (e 0"
(2w) 20™

\f 8 = 8¢, and by

7:2) D — lm 6— F:_zaéx (z,—61)?
(27) 2™

.f 8 = 6,. The probability ratio pim/pPon is computed at each stage
of the inspection. Additional observations are taken as long as

—_ _1. =Z(x _31}2
Pim B e 2a2 7
Pom 6"" 542 Z(za—60)

1 See. for instance, Section 2.3.2.
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Inspection is terminated with the acceptance of the lot if

- 5y E(za—61)?
(7:4) 1

-— —— — 2

B

IA

Inspection is terminated with the rejection of the lot if

(7 :5) - = A

According to Section 3.3 approximate values of A and B are given
by (1 — 8)/a and 8/(1 — «), respectively.

By taking logarithms and simplifying, the inequalities (7:3), (7:4),
and (7:5) can be written as

B 6, — 8 m 1 —
(7:6) lo'g1 < = 5 > E :$a+2_§(902'—912) <log————'§

— @ o pp o "
91 —_ 30 L 7 ﬂ
(7:7) — ZTa + — (602 — 6,%) < lo
2 £ 202(0 1%) gl-—-a
and
61 — Bo ~ m 1 — 8
(7:8) > E Ta + 5 (60" — 6,%) = log
a a=1 20- (4')
respectively.

Further simplification in carrying out the test procedure can be
fu,?hieved by adding (—m/2¢2) (60> — 6,2) to both sides of the inequal-
1ities (7:6), (7:7), and (7:8) and then dividing these inequalities by

(6, — 60)/0*. These operations transform the inequalities (7:6), (7:7),
and (7:8) into

o2
(7:9) log s —+ mﬁo _;- L <

91—50 l—a
m 2
o 1 — 7] 7
-_>:-'L‘q'< log '6+mu+l

a=1] el - BU‘ o 2
2
(7:10) Tr, < o log B 1+ om 6o + 6,
91 — 90 1 — X 2
and
2
(7:11) Tz z — logri P 0t 0
61 — 6o 15" 2

respectively.
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By using the inequalities (7:9), (7:10), and (7:11) the inspection
plan may be carried out as follows. For each m compute the accept-
ance number

o B 6o + O
(7:12) a,, = lo - m
91 — 90 S l — « | 2
and the rejection number
o 1 — 6o + 6
(7:13) T = log e - m 0 -
81 — fo o 2

These acceptance and rejection numbers are best computed before in-
spection starts. Inspection is continued as long as a, < 2o < Tme-
At the first time when =z, does not lie between a,, and 7,,, inspection
is terminated. The lot is accepted if Zx, < a.., and the lot is rejected
if Zz, = 7.

As an illustration, consider the following example. Let 6o = 135,
9, = 150, « = .01, and B8 = .03. Furthermore, let ¢ = 25. The ob-
servations and the acceptance and rejection numbers are tabulated in
Table 7, which shows that the sampling inspection 1is terminated at
m = 20 with the acceptance of the lot.

The test procedure can also be carried out graphically as shown in
Fig. 15. The number m of observations is measured along the hori-

40004 5 » L,
3000
2000
1000
°o 5 10 15 20 25

Fi1aq. 15.

zontal axis. The points (m, a,,) will lie on a straight line Lo and the
points (m, r,) will lie on a parallel line L,. We draw the parallel lines

Lo and L, before inspection starts. The points (m, E z) are plotted
a=1

as inspection goes on. Inspection is continued as long as the plotteFI

points (m, Zz,) lie between the lines Lo and L,. Inspection is termi-

nated at the first time when the point (m, Zz,) does not lie between
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TABLE 7
zz
m am x Cumulated Tm
Number of | Acceptance | Observed Sum of Rejection
Observations Number Value Observed Number
Values

1 e 151 151 334

2 139 144 295 476

3 281 121 416 619

4 424 137 553 761

5 566 138 691 904

6 709 136 827 1046

7 851 155 982 1189

8 994 160 1142 1331

9 1136 144 1286 1474
10 1279 145 1431 1616
11 1421 130 1561 1759
12 1564 120 1681 1901
13 1706 104 1785 2044
14 1849 140 1925 2186
15 1991 125 2050 2329
16 2134 106 2156 2471
17 2276 145 2301 2614
18 2419 123 2424 2756
19 2561 138 2562 2899
20 2704 108 2670 3041
21 2846 3184
22 2989 3326
23 3131 3469
24 3274 3611
25 3416 3754
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Lo and L,. If it lies on L, or below the lot is accepted, and if it lies

on L, or above the lot is rejected.

The common slope of the lines Lo and L, is given by

b0 + 6,

(7:14) s =
2
The intercept of L is equal to

a2

(7:15) ho = log

6, — 6,

and the intercept of L, is given by

o2

(7:16) hy = log

_91—90

B

l — «

1 - g8

a
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7.4 The Operating Characteristic (OC) Curve of the Test

Let L(8) denote the probability that the sequential test will lead to
the acceptance of the lot when 6 is the true mean value. The function
L(8) is called the operating characteristic function of the test. Ap-
proximate formulas for the OC function are derived in Section 3.4 and
the general results are applied to testing the mean of a normal popu-
lation. [See equation (3:48).] It is shown there that

(=9 -

(7:17) L(8) ~ (1 — 5)*" ( p -
o l] — o
where
7, 6o — 26
(7:18) portoe

8, — 6o

It can be seen from (7:17) and (7:18) that L(6) is an increasing func-
tion of & and hk is a decreasing function of 8. Hence L(9) is a decreas-

ing function of 6.

For 8§ = — o, 8y, (60 + 61)/2, 61, + = the values of L(8) obtained
from (7:17) are given as follows.?
(7:19) L(—x) =1; L) =1 — «
1 —8
log
7, (90 —I— 61) _ 184
Z 1 — 8 B
log log
o l — «
L({#,) = B
L(o) =20

The computation of these five points of the OC curve will suffice In

many applications. ' ‘
It may be of interest to express L(6) in terms of the intercepts ho

2 For @ = 61 + 6 we have h = 0 and the limiting value of the right-hand member
1 — B8
log
x
of (7.17) as h — O 1s equal to = : -—ﬁ_ p
ll'.}g —_ lng

l — o«
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and h,; and the common slope s of the lines Ly and ;.2 From (7:17)
and (7:18) it follows that

e %1—% — 1
(7:20) L(#) ~ — 1—58 8, +80— 28 8
;II?%.‘EB log =3 — € lﬁ'ljﬂu log 72
o2 B o 1 — 8 6 + 6o
Since hg = log ,hy = log and s = ,
31 — 90 l — « 31 - Bg o 2
we obtaln from (7:20)
% (s—6)h,
e’ —
21 L(8) ~
(7 ) ( ) u% (s—8)h, g% (s—8)ho
e —

7.6 The Average Amount of Inspection Required by the Test

In Section 3.5 the following approximation formula is derived for

the expected value Ey(n) of the number n of observations required by
the sampling plan.

1 —_—
L(6) log + [1 — L(8)] log g
—_— Y X
(7 :22) Fe(n) = —
? Ey(z)
where
St (2—6;)2
= f(xr 91) € 2o*
TED T B e T 1 s

1
52 (2061 — 6o)x + 6,° — 6,2]

and Ey(z) denotes the expected value of z when @ is the true mean of z.
The value of E4(z) is given in Section 3.5, equation (3:60).

1
(7:24) EQ(Z) = '2—2 [2(6]_ — 60)3 —I-' 902 — 612]

a
Hence

L(6) log " + [1 — L(8)] log ! b
(7:25) Es(n) = 202 - - -
80° — 612 + 2(6;, — 6,)8
hy + L(6)(ho — hy)
6 — s
? See also SRG 255, p. 4.19.
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where hy and h; are the intercepts and s is the common slope of the
lines Lo and L;.

For 8 = s, the right-hand member of (7:25) takes the form 0/0. It
is shown in the Appendix, equation (A:99), that the limiting value is
given by

B8 1 —28
— log log

l — & o

7 :26 Ea =
(7:26) () o
Since E,(z) = 0, E,(z%) is equal to the variance o¢.? of z. From (7:23)
it follows that the variance of z is equal to (6; — 60)?/c®. Hence
lo g log ~—F
ol — hohy

(7:27) E,(n) = o — 00" o? = —




Chapter 8. TESTING THAT THE STANDARD DEVIATION OF
A NORMAL DISTRIBUTION DOES NOT EXCEED A GIVEN
VALUE

8.1 Formulation of the Problem

Let = be a normally distributed variate. In this section we shall
deal with the problem of testing the hypothesis that the standard
deviation o of x does not exceed a given value ¢’. There are two cases
to be considered: the mean of z is known or unknown. First we shall
treat the case when the mean of z is known. If the mean of z is un-
known, only a slight modification of the test procedure will be neces-
sary, as will be seen later.

This problem, like the one treated in Section 7, arises frequently in
quality control and acceptance inspection. Suppose that z is some
measurable quality characteristic of a manufactured product and that
z 18 normally distributed in the population of units produced. Sup-
pose, furthermore, that the quality of the product is considered the
better the smaller the standard deviation ¢. Thus, there will be, in
general, a value ¢’ such that the product is considered substandard if
o > ¢’ and the product is considered satisfactory (meets specification)
if ¢ < ¢’. Since ¢ is unknown, the problem is to devise a sampling
plan for testing the hypothesis that the product is satisfactory, i.e.,
that ¢ = ¢’.

8.2 Tolerated Risks for Making a Wrong Decision

If the quality of the product is exactly on the margin, i.e., if ¢ = o,
it will make no difference whether the product is classified as satis-
factory or as substandard. However, if o is considerably smaller than
o’, the classification of the product as substandard will usually be
regarded as an error of practical importance. Similarly, if ¢ is muck
larger than ¢/, the classification of the product as satisfactory will be
a serious error. Thus, it will be possible to specify two values oo and
o1 (090 < ¢’ and o; > ¢’) such that the classification of the product as
substandard is considered an error of practical importance whenever
o = oo, and the classification of the product as satisfactory is regarded
as an error of practical consequence whenever o = o;; for values o be-

tween o9 and o; we do not care particularly which action is taken.
125
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In accordance with the considerations in Section 2.3.2, the risks that
we are willing to tolerate may reasonably be stated as follows: The
probability of classifying the product as substandard should not exceed
a small preassigned value « whenever ¢ = og, and the probability of
classifying the product as satisfactory should not exceed a preassigned
value 8 whenever ¢ = 0.

8.3 The Sequential Probability Ratio Test Corresponding to the
(gﬂlaﬂltiti8£itro, Orl,ll,.alldlla

A sampling plan satisfying the requirements regarding the tolerated
risks is given by the sequential probability ratio test of strength (e, 8)
for testing the hypothesis that ¢ = o¢ against the alternative that

g = 01.
Let z;, 22, * - -, etc., denote the successive observations on z. The
probability density of the sample (z,, - - -, T») is given by
m
1 — 53 2 (@a—0)?
(8:1) DPm = — e a=1
(211')—2-6""

where the value of the mean 6 is assumed to be known. Let pin de-
note the expression we obtain if ¢ is replaced by ¢; (Z = 0, 1) In th_e
right-hand member of (8:1). The sequential probability ratio test 1s
given as follows. The probability ratio py./Pom 1S computed at each
stage of the experiment. Additional observations are taken as long as !

m
— LS @a—6)?

1 2012
_—me a=1
(8'2) !3 <p1m__1 N {1_'13
: l] — a Pom 1 _2122(1:“_3], o
—_ e ua=1
oo’

The product is classified as satisfactory 1

m
— 1 2 (xa—8)2

1 2012

— 6 a=1]

o 4l B8

(8 3) - — — - ;:‘_
] 1 2 1 -

1 = 2g02 2 (Za—6)

—_— e II}-r:r==1
m

g0

! There is a slight approximation involved in the formulas given below, _sinice
the constants A and B are put equal to (1 — 8)/« and 8/(1 — «) respectavely.
In this connection see Section 3.3.
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The product is classified as substandard if

1 m
- m E (Iu:—a)’

1
— e a=1
m 1 -
(8:4) -+ ——— = B
— 3 (za—6)2 «*
1 Tma
U'Um

Taking logarithms, dividing by (1/2¢0%) — (1/20,%) and simplifying,
the inequalities (8:2), (8:3), and (8:4) will become

B o1®

2 log + m log L -
l — 0'02
8:5) ——mm——— < E (Za — 6)° <
1 1 o
o2 a12
1 — o1
2 log g - m log ——15
(8 4 g0
1 1
0_02 612
B o1?
" 2 log  m log 1
z : 2 l — « 0'02
a=]1 1 1
0'02 0'12
and
— 2
m 2 log 8 } mlogg—lﬂ
(8:7) E (Za — 6)2 = — Jo_
a=] 1 1
0'02 0‘12
respectively.

On the basis of the inequalities (8:5), (8 :6), and (8:7), the test pro-

cedure can be carried out as follows: For each integral value m com-
pute the acceptance number

2
. 1 — o 0'02
(8:8) Q= + m
1 1 1 1
2 2 2 2
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and the rejection number

1 — B o12
2 log log Lz

(8 '9) r,, = = - - L - go -
i 1 1 1 1

0’02 '-712 0’02 0'12

These acceptance and rejection numbers do not depend on the
outcome of the observations and, therefore, they can be computed
before inspection starts. Inspection is continued as long as a, <

m

E (£ — 8)2 < 7,,. The first time that Z(x,. — 68)° does not lie be-

ax=1

tween a,, and 7,,, inspection is terminated. If at the final stage

™

E (£ — 6)%2 =< a,, the product is declared satisfactory, and if

a=1

L
E (zo — 6)2 = 7r,, the product is declared substandard.
a==1

A graphical presentation of the test procedure is shown in Fig. 16.

Fig. 16

The number m of observations is measured along the horizontal axis.
Since both a,, and 7, are linear functions of m, the points (m, @) will
lie on a straight line Ly and the points (m, r) will lie on a straight
line L;. These two lines are parallel and the common slope is given by

0'12

log —
g oo?
1 1

0,02 o 2

(8:10) § =
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The intercept of L is equal to

2 log 0
l — «
(8:11) ho = N n
0'02 0'12
and the intercept of 7, is given by
2 log —f
(8 4
(8:12) hy = - - -
Uoz 0‘12

The lines Lo and L, can be drawn before inspection starts. As inspec-

tion goes on the points [m, E (xa — 6)?%)] are plotted. The first time

a=1

that the point [m, Z(x, — 6)?] does not lie between the lines 7, and
L,, inspection is terminated. If the point [m, Z(z, — 6)2?] lies on L,
or below, the hypothesis that the product is satisfactory is accepted;

and if the point [m, Z(zo — 6)?] lies on L; or above, the product is
declared substandard.

8.4 The Operating Characteristic (OC) Function of the Test

For any value o, let L(¢) denote the probability that the test will
terminate with the acceptance of the hypothesis that the product is
satisfactory. The function L(¢) is called the operating characteristic
function of the test.

In Section 3.4 a general method is given for deriving an approxima-
tion formula for the OC funection for any sequential probability ratio
test. Applying the result of that section, we obtain

(°)
) -1
(8:13) L(s) = =

20— (=)

where % is the root of the equation

1 h + = —21‘(1_9}2 A 1
o o2 _r .
(8:14) ——— Oh f © e %°° “ B}Ed 1
\ 2o o, - -1 (z_p2 *
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It can be seen that the integral on the left side of (8:14) has a finite
value only if (h/o12) — (h/oo®) + (1/¢%) > 0. In this case, as can be
verified, we have

1
w/ — 53 @—OH\E
(8:15) f+ e 20,12 r e_ :%'2 ("‘_9)!@ _ _—2-1-'__-—-
— ¢0 e"‘gﬁ(z—a}i h h + 1_
a2 oo* o’

Hence equation (8:14) can be written as
3
o1 1
8:16 (—) — e et
(8:16) “\oe \/ R k1
2

Instead of solving (8:16) with respect to k, we shall solve it with re-
spect to . We obtain

(U'_U 2.&— .

o1

(8:17) o = > >
5'12 0‘02

With the use of equations (8:13) and (8:17), the OC curve can be
plotted as follows. For any given value of A we compute ¢ and L{o)
from equations (8:13) and (8:17). The pair [0, L(s)] obtained in this
way gives us a point on the OC curve. Computing [o, L(o)] for a
sufficiently large number of values of 2, we obtain enough points to

draw the OC curve.
For computational purposes, it may be convenient to put *

h h z . — 2
. == or I ————
(8:18) 2012 2002 ( 1 1 )
602 0'12

Then equations (8:13) and (8:17) can be written as

1-8 — 2t
(1o=227) (,_1- — _1_)
e o0? 12/ — 1

B0 L0 - o Yy e (2
e co? o012/ — e ool o12
et 1
— —th, —thg

€ — €

2 A similar simplification was made by the Statistical Research Group. See

SRG 255, p. 6.31. The parameter ¢ used there corresponds to —i here.
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o —2
(e 2 (22)
e s0t  o12) — 1 \/ezs: — 1
2t

- 2

and

(8:20) o =

where s 1s the common slope and 2y and h; are the intercepts of the
Ilnes Ly and L;. Equations (8:19) and (8:20) may be more convenient
for the computation of the OC curve than the original equations (8:13)
and (8:17).

For ¢ = 0, 09, V/s, 01, + % the values of L(¢) are given as follows:

(8:21) L) =1

L(d’g) = ] — «

L(Vs) &

hl — hﬂ
L(oy) = B
L(e) =0

These five points already determine roughly the shape of the OC curve

and In many instances it will not be necessary to compute further
points.

8.6 The Average Amount of Inspection Required by the Test

According to the results in Section 3.5, an approximation formula

for the expected value E,(n) of the number 7 of observations required
by the sampling plan is given by

1 —
L(o) log 54 [1 — L(o)] log g

1 —
(8:22) E,(n) = — < B x
+(z
where
.1.. (3,‘_ 20,2 (z—0)?
(8:23) z=lc:::gﬂ.I - =10gﬂ_°_|_1 1 __1_) (x — 6)2
1 e Fog (=07 o1 2\eo® o,°
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and F,(z) denotes the expected value of z when ¢ is the standard devi-
ation of xz. We have

1/1 1 oo
(8:24) E,(z2) = —( > 2) E(x — )% 4+ log —
2 \oo o1 o1

1 ( 1 1 ) oo

= — ® + log —

2 0'02 0‘12 g g1

Hence, substituting the right-hand member of (8:24) for E,(z) in
(8:22) we obtain 3

1 — 1 —
L(o) [log i log ﬁ] + log — B
8:25) FE,(n) = 1 — @ = *
(8: ’ 1 ( 1 1 )0.2 T oo
2 0'02 0'12 Ogﬂ'l

Lc)(heg — A1) + a1

crz-—-s

For ¢ = /s the expected value of z is equal to O and the right-hand
member of (8:25) takes the form 0/0. According to equation (A :99)
in the Appendix, the limiting value is given by

B 1 — 8
— log log
B (n) ] — o o
. (n) =
(8:26) va 7o)
Since E_;(z) = 0, E_;(2°) is equal to the variance of 2 when o =

\s. It follows easily from (8:23) that this variance is equal to

2
%—( 12 12) s2. Hence
g0 B

— log P log L= F
l] — & o —"'h-oh1
(8:27) E s(n) = —F— N, 2
E (ﬂ'gz 0'12> °

3 The expression of E,(n) in terms of the slope and intercepts of the decision
lines is contained also in SRG 255, p. 6.34.
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8.6 Modification of the Test Procedure When the Population Mean
Is Not Known *

If the mean 6 of x is not known, the following two modifications of

the test procedure are to be made: (1) replace E (xa — 68)? by

a=1]1

E (xoe — Z) where £ = (x;y + -+ -+ x,,)/m; (2) the acceptance num-
a=1

ber a,, is replaced by a,._; and the rejection number 7r,, 1s replaced
by 7m—1. Thus, if the mean is unknown, the acceptance and rejection
numbers at the mth trial are equal to the acceptance and rejection
numbers corresponding to the (m — 1)th trial when the mean is known.

The formula for the OC curve remains unchanged and the expected
value of the number of observations required by the test is larger by 1
when the mean is unknown than when the mean is known.

¢* The result contained in this section was found by C. Stein and M. A. Girshick,
independently of each other. The proof is based on a transformation of the observa-
tions which reduces this case to the case when the mean is known. See Girshick’s
paper, “Contribution to the Theory of Sequential Analysis,” The Annals of Mathe-
matical Statistics, June, 1946.



Chapter 9. TESTING THAT THE MEAN OF A NORMAL DIS-
TRIBUTION WITH KNOWN VARIANCE IS EQUAL TO A
SPECIFIED VALUE

9.1 Formulation of the Problem

Let = be a quality characteristic of a product, such as weight, diam-
eter, or hardness. Suppose that x is normally distributed in the popu-
lation of all units produced and that the standard deviation o of = is
known but the mean 6 of z is unknown. Suppose, furthermore, that
a particular value of 8, say 6o, is considered the most desirable value
for the product. In general, the greater the absolute deviation of the
true value @ from the most desirable value 85, the less satisfactory the
product. Since the manufacturer would like to achieve and maintain
the value 6o of 8 as closely as possible, he will be interested in testing
the hypothesis that 8 = 8,. If the evidence supplied by a sample
should indicate that 8 < 6, he will try to improve the production proc-
ess. Of course, if 8 5= 8; but is near 6, there is no particular need to
improve the production, and acceptance of the hypothesis that 6 = 6
would not be a serious error. However, there will be, in general, a
positive value & such that the acceptance of the hypothesis that 8 = 6p
8 — 6o > 5

m—

is regarded as an error of practical importance whenever
ag

The situation described in the preceding paragraph will thus lead
to the following problem: A sampling plan is to be devised for which
the probability that the hypothesis that 8 = 8o will be rejected (the
product will be declared substandard) does not exceed a small pre-
assigned value « when 6 = 8g, and the probability of accepting the
hypothesis that 8§ = 6; (declaring the produc1l; satisfactory) does not
8 — 8,

[ o

= O.

exceed a small preassigned value 8 whenever

9.2 A Sequential Sampling Plan Satisfying the Imposed Require-
ments

It has been shown in Section 4.1.4 that an adequate sampling plan

for the problem described in Section 9.1 is given as follows. Compute

the ratio
134
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m ™
L s 3 <=n—ﬂa—au:-=+ - 55 3 Ga—to+s0)?
71 e «=! e =
pﬂm — 272 2 {In‘_ﬂﬂ)z
e a=1

at each stage of the experiment. Continue taking observations as long

as

(9:2) B<Pm - 4

DPom
Accept the hypothesis that the product is satisfactory if

(9:3) Prm < B
Pom

Reject the hypothesis that the product is satisfactory if

Pim
Pom

IV

A

(9:4)

To satisfy the requirements imposed regarding the probabilities of
making wrong decisions, for all practical purposes we may put 4 =
(1 —8)/aand B = 8/(1 — «).

The expression for pi./Pom given in (9:1) can be simplified to

m 1 é Ty — __5 ax—
(9:5) il _ 58__ %m&z(edz( e;,)+ . S Iz 60))
Om
5 mi
= e_ HM: COSh [— E (xa —_— 90)]
0 a=1

Substituting this value of pym/2om in (9:2), (9:3), and (9:4) and taking
logarithms, we find that these inequalities become

82 5 ~ 62
96) log B — — _ il
(9:6) log B + m 5 < log cosh [J E (T 80)] < log A + m >

a=1

, & 52
(9:7) log cosh [_E(Ia — Bu)] =< log B+ m Py
ag
and
o 62
(9:8) log cosh [—E(za — 30)] = log A +m —
g 2
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With the use of inequalities (9:6), (9:7), and (9:8), the test proce-
dure is carried out as follows. At each stage of the experiment we

5 iy
compute Z,, = log cosh I:; E (o — 6‘0):| . The first time that Z,,
a=1

does not lie between log B + [m(8%2/2)] and log A + [m(8%/2)] we ter-
minate the process. The hypothesis that 6 = 65 is accepted if Z,, =
log B + [m(8%/2)], and rejected if Z,, = log A + [m(5%/2)].

The computation of Z,, at each stage of the experiment is somewhat
_6' E(xa - 60)
g

cumbersome. However, if is greater than 3, Z,, =

o o
log cosh | = Z(xa — 60) | is very nearly equal to | —Z(xo — 80) | —
o g

log 2. When this approximation to Z,, is used, inequalities (9:6),
(9:7), and (9:8) simplify to

o
(9:9) %(10g3+10g2)+m% < | Z(za — 60) | <

o oo
p (log A + log 2) + m;
o gd
(9:10) | Z(xa — 80) | = p (log B + log 2) + m
and
o o0
(9:11) | =(x — 60) | gg(logA—I—IQgQ)—[—m—E

respectively. For all practical purposes inequalities (9:9), (9:10), and
(9:11) may be used instead of (9:6), (9:7), and (9:8) whenever

é‘E(xa—ﬁ'g)| > 3.

a
The following is an alternative computational procedure which may
be found useful. Consider the equation in wu.

(9:12) log cosh | 7] | = v

This has exactly one positive solution if v = 0. The root of this equa-
tion is given by

(9:13) | ul = ¢(v) = log (e" + Vv — 1)

1 See also SRG 255, p. B.15.



A SEQUENTIAL SAMPLING PLAN 137

The function ¢(v) can easily be tabulated. In terms of the function
¢(v), inequalities (9:6), (9:7), and (9:8) can be written as

8% 52
(9:14) %qb(logB +m—2—) -’(IE(;I:ﬂlt —ﬂg)l < %:;b(logA —l—mE—

62
(9:15) | 2@ —00) | = %4 (log B +m ?)
and
o 52
(9:16) l S(xe — 60) | = Eqb (log A+ m E)

When inequalities (9:14), (9:15), and (9:16) are used, the test can
be carried out as follows. For each integral value m we compute the
acceptance number

o 82
(9:17) am=—-¢(log8+m—

o 2
and the rejection number

o R
(9:18) Tom =E¢(IogA —I—m;

These acceptance and rejection numbers can be computed before ex-
perimentation starts. Additional observations are taken as long as
Ay < | Z(xe — Gp) l < r,. If ] Z(xoa — 8p) | = a,, the hypothesis that
6 = 0 is accepted and if | Z(xe — 69) | = 7, the hypothesis that 8§ = 6,
is rejected.



PART III. THE PROBLEM OF MULTI-VALUED DECISIONS
AND ESTIMATION

Chapter 10. THE CHOICE OF A HYPOTHESIS FROM A SET
OF MUTUALLY EXCLUSIVE HYPOTHESES (MULTI-VALUED
DECISION)

10.1 Formulation of the Problem

Part I has been devoted exclusively to the discussion of the problem
of testing a statistical hypothesis. In such problems only one of two
possible decisions can be made: the hypothesis is either rejected or
accepted. Thus, we can say that testing a hypothesis is a two-valued
decision problem, since the decision can take only the two wvalues:
acceptance and rejection. Let H denote the negation of the hypothesis
H to be tested. Then testing the hypothesis H is the same as choosing
between the two competing hypotheses H and .

It has been pointed out in Section 1.3.5 that testing a hypothesis &
arises frequently as a consequence of the problem of deciding between
two alternative courses of action, say action 1 and action 2. Suppose
that the preference for one or the other action depends on the value
of an unknown parameter 8 of the distribution of a random variable .
Let » denote the set of all values of 8 for which action 1 is preferred to
action 2 (or at least not less desirable than action 2). If a decision is
to be made on the basis of a finite number of observations on z, this
leads to the problem of testing the hypothesis A that the true value ¢
lies in w. If H is accepted, we decide for action 1, and if H is rejected
we decide for action 2. In applications it happens frequently that there
are more than two alternative courses of action, one of which is to be
chosen. Suppose that there are & (k > 2) alternative actions, say
action 1, action 2, - - -, action %, and that one of them is to be chosen
on the basis of some observations on the random variable z. Suppose,
furthermore, that the relative degree of preference for these actions
depends on the value of a parameter 6 of the distribution of . Then
it will be possible, in general, to subdivide the totality of all possible
values of @ into & mutually exclusive parts w;, wz, *++, wg such that
action 7 is preferable to all other actions Z > j if, and only 1, the true

138
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value 8 lies in w;. Let H; denote the hypothesis that 8 lies In w; (7 =
1, ---, k). Then the problem of deciding for a particular action re-
duces to the problem of choosing one of the hypotheses H,, ---, H;.
If H; is accepted we decide to take action z. Such a problem may be
called a multi-valued decision problem, since the decision to be made
can take k£ values: We may accept H,;, or Hy, ---, or Hy.

In this section we shall deal with the problem of choosing one out
of £ mutually exclusive and exhaustive hypotheses, H;, ---, Hi, on
the basis of some observations on the random variable z under con-
sideration.! The problem of testing a hypothesis is contained in this
as a speclal case when £ = 2.

The following simple example may serve as an illustration. Suppose
that r is a measurable quality characteristic of a product which is
normally distributed in the population of units produced. Suppose,
furthermore, that the quality of the product is regarded the better the
higher the mean value 8 of x. Assume that the following three alter-
native actions are under consideration by the manufacturer: (1) to
sell the product at the regular market price, (2) to label the product as
second rate quality and sell it at a reduced price, (3) to withhold the
product from the market. Let @ and b (¢ < b) be two values of 8 such
that the manufacturer prefers action 3 if &8 =< a, he prefers action 2 if
a < 8 < b, and he prefers action 1 if 8 = b. Let H; denote the hy-
pothesis that ¢ < a, H, the hypothesis that a < 8 < b, and H3 the
hypothesis that & = b. If the value of 8 is unknown and if the manu-
facturer must decide which action should be taken on the basis of
some observations on z, he is faced with the multi-valued decision

problem of choosing one of the mutually exclusive hypotheses H,, Ho,
and H3.

10.2 The General Nature of a Sequential Sampling Plan for Select=
ing a Hypothesis from a Set of Mutually Exclusive Hypotheses

A sequential sampling plan for choosing one of & mutually exclusive
and exhaustive hypotheses H,, ---, H; may be described as follows.
A rule is given for making one of the following (k + 1) decisions at
each stage of the experiment (at the mth trial for each integral value
of m): (1) to terminate experimentation with the acceptance of H;;
(2) to terminate experimentation with the acceptance of Hy; ---; (k)

1 This _problem in the non-sequential case, that is, when the total number of
nbservatmns to be made is determined in advance, has been treated in several
previous publications. See, for example, the author’s article “Statistical Decision

Functions Which Minimize the Maximum Risk,” The Annals of Mathematics
April, 1945. |
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to terminate experimentation with the acceptance of Hi; (K + 1) to
continue the experiment by making an additional observation. Such
a, procedure is carried out sequentially. On the basis of the first ob-
servation one of the aforementioned (4 + 1) decisions is made. If one
of the first £ decisions is made, the process is terminated. If the last
decision is made, a second trial is performed. Again, on the basis of
the first two observations, one of the (k¥ + 1) decisions i1s made. If
the last decision is made, a third trial is performed, and so on. The
process is continued until one of the first & decisions is made.

In more precise mathematical terms, a sequential sampling plan
may be described as follows. Let E,, denote the totality of all possible
samples of size m, 1.e., R,, is the m-dimensional sample space. For
each positive integral value of m, the m-dimensional sample space is
split into (kX + 1) mutually exclusive parts, Rn1, Bme, * -+, Kz and
R, x4+1- If the first observation z, lies in R,; where z =< %k, the process
is terminated with the acceptance of H;. If z; lies in R, ;4+; a second
observation z» is made. Again, if (z;, z2) lies in some Eo; with 7 < &,
the process is terminated with the acceptance of H;. If (z;, z2) lies
in R2 141 2 third trial is performed, and so on. This process is stopped
at the first time when the sample (z;, - -+, *m) lies in R,,; for some
value 7 < k. Thus, a sequential sampling plan is completely defined
by the sets Rn1, --°, Bmr+1- Since these sets are mutually exclusive
and add up to the whole sample space R,,, it is sufficient to define any
k of these sets, since they determine uniquely the remaining set.

For any m, the subdivision of the sample space E,, into the (k¥ + 1)
parts Rm1, - - -, Bmxr+1 can be made in many ways, and a fundamental
problem is that of a proper choice of these sets. In order to set up
principles for this choice, in the next section we shall study the con-

sequences of any particular choice.

10.3 Consequences of the Choice of Any Particular Sequential Sam-
pling Plan

After a particular choice of the sets Ry, - -+, Bnx4+1 has been made,
i.e., a particular sequential sampling plan has been adopted, for any
i < k the probability that the process will terminate with the accept-
ance of H; depends only on the distribution of the random variable z
under consideration. Since it is assumed that the distribution of z is
known except for the values of a finite number of parameters 8, - - *»
g, the probability that H; will be accepted will be a function of these
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parameters. To simplify notation, we shall use the letter  without
subscript to denote the set of all » parameters 6;, ---, 8,. Let L;(68)
denote the probability that the adopted sequential sampling plan will
terminate with the acceptance of H; (t =1, ---, k). We shall refer
to the set of functions L,(8), I..(8), ---, Li(8) as the operating charac-
teristics of the sampling plan. We shall consider only sampling plans
for which the probability is 1 that the process will eventually termi-
nate. Then we have

(10:1) Li(6) +---+ Lx(6) = 1

and, therefore, one of the functions L,(8), - --, Li(8) is determined by
the other £ — 1.

The operating characteristics represent the accomplishment of the
sampling plan in giving protection against possible wrong decisions.
For any parameter point 6, the probability of accepting the correct
hypothesis, i.e., the hypothesis which 1s consistent with parameter
point 8, can be obtained immediately from the operating character-
istics. Since the hypotheses H;, ---, H; are mutually exclusive and
exhaustive, for any given parameter point # one, and only one, of the
hypotheses H,, - - -, Hy will be consistent with a given 8. If H; is the
hypothesis consistent with a given 6, the probability of making a cor-
rect decision when this 8 is true is equal to L;(8). The operating char-
acteristics of a sampling plan are considered the more favorable the
higher the probability for making correct decisions for the various pos-
sible parameter points 6.

The price we have to pay for the accomplishment of the sampling
plan in giving protection against wrong decisions is represented by the
number n of observations required by the sampling plan. Since = is
a random variable, we shall consider, as in testing a hypothesis, the
expected value of m. After a particular sampling plan has been
adopted, the expected value of n will be a function of the parameter
point & only. As in testing hypotheses, we shall denote the expected
value of n, when 8 is true, by Es(n), and we shall refer to Fg¢(n) as the
average sample number (ASN) function of the sampling plan.

In conclusion we may say that the most important consequences of
any particular choice of a sampling plan are given by the operating
characteristics and the ASN function of the adopted sampling plan.
The operating characteristics represent the accomplishments of the

sampling plan and the ASN function represents the price paid for these
accomplishments.
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10.4 Principles for the Selection of a Sequential Sampling Plan

10.4.1 Dependence of Importance of Possible Wrong Decisions on
the Parameter Point 0

To set up principles for the selection of a sequential sampling plan
it will be necessary to investigate the dependence of the importance
of possible wrong decisions on the parameter point. Let w; denote the
set of parameter points 6 consistent with A; (z =1, ---, k), 1.e., H; 1s
precisely the statement that the true parameter point 8 is included in
w;. If the true 8 is in w; but not far from w; for some 7 = 7, the accept-
ance of H; will not be regarded, in general, as a serious error. How-
ever, if 8 is far from w; and H; is accepted, the error committed will
usually be of considerable practical consequence.

As an illustration, consider again the example given in Section 10.1.
The decision to withhold the product from the market will be con-
sidered an error of little practical significance if 6 is only slightly above
a. The seriousness of this error will, however, increase with increasing
value of 8. If @ is substantially above a, the decision to withhold the
product will be regarded as an error of considerable practical impor-
tance. Similarly, the decision to try to sell the product at regular
market price will not be a serious error if € is just slightly below b,
but the importance of this error will increase with decreasing value
of 6.

It will frequently be possible to express the importance of the var-
ious possible wrong decisions by & functions wy(8), +--, wr(8), where
w;(8) is a non-negative function expressing the importance of the error
committed by acecepting A, when 6 is true. In industrial problems,
w;(6) may be thought of as expressing the financial loss caused by
taking the action corresponding to the acceptance of H; when 6 is true.
We shall, of course, put w;(@ = 0 for all points ¢ in w;, since for such
points @ the acceptance of H; is a correct decision. We shall refer to
the functions w,(8), - - -, wr(8) as error weight functions, or more briefly
as weight functions.

The choice of a sampling plan will be influenced by the weight func-
tions w(8), ---, wx(8). The determination of these weight functions
cannot be regarded as a statistical problem. They will be chosen on
the basis of practical considerations in each particular problem.

10.4.2 The Risk Function Associated with a Given Sampling Plan

For any parameter point 8 we shall mean by the risk »(8) the ex-
pected value of the loss caused by possible wrong decisions when 8 1s
true. Since the probability of accepting H; is equal to L;(6) and since
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the loss caused by this decision is given by w;(8), the expected value
of the loss is equal to

(10:2) r(6) = L1(®)w1(8) + L2(O)w2(8) + -+ + Lr(O)wi(8)

We shall refer to r(#) as the risk function of the sampling plan.?
We shall judge the relative merits of a sampling plan by its risk
function () and ASN function Zy(n).

10.4.3 The Risk Function and the ASN Function as a Basis for the
Selection of a Sequential Sampling Plan

A sequential sampling plan is the better the smaller the risk 7(8) and
the smaller the expected value Fg(n) of the number of observations.
These two desiderata of a sampling plan are somewhat in conflict, since
the smaller we make r(8), the larger, in general, will be the number of
observations required by the plan. To achieve a reasonable compro-
mise between these two conflicting desiderata, one may proceed as
follows. First we impose the condition that the risk (@) shall not
exceed a certain prescribed positive value rg, i.e.,

(103) ?'(6) = 70

for all parameter points 8. We then consider only sampling plans for
which (10:3) is fulfilled. From this class of sampling plans we try to
select one for which Ej3(n) is as small as possible.

To impose first the condition (10:3) and then to try to minimize with
respect to the expected number of observations does not seem to be
an unreasonable procedure, since the risk function r(8) is perhaps of
primary importance.3

The choice of the upper limit ro of the risk is not a statistical prob-

lem. It will be determined on the basis of practical considerations in
each particular case.

? Another possible definition of the risk function could be given by including also
the expected value of the cost of experimentation. If ¢ denotes the cost of taking

a single observation, the expected value of the cost of experimentation is equal to
cEy(n) and the risk is given by

k
(10:2*) T*(6) = 25 Li(®)wi(8) + cEy(n)

=1
If the cost of experimentation is not proportional with the number of observations,
but is given by the cost function ¢(n), then the term cEy (n) in (10:2%) is to be
replaced by Eglc(n)].

* Using the risk function »*(8), as given in (10:2*), a sampling plan for which the
maximum value of r*(8) with respect to 6 is minimized may be regarded as an
optimum plan. If this definition of an optimum sampling plan is accepted, no
condition of the type (10:3) is imposed; we simply try to find a plan for which the
maximum of r*(8) with respect to 6 takes the smallest possible value.
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10.4.4 The Use of Certain Simple Weight Functions

The construction of specific weight functions w;(8), - -+, wr(8) in a
given problem may occasionally run into practical difficulties. Al-
though in industrial problems w;(#) could be assumed to be equal to
the financial loss (or estimated financial loss) caused by the acceptance
of H; when @ is true, in purely scientific investigations it is rather diffi-
cult to give a reasonable measure of the loss caused by accepting a
wrong hypothesis.

Even if the difficulties in measuring the loss caused by possible wrong
decisions are disregarded, we still face the practical difficulty that the
weight functions w;(8), - - -, wk(8) in a given problem may be too in-
volved to be manageable. Thus, there is a need for simplification.

The choice of the sampling plan is usually not very dependent on
the exact shape of the weight functions. It will, therefore, be fre-
quently satisfactory to use some rough approximations, reproducing
only the main features of the weight functions. A very rough, but
for many applications satisfactory, approximation can be obtained by
replacing w;(0) by ;(0) defined as follows:

(10:4) w;(6) = 0 if w;(8) is less than or equal to a certain value ¢;
= ¢ if w;(6) > c¢;

where ¢ is some positive constant. Thus, @;(6) can take only two
values, 0 and ¢. There is no loss of generality in putting ¢ = 1, since
this can be achieved by multiplication by a proportionality factor
which has no effect on the selection of the sampling plan.

In what follows in this and the following section, we shall consider
only the weight functions w;{(6). We shall call the set of all parameter
points 8 for which @,(0) = 0 and w;(6) = 1 for 7 == 7 the zone of pref-
erence for acceptance of H;. The set of points ¢ for which w;(8) =
w;(8) = 0 and () = 1 for k 7 7, 7 will be called the zone of indiffer-
ence between H; and H;. Similarly, the set of points & for which
0,;(6) = W;(0) = Wm(6) = 0 and w(8) = 1 for I == 7, 7, m will be called
the zone of indifference among the hypotheses H;, H;, and Hm, and
SO on.

If we deal with the problem of testing a hypothesis A, then k= 2
H, = H, and H; is equal to the negation H of H. The zone of pref-
erence for acceptance of H, the zone of preference for acceptance of H,
and the zone of indifference between H and H defined here correspond
to the zone of preference for acceptance, zone of preference for rejec-
tion, and zone of indifference discussed in Section 2.3.1.

To illustrate the meaning of the various zones defined here, we con-
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sider again the example discussed in Section 10.1. In this example H,
is the hypothesis that 8 = a, H; 1s the hypothesis that a < 8 < b, and
H3 1s the hypothesis that 8 = b. The functions @,(8), @w2(8), and w3(8)
may reasonably be defined as follows:

(8 =0 for8 <a-+ A

= 1 foré = a + A where A is a certain positive quantity
we(8) =0 ifa— A <8 < b+ Aand = 1 elsewhere
w3(@) =0 if8 =b— Aand = 1 elsewhere

Then the zone of preference for acceptance of H; is the set of values
of 8 for which 6§ = a — A. The zone of preference for acceptance of
H, 1s given by the inequality ¢ + A = 68 < b — A, and the zone of
preference for acceptance of H3 by 8 = b + A. The zone of indiffer-
ence between H, and H, is given by the inequality a — A < 8 < a +
A, the zone of indifference between H, and H3 is empty, and the zone
of indifference between Hy; and Hj is given by b — A =6 < b 4+ A.
Finally, the zone of indifference among H,, H,, and Hj is empty.

When the weight functions @,(8), - - -, @i (8) are used, the risk func-
tion 7(8) defined in (10:2) takes a particularly simple form. Since
w;(#) can take only the values 0 and 1, we shall have

(10:5) r(6) = > L,®)

where the summation is to be taken for all values of 7 for which
w;(8) = 1.

We shall say that a wrong decision is made if, and only if, a hypoth-
esis H; i1s accepted for which @;(8) = 1. Then the risk r(8) given 1n
(10:5) 1s simply equal to the probability that a wrong decision will be
made.

The principle for the selection of a sequential sampling plan, as
stated 1n Section 10.4.3, can now be formulated as follows. We con-
sider only sequential sampling plans for which the probability of mak-
ing a wrong decision does not exceed a certain preassigned value rg.
From the class of such sequential sampling plans we try to select one

for which the expected value of the number of observations required
by the plan is as small as possible.

10.6 Discussion of a Special Class of Sequential Sampling Plans

The problem of finding a sequential sampling plan which may be

regarded as an optimum plan in the sense of the previous section is
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not yet solved. However, as will be shown in this section, a wide class
of sequential sampling plans can be constructed for which the condi-
tion that the probability of making a wrong decision should not exceed
a preassigned value rg is fulfilled.

To construct such a class of sampling plans we shall make use of
the following lemma.

Lemma. Let x,, x2, - -+, €ic., be a sequence of variates, let pim(z1, * - -,
z,) (m = 1,2, ---) denote the joint probability density function of x1,

.+, Z,, under the hypothests H,, and let Dom (X1, * <+, Tm) be the den-
sity function under the hypothesis Ho.* Let, furthermore, A be a con-
stant greater than one. Then, under the hypothesis Ho, the probability
that

(10:6) plm(xlr T xm) < A

p{}m(xlr "t Ty zm)

will hold for all values of m ts greater than or equal to 1 — (1/4).

The validity of this lemma can easily be shown with the help of the
inequalities given in Section 3.2 by letting the constant B in those 1n-
equalities approach O.

With the help of this lemma we can construct a sequential sampling
plan satisfying the condition that the probability of making a wrong
decision does not exceed a prescribed value ro as follows. Let
Pm(Z1, - -+, Tm, 8) be equal to f(zy, 8)f(z2, 8) - - - f(Zm, 8) where f(x, 6) 1s
the probability distribution of z when @ is true. For any parameter
point 8 let p.,.*(z1, - -, Tm, 8) be an arbitrary but given probability
distribution of the variates z, 2, ***, Tm. Then according to our
lemma the probability that

m*(x y * " Tmy B)
(10:7) fm 1 < A

pm(-r]: "ty Tmy 9)

will hold for all m is greater than or equal to1 — (1 /A) when 8 is true.
For any sample point £, = (z1, - -, x,), let w,(F,) denote the totality
of all parameter points @ for which the inequality (10:7) is fulfilled for
all values m =< n. Clearly, the probability that the true parameter
point 8 will be included in all sets wa(£,) (n =1, 2, ---, ad inf.) is
greater than or equal to 1 — (1/A4). The sequential sampling plan is
then defined as follows: We continue taking additional observations
as long as none of the weight functions w,(8), - - -, wx(#) is identically
zero in wn(En). At the first time when wr(£,) is such that at least one

« If the distribution of zi, z2, - -, ete. is discrete, pim(z1, * « +, Tm) denotes the
probability of obtaining a sample equal to the observed. .
s It is understood that the distribution of 1, - -+, Tm determined from the dis-

tribution pm*(x1, - -, Tmr, 8) (0" > m) is identical with pr*(z1, - - -, Tm) 8).
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of the weight functions w,(8), - - -, @wx(8) is identically 0 in w,(Z,), we
stop the process with the acceptance of the hypothesis corresponding
to the weight function which is identically zero in w, (¥,).® Obviously,
this sequential sampling plan will have the property that the prob-
ability of making a wrong decision does not exceed 1/4. If we let
A equal 1/r9, then the probability of making a wrong decision will not
exceed rg, as required.

This method leads to a wide class C of sequential sampling
plans with the required property, since the distribution function
Pm*(x1, - - -, Tm, ) in the numerator of (10:7) can be chosen entirely
arbitrarily. It i1s doubtful whether this class C of sampling plans con-
tains an optimum plan In the sense of the definition given in 10.4.
If we are willing to restrict ourselves to sampling plans in class C, we
still have the problem of so choosing p,,*(zy, -+ -, s, 8) as to make the
expected number of observations required by the plan as small as pos-
sible. This problem, too, has not yet been solved. There may be some
waste Involved in letting A = 1/rg, since this may result in a maximum
probability of making a wrong decision that is considerably less than
the tolerated value ro. A further development of the theory may show
that A can be put equal to some value smaller than 1/r, which would
lead to a saving in the number of observations.

Although the present stage of the theory is very incomplete, sampling
plans based on the inequality (10:7) may still be used with good advan-
tage in some problems. Even if we cannot yet find the best distribu-
tion p,,*(zy, -, 2., 8) to be used in the numerator of (10:7), we still
may be able to make a reasonably good choice of p,,*(x, - - ‘5 T, 6)
and thereby obtain a sequential plan which requires, on the average,
a substantially smaller number of observations than the best possible
non-sequential sampling plan based on a predetermined number of
observations.

Regurding possible choices of p,*(xy, - - *y Tm, 8) which may give
reasonably good results, the f ollowing remarks may be made. A good
result may be obtained in some problems by letting P (1, -+, T, &)
equal a properly chosen weighted average of p,.(xy, -, T.n, {) where
¢ 1s a variable parameter point. In other words, we let 7

(108) pm*(xln "ty Loy, '9) =fpg(§')pm(-rly "ty Loy g-) Cfi'
Q

L] 1 Qs » reny - . . B . * . .

If there are several weight funetions which are identically 0 in wa(E,), we may
choose arbitrarily one from among the hypotheses corresponding to these weight
functions.

1 ™ ] L r * L 4 L] . % .
'he averaging function rg($) may also be discrete. Formulas valid for both

continuous and discrete averaging functions could be given by using Stieltje’s
integrals.
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where the integration is taken over the whole parameter space 2 and
po(¢) is a non-negative function of ¢ satisfying the condition

(10:9) fro®) ac =1

The choice of the averaging function p,(¢) will depend on the weight
functions @,(8), - - -, wx(8). If, for example, @w;(#) = O for the param-
eter point & under consideration, it seems reasonable to let pe($) =0
for all parameter points ¢ for which @;(¢{) = O, since we are not inter-
ested in discriminating between parameter points for which the same
decision 1is correct.

The following is another possible choice of p,*(z1, * - -, Tm, §) Which
may lead to good results in some problems:

(10:10) pm*(@1, -+ *) Tm, 8) = ¢(x1, O)f(x2, 01)f (3, 62) - - - f(Tm, m—1)

where 8, is the maximum likelihood estimate of & based on the first r
observations z;, ---, z» and ¢(x;, §) is some suitably chosen prob-
ability distribution of z;.

To illustrate the sampling procedure based on (10:7), we shall con-
sider the following simple example. Let z be normally distributed
with unknown mean é and unit variance. Then

m
1 —14 ) @a—6)?
(10:11) Pm(Z1, ** 5 Tm, ) = Ee =1
(27)2
Let
{10.12) ‘pl*(Il, **ry, Ty 6)
= %[pm($1, *c sy T, 6 + a) -+ pm(xlr ***y Tmy 8 — 5)]
where & is a given positive quantity. Then
. — 14ma?
(1013) pn;*(ll, T,y 6) _ € [eéz(za—ej _I_ B-5E(Ia—3)]
pm(xh "ty Ty e) 2

— ¢~ Y™ 4osh [6Z(za — 0)]
The equation

(10:14) coshu = v (v > 1)

has two roots in u which are equal in absolute value. Let ¢(v) be the
positive, and —¥(v) the negative root of (10:14). Then the roots of

the equation In 8
(10:15) e~ Y% cosh [6Z2(xe — 6)] = A
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are given by

6, (Em) = Ty

(10:16) 1and st

G2 (Em) = Zm

where Z,, is the arithmetic mean of the observations z,, - - -, z,.
The set of all values of 8 for which the inequality

Pm (X1, ~*, T, 6)

'Pm(xl; * sy Ty 6)

< A

is satisfied is the open interval (8:(%,.), 8:(E£,,)). The set wp(E,) 1s
defined as the common part of the open intervals (6,(%&,), 6, (&y1)), - -,
(62(E.), 6,(E.)). Hence w,(E,) is equal to the open interval whose
lower endpoint is equal to the maximum of the values 65 (&), ---,
6:(E,), and whose upper endpoint is equal to the minimum of the
values 8,(¥,), ---, 6; (£,).? Experimentation is terminated the first
time the open interval w,(E,) is such that one of the weight functions
wy(0), ---, Wr(8) is identically zero in w,(E,).

As another illustration, consider again the example given in Section
10.1, and for simplicity assume that the standard deviation of z is
equal to 1. Although the proper choice of Pm*(xy, * -, Z,n, 8) for this
example has not been thoroughly investigated, the following choice of
Pm*(x1, - -+, Tm, 6) is perhaps not unreasonable. A parameter point 8
in the zone of preference for acceptance of I, i.e., avalued < a — A)°
should be discriminated against all other parameter values ¢ for which
acceptance of H, is a wrong decision. The smallest value ¢ for which
acceptance of H, is a wrong decision, 1.e., the smallest ¢ for which
W1(¢) = 1,is¢ = a + A. Thus, we put

(10:17) pm*(zy, - - 'y Tmy 0) = Dpm(zy, - - -, Tm, @ + A)
forallg < g — A

If 6 is in the zone of indifference between H, and Hy, ie.,if a — A <
¢ < a+ A, we want to discriminate @ agamnst values ¢ for which ac-

®If it happens that the upper endpoint determined in this way is less than the
lower endpoint, the set wn(£,) i1s empty.

? For a definition of the various zones and weight functions 1,(9), w2(8), and
73(8) for this example see Section 10.4.4.
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ceptance of H,;, as well as of H,, is a wrong decision. The smallest
value of this kind is £ = b + A. Thus, we let

(10:18) Pm*(ﬂ?l: ***y Ty 9) - pm(xl} "ty Tmy, b + A)
fa—A<I<a-—+ A

If 6 is in the zone of preference for acceptance of H,, ie., if a + A
< 8 < b — A, we want to discriminate it against values { for which
acceptance of H, is wrong. The greatest value { of this kind to the
left of @ + Ais { = a — A, and the smallest ¢ of this kind to the right
of b — Ais ¢ = b+ A. It seems, therefore, reasonable to let

(10:19) pm* = %[pm(xlj * T, @& — A) + pm(xlr * 7y Loy b + A')]
fa+ A=Z606<b— A

If @ is in the zone of indifference between H; and Hj, i.e., Iif
b — A =<8 < b+ A, we want to discriminate ¢ against values { for
which the acceptance of Ho, as well as of Hj, is wrong. Thus, we let

(10:20) pm*(xlr ** "y Lmy 9) = pm(xh T,y @ — A)
ifb —A=Z=e<b+ A

Finally, if 6 is in the zone of preference for acceptance of Hj, 1.e., i
¢ = b + A, we want to discriminate 6 against values ¢ for which the
acceptance of Hj is wrong. The least upper bound of values of ¢ of
this kind is ¢ = b — A. Thus, we shall let

(10'21) pm*(:clx ‘s T g) = pm(xl: * s Tmy b — A)
fore = b+ A

It should be remembered that there is no systematic theory yet
available for the proper choice of p,*(z1, - - -, Tm, 8). The choice of
p*(x1, * **, Tm, 6) in the above example has been made only on intui-
tive grounds. It may well be that another choice of pn*(x1, = - *) Tm, 8)
exists which leads to much better results. It should also be remarked
that it is doubtful whether an optimum sampling plan, as defined in the
preceding section, is 2 member of the class of sampling plans based on
the inequality (10:7). Further investigations are needed to clarify

these questions.



Chapter 11. THE PROBLEM OF SEQUENTIAL ESTIMATION

11.1 Principles of the Current Theory of Estimation by Intervals or
Sets

In this section we shall give a brief outline of the basic ideas of
estimation by intervals or sets as developed by J. Neyman.! Consider
first the case In which the distribution of the random variable z under
consideration is known except for the value of a single parameter é.
The problem treated in the current theory is that of estimating the
value of & on the basis of a fixed number of observations, say N obser-
vations z;, - -+, Ty On Z.

Let £ denote the sample (x4, - - -, zx) and let 8(E) and 8(E) be two
single-valued functions of the sample # such that

(11:1) (FE) = 0(E) for all possible samples E

Let 8(E) denote the interval extending from 6(E) to 8(£). We shall
refer to 6(F) also as an interval function, since it associates an interval
with each sample. Since the interval §(£) is a function of the sample,
its location and length will, in general, be random variables and, there-
fore, probability statements can be made as to whether (L) Includes
the true parameter value 8 or not. For anv value 6 we shall express
the relation that §(%) contains 6 by the symbol 6(£)C8. For any rela-
tion R, the symbol P(R | 6) will denote the probability that 2 holds
when @ is the true parameter value.

According to Neyman, an interval function 6(£) 1s said to be a con-
fidence interval of @ if

(11:2) Pl6(E)Co | 0] = ~

identically in @ where v is a fixed value independent of 8. The relation
(11:2) simply says this: The probability that 86(%) will include the tiue
parameter value is always equal to ¥ no matter what the true value of
the parameter happens to be. The fixed value v 1s called the confidence
coefficient associated with the confidence interval S5(L).

'J. Neyman, “Outline of a Theory of Statistical Estimation Based on the Classi-
cal Theory of Probability,” Philosophical Transactions of the Royal Society of Lon-
don, Series A, Vol. 236 (1937), pp. 333-380.
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Suppose, now, that the distribution of z involves several unknown
parameters, say 6, - --, 6,. Any set of possible values 64, ---, €, can
be represented by a point 6, called a parameter point, in the r-dimen-
sional Cartesian space (parameter space). If we want to estimate the
parameters 6;, - - -, 6, jointly, 1.e., if we want to estimate the parameter
point 8, the estimating set will be some subset of the r-dimensional
parameter space. Whereas in the case of a single unknown parameter,
estimating sets other than intervals have little practical value, this is
not so when several unknown parameters are to be estimated jointly.
Estimating sets other than intervals in the r-dimensional space, such
as the interior of a sphere, or ellipse, or more general regions, will
have to be considered. Thus, we shall have to consider a set function
w(E) which associates with each sample point £ a certain subset w(X)
of the parameter space without making the restriction that «(¥) is an
r-dimensional interval.

A set function (%) is said to be a confidence region of the param-
eter point 8 = (61, +--, 8, if

(11:3) Plw(E)C8 | 0] = v

identically in & where v is a fixed value independent of 8. The value
v is called the confidence coefficient of the confidence region «(Z).
If only one of the parameters 61, - -+, 6- is to be estimated, estimating
sets other than one-dimensional intervals will not be of much practical
interest, as in the case of a single unknown parameter. Suppose, for
example, that only 8, is to be estimated. According to Neyman, an
interval function 8(%) is said to be a confidence interval of 6; with

confidence coefficient v if
(11:4) P[s(E)CH, | 61, 82, - -, 0] = v

1dentically 1n Bl: 92, = -, g,.

Usually there will be infinitely many confidence intervals 8(Z) or
confidence regions «w(¥) with a given confidence coefficient v and a
fundamental problem is to find a proper confidence interval or con-
fidence region which has some optimum properties. It is clear that a
confidence interval or confidence region with a given confidence coef-
ficient v will be regarded the better the shorter the interval or the
smaller the region. The notion “‘short” or “small’”’ is to be made pre-
cise, since the length of a confidence interval and the size of a confi-
dence region are random variables depending on the outcome of the
sample. This has been done in the theory developed by Neyman who
introduced various notions of optimum confidence intervals and con-
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fidence regions. The mathematical consequences of these definitions
have been investigated and optimum confidence intervals and regions
have been derived in many important cases. It is not intended to go
into further details here and the reader is referred to the original publi-
cations of Neyman on this subject.

11.2 Formulation of the Problem of Sequential Estimation by Inter-
vals or Sets

In estimation procedures based on a fixed number of observations,
we cannot control, in general, the length of the confidence interval
obtained, since this depends on the outcome of the sample. It may,
therefore, sometimes happen that the confidence interval obtained is
so long that it has little or no practical value. The possibility of such
an event is a drawback inherent in estimation procedures based on a
predetermined number of observations.

For example, the length of the best confidence interval, based on a
fixed number of observations, for the mean of a normal population
with unknown standard deviation is proportional to the sample esti-
mate s of the population standard deviation ¢. The sample standard
deviation s may take any value and is likely to be large if o is large.

To devise estimation procedures which lead to confidence intervals
not only with a prescribed confidence coefficient but also with a pre-
scribed length, or with a length not exceeding a prescribed wvalue, or
which satisfies some other similar condition, it is, in general, necessary
to abandon the approach based on a fixed number of observations, and
estimation procedures of sequential nature have to be constructed. ?

The general nature of a sequential procedure of estimation by sets
may be described as follows. For any positive integer m we consider
a set S,, of samples of size m. These sets must satisfy the following
condition. If the sample £,, is an element of S, and if F,,, (m’ > m)
i1s an element of S,,,, then £,, must not be equal to the sample consist-
ing of the first m observations in %,,.. With any element £,, of S,,
(m = 1,2, ---, ad inf.), we associate a subset w(£,,) of the parameter
space.? The sequential process of estimation is then carried out as
follows. We continue to make observations on x until we reach a value
n such that £, is an element of S,,. At this stage, we stop the process

* A very interesting sequential procedure has been devised by C. Stein, ‘““A Two
Sample Test for a Linear Hypothesis whose Power Is Independent of the Vari-
ance,”” The Annals of Mathematical Statistics, Vol. XVI, Sept., 1945, which leads
to confidence intervals of fixed length in an important class of problems, including
the example mentioned before.

*If we are concerned with interval estimation, w(¥,,) will always be an interval
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and state that w(E,) contains the true parameter point, i.e., w(Z,) is
the confidence set resulting from the sequential estimation procedure.

Thus, a sequential estimation procedure is determined by the sample
sets Sy, S», - - -, etec., and the set function «(#&) defined for all samples
E in S;, S, ---, etc. The fundamental problem in sequential estima-
tion is that of a proper choice of S;, Sg, - - -, etc, and of w(&). First
we impose the following two conditions:

Condition I. The confidence set w(EZ,) resulting from the sequential
estimation procedure should satisfy certain stated requirements re-
garding its geometric shape.

Condition II. The confidence set w(E,) resulting from the sequen-
tial estimation procedure should satisfy the inequality *

Plw(E,)Co| 6] = v

for all parameter points 6. (The quantity vy is a fixed value which 1is
frequently chosen as high as .95, or more.)

The requirements to be imposed on the geometric shape of the con-
fidence set w(¥,) do not constitute a statistical problem, and they will
be decided on the basis of practical considerations in each particular
problem. For example, if there is only one unknown parameter 8 (the
parameter space 1s one-dimensional), we may want to require that
«(E) be an interval whose length should not exceed some fixed pre-
seribed value d, or some given function of the midpoint of the interval.
The latter case may be of interest, for example, in estimating the mean
of a binomial distribution. If there are several unknown parameters,
say 6y, - -, b, and we want to estimate them jointly, we may require
that the Euclidean volume, or the diameter 3 of the confidence set
w(E,) does not exceed some fixed prescribed value. If we merel?r want
to estimate one of the unknown parameters, say 6,, we may lmpose
the requirement that «(¥,) be an interval with length not exceeding
some prescribed fixed value, or the weaker requirement that w(F,) be
o subset of the r-dimensional parameter space whose projection on the
g,-axis has a diameter not exceeding some preassigned value. ‘

Usually there will exist infinitely many sequential estimation pro-
cedures which satisfy Conditions I and II. The criterion for selecting
one from among them will be based on the expected number of obser-

s This is weaker than the requirement by Neyman that the equality sign should

hold. -
» The diameter of a set is the largest possible distance between two points of

the set.
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vations required by the estimation procedure. The sequential esti-
mation procedure may be regarded the better the smaller the expected
number of observations required by the procedure. Thus, we shall try
to select a sequential estimation procedure from the class of procedures
satisfying Conditions I and II for which the expected number of obser-
vations to be made is as small as possible.

The problem of finding an optimum estimation procedure is un-
solved. However, a special class of estimation procedures satisfying
Conditions I and II will be discussed briefly in the next section. It is
doubtful whether this class of procedures contains an optimum solu-
tion in the sense defined before.

11.3 A Special Class of Sequential Estimation Procedures

The special class of sampling plans based on the inequality (10:7),
and discussed in Section 10.5, can be used to obtain estimation pro-
cedures satisfying Conditions I and II. With each sample point £, =
(Zy, -+, xp) (n =1, 2, ---, ad inf.) we associate the set w(Z,) con-
sisting of all parameter points 8 for which (10:7) is fulfilled for all
valuesm = n. If weput 4 = 1/(1 — %), then «(E,) will satisfy Con-
dition IT for each n. The estimation procedure is carried out as fol-
lows. We continue taking observations as long as w(Z,) does not
satisfy the requirements in Condition I. We stop the process at the
smallest n for which w(/,) satisfies Condition I and then state that
the true parameter point @ is included in w(%,). This rule of stopping
insures automatically the fulfillment of Condition I.

If p*(z1, -+, Tm, 8) is chosen so that the probability is 1 that the
diameter of w(¥,,) will converge to O as m — o, and if Condition I is
such that any set of sufficiently small diameter satisfies it, the prob-
ability is 1 that the estimation process will be terminated at a finite
stage.

It is doubtful whether the special class of procedures considered here
contains an optimum procedure in the sense of the preceding section.
Even if we are willing to restrict ourselves to procedures based on
(10:7), there is no theory yet developed for the proper choice of
Pm*(Zy, -+ *, Tm, 8). Our aim is, of course, to choose p,,*(xy, - - -, Tm, 6)
so that the expected number of observations required by the pro-
cedure should be as small as possible. An optimum choice of
Pm*(xy, =+ -, x,n, 8) will depend also on the nature of Condition 1.
For example, if a certain choice of Pm™(xy, + -+, 2,n, 6) 1s optimal when
Condition I requires that the diameter of w(£,) does not exceed a pre-
assigned value, this choice will probably not be optimal when Condition
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I requires that the diameter of the projection of w(£,) on one of the
parameter axes does not exceed a preassigned value, and vice versa.

There may be some waste involved in putting 4 = 1/(1 — ), since
this may imply the validity of Condition I1 for a value v’ substantially
larger than the intended v. A further development of the theory may
show that 4 can be put equal to some value smaller than 1/(1 — «v)
which would lead to a saving in the number of observations.



APPENDIX

A.1 PROOF THAT THE PROBABILITY IS 1 THAT THE SEQUENTIAL
PROBABILITY RATIO TEST WILL EVENTUALLY TERMINATE

The sequential probability ratio test terminates at the nth trial
where n is the smallest integer for which either

2y +---+ 2, Zlog 4

e — log L@ 91)]
or [ i =
f(xi: 90)
2y +--+ 2, < log B

Let ¢ = |log B| + |log A|. We shall subdivide the infinite se-
quence z;, 22, 23, - * -, ad inf., into segments of length » where r is some
positive integer. Thus, the first segment S; will consist of the elements
2y, -, 2r. the second segment S; will contain the elements z,_ ., ---,
z2., etc. In general, the 4£th segment S;p will consist of the elements
Z(k—1)r415 * "y 2kr. Let {x denote the sum of the elements in the kth
segment. It can be seen that if the infinite sequence z,, 25, - - -, ad inf.,
1s such that the sequential process never terminates, then we must have
(A:1) |§';;|<c fork =1,2, ---, ad inf.

Inequality (A:1) can also be written
(A:2) (¢r)? < ¢ for k. =1, ---, ad inf.

Thus, in order to show that the probability is 1 that the sequential
process will eventually terminate, it is sufficient to prove that the
probability is O that (A:2) holds for all integral values k. For any
given positive integer 7 denote by P; the probability that ¢;2 < ¢2.
Since z,, 23, - - -, are independently distributed, each having the same
distribution, the distribution of ¢; must be the same for all values <.
Hence, also P; is independent of 7 and we shall denote it by P. Since
{1, {2, - -+, ete., are independently distributed, the probability of the
Joint event that (A:2) holds for k = 1, 2, - - - , 7 18 equal to P?’. Hence,
in order to show that the probability is 0 that (A :2) holds for all values
k, it is sufficient to show that P < 1. Clearly, if the expected value
of {;?is > ¢?, then P must be < 1. Since the variance of z; 1s assumed
to be positive, the expected value of {2 can be made arbitrarily large

by choosing 7, i.e., the number of elements in a segment, sufficiently
157
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large. Thus, P < 1, and we have proved the proposition: The prob-

ability is 1 that the sequentzal probability ratio test procedure will even~
tually terminate.

A.2 UPPER AND LOWER LIMITS FOR THE OC FUNCTION OF A SEQUEN-
TIAL TEST
A2.1 A Lemma

In what follows we shall denote the expected value of any random
variable z by E(z). For any relation R we shall use the symbol P(R)
to denote the probability that R holds. 1If the expected value E(z)
or the probability P(R) has been determined under the assumption
that @ is the true value of the parameter involved in the distribution
of the random variable under consideration, we shall occasionally put
this in evidence by using the symbols Ep(z) and Py(R), respectively.?

In deriving lower and upper limits for the OC function of a sequen-
tial test, we shall make use of the following lemma.

Lemma A.1. Let z be a random variable such that the following three
conditions are fulfilled:

Condition I. The expected value E(z) exists and is not equal to 0.

Condition II. There exists a positive 8 such that Pe? <1 —26)>0
and P(e? > 1 + 8) > 0.

Condition III. For any real value h the expected value E(e"*) = g(h)
exisis.

Then there exists one and only one real value hg % 0 such that

E(e™*) =1
Proof: For any positive 2 we have
(A:3) gh) > P(e* > 1+ &)1 + )%
Hence, since P(e* > 1 + 8 > 0,
(A:4) lim g(h) = + <

Similarly, we see that for any negative A
gh) > P(e* <1 — &)1 — 8)"
Hence, since P(e* <1 — 8) > 0, we have

(A:5) ill‘limk gh) = + =
1 If there are several unknown parameters, say 61, - -, 6x, then 6 denotes the

SEt (61, " T ek)
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Since g’/ (h) = E(z%¢"?),? it follows from Condition II that
(A :6) g’'th) >0

for all real values of .

The relations (A:4), (A:5), (A:6) imply that there exists exactly one
real value A* such that g(h) takes its minimum wvalue for 2 = h*.
Since g'(0) = E(z) 1s unequal to 0 by Condition I, we see that A* =< 0
and g(h*) < g(0) = 1. It is clear that the function g(k) is monotoni-
cally decreasing in the strict sense over the interval (— o, A*) and is
monotonically Increasing in the strict sense over the interval (A*, + «).
Since g(0) = 1 and g(kh*) < 1, there exists exactly one real value
ho # 0 such that g(hg) = 1. Hence lemma A.1 is proved.

From the above considerations it follows that if A*¥* > 0 then also
ho > 0, and if A* < 0 then also ko < 0. Furthermore, if A* > Q then
E(z) = ¢’(0) <0, and if 2* < 0 then E(z) = ¢’(0) > 0. Hence, Ao
and K(z) are of opposite sign.

A.2.2 A Fundamental Identity

In this section we shall derive an identity which will play a funda-
mental role. Consider the sequential probability ratio test for testing
the hypothesis H, that the probability distribution of x is given by
J(z, 6p) against the alternative hypothesis H, that the probability dis-

: . : : : : x, 0
tribution in question is given by f(z, 6,). Let z = log J(x, 61) and
S(x, 6o)
_ f(:rf:l el) . .
z; = log where x; denotes the 7th observation on z. As defined

f(xf, 90)
In Section 3.1, the test procedure is given as follows. Continue taking
observations as long as

(A:7) logB <z +---+4+2, <logA4

where A and B (B < A) are constants determined before the experi-
mentation starts. Accept Hy when

(A:8) 2y +---+ 2z, = log8B
and reject Hy (accept H,;) when
(A:9) zy +---+ 2z, = log A

? From Condition IIT it follows that all derivatives of g(h) exist, and they may
be obtained by differentiation under the integral sign, i.e.,

|
I
&
-~
t
-
)
L
-
p -
o~
S
I

1,2, ---, ad inf.)
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In what follows we shall denote by n» the number of observations re-
quired by the test. Clearly, n is a random variable. Let D’ be the
subset of the complex plane such that E(e**) = ¢(¢) exists and is finite
for any point ¢ in D’. Consider the following identity:

(A:10) E(eP+EN =2 = (™) = [¢(O1Y

where N denotes a positive integer and Z; = z; +---+ 2z;. Let P
be the probability that n =< N. For any random variable v, let Exn(w)
denote the conditional expected value of u under the restriction that
n = N, and let Ex*(u) denote the conditional expected value of u
under the restriction that » > N. Then identity (A:10) can be writ-
ten as

(A:11) PxnEN(eZTEN=200 L (1 — PN Ex*(ZV) = [N

Since in the subpopulation defined by any fixed n = NV the expression
Z~ — Zn is independent of Z,, we have

(A:12) By (2 @8 =20ty = By {(e®)[¢@®]" )

From (A:11) and (A:12) we obtain the identity

(A:13) PyEn{e® eV "} + 10 — Px)En*(®) = [¢@)Y
Dividing both sides by [¢()]Y we obtain

E n*(e27)

(A:14) PyEn{e?e@®] 7} + (1 — PN) O 1

Let D'’ be the subset of the complex plane in which ]q!:(t) | =1
and let D denote the common part of the subsets D’ and D’'. Since

lim (1 — Px) = 0, and since | Ex*(e?™) | is a bounded function of &,
N= o
we have in D
lim (1 p )EN*(eer) 0
: m — r =
(A15) N1= © N [‘i’(t)]N

Since
lim PvEn(eZe )]} = Ete”[¢(®] "}

N= =

we obtain from (A:14) and (A:15) the fundamental identity
(A:16) E{® e} =1

for any point ¢ in the set D.
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A.2.3 Derivation of Upper and Lower Limits for the OC Function

The OC function of the sequential test is defined by the function
L(6), where L(6) denotes the probability that the scquential process
leads to the acceptance of 77, when 6 is the true value of the pa-
rameter.? It has been shown in Section A.1 that the probability is
0 that the sequential process will never terminate, i.e., the relation
P (n = o) = 0 has been proved. Thus, the probability that the proc-
ess will terminate with the rejection of I{, (acceptance of Hy) is given
by 1 — L(6). Using the fundamental identity derived in the pre-
ceding section we shall obtain upper and lower limits for L(8).

f(JT, 61)

— satisfies
f('-r& 30}

the three conditions of lemma A.1 for any value 8. Then for any given
6 there exists exactly one real value 2(8) = 0 such that Ez*®) = 1.
Substituting 2(8) for ¢ in the fundamental identity (A:1G), we obtain

(A:17) Eg(e?h®y = 1

since ¢[h(8)] = 1.

Let Eg* be the conditional expected value of e2"*® under the restric-
tion that H, is accepted, i.e., that Z, < log B, and let Eg** be the
conditional expected value of ¢ under the restriction that H, 1s
accepted, i.e., that Z,, = log A. Then we obtain, from (A:17),

It will be assumed that the distribution of z = log

(A:18) (L(0))Fe* + [1 — L(8)]EF * = 1
Solving for L(8) we obtain
8** _ l
(A:19) L) =
Eg** — [*

If both the absolute value of Ey(z) and the variance of z are small,
as they will be when f(x, 6,) is near f(x, 6p), then Fg* and Fy** will
be nearly equal to B*?® and A*® respectively. Hence, in this case
a good approximation to L(6) is given by the expression

_ Ah@ 1
(A:20) L(8) =

A (0) Bh(ﬁ)

This is the approximation formula (3 :43) given in Section 3.4, It is
casy to verify thn.t_. h() = 1if 6 = 8,, and h(8) = —1 if § = ¢,. The
difference L(0) — L.(6) approaches 0 if both the mean and the variance
of z converge to 0.

For simplicity the euse of o single unknown parameter 6 is discussed, but the
results can obviously be extended to any number of parameters.
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To judge the goodness of the approximation given by L(6), it is
desirable to derive lower and upper limits for L(#). Such limits can
be obtained by deriving lower and upper limits for Eg* and Eg**.
First we consider the case when A(8) > 0. To obtamn a lower limit for
Ey* consider a real variable ¢ which 1s restricted to values > 1. For
any random variable v and any relation R we shall denote by E(u | R)
the conditional expected value of u under the restriction that R holds.

Let Py(¢) denote the probability that ' @Zn—t < rBR®)  Then we
have

- 1
(A:21) Ee* =f [{B"‘B}Eg (e’*“’)z | 92 = ?)] dPe($)
1

Hence, a lower bound of Eg* 1s given by

1
(A:22) BY® [g.l.b. O (e”w” | "®= = —g:)]
3

where the symbol gl.b. stands for greatest lower bound with re-
¢

spect to . Since B"® is an upper bound of Eg*, we obtain the limits

(A:23) B"® l:g.l.b. tFe (e"w” | @ = 1)] < Eo* = B*®
; : [h(6) > 0]
To derive limits for Eg** consider a real variable p which is restricted

to values > 0 and < 1. Let Q(p) denote the probability that
H@Zna 5470 Then we obtain

' 1
(A‘.‘g-l) Ee** =f [p.‘lhw)Ea (eh{ﬁ}z \ eh{ﬂ)z > _):| dQ(p)
0 P
Hence an upper bound of E¢** is given by

1
(A :25) ARO [l.u.b. o s (e"w” | HOF = _>]
P

P

Since A*?® is a lower bound of Eg**, we obtain the following limits
for Ea**:

1
(A:26) AMO < p*x = AN [l.u.b. plly (e"‘w” | "9 = ._>]
: < ; -

(h(8) > O]
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Putting
(A:27) g.l{._b. tEg (eh(e}z | *®z < %) = ng
and
(A :28) l.u;b. pEg (e"w” | 2@z = %) = &g
inequalities (A:23) and (A:26) can be written as
(A:29) B"® e < Eg* = B*®
and
(A :30) AR® < goxx < ARO 5

Since B < 1 and A > 1,* we see Ep* < 1 and Ep** > 1 if h(6) > 0.
From this and relations (A:19), (A:29), and (A:30), it follows that

4RO _ 5p. A0 — 1
(A:31) = L) = 5o AR® _ BR®)

where A(68) > O.

If h(6) < O, limits for L(8) can be obtained as follows. Let 2z’ = —2z,
A" = 1/B and B’ = 1/A. Consider the sequential test .S’ defined as
follows. Continue taking observations as long as log B’ <2y +---
+ 2'» < log A’. Terminate the process with one or the other decision,
depending on whether 2’y +---+ 2/, < log B’ or = log A’. Wae shall
let L’(8) be the probability that at the termination of the process the
cumulative sum 2’y 4---+4 2/, is less than or equal to log B’. Then
L'(¢) = 1 — L(0). Furthermore, we shall denote the quantities A(8),
18, O¢ corresponding to the test S’ by h’(8), n’s, and 6’s, respectively.

We can apply (A:31) to the test S’, since h’(6) = —h(6) > 0. Thus,
we obtain

A;ﬁ'(&) — 1 6!3‘{1!&'(‘9) - 1

<Z ’ <
Arh'(ﬂ) . nrﬂBrh'(ﬁ} = L (8) - 6r8Arh'(ﬁ'J _ B:h'(ﬂ)

(A:32)

where h’(8) > 0. Since 7 and & depend only on the distribution of
h(6)z, and since h’(6)z’ = h(6)z, we have %9 = 79 and 6’9 = 8. Sub-
stituting, in (A:32), &, for 8’9, mg for n’9, 1/B for A’, 1/A for B’ —h(8)
for A’(6), and 1 — L(8) for L’(8), we obtain

* We have assumed that B < 4. Since we let B — B/(1 —a)and A = (1— 8)/«,
we must have 8/(1 — a) < (1 — 8)/a. Multiplying this inequality by a(l — «),

we obtain af <1 —a — 8+ aB, ie., 0<1—a—p8 Hence 8 <1 — « and
1 — 8> a, and therefore B < 1and A > 1.
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(A:33)

where A(6) < 0. Hence

1 — AR® - 1 — ﬂaAhw)
BﬂBh(a] _ Ah(e) -

where 2(8) < O.

We can summarize our results as follows. If A(6) > 0, limits for
L(8) are given in (A:31). If A(6) < O, limits for L(8) are given in
(A:34). The quantities 83 and 7y are defined in (A:27) and (A:28).

In Sections A.2.4 and A.2.5 we shall calculate the values of 8¢ and
ne for binomial and normal distributions. If the limits of L(8) as given
in (A:31) and (A:34) are too far apart, it may be desirable to deter-
mine the exact value of L(8), or at least to find a closer approximation
to L(8) than that given in (A:31) and (A:34). A method of dealing
with this problem is described in Section A.4. There the exact value
of L(@) is derived when z can take only a finite number of integral
multiples of a constant d. If z does not have this property, arbitrarily
fine approximations to the value of L(6) can be obtained, since the
distribution of z can be approximated to any desired degree by a dis-
crete distribution of the type mentioned above if the constant & is

chosen sufficiently small.

(A.:34)

A.2.4 Calculation of 8§ and my for Binomial Distributions

Let X be a random variable which can take only the values 0 and 1.
Let p; be the probability that X = 1 when H; is true (z = 0, 1). Let
H be the hypothesis that p 1s the probability that X = 1. Denote
1 —pbygand 1l — p: by ¢: (z = 0,1). The distribution f(z, p) of =
is given as follows: f(1, p) = p and f(0, p) = qg. It can be assumed
without loss of generality that p; > Po. The moment generating

f(zx, p1) .

i = ] is given b
function of z og (z, Po) 21 y

¢ ¢ ¢
o) = Ep(e™) = Ep [f(x’ pl)] - p(& + q (-q—l
Do qgo

f(I, pﬂ)
Let k(p) #= O be the value of ¢ for which ¢(f) = 1, 1.e.,
h(p) hip)
p(2) +e(2) -1
Po do
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First we consider the case when h(p) > 0. It is clear that ¢**® =

A(p)

x? - - . .
[ﬁ P1;] > 1 implies that £ = 1. Hence €**® > 1 implies that

z,Pp

i s, py) PHP p1\"?
e*h(P) = [f(l )] - ——) . From this and the definition of 3,
y Po Po

given in (A:28) it follows that
A B5) . (& h(p)

- P

Po

where h(p) > 0. Similarly, the inequality e**®’ < 1 implies thart

e P = (g,/90)*®. From this and the definition of 7, given in (A:27)
it follows that

h(p)
(A :36) "y = (ﬂ
do
where h(p) > 0.

If h(p) < O, it can be shown in a similar way that

h(p)
(A:37) 5, — (fi
qo
where h(p) < 0, and
D1 h(p)
(A :38) Np = (—)
Po

where h(p) < 0.

A.2.6 Calculation of 5y and 1y for Normal Distributions

We shall now assume that X is normally distributed with unknown
mean 6 and known variance ¢°. We can assume without loss of gener-

ality that ¢ = 1, since this can always be achieved by multiplication
by a proportionality factor. Then

1 2
(A:39) z, 0;) = — ¢~ 2= =0, 1
f( ) \/-211_& (2 , 1)
and
1 2
(A :40) z, 8) = g~ 72(=—0)
10 =75
We can assume without loss of generality that 0 = —A and 6, = A

where A > 0, since this can always be achieved by a translation. Then

x, o
(A:41) z = l{)gf(_r 1) = 2Acx.
f(.'r! 'ﬂ{_l)
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The moment generating function of z is given by

(A:42) Eg(&zt) — 82a3:+252t=
Hence
A:43 h(8) =
( ) (8) X
Substituting this value of A(8) in (A:27) and (A:28) we obtain
1
(A:44) o = l.u.b. pFjy (e——-zﬂz [ e 20 > ‘—)
P p
and .
(A:45) ng = g.l.b. tEy (6_2631 e 20T < E)

For any relation R let Pgs*(R) denote the probability that the rela-
tion R holds under the assumption that the distribution of x is normal
with mean @ and variance unity. Furthermore, let Pg**(E) denote the
probability that R holds if the distribution of z is normal with mean
—6 and variance unity. Since ¢ 2%% is equal to the ratio of the normal
probability density function with mean —@ and variance unity to the
normal probability density function with mean ¢ and variance unity,

we see that 1
Pﬁ'** (6—28: :-_=;,. _)
26 —28 ! P
(A :46) Ea(e_ z|e™20% = — ) = -
P Pﬂ* (6—23:: => _)
P
and .
pove (o= = 2)
28 —28zx 1 ¢
winy m (e e s ) - ——
e _ 1
Pﬂ* (6’ 26z é _)
¢
It can easily be verified that the right-hand members of (A :46) and
(A :47) have the same values for 6 = A as for 8 = —A\. Thus, d and
ne also have the same values for 8§ = A as for 8 = —A. It will therefore

be sufficient to compute 8¢ and 7g for negative values of 8. Let & =
— where A > 0. First we show that e = 1 /8g. Clearly,

fPﬂ** (eﬂh: 1.) o
e FPe**(e™ " = 1)
=

—2\x
Pﬂ* (62?«.::: < 1) Pa*(e f)
Y Y

IIA

1l=¢< »)

(A :48)
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Letting § = (1/p) (0 < p = 1) in (A:48) gives

Q'Pe** (ezhz < _13:) Pg** (e—ﬂx > l)
p

(A :49) i ——
1 1
Pg* (62"’ = E) pPg* (6_2"” = -)
p
Hence
_ INT
(s
(A:50) =% = g.lb. | ——m™m™@X X ™| = —™ ————
: 1 1
Pﬂ* (62}\: é _) PPE* (8—2?\:1: g _)
- &/ lub. P

-
[
S
*
*
N
o
’
}ll'
N
I
© |-
u

Because of the symmetry of the normal distribution, it is easily seen

that
— 1\ — 1\~
PP&J': 6—2}-.1': g _) pP&** ez}kz g ___
l.u.b. —___% = l.u.b. ____IL = dg
o Pa** (e—ﬂ}sx > _)J PB* (62}“: > _)
- P - p/ _
Hence ~
1
(A:51) ne = —
S¢

Now we shall calculate the value of 8. Let G(z) denote

1 o« 2

2
Vo J- e dt. Then

1 1 1 1
Po** (em‘z > ;) = Pg** (2)\:1: = log —) = Py** (:E = — log —)
p

2\ p
1 1
= G| — log— — h)
O
Similarly
. 2hx 1 1 1
Pg* |\ 7% = = Pg*\z = —log—) =G —log——l—)\)

P 2A p p
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Let w denote (1/2)\) log (1/p). Since p can vary from O to 1, « can

take any value from 0 to . Since p = ¢ 2 we have
. \
por (e 2 0)|
Glu — A
(A:52) 6&p = l.u.b. = l.u.b. (6_2"“ G(u )
Py ( Dz > _) u (u + A)
- P —

0=u= »)
We shall prove that

(A :53) x(u) = e 2%> Glu — N

G(u + N)

s a monotonically decreasing function of ¥ and consequently has a
maximum at v« = 0. For this purpose it suffices to show that the de-

rivative of log x(u) is never positive. Now
(A:54) log x(u) = log G{u — A\) — log G(u + A) — 2Au

1 ) d .
Let ®(x) denote ~ o e~ ¥ Since T G(u) = —®(u), it follows from
(A:54) that

d(u — A) b (u )\l

A:55 d 1 -+ 2\
(A :55) 20 og x(u) = Go —n TG+ N

It follows from the mean value theorem that the right-hand side of

: o e [ﬁb(u)
(A:55) 1s never positive 1 du | G

] is equal to or less than 1 for all

values of v. Thus, we need merely to show that

(A :56) _ci_[_'i’_(u_)] _ YWG) — (WP PG + P°(w)
' du LG(w) G*(w) % (u)
d? (w) @(u)
T tew T
Let y denote (;E:; The roots of the equation y* — uy — 1 = O are |

w4+ Vu? + 4
2

y=

Hence the inequality ¥> — uy — 1 = 0 holds if, and only if,

u—‘\/u2+4 u—l—‘\/u2+4

<y <
2 =Y = 2
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Since y cannot be negative, this inequality is equivalent to

W) _u+ V44

G 75 2

Thus we merely have to prove (A:57). Wae shall show that (A:57)
holds for all real values of ©. Birnbaum % has shown that for « > 0

(A :57)

VU2 4+ 4 —u

(A :58) > P(u) = G(uw)
Hence

& (w) 2 VuZ + 4 + u
Ad9) — = >0
( ) Guw) V2 +4—u 2 (u )
which proves (A:57) for v > 0. Now we prove (A:57) for u < 0. Let
u = —v where v > 0. Then it follows from (A:59) that

P 2

(A :60) (@)

<
Gw) — V4 4 2 —

Taking reciprocals, we obtain, from (A :60),

(A :61) Go) _ Va4 —v

H(v) 2

Since
G(u) - Gv) + 20P(») B G(v)
D(w) P (v)  ®(v)
wve obtain, from (A:61),

-+ 2v

G(u)}‘\/u2—|—4+3v}\/v2—i—4+v

(A:62) — > >
P(u) 2 2
Taking reciprocals, we obtain
P(w) _ 2 VP4 a4 -0 V444w
Guw) ~ ViP+4+0 2 B 2

Hence (A:57) is proved for all values of u and consequently &y is equal
to the value of the expression (A :53) if we substitute O for x. Thus
G(—N)
(A:63) Sg = A= |6
0 GO ( o]

®Z. W. Birnbaum, “An Inequality for Mills’ Ratio,” The Annals of Mathematical
Statistics, Vol. XIII (1942).
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Formula (A:63) has been derived for the case in which 6, = —A,

6 = A, and ¢ = 1. It can easily be seen that for general values 8,
6,, and ¢ we have

(A :64) 5o

6o + 6,
2

G(—XN)
G(N)

e

1
where A = —
o

A.3 UPPER AND LOWER LIMITS FOR THE ASN FUNCTION OF A SE-
QUENTIAL PROBABILITY RATIO TEST

A.3.1 Derivation of General Formulas for Upper and Lower Limits
As before, let

o Sz, 312_ 2; — log S(z;, 61)
f(z, 60) > f(z:, 60)

and let » be the number of observations required by the sequential
test, i.e., n is the smallest integer for which Z, =21 +-<-4+ 2, 1s
either = log A or =< log B. To determine the expected value E(n) of
n under the hypothesis H that 6 is the true value of the parameter, we
shall consider a fixed positive integer N. Thesum Zy = 21 +- -+ 2n

can be split in two parts as follows:

z =1 (:=1,2, ---,ad inf.)

(A :65) Zy = Zn + Z'n

where Z'p = zZny1 +---+2nvifn =S Nand Z’', = Zy — Zn if n > N.
Taking expected values on both sides of (A:65) we obtain

N-Eﬂ'(z) = E&(Zn -+ Z’n)
Let P denote the probability that n = N. Then

Eo(Z, + Z'n) = PnEen(Zn + Z'5) + (1 — Pn)Een™(Zn)

lIA

where the operator Epx means conditional expected value whenn = N,
and Esn* means conditional expected value when n > N.
Since Zn lies between log B and log A when n > N, and since

lim (1 — Px) = 0, we obtain from the last two equations

(A :66) h}lm (NEg(z) — PNEon(Zn + Z’5)] = 0
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For any given value of n < N, the variates z,4,, - -+, 25 are inde-
pendently distributed, each having the same distribution as z. Hence,
we have

Egn(Z',) = Eon(N — n)E¢(z) = —Esn(n)Es(z) + NEy(2)
From this and (A:66) we obtain, since h}im (1 — Py)N = 0O}
(A:67) r}im [PnEsn(n)Eg(z) — PnEgn(Z,)] = 0
Since
im PyEgn(n) = Ee(n) and Nlrim PnEgn(Z,) = Eg(Z,)
N= = =

equation (A:67) gives

(A:68) Eo(Z,) = Ee(n)Ee(z)
Hence
(A :69) Es(n) = Eo(Z.)

* ’ T Ee(2)

if BEg(2) 2 0. Let Eo*(Z,) be the conditional expected wvalue of Z,
under the restriction that the sequential analysis leads to the accept-
ance of Hy, i.e.,, that Z, = log B. Similarly, let E¢**(Z,) be the con-
ditional expected value of Z, under the restriction that H, is accepted,
i.e., that Z,, = log A. Since L(f) is the probability that Z, = log B,
and 1 — L(6#) is the probability that Z, = log A, we have

(A:70) Eo(Z,) = [LO)]Ee*(Z,) + [1 — L(6)]Ee**(Z,)
From (A:69) and (A:70) we obtain

[L(O)Ee*(Z,) + [1 — L(B)]Ee**(Z,)

(A:71) Eo(n) = 20
0

The exact value of Ey(Z,), and therefore also the exact value of
Eg(n), can be computed if z can take only integral multiples of a con-
stant d, since In this case the exact probability distribution of Z, was
obtained (see Section A.4). If z does not satisfy the above restriction,
1t is still possible to obtain arbitrarily fine approximations to the value

1 C. Stein has shown, in “A Note on Cumulative Sums,” The Annals of Mathe-
matical Statistics, Vol. 17 (1946), that all moments of » must be finite. This implies

that h!im (1 — Py)N* = 0 for any positive integer k.
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of Ey¢(Z,), since the distribution of z can be approximated to any de-
sired degree by a discrete distribution of the type mentioned above
provided the constant d is chosen sufficiently small.

If both | E(z) | and the standard deviation of z are small, Es*(Z,)
is very nearly equal to log B and Ey**(Z,) is very nearly equal to
log A. Hence in this case we can write

(L(@)]log B + [1 — L{#)]log A
Ey(2)

(A:72) Eg(n) ~

This is the same approximation formula as given in (3:57).

To judge the goodness of the approximation given in (A:72) we shall
derive lower and upper limits for Es(n) by deriving lower and upper
limits for Es*(Z,) and Eg**(Z,). Let r be a non-negative variable

and let

(A:73) o = Max Ee(z — 7|2 = 7) (r = 0)
and

(A:74) £ = Min Eg(z + 7|2z +7 = 0) (r = 0)
It is easy to see that

(A:75) log A = Eg**(Z,) =< log A + &

and

(A:76) log B + t's =< E¢*(Z,) = log B

We obtain from (A:71), (A:75), and (A:76)
L@ (og B + &) + [1 — L(O)]log 4 _ Eo(n)

(A:77)

Ee(2)
_ (L()] log B + [1 — L(0)] (log A + £) if Eo(z) > O
= Eg(z)
and log B + [1 — L(6))(log A + %)
[L(6)] log — °g Y = E
(A:78) Za(o) = Ee(n)
- L®)(log B + £9) + (1 — L(9)] log A if Eo(z) < O

- Eqo(2)

The limits given in (A:77) and (A:78) will generally be close to each
other for values 8 < 6p and 6 = 6,. However, for values 8 between
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6, and 6; the difference between the upper and lower limits may be-
come very large, since Ey(z) may be near (or equal to) O for such
values 8. In fact, we have seecn that Ey,(2) < 0 and Ejp,(z) > 0.
Hence, if E¢(z) is a continuous function of 8, there will be a value &’
between 6, and 8, such that Ey.{z) = 0. For 6 = 6’ or for values @
very near 8 the limits given in (A:77) and (A:78) are of no practical
value, since they are far apart.

We shall now derive limits for £¢(n) which can be used for values ¢
in the neighborhood of 6’.2 For this purpose, we shall expand *®?~
in a8 Taylor series as follows:

(A:79) D% =1 + R(O)Z, + FR(OPZ.% + Fh(O]PZ.3

where A is some value between 0 and A(8)Z,. From (A:17) and (A:79)
we obtain

(A80) h(O)Ee(Z,) = —3[h(O)PE(Z,%) — §R(OIPEN(Z,%e)
From this and (A :69) it follows that

| k() o RO s
(A:81) Eo(n) = 2Ee(2) Ey(Z,.°) 62 (2) Eo(Z,"e")

Thus, upper and lower limits for Ey(n) can be obtained by deriving

upper and lower limits for Ey(Z,2) and Ey(Z,3¢*). To derive limits
for E¢(Z,%), we write

(A:82) Ey(Z,%) = L(B)Ee*(Z,°) + [1 — L(8)]Ee**(Z,%)

where the operator E* stands for conditional expected value when
Z, = log B, and E** stands for conditional expected wvalue when

Zn, =ZlogA. Let ¢ denote Z, — log B and ¢’ denote Z, — log A.
Then

(A:83) Eg*(Z,%) = (log B)? + 2(log B)Es*(¢’) + Es*(¢'®)
and
(A:84) E¢**(Z,%) = (log A)? + 2(log A)Eg**(¢”’) + Eg**('?)
Since Eg*(¢’?) = 0 and (log B)Ey*(¢’) = 0, we obtain, from (A :83),
(A:85) (log B)? = E¢*(Z,)?
2 See also the author's paper, “Some Improvements in Setting Limits for the

Expected Number of Observations Required by a Sequential Probability Ratio
Test,”” The Annals of Mathematical Statistics, Vol. 17 (19486).
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The quantity £s given in (A:74) is a lower bound for Ky*(e'). Since
log B < 0, (log B)¢’y is an upper bound for (log B)Es*(e’). An upper
bound for Eg*(e’?) is given by

(A :86) e = Max Eol(z + 2|z + r = 0] (r = 0)
Hence
(A:87) Ee*(Z,%) = (log B)? + 2(log B)t's + ¢’'s

Thus we obtain the limits
(A:88) (log B)? = Ep*(Z,%) = (log B)®> + 2(log B)t's + ¢'s
In a similar way, the following limits can be derived for Eg**(Z,%):
(A:89) (log A)? = E¢**(Z,%) = (log A)?> + 2(log A)&s + $o
where £ is given in (A:73) and
(A :90) to = Mf,x Eol(z — 2|z = 7] (r = 0)

If we denote by L’(8) the lower limit and by L’/(6) the upper limit
of 1.(8) given in (A:31) [(A:34) when A(8) < 0], we obtain from (A:82),
(A:88), and (A:89) the following limits for Eg(Z,2):

(A:91) L’(8)(log B)2 + [1 — L"”(8)](log A)* = Eo(Z,2
< L"(6)[(log B)? + 2(log B)¢'s + el +
1 — L/(8)][(og A)% + 2(log A + el

Using a similar method, one can also derive upper and lower limits
for Ee(Z,3¢") without any difficulty. We shall, however, not derive
such limits here, since we are interested in obtaining limits for Ejg(n)
when @ is near 8 and since, for such values of 8, the second term in
the right-hand member of (A:81) is negligible. We shall show that, if
h(®), Es(z), and Ey(z?) are continuous functions of 8, the factor
[h(8))2/[Ee(2)] in that term converges to 0 as 8§ — 6’. It follows from
the discussion given in Section A.2.1 that lﬁin;’h(ﬂ) = 0. Since
OP 5 | OF s ne]

2! 3!

(A:92) E(®%) = E {1 + h(8)z

O=u=s1l)
we obtain, when 2(8) = 0,

2
(A:93) Ey {z + %?22 i [hf;)] 236“"{9”} =0




LIMITS FOR THE ASN FUNCTION 176
Thus

(A :94) E;Z(:)) = FE, [ — %zz h;?) 336“""{3"] [R(8) == 0]

Assuming that Ep(e'*!) is 2 bounded function of # in the neighbor-
hood of 8, we see that Eg(| z |2¢/*® !1*1) is also a bounded function of
¢ in a sufficiently small neighborhood of 6.2 Hence, E3(23¢**®?) is

also a bounded function of ¢ in the neighborhood of 8. From this and
(A:94) it follows that

Eq(2) 1
: 1 = ——F.z2) <0
(A:95) S ) 3 BoE)
From (A :95) it follows that
[R(8))°
(A :96) a:‘;' Fa o) =

The lower and upper limits for Ey(n), based on (A:81), will generally
be close to each other for values & in a small neighborhood of 8. Thus,
when 8 is near 8’ these limits for E¢(n) can be used instead of the limits
given in (A:77) and (A:78).

It may be of interest to determine the limiting form of (A:81) when
8 = 6. If Eo(Z,2%) is a continuous function of 8 and E¢(Z,3e") is a

bounded function of # in the neighborhood of ¢, it follows from (A :81),
(A:95), and (A:96) that4

2
(A:97) Ep (n) = Eo (Z7)

Ey: (2%)

The boundedness of Es(Z,.3e*) can be proved if, for ¢t = =1, the ex-

1

pected value pE, (e""" | et* = —) is a bounded function of 8 and »p
p

(0 < p < 1). Since lim A(#) = 0, there exists a constant C such that
8=8"

| Z,3e* l < Ceé'%"! for 6 in the neighborhood of 8. Hence, we merely
have to show that Egs(e' ?"') is bounded. Since €?" + e~ 2~ = ¢l Zn | it

is sufficient to show that both Es(e?") and Eg(e”?") are bounded. We
have

1
Eq(e?n ‘ Zy =logA) < A lu.b. [pEa (ez | e = —-)]
P P
2 This follows from the fact that | 2(6) | < 1 when ¢ is sufficiently near ¢’.
¢ A different method for deriving (A:97) was given 1n the author’s paper, ‘“Dif-

ferentiation under the Expectation Sign in the Fundamental Identity,”’ The Annals
of Mathematical Statistics, Vol. 17 (1946).
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where 0 < p < 1. Since

E¢(e?" | Z, < log B) = B
we obtain

1
Es(e?) =< A lLu.b. [pEa (e“" | e* = —)] + B
P P

The right-hand member of this equation is bounded, since
1\. .
pEy (e""’l e’ = 3 is bounded by assumption. Hence Es(e”") is bounded.

The boundedness of Es(e~2") can be shown in a similar way. Upper
and lower limits for Es- (n) can be obtained from (A:97) by substituting
for Eg (Z,2) the upper and lower limits given in (A:91).

We shall now compute an approximate value of Eg:(n), neglecting
the excess of Z, over the boundaries. Since lim h(6) = 0, we obtain,

from (3:43), 0=6’
(A -08) 7.0 log A
' log A — log B
Hence
log A — log B
Eo(Z,2) ~ log B)? + (log A)?
or(Zn") logA—-logB( g 5) log A — log B
= — log Blog A
Thus an approximate value of Eg¢ (n) is given by °®
Eg (an) —_ log B lﬂg A

(A:QQ) Eq(n) = E.g:(zz) ~ Eg (22)

If the OC function L(6) of the test is known exactly, close limits for
Eg(n) can be derived which remain valid over the entire range of 6.
We shall indicate briefly the derivation of such limits. Denote by
fo(z) the distribution of z when @ is the true value of the parameter.
By the distribution of z conjugate to the distribution fg(z) we shall
mean the distribution €*®?fg(2). In important cases, such as for bi-
nomial and normal distributions, to any given value 6 of the param-

eter there will correspond a value g such that f3(z) is conjugate to

s W. Allen Wallis obtained this approximation formula independently of the
author. It is included in the publication of the Statistical Research Group of
Columbia University, Technigques of Statistical Analys:s, Chapter 17, Section 7.2,
MecGraw-Hill, New York (1946).
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fo(2), i.e., f3(z) = e*®P3f(z). We shall call § conjugate to 8. It has
been shown elsewhere ¢ that

(A:IOO) E'g*(eh(a)z“) — @ and Ea**(e"(ﬂ)z") _ 1 — L(6)

L(#®) 1 — L(6)
On the other hand,

(A:].Ol) Eﬂ*(eh(ﬂ)zn) — eh(ﬂ}Eﬂ*{Zn)Ea*(eh(ﬂ)lzn—ER*(Zn}])

2
— eh(ﬂ)Ea*(Zn)E&* {1 + [h(z)] [Zﬂ _ Ee#(zﬂ)]2ev}

where v lies between O and h(8)[Z, — E¢*(Z,)]. Similarly

(A:102) Eﬂ*#(eh{a)zu)

- h(8))? :
— eh(B)Eg (Zn)Ea**{l I [ ()] [Zn _ Eﬂ**(zﬂ)]zev}

2

where v’ lies between 0 and h(8)[Z, — Ey**(Z,)]. From (A:100),
(A:101), and (A:102) we obtain

Eo*(Z,) L L@
= o
Eo(z)  h@Es(z) ° L)

1 ( [2(6)]°
_ log (1 +
h(8)FEe(2)

(A:103)

Eq* {[Zn — E’a*(Zn)]ze"})

2
and Boes(y
(A:104) — (Zn) _ ! log 1 - LG
FEqg(z) h(0)Eq(2) 1 — L(6)
1 [R(6)]° ,
log (]- i EG** {[Zn - Eﬂ**(zn)lzev })
hue h(6) E(2) 2
(A:105) Eg(n)
1 L(®) 1 — L(e‘)}
— L(6) log —~ —
h(6) Ee(2) { (6) log Lo T~ L®llog Lo TF
where
(A:106)
1 [h(8)]?
R = OYHE [L(&') log (1 + Ee*[[z,, — Eg*(z,.)]%v}) +
h(®)]?
1 — L(8)] log (1 + RO Ea**{[zn _ Ea**(znn?e“'})]

* Sec, for instance, the author’s article on “Some Generalizations of the Theory

of Cumulative Sums of Random Variables,” The Annals of Mathematical Statistics,
Vol. XVI (1945).
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Since h(0)Es(z) =< 0 (see Section A.2.1), we see that £ = 0. Hence a
lower bound for Es(n) is obtained by substituting O for £ in (A:105).

To obtain an upper bound for Es(n) we shall derive an upper bound
for B. Clearly

(A:107) {(Z. — log B) + [Ee*(Z,) — log Bl}? = [Z, — Es*(Za))°
whenever Z, < log B. From this and (A:76) we obtain

(A:IOS) [(Zn - Iog B) + 5’6']2 = [Zn - Eﬂ'*(zn)]z
whenever Z, < log B. Similarly, we obtain
(A:109) [(Zn — log A) + &]% = [Z, — Ee**(Z,))?

whenever Z, = log A, where & is given by (A:73). From (A:107),
(A:108), and (A:109) it follows that

(A:110) Eg*{[Z, — Eo¢*(Z.)])%e"}

< E*(Z, — log B + 5’3)261 Zn— log B+ | | A(6) I]
and
(A:111) Eg**{[Z, — E¢**(Z.)]%e"" ]

< Ea**[(Zn . log A + 50)261‘.3“— log A+£9)| A(8) I]

Furthermore, we have

(A:112) Ea*[(zn . log B + E'a)zﬁl Zn— log B4+ta | | hi(6) I]

< Max Ee¢*[(z -+ 7 + Era)zelz+r+f'e [ 1A | | z4+r=<0] = p (say)
r=0
and
(A:113) Eo**[(Z, — log A + Ee)zﬂ,(zn—- log A+£)| h(6) I]
< Max Eo**[(z — 7 + £g)%eC T HOIRO 2 — 7 = 0] = p” (say)
r=0

From (A:106) and (A:110) through (A:113) we obtain the following
upper bound for I:

< R = - (L(ﬂ) lo l1 + WOy P’} +
(A:114) R = = RO Ea2) \ gl >
[R(8)]° }
(1 — L(8)] log {1 +- 5 P )

An upper limit for Eg(n) is obtained by substituting % for E in
(A:105). The value of B will generally be small over the entire range

of 6.
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A.3.2 Calculation of the Quantities £ and §’; for Binomial and Nor-
mal Distributions

Let X be a random variable which can take only the values 0 and 1.
Let the probability that X = 1 be denoted by 6. Then the distribu-
tion of z is given by f(z, 8), where f(1,6) = ¢ and f(0,8) = 1 — 6.
Let H; be the hypothesis that 8 = 8; (z = 0,1). It can be assumed

. . - f(.T-, 61)
without loss of generality that 8; > 6. It is clear that log 7(z, 80) > 0
» YO
f(-rr 61) f(ll 31)
implies that =z = 1 and consequently log = lo =
P HEREY 8 f(@, 000 T % S(1, 60
)
log -1 . Hence
6o
7
(A:115) £ Ma‘c Ee¢(z — 7 ] = log El-
0
‘e f(xr 91) . .
Since log < 0 1implies that x = 0, we have
f(*r; ﬂﬂ)

1 — 6,
1 — 6g

Now we shall calculate the values & and ¢ when X 1s normally
distributed with unit variance. Let

(A:116) g9 = MinEg(z+7r|z+7r = 0) = log

f(x, 6;) = ~ on e~ Yiz—0)? (z = 0,1 and 8, > 85)
ril

and
f(z,8) = L o rE-o2
’ \V 2w
We may assume without loss of generality that b = —A and 68, = A

where A > 0, since this can always be achieved by a translation.
Then

7]
(A:117) z = 1ng(“”’ D _
. f(l', BD)
1 _ 23 _
Let ®(x) denote ~ o ¢ 2 and let G(x) denote \/— f 2 dt Let

t = x — 6. Thenz = 2A( + 8) and
(A:118) Eo(z —r|2z —r = 0)

T T
=2azaﬂ(z+e——_|c+e——--go)
2A Z2A

2A © 2A

= U = t)D) di = — -
Gt ( 0) ®(¢) di G(tu)[ toG'(to) + P(¢)]
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where
-

A:119 = —
( ‘ o 2A

In Section A.2.5, equation (A:56), it was proved that [®(Z)/G(%)]
— {p is a monotonically decreasing function of #{. Hence the maxi-
mum of Fg(z — r | z — r 2 0) is reached when » = 0, and consequently

d(—0)
G(—8)

(A:120) ¢ 24 [6G(—8) + (—86)] = 2A [’r
: 8 G(—o) )] = -+

Now we shall calculate £3. We have
(A:121) &9 = MinEe(z +7r|24+ 7 = 0)

= -—Mang(-—-z—-r| —z —r=0)

= —2AMaer(-—~:1: —-LI —z —i-_.?__ﬁ)

r 2A 2A
Jett = —x+ 86 and ¢z, = (r/2A) + 8. Then
(A:122) E, (—a: 2;] r — ﬂ ) Es(t —to| t — to = 0)

P (%)
- s )f ¢~ t)®(® dt = =~ to
Since this is a monotonically decreasing function of ¢, we have
r r $(8)

(A:123) %ax Eq (—:x: 25' x on = = 0) = G®)
From (A:121) and (A:123) we obtain

, ®(6)
(A:124) £ = —2A [G’(&‘) 8]

Formulas (A:120) and (A:124) have been derived for the case when
8o = —A, 66 = A, and ¢ = 1. For general values 6, 6;, and o, the
values of £ and £’ are given by

1 - —6)
(A:125) o = g (61 — 6o) [9 + G(—ﬁ)]
and . &@) )
(A:126) £ = — - (6, — 6o) [G'(@ 9]

Q|
|

where
1 (9 60 + 31)
o 2



EXACT FORMULAS FOR OC AND ASN FUNCTIONS 181

A.4 DERIVATION OF EXACT FORMULAS FOR THE OC AND ASN FUNC-
TIONS WHEN z CAN TAKE ONLY A FINITE NUMBER OF INTEGRAL
MULTIPLES OF A CONSTANT

In this section we shall derive exact formulas for the OC and ASN

g -
og Iz, 61) can take only a finite number of inte-
f(Ir BD)

gral values of a positive constant d. This is a rather general result,
since any distribution of z can be approximated arbitrarily closely by
a discrete distribution of the above type if the constant d is chosen
sufficiently small.

To obtain the exact OC and ASN functions, we shall first derive
the exact probability distribution of the cumulative sum Z, =
2y +---+ 2, at the termination of the sequential process. In what
follows In this section the probability of any relation and the expected
value of any random variable are determined under the assumption
that @ is the true value of the parameter.! However, to simplify nota-
tion, we shall not put this in evidence in the formulas, i.e., we shall
write P instead of Py and ¥ instead of £y. Let g, and g, be two posi-
tive integers such that P(z = —g;d) and P(z = g.d) are positive and
z can take only integral multiples of d which are = —g,d and = g.d.
Denote P(z = id) by h;. Then the moment-generating function of z
1s given by

(A:127) E(e®!) = Z he'@ = o(t)  (say)

1= —g

To obtain the roots of the equation ¢(¢f) = 1, we let ¢4 = » and
solve the equation:

72
(A:128) E hat = 1

1= — (@1

Let g denote g, + g, and let the g roots of (A:128) be %y, - - -, u,, re-
spectively. We shall assume that no two roots are equal, i.e., u; = u;

for 7 = ;. Substituting wu; for ¢¢ in the fundamental 1dentity (A :16)
we obtain

functions when z = 1

Zn

(A:129) E(u;4) =1 z=1, - ---,9)

Let [a] be the smallest integer = log A/d, and [b] the largest integer
= (log B)/d. Then Z,/d can take only the values

(A:130)
(Bl —gr + 1), (Bl —g1 +2), ---,[b), [a], ((a] + 1), ---, ([a] + g5 — 1)

' If there are several unknown parameters, ¢ denotes the set of all parameters.
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Denote the g different values in (A:130) by ¢y, - - -, ¢g respectively.

Furthermore, denote P(Z, = ¢;d) by £&;.. Then equations (A:129) can
be written as

(A:131) DEui=1  G=1-9)
7=1

Let A be the determinant value of the matrix ||« || (7,7 =1, ---, g)
and let A; be the determinant we obtain from A by substituting 1 for
the elements in the jth column. If A = 0, it follows from (A:131) that
P(Z, = c;d) = &; 1s given by
Aj
A

Thus, the probability L(8) that the process will terminate with Z, =
log B is given by

(A:133) L©) = %

where the summation is to be taken over all values j for which dc; =

log B. Equation (A:133) is an exact equation of the OC function.
From the probability distribution of Z, we can easily derive the ex-

pected value Eg(n) of n. In fact, In Section A.3 it has been shown that

Eﬂ(zn)
Eg(n) = Fo@)
But )
ciA;d
(A:134) Ey(Z,) = E : JAJ
Jj=1
Hence . ” A
C;4a;
13 Eg(n) =
(A:135) 5( Eo(2) ;Z 1‘: A

is the exact equation of the ASN function.

The method of obtaining the probabilities &, ---, &, as described
above, requires the computation of the roots of the polynomial equa-
tion (A:128). This is not necessary, however, if a method given by
Girshick is used.? Girshick proceeds as follows. Multiplying

( _S_ :hﬂéi — 1) by %°* and ( z :Eﬂff — 1) by »?'~®1~1 we obtain two
1 7
polynomials f(z) and F(w), where f(u) is of degree g + g2 = ¢ and

> M. A. Girshick, “Contributions to the Theory of Sequential Analysis,”” The
Annals of Mathematical Statistics, Vol. 17 (1946).
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F(u) of degree g + [a] — [b] — 2. According to (A:128) and (A:131),
every root of f(u) is also a root of F(u). Hence

Fu) = f(w)f*(w)

where f*(u) is a polynomial of degree [a] — [b] — 2, i.e.,
F*(w) = ko + kyu 4+« + kpgy—pj—p '@ 172

Putting the coefficient of any power of » in F(u) equal to the coef-
ficient of the same power of u in f(u)f*(u), we obtain a system of
g + [a] — [b] — 1 linear equations in the g + [a] — [b] — 1 unknowns
£1, -+, &g, ko, k1, - - -, kg—p)—2, from which these unknowns can be
determined. Thus, the probabilities &, ---, £ can be determined
without solving the polynomial equation (A:128). This advantage is,
however, bought for the price of an increased number of linear equa-
tions to be solved. If the roots of the polynomial equation (A:128)
are computed, only ¢ linear equations have to be solved for determin-
ing &, ---, £&. If Girshick’s method is used, no polynomial equation
is to be solved, but the number of linear equations is increased to
g + [a] — [b] — 1.

If go = 1, the OC function L(8) is a simple expression of the roots
Uy, **+, . In fact, L(®) = P(Z, = logB) =1 — P(Z, = log A) =
1 — &. We have

ullb]—m+l (&) [a]

(231 (231
A =
T e L I ©
and
ullb]—m+l L. ul[b] 1
ag =
ug[b]—ﬂl-i-l ?Jg{b] 1

The value of the ratio A,/A is not changed if we multiply the 7th
row of A, as well as that of A,, by »2~®'—1 Thus

1wy - ! w1 — 1 (0]
¢ A, 1 w2 1 T
g = =
a 1wy - 4yt o1 1tlal= (o)
.- .- 71— 1 g1—1-+[a] —[b]
1w, Ug UG
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The cofactor of each element in the last column is a Vandermonde
determinant. Expanding the determinants in the numerator and de-
nominator according to their last columns and dividing numerator and
denominator by the Vandermonde determinant,

1 % w? - y®™
. (gr =9 — 1)
1 ug ug-z .. ugpl
we obtaln
=1 _(u; — 1) (u; — u;)
£, = Lg J =x
g — A - g | u£n1—1+[a]—-[b] ]
;_(ui — 1)' I (u; — uj)
J 7

We shall illustrate the derivation of the exact OC and ASN func-
tions by a simple example. Let z be a random variable which can
take only the values 0 and 1. Denote by H; (¢ = 0, 1) the hypothesis
that the probability that x = 1 is equal to p; (z = 0,1). Let

1 — e 2 e — et

0 = — and pp = —
P e —e 2 e — e °

Consider the sequential test for testing Ho against H;. We shall com-
pute the probability that the process will terminate with the accept-
ance of Ho, and the expected number of trials required by the test,

when the true probability that z = 1 is equal to p = 34. In what
follows in this section, all probability statements and expected values

refer to the case when p = 279.
First we compute ¢(¢) = E(e**). Since z can take only the values

1 —p
log—p—l-==loge=1 and log 1—1::>g.«3_2=-—2

Do 1 — Do
with probabilities 34 and 4< respectively, we have
H(t) = 3e* + 2e >

Letting ¢ = w and solving the equation

3 4 1

—‘H.I

7 7 u?
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we obtain the roots u; = 1, us = 2, and u3 —24. The integers

c1, C2, C3 are given by

c; =logB — 1, cx =logB, ¢3 =logAd

Hence
| 1 1 1
A = | QoeB—1 olog B olog A
| (—3)'eB1 (—%)leB (_3)led
1 1 1
Ay = 1 QlogB olog A
1 (_%)1083 (_%)lng)l
1 1 1
Ay = olog B—1 1 9Qlog4
(__g_)logﬂ-—l 1 (_%)1934
1 1 1
AS — 2!0; B—1 21033 1
(_%)lugﬂ—l (__g_)lagB 1

Then the probability that Hy will be accepted is given by

A A
7 = 1+ Az
A

The expected value of » is given by
1 ¢ A; + c2A; + c3A3

I

E(®n)

E(z) A
_ 7 —=(=logB + 1)A; + (log B)A; + (log A)As3
O A
— Z (—log B + 1)A, + (— log B)As; — (log A) A5
5 A

A.5 THE CHARACTERISTIC FUNCTION AND HIGHER MOMENTS OF n

A.b.1 Derivation of Approximate Formulas N eglecting the Excess of
the Cumulative Sum over the Boundaries

Let Z, be a random variable _deﬁned as follows: Z, = log A if
Z, =21 +--++2, ZlogAd, and Z, = log B if Z, < log B. Denote
the difference Z,, — Z,, by e. Then ¢ is a random variable.
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In what follows in this section we shall neglect ¢, i.e., we shall sub-
stitute O for e.¢ No error is committed by doing so in the special case
when z can take only two values, d and —d, and the ratios (log 4)/d
and (log B)/d are integers, since in this case e is exactly 0. Apart
from this special case € will not be identical with the constant 0.
However, the smaller | E(z) | and K (z%), the smaller the error we com-
mit by neglecting e. In fact, for arbitrarily small positive numbers
5, and &, the inequality P(| e| =< 8;) = 1 — &, will hold if | E(z) |
and E(z2) are sufficiently small. Thus, in the limiting case when E(2)
and E(z%) approach 0, the random variable e reduces to the constant 0.

As in the preceding section, all probability statements and expected
values will refer to the case in which 6 is the true parameter point,
without putting this in evidence in the formulas by using 8 as a sub-
script to the operators P and E. Let ¢(¢f) be the moment generating

function of z, 1.e.,
¢(&) = E(e™)

To derive an approximation to the characteristic function of n, we
shall consider the equation

(A:136) — log () = 7

where 7 is a purely imaginary quantity. It will be assumed that z
satisfies the conditions of lemma A.1. Then, according to lemma A.l,
the equation — log ¢(¢f) = O has exactly two real roots in ¢; they are
t — 0 and ¢t = & (A = 0). Furthermore ¢’(0) and ¢’(h) both are un-
equal to 0. Hence, if ¢(¢) is not singular at ¢t = 0 and ¢ = h, equation
(A:136) has two roots, 4 () and £(7), for sufficiently small values of

| 7 | such that lim ¢ () = O and lin:'é t2(r) = h. Identity (A:16) can
r=0 r=

be written as
(A:137)  LE*{® 6]} + (I — DE*{™[6()]™"} = 1

where I, denotes the probability that the test procedure leads to the
acceptance of Ho, E* stands for conditional expected value under the
restriction that the process leads to the acceptance of Hy, E** stands
for conditional expected value under the restriction that the process
leads to the rejection of Ho. Neglecting the excess of Z, over the
boundaries, we have Z, = log B when the process leads to the accept-
ance of Ho, and Z, = log A when the process leads to the rejection

of Hy. Hence (A:137) can be written as
(A:138) LB E*e()]™" 4+ (1 — DA'E**[¢e()] " =1
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This identity is valid for all values of ¢ for which | o (f) I = 1.1 Letting
t = t,(#) and t = ¢{;(7), we obtain, from (A:138),

(A:139) LBYOE*(e™) 4 (1 — LYAYOE**(e™) = 1
and
(A :140) LB2OE*(e™) 4 (1 — LYAROE**(e™) = 1

Solving these equations in £*(e™) and E**(e™), we obtain

A t2(7) __ Ab (r)

(A:141) E*(efﬂ) = L[Btl(rJAtz(‘r} — A-‘-I(T)Btitf)]
and (r) (r)

Btl ) __ sz T
(A:142) E**(e™) =

(l — L)[Btl{r)Atz[r} _ AEL(T)BIQ(T}]

for all imaginary values 7.
The unconditional expected value E(e™") is clearly equal to

(A:143) E(E™) = LE*(™) + (1 — L)E**(e™)
Hence, the characteristic function of »n is given by

A _ Ah(f) + Bh{f) _ Btz(r)

(A:144) #’(T) = E(efﬂ) = Bh(r_}Atz(r) . Afl(f)B’-z(TJ

(for all imaginary 7).

By definition, the expected value E(e™) is the characteristic func-
tion of », and (A:144) gives the desired approximation formula when
the excess of Z, over the boundaries can be neglected. Our deriva-
tions yield also approximation formulas for ¥*(r) = E*(e™™) and
Y**(r) = E**(e™). The function ¢y*(7) can be interpreted as the char-
acteristic function of the conditional distribution of » when the process
leads to the acceptance of Hy, and ¢**(7) can be interpreted as the
characteristic function of the distribution of » in the subpopulation
of samples leading to the rejection of Ho.

As an illustration we shall determine ¥*(7), v**(7), and () when
z has a normal distribution. Denote by x the mean of z and by ¢ the
standard deviation of z. Then equation (A:136) can be written as

o2
— log ¢(t) = —ut ——é-tz =7

! This follows from the considerations in Section A.2.2, since D’ is the whole
complex plane in our case.
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Hence

(A:145) g M= ‘j;‘z — 2077
Th-us ) . 2 2
::;46) t1(7) = = + = V u2 — 2427
(A :147) £ () :2 :2 Vu2 — 2627

where the sign of +/ is determined so that the real part of
VvV u?2 — 2027 is positive. Substituting these values for ¢ () and #;(7)
in (A:141), (A:142), and (A:144), we obtain ¢¥*(7), ¥**(7), and ¥(7) in
the case when z is normally distributed. According to formula (3:43),
an approximation to L is given by

A* — 1
(A :148) L ~ B
When z is normally distributed we have
A —
(A :149) 3

It is of interest to consider the following two limiting cases: (1)
B = 0 and A is a finite positive value; (2) B 1s a finite positive value
and A = + . It can be shown that E(n) will be finite in case (1)
only if E(z) > 0. Similarly, E(n) will be finite in case (2) only if
E(z) < 0. Thus, in case (1) we shall assume that E(z) > 0, and in
case (2) we shall assume that E(z) < 0. To obtain the characteristic
function ¥ () of n in case (1), we have to determine the limiting value
of the right-hand member of (A:144) when B — O. For this purpose
we shall first derive the limiting value of B2 /B — B —ul) when
B — 0. Since in case (1) E(z) 1s assumed to be > 0, the quantity
h = lim f;(r) must be negative, as has been shown in Section A.2.1.

r=0

Hence, for small = the real part of t2(7) is negative. On the other hand,
the real part of # (r) approaches 0 as 7 — 0. Thus, for small r the
real part of t2(7) — 4Hi(7) 18 negative, and, therefore,

(A:150) lim | B*” 790 | = 4o
B=0
From (A:150) and from the relation ;ir% | B2 | = «, it follows that

with B — O the right-hand member of (A:144) converges to
(A:151) A8
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Thus, if £(z) > 0 the characteristic function of n in case (1) is given
by (A:151). When z is normally distributed, {,(7) is given by (A :146).
Hence, for normally distributed z with ¢ > 0 the characteristic func-
tion of n in case (1) is given by

(A:152) A o

In case (2) we have assumed that E(z) < 0. Hence #{(7) and
ta(v) — t1(v) will have a positive real part for small . Thus,

(A:153) lim | A%T | = lim | 42X 79| = 4+ o

— oo A= =

From (A:153) it follows that the limiting value of the right-hand mem-
ber of (A:144) when A — <« is given by

(A:154) B—a®

Thus, if E(z) < 0, the characteristic function of » In case (2) is
given by (A:154).
The moments of n can be obtained by differentiating the character-

istic function of n. For any positive integer r the rth moment of = is
given by

(A:155) E(®") =

r

_y(7).
T

We can also obtain the conditional moments of n in the subpopula-
tion of samples for which Z, =< log B, as well as in the subpopulation
of samples for which Z, = log A. Let E*(n") denote the conditional
expected value of »” in the subpopulation Z, =< log B, and let E**(n")

denote the expected value of n” in the subpopulation Z, = log A.
Then we have

r r

d,rr'#*('-") and E**(n") = g

E*(n") = b**(r)

where ¥*(7) and ¢**(r) are the conditional characteristic functions
given in (A:141) and (A:142).

It may be of interest to note that ¥*(7),
dr’ dr”

¥(7) can be obtained from identity (A:138) di-

yv**(7), and, there-

r-

fore, also F(n") =
dr”

rectly by successive differentiation. In fact, (A:138) can be written as

(A:156) LBY*[— log¢()] + (1 — LYAY**[— log ¢(1)] = 1
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Taking the first » derivatives of (A:156) with respect to 2 at t = 0
and ¢ = h, we obtain a system of 2r linear equations in the 2r un-
d’ d’ : .
knowns d—_rjr,b*(r) and d—~7-_-,:a.\'/**(f) o (=1, ---,r) from which
dy*(7)

dr r={)

r=0

and

these unknowns can be determined. For example

dy**(7)
dr =0
tive of (A:156) with respect to { we obtain

@' (D) dy*(7)
() dr

can be determined as follows. Taking the first deriva-

(A:157) L(log B)B'Y*(r) — LB
¢’ (1) dP**(r) _

— ty**(r) — (1 — L)A* 0
(1 — L)(og A)AY**(7) — ( ) o0 dr
[+ = — log ¢(8)]
Letting ¢ = O and ¢ = h we obtain the equations
¢’ (0) dy*(v)
: B — L -+
(A:158) L log 5©0)  dr le=o e
@’ (0) dy**(r
— — (1 — L = 0
1 —L)log 4 —( )50 dr =0
and (h) dp*(x)
@’ T A
: A __ LB? 4+ (1 — L)(og A)A" —
(A:159) L(log B)B* — LB = —0 | _, ( (log
o admat|
(1 L)A ¢(h) dT r=0
s ok
from which a7 (7) and a7 () can be determined.
dT r=0 d'f r=0

A.5.2 Derivation of Exact Formulas When z Can Take Only a Finite
Number of Integral Multiples of a Constant

We shall use here the notation defined in Section A.4 With()l{t- any
further explanation. Let ¢.(7) denote the characteristic function of
the conditional distribution of n in the subpopulation of samples for

which Z, = ¢cd (Z =1, ---,9). The equation 1in ¢
(A :160) $(t) = e 7

has g roots . (7), < -+, {.(7) such that

(A:161) lim €M% = u; G=1,---,9

r=0
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The fundamental identity (A:16) can be written as

(4]
(A:162) D eyl — log $(®)] = 1
J=1
Substituting ¢;(7) for ¢ in (A:162), we obtaln
g
(A:163) D gty =1 G =1, 9)
=1

These equations are linear in the unknowns ¥,(7), - -+, ¥g(7), and the
determinant of these equations is given by

Elecltl(f}d e . Egec‘h(r)d

eclti(r)d . 6::;#2(1}6

(A:164) s(r) = | B¢ S
Elecltg(r)d . Egec‘t:(f)d

Obviously, 6(0) = £,£, -+ £,A. Hence,if £, =0 =1, ---, g) and
A = 0, then 8(0) > 0, and consequently é(7) # O for any = with suffi-
ciently small absolute value. Thus, ¢¥1(7), - - -, ¥g(+) can be obtained
by solving the linear equations (A:163).! The characteristic function
¥(7) of the unconditional distribution of »n is given by

(A:165) ¥() = D ()

i=1

For any positive integer r, the exact rth moment of =, i.e., E(n"), is
given by the rth derivative of ¢ () with respect to r at = = O.

A.6 APPROXIMATE DISTRIBUTION OF n WHEN z IS NORMALLY DIS-
TRIBUTED

A.6.1 The Case When B = 0 and A4 Is Finite

In this case we have assumed that E(z) = u > 0. Then the ap-
proximate characteristic function of n, if the excess of Z, over the
boundaries is neglected, is given by (A:152). Let

22

(A:166) m = —n
202

! This method of determining ¢.1(r), ---, ¥g(r) requires the computation of
the roots of equation (A:160). This can be avoided, as Girshick has shown in
his paper mentioned in Section A.4, if a device is used similar to that applied by
him for determining £, - - -, £ (see Section A.4).
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Then the characteristic function of m is given by

(A:167) Z(t) = e—VvVi=d
where
au
(A:168) c=—> 0
o
and
(A:169) a =log A

The sign of the square root in (A:167) is determined so that the real
part of V1 — ¢ is positive. The distribution of m is given by

1 o —

(A:170) — U= VITh—mt g,
21 —3 @
Let
1 —
(A:171) G(ec, m) = 2—f g~ V1T ™ gy
we —i o
and
1 - 1 —cV1—t—mt
. = — e ° dt
(A:172) Hc, m) syl BN pa
Since 1
1 d _ . vici—me ( C ) —eVI—i—mt
. —. = — m ) e

(AT3) oo & ® 2mi \24/1 — ¢
we have : .
(A:174) gH(c, m) — mG(c, m) = oes [(f?:_"""""""'_’““]_ﬂElr =0
From (A:171) and (A:172) we obtain

aH (c, m)
(A:175) 2o F G(e,m) = 0

From (A:174) and (A:175) it follows that

C H( y 4 dH (¢, m) 0
™ a— m —
(A:176) 5 Hie,m ”
Hence ,
C
(A:177) log H(c, m) = — — log A(m)

where A(m) is some function of m only. Thus

c2

(A:178) H{c, m) = A(m)e *™
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Now we shall determine A(m). We have

- 1 1
A:179 A(m) = HO, m) = — e ™t dt
(A279)  Am) =HO,m) =52 ) .. VT —¢
Since (1 — &)~ is the characteristic function of 2x? where x° has the

x2-distribution with one degree of freedom, the right-hand side of
(A:179) is equal to

1 -1
T(HVm
Hence
1
. A = —m
(A:180) (m) 'I‘(%)‘\/ﬁe
From (A:178) and (A:179) we obtain
1 L m
181 H = 4m
(AASL ©m) = T @~vm €

From (A:174) and (A:181) we obtain

C ——— —
A:182 G = m
( 8 ) (C, m) 21—,(%)?”% €

Hence the distribution of m is given by

(A:183) F(m)dm = e dm 0 =m< »)

Let m = (¢/2)m*. Then the distribution of m* is given by

— (L 4o

(A:184) D(m*) dm* e 2\m* 2) dm*

i
™
)
~
|
+
3
*
|
o
~/
Q.
3
»*

The function (1/m*) + m* — 2 is non-negative and is equal to 0 only

when m* = 1. If ¢ is large, then D(m*) is exceedingly small for values

of m* not close to 1. Expanding (1/m*) + m* — 2 in a Taylor series
around m* = 1, we obtain

1
(A:185) - + m* — 2 = (m* — 1)2 4 higher order terms
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Hence for large ¢

Vie - (é) (m*—1)* dm™

‘\/2#6

(A :186) D(m*) dm* ~

i.e., if ¢ is large m* is nearly normally distributed with mean equal to
1 and standard deviation 1/+/c.

AB.2 TheCase When B >0and A = «

In this case we have assumed that F(z) = ¢ < 0. It can easily be
shown that the distribution of m = (1?/2¢°)n is now given by the ex-
pression we obtain from (A:183) if we substitute (u/ a°) log B for c.

A.6.3 The Case When B > 0 and A Is Finite

In this case the approximate characteristic function of n, if the
excess of Z, over the boundaries is neglected, is given by (A:144)
where #,(r) and {2(7) are equal to the right-hand members of (A :146)
and (A:147), respectively. Let

p? L

m = —n and d =

252 o2

Then the characteristic function of m is given by

Ahl + Bha . Ahz - Bhl
(A:187) ';(t) '_ Athhz _ Ah:Bhl

where
(A :188) hy =d(l — V1 —1¢), he=d(1l+ V1—1)

and ¢ is an imaginary variable. Letting A% = 4, B® = B, da = a,
and db = b, the characteristic function of m can be written as

(A:189)

¥ (0)

E(E—E\/T—:E — VI 4 E(‘eiﬂf‘l—c _ e—-Ev"sz)

EE(E{E—EW&—: _ e(ﬁ—b)v’l—:)

E(E—Ev’T—": . e(zE—E;iv'lu-r.) + E(eﬁ'\r"l—t _ 8{3—25\’1-—-:)

I

It will be sufficient to consider only the case when u > 0, since the
oase when u < O can be treated in a similar way. Then a <0 and
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b > 0. Since the real part of +V'1 — ¢ is greater than or equal to 1,
we have

(A:190) | 2E—PVi—t| < 1
for any imaginary value of £. Let
(A:191) T = 2@-DVi—t
Then

1 - .
A:192 —_ T3
(A:192) — ;

From (A:189) and (A:192) it follows that ¥(¢) can be written in the
form of an infinite series:

(A:193) Ft) = D rie V1

i=1
where A; and r; are constants and A; > 0. Each term of this series is
a characteristic function of the form given in (A:167) except for a
proportionality factor. Let ¥;(m) be the distribution of m correspond-
ing to the characteristic function e~ "'7¢  Then F;(m) can be ob-
tained from (A:183) by substituting A; for ¢. Since we may integrate

the right-hand member of (A:193) term by term, the distribution of
m is given by

(A:194) F(m) dm = [Z i F,;(m):l dm

= eM

A.6.4 Some Remarks

Since m is a discrete variable, it may seem paradoxical that we
obtained a probability density function for m. However, the explana-
tion lies in the fact that we neglected ¢ = Z, — Z, and this quantity
is O only in the limiting case when x and ¢ approach 0.

If || and o are sufficiently small as compared with log A and
| log B |, the distribution of m given in (A:194) will be a good approxi-
mation to the exact distribution of m, even if z is not normally dis-
tributed. The reason for this can be indicated as follows. Let

ir

(A:195) z:* = E Z; (z=1,2, ---, ad inf.)

J=G—Dr+1

where r is a given positive integer. Since the variates z; are inde-
pendently distributed, each having the same distribution, under some
weak conditions the variates z,* (7 = 1,2, ---,ad inf.) will be nearly
normally distributed for large r. Hence, considering the cumulative
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sums Z;¥ =z* +2*+---42*Z=1,2, ---, ad inf.), the distribu-
tion given in (A:194) is applicable with good approximation, provided
that » | | and A/7¢ are small compared with log A and | log B| so
that the difference ¢* = Z,* — Z,* can be neglected.

It would be desirable to derive limits for the error in the cumulative
distribution of m caused by neglecting Z,, — Z,,. No such limits have
yet been obtained.

A.7 EFFICIENCY OF THE SEQUENTIAL PROBABILITY RATIO TEST

Let S be any sequential test for testing H, against H; such that
the probability of an error of the first kind is «, and the probability
of an error of the second kind is 8, and the probability that the
test procedure will eventually terminate is 1. Let S’ be the se-
quential probability ratio test whose strength is equal to that of S.
We shall prove that the sequential probability ratio test is an optimum
test, i.e., that E;(n|S) = E:(n|S") (Z = 0, 1), if for S’ the excess of
Z, over log A and log B can be neglected.! This excess is exactly O
if z can take only the values d and —d and if log A and log B are
integral multiples of d. In any other case the excess will not be iden-
tically 0. However, if [ FE(z) [ and the standard deviation o, of z are
sufficiently small, the excess of Z, over log A and log B is negligible.

For any random variable », we shall denote by FE*(u | S) the con-
ditional expected value of u under the hypothesis H; (z = 0, 1) and
under the restriction that H, is accepted. Similarly, let £**(u | S)
be the conditional expected value of z under the hypothesis H;
(¢ = 0, 1) and under the restriction that H, is accepted. In the nota-
tions for these expected values, the symbol S stands for the sequential
test used. Let Q.;(S) denote the totality of all samples for which the

test S leads to the acceptance of H;. Then we have

Pin PiQo(S)] 8
. Eo* S) == =
(A:196) ° (mn | Pol@®)] 1 —a
Pin P,[Q.(S): 1 — 28
: E **( S) — , -
(A 197) © Pon I P{).QI (S) &
Pon PolQ@o(S)] 1 — a
: * S) = —
(A(‘ilgs) 1 (pml ) PiQoS)] B
r oo poon (70 5) = Pol@:(S)] @
(A:199) T\ oim Pl  1—5

1 E:(n|S) denotes the expected value of n when H; is tiue (¢ = 6;) and the sequen
tial test S is used.
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To prove the optimum property of the sequential probability ratic
test, we shall first derive two lemmas.

Lemma A.2. For any random variable u the inequality

(A :200) eF™ < E(e%)
holds.

Proof. Inequality (A:200) can be written as
(A:201) 1 < E(e*)

where v’ = © — E(uw). Lemma A.2 is proved if we show that (A:201)
holds for any random variable »’ with zero mean. Expanding ¢* in a
Taylor series around v = 0, we obtain

(A:202) et =1+ uw + Lu'?e €u?)
where £(w’) lies between 0 and u’. Hence
(A :203) E@*) =1+ LE[uZ2ef ™) =

and lemma A.2 is proved.
Lemma A.3. Let S be a sequential test such that there exists a fintite
integer N with the property that the number n of observations required for

the test is = N. Then ?
(I::'.tgE | S)

A 204 En|S : =0,1
( ) (n|S) = — z.a = ( )

The proof is omitted, since it 1s essentially the same as that of
equation (A:69) for the sequential probability ratio test.

On the basis of lemmas A.2 and A.3 we shall be able to derive the
following theorem.

Theorem: Let S be any sequential test for which the probability of an
error of the first kind is «, the probability of an error of the second kind

s B, and the probability that the test procedure will eventually terminate
s equal to 1. Then

1 — g1
(A:205) Foln | S) = [(1 — «) log g + « log o
EU(Z) l — « 44 -
and
1 1 — B8]
(A:206) E,(n|S) = [6 log g + (1 — B) log g
E,(z) — « @«

?The validity of (A:204) has been established under very general conditions
even when the probability that n > N is positive for any N. See the author’s
article, ““Some Generalizations of the Theory of Cumulative Sums,’” The A nnals of
Mathematical Statistics, Vol. 16 (1945), and D. Blackwell, “On an Equation of
Wald,” The Annals of Mathematical Statistics, Vol. 17 (1946).
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Proof. First we shall prove the theorem in the case when there
exists a finite integer N such that n never exceeds N. According to
lemma A.3 we have

- -1t Pin )
(A:207) Eo(n|S) Tl Eo (log | S

Pon
1 Pin ) ( Pin ) l
= 1 — a)Eo* | log — Eg** | 1
Eo(2) [( ) Eo (Og |8) + o« Fo 8 on IS
and
(A:208) E;(n|S) = . (log P1n l S)
E,(2)
1 n n
[ﬁEl* (Iog Zin |S) + (1 — BE** (lﬂg o | S)]
E,(2) Pon Pon

From equations (A:196) through (A:199) and lemma A.2 we obtain
the inequalities

. 8
(A:209) Eo* (log Prr | s) log

Pon — «@
n 1 — B
(A:210) KEp** (log Pin I S) = log
p (44
n Pin l — x
(A:211) E* (Iog Po | S) = —F)* (log il I S) = log
Pin Pon g
and
n Pin
(A:212) [E,** (log Pon | S) — [ ** (mg—l— | S) log
Pin 1 —28

Since Zo(z) < 0, (A:205) follows from (A:207), (A:209), and (A:210).
Similarly, since £,;(z) > 0, (A:206) follows from (A:208), (A:211), and
(A:212). This proves the theorem when a finite integer NV exists such
that n = N.

To prove the theorem for any sequential test S of strength («, 8),
let Sy be the sequential test we obtain by truncating S at the Nth
observation if no decision is reached before the Nth observation. Let

(an, Bn) be the strength of Sy. Then we have
(A:213) Eo(n|S) = Eo(n|Sw)

=

1 — B,
[(1 — apn) log sl - an log ﬁ'v]

Eo(z) — ay aN
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and
(A:214) E,(n|S) = Ei(n|Sw)

BN 1 — BN
= lo + (1 — B~ 1o ]
E,(2) |:'BN & 1 — ay ( N S an
Since lim ay = « and lim 85 = B, inequalities (A:205) and (A:206)

N= o N= =
follow from (A:213) and (A:214). Hence the proof of the theorem is
completed.

If for the sequential probability ratio test S’ the excess of the cumu-
lative sum Z, over the boundaries log A and log B 1s 0, Eq(n | S’) 1s
exactly equal to the right-hand member of (A:205) and £,(n | S’) is
exactly equal to the right-hand member of (A:206). Hence, 1n this
case, S’ is exactly an optimum test. If both | E(z) | and o, are small,
the expected value of the excess over the boundaries will also be
small and, therefore, Eo(n|S’) and El(nlS’) will be only slightly
larger than the right-hand members of (A:205) and (A:206), respec-
tively. Thus, in such a case, the sequential probability ratio test is,
if not exactly, very nearly an optimum test.?

If 8, approaches 6p, then the ratios of the upper limits of Ey(n | S’)
and E;(n|S8’), as implied by (A:77) and (A:78), to the right-hand
members of (A:205) and (A:206), respectively, converge to 1. Thus,
the efficiency of the sequential probability ratio test, if not exactly 1,
converges to 1 when 6, — 635.* The upper bounds for Ey(n [ S’) and

Ei(n | S’) given in (A:77) and (A:78) determine lower bounds for the
efficiency of the sequential probability ratio test S’.

A.8 DETERMINATION OF AN OPTIMUM WEIGHT FUNCTION w(®) IN

SOME SPECIAL CASES OF TESTING SIMPLE HYPOTHESES WITH

NO RESTRICTIONS ON THE POSSIBLE ALTERNATIVE VALUES OF
THE PARAMETERS

A.8.1 A Class of Cases for Which an Optimum Weight Function w(9)
Can Be Determined by a Simple Procedure

Let (8,, ---,6:) = (8,° ---, 8.°) be the simple hypothesis H, to be
tested and denote the distribution of =z by f(z, 6, - - -, 8x). Assume
the boundary of the zone w, of preference for rejection is a surface in
the parameter space and denote it by S,. Assume, further, that it is

?*The author conjectures that the sequential probability ratio test is exactly an

optimum test even if the excess of Z, over the boundaries is not O.

| However, he
did not succeed in proving this.

¢ For the definition of the efficiency of a sequential test see Section 2.4.1.
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possible to find a non-negative function »(8) of the parameter 6 such
that the surface integral *

(A :215) L 2(8) dS = 1

and the sequential probability ratio test based on the ratio

D Lf(-’h, &1, -..,6;,:) "‘f(-"-':m 6y, - ",ek)v(ﬂ) dS
in r

(Aﬂzle) Pon f(:rl: 6101 Tt Bko) e f(xn: 6101 R ekﬂ)

satisfies the following two conditions (for any values A and B): (1)
The probability 8(8) of committing an error of the second kind (of
accepting Hy when 6 is true) is constant over the surface S,; (2) for
any point 8 In the interior of w,, the value of 8(#) does not exceed the
constant value of 8(8) on the surface S,.

We shall now show that »(8) may be regarded as an optimum weight
function in the sense defined in Section 4.1.3, and the probability ratio
test based on the ratio (A:216) provides a solution to our problem.
In fact, the weight function »(8) over the surface S, can be considered
a limiting case of a weight function w(6) which takes the value O for
any @ in the interior of w, whose distance from the boundary exceeds
some positive A, with A approaching O in the limit. It follows from
conditions (1) and (2) that for the weight function »(6) the maximum
of B(8) in w, is equal to the weighted integral of g(8), i.e., to

f B(®v(8) dS. Consider now any other weight function w*(8) and
S,

denote the resulting probability of an error of the second kind by
B*(9) when w*(8) is used instead of »(6). It has been shown 1In Section
4.1.3 that the following relations hold with sufficient approximation

for practical purposes:

*(6)3*(6 d&—f G (e)dS——B(A —
(A:217) v (6)B*(6) = .7 )8 i —

Henece the maximum of 8*(8) in w, is = B(4A — 1)/(A — B). The
optimum property of the weight function »(8) follows then from the
fact that the maximum of »(8) is equal to B(4 — 1)/(A — B).

In several important statistical problems one can easily find a weight
function »(6) such that conditions (1) and (2) are fulfilled. We shall
show, for example, that such a weight function »(8) can easily be de-
termined for testing the means of normally distributed variables with

1 2S5 denotes the infinitesimal surface element.
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known variances. After the weight function »(#) has been found, for
practical purposes we may let A = (1 — 8)/a and B = 8/(1 — «)
where « is the required value of the probability of an error of the first
kind and B is the required upper limit for B8(6).

Although we have so far assumed that X is a single random vari-
able, all the results remain obviously valid when X is a random vector,
i.e., X represents a set of p (p > 1) random variables X,;, ---, X,.
The only change in the formulas is that the ath observation z, will
have to be replaced by a set (14, ***, Tpa) of p values where z;, repre-
sents the ath observation on X;.

A.8.2 Application to Testing the Means of Independently and Nor-
mally Distributed Random Variables with Known Variances

Let X4, ---, Xx be £ normally and independently distributed ran-
dom variables with a common known variance ¢2. The mean values
8y, ---, 8 are assumed to be unknown. Suppose that it is required
to test the hypothesis that (8;, - -+, 6x) = (6,°%, - - -, 6:%). Assume that
the zone w, of preference for rejection is given by

+V (6 — 6,92 +-- -+ (O — %)% = b0

where é is some given positive value. Then the boundary S, of w, i1s
a sphere with center 6° = (8, ---, 6,%) and radius és. Let v(8) be
constant over S, and equal to the reciprocal of the area of S,. We
shall show that for this weight function conditions (1) and (2) of the
preceding section are fulfilled. For this purpose, we shall first prove
that the ratio (A:216) is a monotonically increasing function of
(Z; — 9% 4+ -+ @& — 6:.°)2 where %; is the arithmetic mean of the
observations on X ;. In fact, in our case the ratio (A:216) reduces to

F 3 n
- %’i 2 2 (Zia— 0i)2
Cf € t=la=1 dS n 2 (z:—8:%) (6; — 6:%)
(A :218) ’ - = ce‘”““z‘[&e t - dsS

o 2o ZZ(zia—6:)?

where ¢ is equal to the reciprocal of the area of S,. Let r, denote
\/ S G = 0
.' 2

- and let p(8) (0 = p = 7) denote the angle be-

tween the vector (£, — 6,° ---, Zx — 6;°) and the vector (8, — 6,°,
e+, 0 — 6:°). Then (A:218) can be written as

(A:219) ce ¥ind’ f e"7= 8 cos @] g9
Se
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Because of the symmetry of the sphere, the value of (A:219) will not
be changed if we substitute ¥(8) for p(8), where v(8) (0 < v < =) de-
notes the angle between the vector 8 — 68 and an arbitrarily chosen
fixed vector w. From this it follows that the value of (A:219) depends
only on 7.

Now we shall show that (A:219) is a strictly increasing function of
rz. For this purpose we merely have to show that

(A :220) I(ry) = f ez dcos @l gg

S,
is a strictly increasing function of .. We have

dl(r.,
(=) =fn5 COS [7(9)]3“"“”““ [+ @] a9
dr, Sy

(A:221)

Denote by S’, the subset of S, in which 0 = v(6) = n/2, and by S",
the subset in which /2 < v(8) = w. Because of the symmetry of the
the sphere we have

(A :222) f n & cos [y(8)]e" 2= @l gg
-

=f n & cos [ — y(ﬂ)]e“""’m[""*@] dsS
<

r

—f n & cos [y(@)]e " =2ce Y@l gg

r

Hence

(A:223) dId.(rz) = n 5f cOoS ["]"(6)](611 dérz cos [y (8)] - e“"ﬂ érz cos [T(a)]) dS
S’y

Tz

The right-hand side of (A:223) is positive. Hence, we have proved
that expression (A:219) or (A:218) 1s a strictly increasing function of r-.

We shall now show that 8(8) is constant over any sphere S;(d)
with center 6° and radius d and that it decreases monotonically with
increasing d. For this purpose let %, ---, yx be an orthogonal
linear transformation of z; — % ---, zx — 6° so that E(y1) =
V(O —6,°2 +---+ 6 — 6% and E(y)) = 0 (¢ =2, ---, k). Since
’{hz +' * '+ y-?cz = (:f']_ — 310)2 +' * '—I— (:f,r,; — 9;.;0)2 a.nd since (A:Zlg)
depends only on (Z1 — 6:%9)% +-- -+ (Zx — 6:°)? it is seen that the
sequence of expressions (A:219) formed for the sequence of 1ntegers
etc., has a joint distribution which depends only on

n=1,2 ---,
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V(6 —6,°)2 +---+ (6 — 6:°)%. Hence B(8) is constant on any
sphere S,(d). Since (A:219) is a strictly monotonic function of 7., it
can be shown that 8(8) 1s monotonically decreasing with increasing d.
Hence, conditions (1) and (2) of the preceding section are fulfilled and
we can test the hypothesis that 8§ = 6° by the sequential probability
ratio test based on the ratio (A:218).

If £ = 1, i.e., if we test the mean value of a single random variable
X, the sphere S, is a null-dimensional sphere consisting of the two
points 8; = 80 and 8; = — o0 and (A :216) reduces to the ratio of p;,
to pon given by (4:8) and (4:9), respectively, in Section 4.1.4.

A.9 DETERMINATION OF OPTIMUM WEIGHT FUNCTIONS w.(6) AND
w8) IN SOME SPECIAL CASES OF TESTING COMPOSITE HYPOTHESES

A.9.1 A Class of Cases for Which Optimum Weight Functions w,(8)
and w,(0) Can Be Determined by a Simple Procedure

Let f(x, 64, - - -, 8¢) denote the distribution of x involving £ unknown
parameters 6,, - -+, 8x. Suppose we wish to test the composite hypoth-
esis H, that the parameter point 8 lies in the subset « of the parameter
space. Let w, denote the zone of preference for acceptance and w, the
zone of preference for rejection. Assume that the boundary of w;, is

a surface S,. Suppose that it i1s possible to find two weight functions
ve(6) and »,(8) such that

fva(f?) de = 1, Lvr(ﬁ) dS, =1

and that the sequential probability ratio test based on the ratio

j.;rvr(e)f_[f(xa: 61, - - -, 6x) dS,

(A :224) Pin _ =1
Pon e
fva(e) I lf(xa:- 91? T, 8&) de
“a a=1

satisfies the following conditions (for any values A and B): (1) «(8) is
constant in wg; (2) B(8) is constant over S,; (3) for any point 8 in the
interior of w,, the value of B(8) does not exceed the constant value of
B3(8) on S,.

We shall now show that »,(8) and »,(6) may be regarded as optimum
weight functions in the sense defined in Section 4.2.2. For this pur-
pose, let w,(8) and w.(8) be any other weight functions and let a*(8)
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&Pd B*(8) be the resulting probabilities of errors of the first and second
kinds when w,(8) and w,(8) are used. Since, as has been shown,

N 1—B
(A:225) j; o Owa(0) d0 = ———
and
. ~ B(4 — 1)
L B*©)w,(0) db = ———

hold with good approximation, we see that in w, the maximum of
a*(@®) = (1 — B)/(A — B), and in w, the maximum of g*(#) =
B(A —1)/(A — B) with good approximation. But if 2,(#) and
v,(8) are used, it follows from conditions (1), (2), and (3) that (with
good approximation) the maximum of «(f) in w; 1s equal to
(1 — B)/(A — B) and the maximum of B8(8) in w, 18 equal to
B(A —1)/(A — B). Hence these weight functions are optimum in
the sense defined in Section 4.2.2.

In some special but important statistical problems one can easily
find weight functions v,(8) and ».(8) which satisfy conditions (1), (2),
and (3). It will be seen in the next section that such weight functions
can easily be constructed when the mean of a normal distribution with
unknown variance is being tested. Again, for practical purposes we
may let A = (1 — 8)/a and B = 8/(1 — a), where « is the required
upper bound of a(6) in w, and B is the required upper bound of B(6)

N w,.

A.9.2 Application to Testing the Mean of a Normal Distribution with
Unknown Variance (Sequential 7-Test)

Let X be a normally distributed random variable with unknown
mean € and unknown variance ¢°. Suppose we wish to test the hy-
pothesis that § = 6. Furthermore, assume that w, is given by the set
g — 6

> §, while wg; consists of all

of all points (6, ¢) for which \ -
points (6o, ). Then the boundary S, of w, consists of all points 6, o)

6 — @
for which 9

o

either 8 = 8y + 80 or 8§ = 69 — do.
For any positive value ¢ we define the weight functions vac(o) and

v,c(c) as follows: vac(o) = 1/¢ if 0 = ¢ = ¢ and equals O for all other
values of ¢. The weight function v,.(s) is equal to 1/2¢ if 0 = o =c
and 8 = 6, 2=60 and equal to 0 otherwise. Let

— §, i.e., it contains the points (8, &) for which
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(A:226) 1
1 - — Z(za—0)2
Pin = fsvrc(‘r) e * do

i (27)26™
— B(xa—080—30)2 1 - L T(za—00+50)2
= n f —— € 2‘, + _ﬂ» € 2o dO'
(2102 20 o
and
1 1 1 -1 z@za—60?
(A:227) Pon = —  h E L ;ﬁ € 202 ° dﬂ'
(2m)2
Then
1 1 -1 z@a—60—50)2 — L Z(za—60+80)?
— f _n (8 202 + e 2a ) dﬂ'
(A:22g) Pin _2:0 9
' Pon J‘c 1 - 2_;1;'2 Z(xza—00)?
— € do
0 o

We consider the limiting case when ¢ — o. Thus

1

1 f —(e 272 T (xq— 00— 50)2 4 o B 2 (Zo— au+au)=)da
(A:220) 2i» _

1 — -1 =(za—00)2
Pon f — e 207 * do
0

The sequential probability ratio test based on the ratio (A:229) pro-
vides a solution to our problem if it can be shown to have the follow-
ing three properties: (1) «(8, ¢) is constant in w,; (2) B(8, o) i1s a func-

& — bo

tion of alone; (3) B8(6, s) is monotonically decreasing with
o

9 — 8,

g

Increasing l

b

>

To prove these three properties, let £ denote “i: and S? denote

Z(za — Z)%2. Since the joint distribution of a sequence of expressions
Z — 6o

S corresponding to consecutive values of n depends only on
8 — 6 i X .
— |- the first two properties are proved if we show that the ratio
. . . r — 6
(A:229) i1s a single-valued function of z 3 °
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First we show that the numerator of the ratio (A:229) is a homo-
geneous function of (x; — 8, z2 — 6o, -+, Ty — 8g) of degree
—(n — 1). In fact, making the transformation ¢ = A{ we obtain

= 1 —_ —l‘ Eiua—lﬂn—ﬁd)z —_ -*L E(A\Tog— N+ 30)2
fu — (e 2°° + e 277 * ) do

O'ﬂ

@ ]. -*-1— E(I,x—ﬂn—ﬁl)z —_ —!— E(:I!:‘:;—ﬂm+5!]2
J;
1

(A)™ (e =7 ) AN

1

on
1 _ 1 (o —080—8t)2 — — E(za—00+35)32
= 2¢2 < e 00 3 =~ Fa—"

This proves that the numerator of (A:229) is a homogeneous function
of £, — 8y, --+, Tn — 6o of degree —(n — 1). Similarly, it can be
shown that the denominator of (A:229) is also a homogeneous func-
tion of degree —(n — 1). Thus, the ratio (A:229) is a homogeneous
function of zero degree in the variables z; — 6o, - -+, Tn — bo.

It can be verified that (A:229) is a function of only the two expres-
sions Z(xo — 80)° and Z(x, — 8o), 1.€.,

(A :230) Pin _ 4[Z(za — 00)% =(xa — 60)]

Pon
Let v = ] V3 (xa — 60)2 | Since (A:230) is a homogeneous function
of zero degree in z; — 6o, *-*, Tn — Yo, its value is not changed by

substituting (xo — 6o)/v for zo — 6o. Hence

_ Pin Lo — 30)2 S(zy — Bg)] _ [ n(x — 30)]
(A.231) — = ¢ |: Z ( 2 ’ 2 ¢ 1: ?

Pon

Since @[ (Ta — 00)2, —=(Ta — 00)] = ¢[Z(xa — 60)%, Z(za — 60)], We

see that i ,
Pin [(-’3 — 6o) ]
R l.t/ >
Pon v
£ — 60)” z—6
Since S 260) is a single-valued function of 2 , we have proved
v
£ — 6o

Hence properties (1)

that Pin is a single-valued function of
Pon

and (2) are proved. B '

In order to prove property (3) of the sequential probability ratio

test based on the ratio (A:229), it is sufficient to show that (A :229)
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£ — 6o

S

E — 6

S

is a strictly increasing function of Since 1s a

T — 6
strictly increasing function of ("" 0

2
” ) , we have only to show that

(A:229) is a strictly increasing function of (a: — bo

2
» ) The latter

statement is proved if we show that (A:229) increases with increasing
value of | Z# — 6y | while v is kept fixed. For a fixed value of v the
denominator of (A:229) is constant. Thus, we merely have to show
that the numerator of (A:229) increases with increasing |;i‘: — ﬁgl
while » is kept fixed. This follows easily from the fact that

@ —60)3 _ E—80)3

e ° +e “

is a strictly increasing function of | £ — 6 |.
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subdivision of, into three zones, 28
PeArsonN, EGoN S., 15, 76n
Population, 7

finite, 7

infinite, 8
Probability density function, 9
Probability distribution, 10

joint, 14

Quality control, to maintain production
standard, 134
when upper limit of mean of qual-
ity characteristic is specified, 117
when upper limit of variability of
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valued decision, 139
Sequential test, 22
admissible, 32
ASN function as basis for selection
of, 33
ASN function of, 25
comparison of two tests, 34
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Sequential test, current test procedure
as particular case of, 35
efficiency of, 35
OC function of, 24
optimum, 35
principles for selection of, 27
strength of, 34
uniformly best, 34
Sequential (-test, 83, 204
Slope of acceptance and rejection lines
of sequential probability ratio
test, of binomial distribution, 94
of double dichotomies, 113
of mean of normal distribution, 121
of standard deviation of normal dis-
tribution, 128
Standard deviation, 11
Statistical hypothesis, 11; see also Test
of statistical hypothesis
alternative, 16
approximation of composite hypoth-
esis by simple hypothesis, 71
composite, 13
null, 16
simple, 13
Statistical Research Group, Columbia
University, 2, 88n
SteEIn, C., 133n, 153n
StocrMaNnN, C. M., 3, 48n
Strength of test procedure, 34

Table, of average percentage saving in
size of sample, 57
of effect of truncation
error, 64
of increase in expected number of ob-
servations due to approximation
of test constants, 68
of lower bound of probability that
sequential analysis will terminate
within given number of trials, 60
Tabular procedure for sequential prob-
ability ratio test, of binomial
distribution, 92
of double dichotomies, 111
of mean of normal distribution, 120
of standard deviation of normal dis-
tribution, 127
Termination of sequential probability
ratio test, 157

on risks of

INDEX

Test of composite hypothesis, 80
class C of sequential probability ratic
tests, 82
Girshick’s problem, 84
special case of, testing that unknown
parameter is below given value,
78
weight functions for, 81
Test of simple hypothesis, 70
class C of sequential probability ratio
tests, 76
weight functions for, 74
with no restrictions on alternatives,
73
with one-sided alternatives, 72
Test of statistical hypothesis, 14
as decision between two courses of
action, 20
as special case of multi-valued deci-
sion problem, 139
comparison between current and se-
quential procedure for, 35, 54
Neyman-Pearson theory of, 16
number of observations required k:
20
sequential procedure for, 22
Truncation, 61
effect on risks of error, 64
for binomial distribution, 104

Universe, 7
Variance, 11
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Weight functions, for test of composii-

hypothesis, 81
choice of, 82
optimum, 203
for test of simple hypothesis, 74

choice of, 76
optimum, 200

Zone of preference for acceptance, for
multi-valued decision problem,
144
for test of hypothesis, 28
Zone of preference for rejection for test
of hypothesis, 28
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AMERICA’S OLD MASTERS, James T. Flexner. Four men emerged unexpectedly
from provincial 18th century America to leadership in European art: Benjamin
West, J. S. Copley, C. R. Peale, Gilbert Stuart. Brilliant coverage of lives and con-
tributions. Revised, 1967 edition. 69 plates. 365pp. of text.

21806-6 Paperbound $3.00

FIRsST FLOWERS OF QUR WILDERNESS: AMERICAN PAINTING, THE COLONIAL
PERIOD, James T. Flexner. Painters, and regional painting traditions from earliest
Colonial times up to the emergence of Copley, West and Peale Sr., Foster, Gustavus
Hesselius, Feke, John Smibert and many anonymous painters in the primitive manner.
Engaging presentation, with 162 illustrations. xxii 4+ 368pp.

22180-6 Paperbound $3.50

THE LIGHT OF DISTANT SKIES: AMERICAN PAINTING, 1760-1835, James T. Flex-
ner. The great generation of early American painters goes to Europe to learn and
to teach: West, Copley, Gilbert Stuart and others. Allston, Trumbull, Morse; also
contemporary American painters—primitives, derivatives, academics—who remained
in America. 102 illustrations. xiii 4+ 3006pp. 22179-2 Paperbound $3.50

A HISTORY OF THE RISE AND PROGRESS OF THE ARTS OF DESIGN IN THE UNITED
STATES, William Dunlap. Much the richest mine of information on early American
painters, sculptors, architects, engravers, miniaturists, etc. The only source of in-
formation for scores of artists, the major primary source for many others. Unabridged
reprint of rare original 1834 edition, with new introduction by James I. Flexner,

and 394 new illustrations. Edited by Rita Weiss. 633 x 9343.
21695-0, 21696-9, 21697-7 Three volumes, Paperbound $15 .00

EPOCHS OF CHINESE AND JAPANESE ART, Ernest F. Fenollosa. From primitive
Chinese art to the 20th century, thorough history, explanation of every important art
period and form, including Japanese woodcuts: main stress on China and Japan, but
Tibet, Korea also included. Still unexcelled for its detailed, rich coverage of cul-
tural background, aesthetic elements, diffusion studies, particularly of the historical

period. 2nd, 1913 edition. 242 illustrations. lii 439pp. of text.
20364-6, 20365-4 Two volumes, Paperbound $6.00

THE GENTLE ART OF MAKING ENEMIES, James A. M. Whistler. Greatest wit of his
day deflates Oscar Wilde, Ruskin, Swinburne; strikes back at inane critics, exhibi-
tions, art journalism; aesthetics of impressionist revolution in most striking form.
Highly readable classic by great painter. Reproduction of edition designed by

Whistler. Introduction by Alfred Werner. xxxvi ~+ 334pp.
21875-9 Paperbound $3.00
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VISUAL ILLUSIONS: THEIR CAUSES, CHARACTERISTICS, AND APPLICATIONS, Mat-
thew Luckiesh. Thorough description and discussion of optical illusion, geometric
and perspective, particularly ; size and shape distortions, illusions of color, of motion:
natural illusions; use of illusion in art and magic, industry, etc. Most useful today
with op art, also for classical art. Scores of effects illustrated. Introduction by

William H. Ittleson. 100 illustrations. xxi 4 252pp.
21530-X Paperbound $£2.00

A HANDBOOK OF ANATOMY FOR ART STUDENTS, Arthur Thomson. Thorough, vir-
tually exhaustive coverage of skelectal structure, musculature. etc. Full text, supple-
mented by anatomical diagrams and drawings and by photographs of undraped
figures. Unique in its comparison of male and female forms, pointing out differences
of contour, texture, form. 211 hgures, 40 drawings, 86 photographs. xx - 459pp.
534 x 834. 21163-0 Paperbound $3.50

150 MASTERPIECES OF DRAWING, Sclected by Anthony Toney. Full page reproduc-
tions of drawings from the early 16th to the end of the 18th century, all beautifully
reproduced: Rembrandt, Michelangelo, Durer, Fragonard, Urs, Graf, Wouwerman.
many others. First-rate browsing book, model book for artists. xviii -+ 150pp.
835 x 1114. 21032-4 Paperbound $2.50

THE LATER WORK OF AUBREY BEARDSLEY, Aubrey Beardsley. Exotic, erotic.
ironic masterpieces in full maturity: Comedy Ballet, Venus and Tannhauscr, Pierrot,
Lysistrata, Rape of the Lock, Savoy material, Ali Baba, Volpone, etc. This material
revolutionized the art world, and is still powerful, fresh, brilliant. With T be Early
Work, all Beardsley's finest work., 174 plates, 2 in color. xiv 4 176pp. 814 x 11.

21817-1 Paperbound $3.00

DRAWINGsS OF REMBRANDT, Rembrandt van Rijn. Complete reproduction of fabu-
lously rare edition by Lippmann and Hofstede Jde Groot, completely reedited, up-
dated, improved by Prof. Seymour Slive, Fogg Muscum. Portraits, Biblical sketches,
landscapes, Oriental types, nudes, ¢pisodes from classical mythology—All Rem-
brandt’s fertile genius. Also sclection of drawings by his pupils and followers.
“Stunning volumes,” Saturday Rerieww. 550 illustrations. Ixxviir 4 552pp.
918 x 121/, 21485-0, 21486-9 Two volumes, Paperbound $10.00

THE DISASTERS OF W AR, Francisco Goya. One of the masterpicces of Western civi-
lization—83 etchings that record Goya’s shattering, bitter reaction to the Napolconic
war that swept through Spain after the insurrection of 1808 and to war in general.
Reprint of the first edition, with three additional plates from Boston's Museum of
Fine Arts. All plates facsimile size. Introduction by Philip Hofer, Fogg Museum.
v 4+ 97pp. 934 x 81. 21872-4 Paperbound $2.00

GRAPHIC WORKS OF ODILON REDON. Largest collection of Redon's graphic works
cver assembled: 172 lithographs, 28 ctchings and c¢ngravings, 9 drawings. Thesc
include some of his most famous works. All the plates from Odilon Redon - ocrnire
graphique complet, plus additional plates. New introduction and caption translations
by Alfred Werner. 209 illustrations. XXVil - 209pp. 914 x 121/.

21966-8 Paperbound $4.50
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DESIGN BY ACCIDENT; A BOOK OF ""ACCIDENTAL EFFECTS'' FOR ARTISTS AND
DESIGNERS, James F. O'Brien. Create your own unique, striking, imaginative effects
by “‘controlled accident’ interaction of materials: paints and lacquers, oil and water
based paints, splatter, crackling materials, shatter, similar items. Everything you do
will be different; first book on this limitless art, so useful to both fine artist and
commercial artist. Full instructions. 192 plates showing “accidents,”” 8 in color.
viii 4+ 215pp. 834 x 1114, 21942-9 Paperbound $3.75

THE Book oF Siens, Rudolf Koch. Famed German type designer draws 493 beau-
tiful symbols: religious, mystical, alchemical, imperial, property marks, runes, etc.
Remarkable fusion of traditional and modern. Good for suggestions of timelessness,
smartness, modernity. Text. vi 4 104pp. 6l x 914.

20162-7 Paperbound $1.25

HisTORY OF INDIAN AND INDONESIAN ART, Ananda K. Coomaraswamy. An un-
abridged republication of one of the finest books by a great scholar in Eastern art.
Rich in descriptive material, history, social backgrounds; Sunga reliefs, Rajput
paintings, Gupta temples, Burmese frescoes, textiles, jewelry, sculpture, etc. 400
photos. viii 4+ 423pp. 638 x 934. 2143G-2 Paperbound $5.00

PRIMITIVE ART, Franz Boas. America’s foremost anthropologist surveys textiles,
ceramics, woodcarving, basketry, metalwork, etc.; patterns, technology, creation of
symbols, style origins. All areas of world, but very full on Northwest Coast Indians.

More than 350 illustrations of baskets, boxes, totem poles, weapons, etc. 378 pp.
20025-6 Paperbound $3.00

THE GENTLEMAN AND CABINET MAKER's DIRECTOR, Thomas Chippendale. Full
reprint (third edition, 1762) of most influential furniture book of all time, by
master cabinetmaker. 200 plates, illustrating chairs, sofas, mirrors, tables, cabinets,
plus 24 photographs of surviving pieces. Biographical introduction by N. Bienen-
stock. vi -+ 249pp. 97/ x 1234. 21601-2 Paperbound $4.00

AMERICAN ANTIQUE FURNITURE, Edgar G. Miller, Jr. The basic coverage of all
American furniture before 1840. Individual chapters cover type of furniture—
clocks, tables, sideboards, etc.—chronologically, with inexhaustible wealth of data.
More than 2100 photographs, all identified, commented on. Essential to all early

American collectors. Introduction by H. E. Keyes. vi 4+ 1106pp. 778 x 10%;.
21599-7, 21600-4 Two volumes, Paperbound $11.00

PENNSYLVANIA DuTCH AMERICAN ForLk ART, Henry J. Kauffman. 279 photos,
28 drawings of tulipware, Fraktur script, painted tinware, toys, flowered furniture,
quilts, samplers, hex signs, house interiors, etc. Full descriptive text. Excellent for

tourist, rewarding for designer, collector. Map. 146pp. 77/8 x 1034.
21205-X Paperbound $2.50

EArRLY NEw ENGLAND GRAVESTONE RUBBINGS, Edmund V. Gillon, Jr. 43 photo-
graphs, 226 carefully reproduced rubbings show heavily symbolic, snmetifnes
macabre early gravestones, up to early 19th century. Remarkable early Amer}can
primitive art, occasionally strikingly beautiful; always powerful. Text. xxvi -
207pp. 834 x 11V4. 21380-3 Paperbound $3.50
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ALPHABETS AND ORNAMENTS, Ernst Lehner. Well-known pictorial source for
decorative alphabets, script examples, cartouches, frames, decorative title pages, calli-
graphic initials, borders, similar material. 14th to 19th century, mostly European.

Useful in almost any graphic arts designing, varied styles. 750 illustrations. 256pp.
7 x 10. 21905-4 Paperbound $£4.00

PAINTING: A CREATIVE APPROACH, Norman Colquhoun. For the beginner simple
guide provides an instructive approach to painting: major stumbling blocks for
beginner; overcoming them, technical points; paints and pigments; oil painting;
watercolor and other media and color. New section on “‘plastic”’ paints. Glossary.
Formerly Paint Your Own Pictures. 221pp. 22000-1 Paperbound $1.75

THE ENJOYMENT AND Use OoF COLOR, Walter Sargent. Explanation of the rela-
tions between colors themselves and between colors in nature and art, including
hundreds of little-known facts about color values, intensities, effects of high and
low illumination, complementary colors. Many practical hints for painters, references

to great masters. 7 color plates, 29 illustrations. x 4 274pp.
20944-X Paperbound $2.75

THE NOTEBOOKS OF LEONARDO Da VINCI, compiled and edited by Jean Paul
Richter. 1566 extracts from original manuscripts reveal the full range of Leonardo’s
versatile genius: all his writings on painting, sculpture, architecture, anatomy,
astronomy, geography, topography, physiology, mining, music, etc., in both Italian
and English, with 186 plates of manuscript pages and more than 500 additional
drawings. Includes studies for the Last Supper, the lost Sforza monument, and

other works. Total of xlvii 4 866pp. 77 x 1034.
22572-0, 22573-9 Two volumes, Paperbound $11.00

MONTGOMERY VWARD CATALOGUE OF 1895. Tea gowns, yards of flannel and
pillow-case lace, stereoscopes, books of gospel hymns, the New Improved Singer
Sewing Machine, side saddles, milk skimmers, straight-edged razors, high-button
shoes, spittoons, and on and on . . . listing some 25,000 items, practically all illus-
trated. Essential to the shoppers of the 1890’s, it is our truest record of the spirit of
the period. Unaltered reprint of Issue No. 57, Spring and Summer 1895. Introduc-
tion by Boris Emmet. Innumerable illustrations. xiii + 624pp. 815 x 1154.
22377-9 Paperbound $6.95

THE CRYSTAL PALACE EXHIBITION ILLUSTRATED CATALOGUE (LONDON, 1851).
One of the wonders of the modern world—the Crystal Palace Exhibition in which
al{ the nations of the civilized world exhibited their achievements in the arts and
sciences—presented 1n an equally important illustrated catalogue. More than 1700
items pictured with accompanying text—ceramics. textiles, cast-iron work, carpets,
P1anos, sleds, razors, wall-papers, billiard tables. beehives, silverware and hundreds
of other artifacts—represent the focal point of Victorian culture in the Western
}Wﬂtld. Probably the largest collection of Victorian decorative art ever assembled—
indispensable for antiquarians and designers. Unabridged republication of the
Art-Journal Catalogue of the Great Exhibition of 1851, with all terminal essays.
New introduction by John Gloag, F.S.A. xxxiv 4 426pp. 9 x 12.

22503-8 Paperbound $5.00
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A HisTory oF CosTUME, Carl Koéhler. Dehfnitive history, based on surviving pieces
of clothing primarily, and paintings, statues, etc. secondarily. Highly readable text,
supplemented by 594 illustrations of costumes of the ancient Mediterranean peoples,

reece and Rome, the Teutonic prehistoric period; costumes of the Middle Ages,
Renaissance, Baroque, 18th and 19th centuries. Clear, measured patterns are pro-
vided for many clothing articles. Approach is practical throughout. Enlarged by
Emma von Sichart. 464pp. 21030-8 Paperbound $3.50.

ORIENTAL RuUGS, ANTIQUE AND MODERN, Walter A. Hawley. A complete and
authoritative treatise on the Oriental rug—where they are made, by whom and how,
designs and symbols, characteristics in detail of the six major groups, how to dis-
tinguish them and how to buy them. Detailed technical data is provided on periods,
weaves, warps, wefts, textures, sides, ends and knots, although no technical back-
ground is required for an understanding. 11 color plates, 80 halftones, 4 maps.

vi 4 320pp. 6lg x 9l%. 22366-3 Paperbound $5.00

TEN BOOKS ON ARCHITECTURE, Vitruvius. By any standards the most important
book on architecture ever written. Early Roman discussion of aesthetics of building,
construction methods, orders, sites, and every other aspect of architecture has in-
spired, instructed architecture for about 2,000 years. Stands behind Palladio,
Michelangelo, Bramante, Wren, countless others. Definitive Morris H. Morgan
translation. 68 illustrations. xu1 -+ 331pp. 20645-9 Paperbound $3.00

THE Four BOOKS OF ARCHITECTURE, Andrea Palladio. Translated 1nto every
major Western European language in the two centuries following its publication 1n
1570, this has been one of the most influential books in the history of architecture.
Complete reprint of the 1738 Isaac Ware edition. New introduction by Adolf

Placzek, Columbia Univ. 216 plates. xxii + 110pp. of text. 915 x 1234.
21308-0 Clothbound $12.50

STICKS AND STONES: A STUDY OF AMERICAN ARCHITECTURE AND CIVILIZATION,
Lewis Mumford.One of the great classics of American cultural history. American
architecture from the medieval-inspired earliest forms to the early 20th century;
evolution of structure and style, and reciprocal influences on environment. 21 photo-
graphic illustrations. 238pp. 20202-X Paperbound $2.00

THE AMERICAN BUILDER'S COMPANION, Asher Benjamin. The most widely used
carly 19th century architectural style and source book, for colonial up into Greek
Revival periods. Extensive development of geometry of carpentering, construction
of sashes, frames, doors, stairs; plans and elevations of domestic and other buildings.
Hundreds of thousands of houses were built according to this book, now invaluable

to historians, architects, restorers, ¢tc. 1827 edition. 59 plates. 114pp. 77/ x 10%4.
22236-5 Paperbound $3.50

Dutcy Houses IN THE HUDSON VALLEY BEFORE 1776, Helen Wilkinson Rey-
nolds. The standard survey of the Datch colonial house and outbuildings, with con-
structional features, decoration, and local history associated with individual home-
steads. Introduction by Franklin D. Roosevelt. Map. 150 illustrations. 469pp-.
65/ x 914. 21469-9 Paperbound $5.00
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THE ARCHITECTURE OF COUNTRY HoUsEs, Andrew J. Downing. Together with
Vaux's Villas and Cottages this is the basic book for Hudson River Gothic architec-
ture of the middle Victorian period. Full, sound discussions of general aspects of
housing, architecture, style, decoration, furnishing, together with scores of detailed
house plans, illustrations of specific buildings, accompanied by full text. Perhaps
the most influential single American architectural book. 1850 edition. Introduction
by J. Stewart Johnson. 321 figures, 34 architectural designs. xvi - SGOpp.
22003-6 Paperbound $4.00

LosT EXAMPLES OF COLONIAL ARCHITECTURE, John Mead Howells. Full-page
photographs of buildings that have disappeared or been so altered as to be denatured,
including many designed by major early American architects. 245 plates. xvii -
248pp. 77/ x 103/, 21143-6 Paperbound $3.50

DOMESTIC ARCHITECTURE OF THE AMERICAN COLONIES AND OF THE EARLY
REpuBLIC, Fiske Kimball. Foremost architect and restorer of Williamsburg and
Monticello covers nearly 200 homes between 1620-1825. Architectural details, con-
struction, style features, special fixtures, floor plans, etc. Generally considered finest
work in its area. 219 illustrations of houses. doorways, windows, capital mantels.
XX + 314pp. 778 x 1034, 21743-4 Paperbound $4.00

EARLY AMERICAN ROOMsS: 1650-1858. edited by Russcll Hawes Kettell. Tour of 12
rooms, each representative of a different ¢ra in American history and each furnished,
decorated, designed and occupied in the style of the era. 72 plans and elevations,
8-page color section, ctc., show fabrics, wall papers, arrangements. etc. Full de.
scriptive text. xvii 4 200pp. of text. 834 x 1114

21633-0 Paperbound $5.00

THE FITZWILLIAM VIRGINAL Book. edited by J. Fuller Maitland and W. B. Squire.
Full modern printing of famous carly 17th-century ms. volume of 300 works by
Morley, Byrd, Bull, Gibbons, etc. For piano or other modern keyboard instrument;
casy to read format. xxxvi - 938pp. 834 x 11.

21068-5, 21069-3 Two volumes, Paperbound$10.00

KEYBOARD Music, Johann Sebastian Bach. Bach Gesellschaft edition. A rich
selection of Bach's masterpieces for the harpsichord: the six English Suites, six
French Suites, the six Partitas (Clavieribung part 1), the Goldberg Variations
(Clavierubung part IV), the fifteen Two-Part Inventions and the fiftecen Three-Part
Sinfonias. Cl=arly reproduced on large sheets with ample margins; eminently play-
able. vi 4+ 312pp. 814 x 11. 22360-4 Paperbound £5.00

THe Music oF BACH: AN INTRODUCTION, Charles Sanford Terry. A fine, non-
technical introduction to Bach's music, both instrumental and vocal. Covers organ
_rnusic, chamber music, passion music, other types. Analyzes themes, developments,
tnnovations. x -+ 114pp. 21075-8 Paperbound $1.50

BEETHOVEN AND His NINE SYMPHONIES, Sir George Grove. Noted British musi-
cplugist provides best history, analysis, commentary on symphonies. Very thorough,
rigorously accurate; necessary to both advanced student and amatcur music lover.
436 musical passages. vii -+ 407 pp. 20334-4 Papcrbound 82,75
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JOHANN SEBASTIAN BAcCH, Philipp Spitta. One of the great classics of musicology,
this definitive analysis of Bach’s music (and life) has never been surpassed. Lucid,
nontechnical analyses of hundreds of pieces (30 pages devoted to St. Matthew Pas-
sion, 26 to B Minor Mass). Also includes major analysis of 18th-century music.
450 musical examples. 40-page musical supplement. Total of xx -- 1799pp.
(EUK) 22278-0, 22279-9 Two volumes, Clothbound $17.50

MozArRT AND His PiANO CONCERTOS, Cuthbert Girdlestone. The only full-length
study of an important area of Mozart’s creativity. Provides detailed analyses of all
23 concertos, traces inspirational sources. 417 musical examples. Second edition.
509pp. 21271-8 Paperbound $3.50

THE PERFECT WAGNERITE: A COMMENTARY ON THE NIBLUNG'S RING, George
Bernard Shaw. Brilliant and still relevant criticism in remarkable essays on
Wagner's Ring cycle, Shaw's ideas on political and social ideology behind the
plots, role of Leitmotifs, vocal requisites, etc. Prefaces. xxi -+ 136pp.

(USO) 21707-8 Paperbound $1.75

DoN GIOVANNI, W. A. Mozart. Complete libretto, modern English translation;
biographies of composer and librettist; accounts of early performances and critical
reaction. Lavishly illustrated. All the material you need to understand and
appreciate this great work. Dover Opera Guide and Libretto Series; translated

and introduced by Ellen Bleiler. 92 illustrations. 209pp.
21134-7 Paperbound $2.00

Basic ELECTRICITY, U. S. Bureau of Naval Personel. Originally a training course,
best non-technical coverage of basic theory of electricity and its applications. Funda-
mental concepts, batteries, circuits, conductors and wiring techniques, AC and DC,
inductance and capacitance, generators, motors, transformers, magnetic amplifiers,
synchros, servomechanisms, etc. Also covers blue-prints, electrical diagrams, etc.

Many questions, with answers. 349 illustrations. x —+ 448pp. 6145 x 914.
20973-3 Paperbound $3.50

REPRODUCTION OF SouND, Edgar Villchur. Thorough coverage for laymen of
high fidelity systems, reproducing systems in general, needles, amplifiers, preamps,
loudspeakers, feedback, explaining physical background. A rare talent for making
technicalities vividly comprehensible,” R. Darrell, High Fidelizy. 69 figures.
iv - 22pp. 21515-6 Paperbound $1.35

HEAR ME TALKIN' TO YA: THE STORY OF JAzz As TOLD BY THE MEN WHO
Mape IT, Nat Shapiro and Nat Hentoff. Louis Armstrong, Fats Waller, Jo Jones,
Clarence Williams, Billy Holiday, Duke Ellington, Jelly Roll Morton and dozens
of other jazz greats tell how it was in Chicago’s South Side, New Orleans, depres-

cion Harlem and the modern West Coast as jazz was born and grew. xvi + 429pp-
21726-4 Paperbound $§3.00

FABLES OF AEsop, translated by Sir Roger L'Estrange. A reproduction of the very
rare 1931 Paris edition; a selection of the most interesting fables, together with 50

imaginative drawings by Alexander Calder. v 4 128pp. 614 x9V4.
21780-9 Paperbound $1.50
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AGAINST THE GRAIN (A REBOURS), Joris K. Huysmans. Filled with weird images,
evidences of a bizarre imagination, exotic experiments with hallucinatory drugs,
rich tastes and smells and the diversions of its sybarite hero Duc Jean des Esseintes,
this classic novel pushed 19th-century literary decadence to its limits. Full un-
abridged edition. Do not confuse this with abridged editions generally sold. Intro-
duction by Havelock Ellis. xlix -+ 206pp. 22190-3 Paperbound $2.50

VARIORUM SHAKESPEARE: HAMLET. Edited by Horace H. Furness; a landmark
of American scholarship. Exhaustive footnotes and appendices treat all doubtful
words and phrases, as well as suggested critical emendations throughout the play's
history. First volume contains editor’s own text, collated with all Quartos and
Folios. Second volume contains full first Quarto, translations of Shakespeare's
sources (Belleforest, and Saxo Grammaticus), Der Bestrafte Brudermord, and many
essays on critical and historical points of interest by major authorities of past and
present. Includes details of staging and costuming over the years. By far the
best edition available for serious students of Shakespeare. Total of xx - 905pp.

21004-9, 21005-7, 2 volumes, Paperbound $7.00

A LIFE OF WILLIAM SHAKESPEARE, Sir Sidney Lee. This is the standard life of
Shakespeare, summarizing everything known about Shakespcare and his plays.
Incredibly rich in material, broad in coverage, clear and judicious, it has served
thousands as the best introduction to Shakespeare. 1931 edition. 9 plates.
xxix -+ 792pp. 21967-4 Paperbound $3.75

MASTERS OF THE DRAMA, John Gassner. Most comprehensive history of the drama
in print, covering every tradition from Greeks to modern Europe and America,
including India, Far East, etc. Covers more than 800 dramatists, 2000 plays, with
biographical material, plot summaries, theatre history, criticism, etc. “‘Best of its
kind in English,” New Republic. 77 illustrations. xxii + 890pp.

20100-7 Clothbound $10.00

THE EvVOLUTION OF THE ENGLISH LANGUAGE, George McKnight. The growth
of English, from the 14th century to the present. Unusual, non-technical account
presents basic information in very interesting form: sound shifts, change in grammar
and syntax, vocabulary growth, similar topics. Abundantly illustrated#with quota-
tions. Formerly Modern English in the Making. xii 4 590pp.

21932-1 Paperbound $3.50

AN ETvyMoOLOGICAL DICTIONARY OF MODERN ENGLISH, Ernest Weckley. Fullest,
richest work of its sort, by foremost British lexicographer. Detailed word histories,
including many colloquial and archaic words; extensive quotations. Do not con-
fuse this with the Concise Etymological Dictionary, which is much abridged. Total
of xxvii 4 830pp. 615 x 9V4.

21873%-2, 21874-0 Two volumes, Paperbound $£7.90

FLATLAND: A ROMANCE oF MANY DIMENSIONS, E. A. Abbott. Classic of
science-fiction explores ramifications of life in a two-dimensional world, and what
happens when a three-dimensional being intrudes. Amusing reading, but also usc-
ful as introduction to thought about hyperspace. Introduction by Banesh Hoffmann.
16 illustrations. xx - 103pp. 20001-9 Paperbound $1.00
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POEMS OF ANNE BRADSTREET, edited with an introduction by Robert Hutchinson.
A new selection of poems by America’s first poet and perhaps the first significant
woman poet in the English language. 48 poems display her development in works
of considerable variety—love poems, domestic poems, religious meditations, formal

clegtes, ""quaternions,” etc. Notes, bibliography. viii 4+ 222pp.
22160-1 Paperbound $2.50

THREE GOTHIC NOVELS: THE CASTLE OF OTRANTO BY HORACE W ALPOLE;
VATHEK BY WILLIAM BECKFORD: THE VAMPYRE BY JOHN POLIDORI, WITH FRAG-
MENT OF A NOVEL BY LORD BYRON, edited by E. F. Bleiler. The first Gothic
novel, by Walpole; the finest Oriental tale in English, by Beckford; powerful
Romantic supernatural story in versions by Polidori and Byron. All extremely
unportant in history of literature; all still exciting, packed with supernatural

thrills, ghosts, haunted castles, magic, etc. x| - 291pp.
21232-7 Paperbound $2.50

THE BEST TALES oF HOoFFMANN, E. T. A. Hoffmann. 10 of Hoffmann's most
important stories, in modern re-editings of standard translations: Nutcracker and
the King of Mice, Signor Formica, Automata, The Sandman, Rath Krespel, The
Golden Flowerpot, Master Martin the Cooper, The Mines of Falun, The King's
Betrothed, A New Year's Eve Adventure. 7 illustrations by Hoffmann. Edited
by E. F. Bleiler. xxxix -+ 419pp. 21793-0 Paperbound S3.00

GHOST AND HORROR STORIES OF AMBROSE BIERCE, Ambrose Bierce. 23 strikingly
modern stories of the horrors latent in the human mind: The Eyes of the Panther,
The Damned Thing, An Occurrence at Owl Creek Bridge, An Inhabitant of Carcosa,

etc., plus the dream-essay, Visions of the Night. Edited by E. F. Bleiler. xxii
-+ 199pp. 20767-6 Paperbound $1.50

BEsT GHOST STORIES OF J. S. LEFANU, J. Sheridan LeFanu. Finest stories by
Victorian master often considered greatest supernatural writer of all. Carmilla,
Green Tea, The Haunted Baronet, The Familiar, and 12 others. Most never before
available in the U. S. A. Edited by E. F. Bleiler. 8 illustrations from Victorian
publications. xvii - 467pp. 20415-4 Paperbound $3.00

MATHEMATICAL FOUNDATIONS OF INFORMATION THEORY, A. I. Khinchin. Com-
prehensive introduction to work of Shannon, McMillan, Feinstein and Khinchin,
placing thesc investigations on a rigorous mathematical basis. Covers entropy
concept in probability theory, uniqueness theorem, Shannon's inequality, ergodic
sources, the E property, martingale concept, noise, Feinstein's fundamental lemma,
Shanon’s first and second theorems. Translated by R. A. Silverman and M. D.
Friedman. iit 4 120pp. 60434-9 Paperbound §2.00

SEVEN ScIENCE FICTION NoVELS, H. G. Wells. The standard collection of the
great novels. Complete, unabridged. First Men in the Moon, Island of Dr. Moreau,
War of the Worlds, Food of the Gods, Invisible Man, Time Machine, In the Days

of the Comet. Not only science fiction fans, but every educated person owes it to
himself to read these novels. 1015pp. (USO) 20264-X Clothbound S6.00
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LAsT AND FIRST MEN AND STAR MAKER, TwoO SCIENCE FicTtioN NovEeLs, Olaf
Stapledon. Greatest future histories in science fiction. In the first, human intelli-
gence is the "hero,” through strange paths of evolution, interplanetary invasions,
incredible technologies, near extinctions and reemergences. Star Maker describes the
quest of a band of star rovers for intelligence itself, through time and space: weird
inhuman civilizations, crustacean minds, symbiotic worlds, ctc. Complete, un-
abridged. v 4 438pp. (USO) 21962-3 Paperbound $2.50

THREE PROPHETIC NovELs, H. G, WELLS. Stages of a consistently planned future
for mankind. When the Sleeper Wakes, and A Story of the Days to Come, anticipate
Brave New World and 1984, in the 21st Century; The Time Machine, only com-
plete version in print, shows farther future and the end of mankind. All show
Wells’s greatest gifts as storyteller and novelist. Edited by E. F. Bleiler. x
~+ 335pp. (USO) 20605-X Paperbound $2.50

THE DEVIL’'S DICTIONARY, Ambrose Bierce. America’s own Oscar Wilde—
Ambrose Bierce—offers his barbed iconoclastic wisdom in over 1,000 definitions
hailed by H. L. Mencken as "'some of the most gorgeous witticisms in the English
language.” 145pp. 20487-1 Paperbound $1.25

Max AND MoriTtz, Wilhelm Busch. Great children’s classic, father of comic
strip, of two bad boys, Max and Moritz. Also Ker and Plunk (Plisch und Plumm),
Cat and Mouse, Deceitful Henry, Ice-Peter, The Boy and the Pipe, and five other
pieces. Original German, with English translation. Edited by H. Arthur Klein;
translations by various hands and H. Arthur Klein. vi 4 216pp.

20181-3 Paperbound £2.00

PiGs 1s Pi6s AND OTHER FAvVORITES, Ellis Parker Butler. The title story is one
of the best humor short stories, as Mike Flannery obfuscates biology and English.
Also included, That Pup of Murchison’s, The Great American Pie Company, and
Perkins of Portland. 14 illustrations. v 4+ 109pp. 21532-6 Paperbound $1.25

THE PETERKIN PAPERS, Lucretia P. Hale. It takes genius to be as stupidly mad as
the Peterkins, as they decide to become wise, celebrate the ““Fourth,” keep a cow,
and otherwise strain the resources of the Lady from Philadelphia. Basic book of
American humor. 153 illustrations. 219pp. 20794-3 Paperbound $2.00

PERRAULT'S FAIRY TALES, translated by A. E. Johnson and S. R. Littlewood, with
34 full-page illustrations by Gustave Doré. All the original Perrault stories—
Cinderella, Sleeping Beauty, Blucbeard, Little Red Riding Hood, Puss in Boots, Tom
Thumb, ctc.—with their witty verse morals and the magnificent illustrations of
Doré. One of the five or six great books of Europcan fairy tales. viii 4+ 117pp.
814G x 11. 22311-6 Paperbound $2.00

OrLb HUNGARIAN FAIRY TALES, Baroness Orczy. Favorites translated and adapted
by author of the Scarlet Pimpernel. Eight fairy tales include “"The Suitors of Princess
Fire-Fly,” "The Twin Hunchbacks,” “Mr. Cuttlefish's Love Story,”” and "“The
Enchanted Cat.”” This little volume of magic and adventure will captivate children
as 1t has for generations. 90 drawings by Montagu Barstow. 96pp.

(USO) 22293-4 Paperbound S1.95
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THE RED FAIRY BOOK, Andrew Lang. Lang’s color fairy books have long been
children’s favorites. This volume includes Rapunzel, Jack and the Bean-stalk and

35 other stories, familiar and unfamiliar. 4 plates, 93 illustrations x -+ 367pp.
21673-X Paperbound $2.50

THE BLUE FAIRY BoOK, Andrew Lang. Lang’s tales come from all countries and all
times. Here are 37 tales from Grimm, the Arabian Nights, Greek Mythology, and

other fascinating sources. 8 plates, 130 illustrations. xi -+ 390pp.
21437-0 Paperbound $2.50

HOUSEHOLD STORIES BY THE BROTHERS GRIMM. Classic English-language edition
of the well-known tales — Rumpelstiltskin, Snow White, Hansel and Gretel, The
Twelve Brothers, Faithful John, Rapunzel, Tom Thumb (52 stories in all). Trans-
lated into simple, straightforward English by Lucy Crane. Ornamented with head-
pieces, vignettes, e¢laborate decorative initials and a dozen full-page illustrations by
Walter Crane. x 4 269pp. 21080-4 Paperbound $2.00

THE MERRY ADVENTURES OF RoBIN Hoop, Howard Pyle. The finest modern ver-
sions of the traditional ballads and tales about the great English outlaw. Howard
Pyle’'s complete prose version, with every word, every illustration of the first edition.
Do not confuse this facsimile of the original (1883) with modern editions that

change text or illustrations. 23 plates plus many page decorations. xxii 4 296pp.
22043-5 Paperbound $52.50

THE STORY OF KING ARTHUR AND His KNiGHTS, Howard Pyle. The finest chil-
dren’s version of the life of King Arthur; brilliantly retold by Pyle, with 48 of his

most imaginative illustrations. xviii 4 313pp. 614 x 914. |
21445-1 Paperbound $2.50

THE WONDERFUL WIZARD OF Oz, L. Frank Baum. America’s finest children’s
book in facsimile of first edition with all Denslow illustrations in full color. The
edition a child should have. Introduction by Martin Gardner. 23 color plates,

scores of drawings. iv - 267pp. 20691-2 Paperbound $2.50

THE MARVELOUS LAND OF Oz, L. Frank Baum. The second Oz book, every bit as
imaginative as the Wizard. The hero is a boy named Tip, but the Scarecrow and the

Tin Woodman are back, as is the Oz magic. 16 color plates, 120 drawings by John
R. Neill. 287pp. 20692-0 Paperbound $2.50

THE MAGICAL MONARCH oF Mo, L. Frank Baum. Remarkable adventures in a land
even stranger than Oz. The best of Baum’s books not in the Oz series. 15 color

plates and dozens of drawings by Frank Verbeck. xviii 4 237pp.
21892-9 Paperbound $2.25

THE BAD CHILD'S BOOK OF BEASTS, MORE BEASTS FOR WORSE CHILDREN, A
MoRAL ALPHABET, Hilaire Belloc. Three complete humor classics in one vqlume.
Be kind to the frog, and do not call him names . . . and 28 other whimsical animals.

Familiar favorites and some not so well known. Illustrated by Basil Blackﬁwell.
156pp. (USO) 20749-8 Paperbound S1.50
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EasT O' THE SUN AND WEST O THE MooON, George W. Dasent. Considered the
best of all translations of these Norwegian folk tales, this collection has been enjoyed
by generations of children (and folklorists too). Includes True and Untrue, Why the
Sea is Salt, East O’ the Sun and West O’ the Moon, Why the Bear is Stumpy-Tailed,
Boots and the Trell, The Cock and the Hen, Rich Peter the Pedlar, and 52 more.
The only edition with all 59 tales. 77 illustrations by Erik Werenskiold and Theodor
Kittelsen. xv + 418pp. 22521-6 Paperbound $3.50

Gooprs AND HOow TO BE THEM, Gelett Burgess. Classic of tongue-in-cheek humor,
masquerading as etiquette book. 87 verses, twice as many cartoons, show mis-
chievous Goops as they demonstrate to children virtues of table manners, neatness,
courtesy, etc. Favorite for generations. viii 4+ 88pp. 615 x 914.

22233-0 Paperbound $1.25

ALICE'S ADVENTURES UNDER GROUND, Lewis Carroll. The first version, quite
different from the final Alice in Wonderland, printed out by Carroll himself with
his own illustrations. Complete facsimile of the “"'million dollar’” manuscript Carroll
gave to Alice Liddell in 1864. Introduction by Martin Gardner. viii 4+ 96pp. Title
and dedication pages in color. 21482-6 Paperbound $1.25

THE BROWNIES, THEIR Book, Palmer Cox. Small as mice, cunning as foxes, exu-
berant and full of mischief, the Brownies go to the zoo, toy shop, seashore, circus,
ctc., in 24 verse adventures and 266 illustrations. Long a favorite, since their first
appearance in St. Nicholas Magazine. xi 4+ 144pp. 654 x 9V/.

21265-3 Paperbound 8£1.75

SONGs OF CHILDHOOD, Walter De La Mare. Published (under the pseudonym
Walter Ramal) when De La Mare was only 29, this charming collection has long
been a favorite children’s book. A facsimile of the first edition in paper, the 47 poems
capture the simplicity of the nursery rhyme and the ballad, including such lyrics as

I Met Eve, Tartary, The Silver Penny. vii 4 106pp. (USO) 21972-0 Paperbé)und
1.25

THE COMPLETE NONSENSE OF EDWARD LEAR, Edward Lear. The finest 19th-century
humorist-cartoonist in full: all nonsense limericks, zany alphabets, Owl and Pussy-
cat, songs, nonsense botany, and more than 500 illustrations by Lear himself. Edited
by Holbrook Jackson. xxix -}- 287pp. (USO) 20167-8 Paperbound $2.00

BiLLY W/HISKERS: THE AUTOBIOGRAPHY OF A GOAT, Frances Trego Montgomery.
A favorite of children since the early 20th century, here are the escapades of that
ra':nb“nCtl-OUS. irresistible and mischievous goat—Billy Whiskers. Much in the
spirit of Peck’s Bad Boy, this is a book that children never tire of rcading or hearing.
All the original familiar illustrations by W. H. Fry are included: 6 color plates,
18 black and white drawings. 159pp. 22345-0 Paperbound $2.00

MOTHER Goose MELODIES. Faithful republication of the fabulously rare Munroe
and Francis “copyright 1833"" Boston edition—the most important Mother Goose
collection, usually referred to as the “original.”” Familiar rhymes plus many rarc
ones, with wonderful old woodcut illustrations. Edited by E. F. Bleiler. 128pp.
415 x 634, 22577-1 Paperbound $1.00
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Two LITTLE SAVAGES; BEING THE ADVENTURES OF Two Boys WHO LivED Af
INDIANS AND WHAT THEY LEARNED, Ernest Thompson Seton. Great classic or
nature and boyhood provides a vast range of woodlore in most palatable form, a
genuinely entertaining story. Two farm boys build a teepee in woods and live in 11
for a month, working out Indian solutions to living problems, star lore, birds anc
anmimals, plants, etc. 293 illustrations. vii 4 286pp.

20985-7 Paperbound $2.5¢

i

PETER PIPER'S PRACTICAL PRINCIPLES OF PLAIN & PERFECT PRONUNCIATION.
Alliterative jingles and tongue-twisters of surprising charm, that made their first
appcarance in America about 1830. Republished in full with the spirited woodcut

illustrations from this earliest American edition. 32pp. 415 x 634.
22560-7 Paperbound $1.00

SCIENCE EXPERIMENTS AND AMUSEMENTS FOR CHILDREN, Charles Vivian. 73 easy
experiments, requiring only materials found at home or easily available, such as
candles, coins, steel wool, etc.; illustrate basic phenomena like vacuum, simple
chemical reaction, etc. All safe. Modern, well-planned. Formerly Science Games

for Children. 102 photos, numerous drawings. 96pp. 614 x 91.
21856-2 Paperbound $1.25

AN INTRODUCTION TO CHESS MoOVES AND TAcCTICS SIMPLY EXPLAINED, Leonard
Barden. Informal intermediate introduction, quite strong in explaining reasons for
moves. Covers basic material, tactics, important openings, traps, positional play in
middle game, end game. Attempts to isolate patterns and recurrent configurations.
Formerly Chess. 58 figures. 102pp. (USO) 21210-6 Paperbound £1.25

LASKER'S MANUAL OF CHESS, Dr. Emanuel Lasker. Lasker was not only one of the
five great World Champions, he was also one of the ablest expositors, theorists, and
analysts. In many ways, his Manual, permcated with his philosophy of battle, filled
with keen insights, is one of the greatest works ever written on chess. Filled with
analyzed games by the great players. A single-volume library that will profit almost
any chess player, beginner or master. 308 diagrams. xli X 349pp.

20640-8 Paperbound $2.75

THE MASTER BOOK OF MATHEMATICAL RECREATIONS, Fred Schuh. In opinion of
many the finest work e¢ver prepared on mathematical puzzles, stunts, recreations;
exhaustively thorough cxplanations of mathematics involved, analysis of effects,
citation of puzzles and games. Mathematics involved is elementary. Translated bv
F. Gobel. 194 figures. xxiv -+ 430pp. 22134-2 Paperbound 83.50

MATHEMATICS, MAGIC AND MYSTERY, Martin Gardner. Puzzle editor for Scientific
American explains mathematics behind various mystifying tricks: card tricks, stage
“mind reading,”” coin and match tricks, counting out games, geometric dissectiony
ctc. Probability scts, theory of numbers clearly explained. Also provides more thg
400 tricks, guaranteed to vacl thes oo J 135 illustrations. x11 4+ 176pp. |

L 20335-2 Paperbound $1.37
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VMATHEMATICAL PUZZLES FOR BEGINNERS AND ENTHUSIASTS, Geoffrey Mott-Smith.
89 puzzles from easy to difficult—involving arithmetic, logic, algebra, properties
f digits, probability, etc.—for enjoyment and mental stimulus. Explanation of
wathematical principles behind the puzzles. 135 illustrations. viii -+ 248pp.
20198-8 Paperbound $1.75

PAFER FOLDING FOR BEGINNERS, William D. Murray and Francis J. Rigney. Easiest
sook on the market, clearest instructions cn making interesting, beautiful origami.
Sail boats, cups, roosters, frogs that move legs, bonbon boxes, standing birds, etc.
40 projects; more than 275 diagrams and photographs. 94pp.

: 20713-7 Paperbound $1.00

TRICKS AND GAMES ON THE PooL TABLE, Fred Herrmann. 79 tricks and games—
some solitaires, some for two or more players, some competitive games—to entertain
you between formal games. Mystifying shots and throws, unusual caroms, tricks
involving such props as cork, coins, a hat, etc. Formerly Fun on the Pool Table.
77 figures. 95pp. 21814-7 Paperbound 31.25

HAND SHADOWS TO BE THROWN UPON THE WALL: A SERIES OF NOVEL AND
AMUSING FIGURES FORMED BY THE HAND, Henry Bursill. Delightful picturebook
from great-grandfather’s day shows how to make 18 different hand shadows: a bird
that flies, duck that quacks, dog that wags his tail, camel, goose, deer, boy, turtle,
etc. Only book of its sort. vi -+ 33pp. 615 x 91/. 21779-5 Paperbound $1.00

WHITTLING AND WOODCARVING, E. J. Tangerman. 18th printing of best book on
market. 'If you can cut a potato you can carve’ toys and puzzles, chains, chessmen,
caricatures, masks, frames, woodcut blocks, surface patterns, much more. Information
on tools, woods, techniques. Also goes into serious wood sculpture from Middle
Ages to present, East and West. 464 photos, figures. x 4 293pp.

20965-2 Paperbound $2.00

HISTORY OF PHILOSOPHY, Juliidn Marias. Possibly the clearest, most casily followed,
best planned, most useful one-volume history of philosophy on the market; neither
skimpy nor overfull. Full details on system of every major philosopher and dozens
of less important thinkers from pre-Socratics up to Existentialism and later. Strong;
on many Europecan figures usually omitted. Has gonec through dozens of editions in
Europe. 19566 cdition, translated by Stanley Appelbaum and Clarence Strowbridge.
xviii -+ 505pp. 21739-6 Paperbound $3.50

YOGA: A SCIE_NTH-‘{C EvaruaTioN, Kovoor T. Behanan. Scientific but non-technical
study_ of phys:ol_og:cal results of yoga exercises; done under auspices of Yale U.
Relations to Indian thought, to psychoanalysis, c¢tc. 16 photos. xxi11 + 270pp.

20505-3 Paperbound $2.50

Prices subject 1o change withont notice.

Available at your book dealer cr write for free cataloguc to Dept. GIE, Dover
'ublications, Inc., 180 Varick St., N. Y., N. Y. 10014. Dover publishes more than
50.1){}0]{5 each year on science, elementary and advanced mathematics, biology,
-ausic, art, literary history, social sciences and other areas.
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