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Abstract

This paper addresses the cooperative formation control problem for a heterogeneous
unmanned system composed of Unmanned Surface Vehicles (USVs) and Autonomous
Underwater Vehicles (AUVs) under coexisting constraints of actuator faults, time-varying
communication topology, and communication delay. First, a unified dynamic model is
established under the Euler–Lagrange framework. Building on this, a novel distributed
adaptive fault-tolerant control (DAFTC) framework is proposed. This framework integrates
a Dynamic Event-Triggered Mechanism (DETM) to address communication bandwidth
limitations, alongside an adaptive fault-tolerant strategy to enhance system robustness.
The novelty lies in the cohesive integration of DETM for communication efficiency and
adaptive laws for online fault compensation (both loss of effectiveness and bias), while
rigorously handling communication delays via Lyapunov–Krasovskii analysis. It is proven
via Lyapunov stability analysis that the proposed control protocol ensures all signals in the
closed-loop system remain semi-globally uniformly ultimately bounded, with the formation
tracking error converging to an adjustable compact set. Simulation results demonstrate
the framework’s effectiveness. Compared to periodic communication (0.1 s interval), the
proposed DETM reduces the communication load by over 99.6%. Even when subjected to a
25% effectiveness fault and a 5 Nm bias fault, the root-mean-square (RMS) tracking error is
maintained below 0.15 m, validating the system’s high performance and robustness.

Keywords: USV-AUV collaboration; formation control; dynamic event triggering;
communication delay; adaptive fault-tolerant control

1. Introduction
In recent years, marine exploration and development have become a strategic high

ground in global technological competition. As types of key unmanned marine equip-
ment, Unmanned Surface Vehicles (USVs) and Autonomous Underwater Vehicles (AUVs)
have demonstrated great potential in fields such as environmental monitoring, resource
exploration, seabed mapping, and national defense security. However, a single type of
unmanned platform often struggles to meet the demands of increasingly complex marine
tasks. USVs are equipped with continuous energy supply, high-precision GPS positioning
capability, and high-rate radio communication capability, but their operational range is
limited to the water surface [1–4]; in contrast, AUVs can dive underwater to perform
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delicate tasks, but they are constrained by limited endurance, navigation accuracy drift,
and low-bandwidth, and high-latency underwater acoustic communication [5–8].

Integrating USVs and AUVs into a cross-domain cooperative heterogeneous un-
manned system enables the complementation of advantages, greatly expanding the breadth
and depth of marine operations [9–11]. In this system, USVs can serve as mobile base
stations for AUVs, providing navigation correction, data relay, and energy replenishment;
meanwhile, AUVs act as underwater extensions of USVs to perform underwater detection
tasks. The key to realizing this cooperative function lies in precise cross-domain formation
control, i.e., ensuring that the AUV swarm maintains a predefined time-varying geometric
configuration relative to USVs.

Nevertheless, achieving robust cross-domain formation control for USV-AUV systems
faces numerous challenges. First, the dynamic models of USVs and AUVs differ signifi-
cantly: the former are mainly affected by wind, waves, and currents, while the latter must
account for buoyancy, hydrodynamic forces, and more complex six-degrees-of-freedom
(6-DOF) motion. Most existing research on multi-agent formation control focuses on ho-
mogeneous systems, while studies on heterogeneous systems with significant differences
are relatively scarce. For example, Guo et al. [12] proposed a distributed fixed-time sliding
mode formation control (FTSMFC) method for the formation control problem of Unmanned
Aerial Vehicle (UAV)–Unmanned Ground Vehicle (UGV) heterogeneous systems under di-
rected topology with external disturbances, providing important insights for cross-domain
cooperative control. Zhu et al. [13] studied the formation and trajectory tracking problems
of UAV-USV systems, constructing a distributed event-triggered adaptive model predictive
control (DEAMPC) formation control method using information from neighboring vehicles.
Wu et al. [14] explored the collaborative coverage path planning problem for UAVs, USVs,
and AUVs. Hu et al. [11] proposed a novel predefined-time terminal sliding mode control
(PTSMC) strategy for heterogeneous cooperative systems consisting of USVs and AUVs.
Ref. [15] proposed a local dynamic predictive control framework to assist AUVs and USVs
in performing target search tasks without prior information in unknown marine environ-
ments. Ref. [16] used nonlinear model predictive control to solve the distributed dynamic
rendezvous control problem of AUV-USV heterogeneous joint systems in the presence of
unknown external disturbances.

In addition, communication constraints are a bottleneck restricting the cooperative
performance of USV-AUV systems. Cross-domain communication between the two relies
on underwater acoustic channels, which have inherently significant time delays, limited
bandwidth, and unstable connection quality. Traditional control methods based on periodic
communication generate large amounts of redundant data, quickly depleting valuable
communication resources. Therefore, Event-Triggered Control (ETC) has been widely
studied as an effective solution [17–20]. ETC only enables communication when the system
error exceeds a preset threshold, thereby significantly reducing the network load. However,
the fixed threshold of traditional static ETC makes it difficult to adapt to the dynamic
changes of system states. To achieve a better balance between communication and control
performance, the Dynamic Event-Triggered Mechanism (DETM) has emerged. By introduc-
ing a dynamically changing threshold, DETM allows the communication strategy to adapt
to the real-time needs of the system [21–24].

Meanwhile, the complexity and unpredictability of the marine environment make
system uncertainties and actuator faults non-negligible issues. The hydrodynamic pa-
rameters of unmanned platforms are usually difficult to model accurately, and actuators
such as propellers and rudders may experience faults such as effectiveness degradation
(loss of effectiveness) or bias under harsh marine conditions. If not addressed, these faults
may lead to degraded formation performance or system instability. Therefore, Adaptive
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Fault-Tolerant Control (FTC) with fault diagnosis and active compensation capabilities
is crucial for ensuring task reliability. In recent years, distributed FTC has been widely
applied in multi-agent systems. Ref. [25] designed a distributed adaptive fault-tolerant con-
troller (DAFC) for high-speed trains considering actuator faults and introduced an auxiliary
system to handle input saturation. Ref. [26] designed a distributed adaptive fault-tolerant
control scheme for nonlinear multi-agent systems affected by actuator faults. Ref. [27] pro-
posed a distributed fault-tolerant control (FTC) scheme for nonlinear fractional-order (FO)
multi-agent systems (MASs). Ref. [28] designed a distributed adaptive fault-tolerant con-
troller based on the states of finite-time observers. In practical tasks, due to the large-scale
movement of platforms, signal occlusion, or channel fading, communication links between
unmanned platforms may be interrupted and reconnected, forming a time-varying commu-
nication topology. A robust controller is required for the changes in the topology structure.

While the aforementioned studies have made significant progress, many distributed
control techniques struggle with the simultaneous occurrence of these issues. One in-
stance of this is traditional sliding mode control (SMC), which offers robustness but often
relies on periodic, high-frequency communication and is unfeasible for USV-AUV systems.
Conversely, standard event-triggered methods reduce communication but may lack ro-
bustness against the significant uncertainties introduced by actuator faults. The proposed
DETM + adaptive FTC method differs from these approaches by creating a synergistic
loop: the DETM dynamically adjusts communication based on the control error (which is
influenced by faults), while the adaptive FTC actively compensates for these faults, thereby
reducing the error and, in turn, further easing the communication burden. This integrated
approach provides a more efficient and resilient solution tailored for this specific hetero-
geneous environment. This highlights a critical research gap: the lack of a unified control
framework that concurrently addresses system heterogeneity (USV-AUV), severe communi-
cation constraints (delays and DETM), and critical reliability issues (adaptive fault tolerance)
within a single, stable design. While refs. [1–11] establish the importance and challenges of
USV-AUV cooperation, and refs. [11–28] explore individual aspects like FTC or ETC, this
paper aims to develop a cohesive solution for this specific, complex intersection.

Existing studies have separately explored issues such as heterogeneous system control,
event triggering, fault-tolerant control, and communication delays; there are few results that
comprehensively address these challenges within a unified framework, especially for USV-
AUV cross-domain cooperative scenarios. This paper aims to solve the aforementioned
challenges and propose a distributed adaptive fault-tolerant formation control scheme for
heterogeneous USV-AUV systems. This paper constructs an integrated control framework
capable of addressing heterogeneity, communication constraints, actuator faults, and delays
simultaneously. Specifically, the method proposed in this paper includes the following
key components:

1. Euler–Lagrange Modeling: This paper establishes a unified model capable of describ-
ing the dynamics of both USVs and AUVs. By parameterizing the unknown terms in
the system, this paper lays down a foundation for the subsequent design of a general
adaptive controller.

2. DETM: To address the problem of limited underwater acoustic communication re-
sources, this paper includes the design of a DETM for each agent. The triggering
threshold of this mechanism is correlated with the dynamic formation error of the
system, which can increase the communication frequency to ensure fast convergence
when the error is large, and reduce communication to save energy when the system is
stable, thereby achieving an intelligent trade-off between communication efficiency
and control performance.
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3. Adaptive Fault-Tolerant Strategy: The controller incorporates adaptive laws, enabling
it to provide an online estimate and compensate for unknown system parameters,
external disturbances, and actuator faults caused by loss of effectiveness and bias.
This ensures that the formation system can maintain stable performance in the face
of internal faults and external uncertainties. Meanwhile, to handle time-varying
communication delays, this paper incorporates delay terms into the stability analysis
by constructing an appropriate Lyapunov–Krasovskii functional, ensuring the stability
of the closed-loop system in the presence of delays.

The remainder of this paper is organized as follows: Section 2 introduces system mod-
eling and problem description. Section 3 details the design of the controller incorporating
DETM and the adaptive fault-tolerant strategy, and presents the stability proof. Section 4
describes the scenario settings and result analysis of the simulation experiments. Section 5
summarizes the entire paper.

2. System Modeling and Problem Description
2.1. Graph Theory and Communication Topology

This paper adopts algebraic graph theory to describe the dynamic information inter-
action network within the heterogeneous USV-AUV system. Due to platform movement,
signal occlusion, or underwater acoustic channel fading, communication links may be inter-
rupted and reconnected; thus, the network topology is modeled as a time-varying weighted
directed graph. The set of nodes in the graph is denoted by V = {0, 1, 2, . . . , N}, where
node 0 represents a leader (typically a USV) and nodes {1, 2, . . . , N} represent followers
(which can be either USVs or AUVs). The set of directed edges is denoted by E(t) ⊆ V × V ,
where an edge (j, i) ∈ E(t) indicates that platform i can receive information from platform
j at time t.

The topological structure associated with the graph can be described using the
following matrices:

1. Adjacency Matrix: The communication links between followers are characterized by
a weighted adjacency matrix A(t) = [aij(t)]N×N . The weight aij(t) > 0 if and only if
(j, i) ∈ E(t) and i ̸= j; otherwise, aij(t) = 0. This paper follows the convention that
aii(t) = 0 for all i.

2. Navigation Matrix: The communication links from the leader to followers are de-
scribed by a diagonal navigation matrix B(t) = diag{b1(t), b2(t), . . . , bN(t)}. If fol-
lower i can directly receive information from the leader, then bi(t) > 0; otherwise,
bi(t) = 0.

3. Degree Matrix: The in-degree matrix of the follower network is a diagonal matrix
D(t) = [dii(t)]N×N , where each diagonal element is defined as follows:

dii(t) =
N

∑
j=1

aij(t). (1)

This element represents the total weight of information flows received by follower i
from all other followers.

4. Laplacian Matrix: The graph Laplacian matrix of the follower network is defined
as follows:

L(t) = D(t)− A(t). (2)
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To uniformly describe all communication relationships in controller design and stabil-
ity analysis, this paper defines a composite matrix:

C(t) = L(t) + B(t), (3)

where L(t) captures the communication topology between followers, and B(t) captures the
communication links from the leader to followers.

Owing to the dynamics of the communication environment, the network topology
is time-varying. This paper assumes there exists a finite set of candidate topologies
{G1,G2, . . . ,GM}. The active topology at time t is determined by a piecewise constant
switching signal σ(t) ∈ {1, 2, . . . , M}. This implies that there exists a time sequence
0 = t0 < t1 < t2 < · · · < ∞ such that the communication topology remains fixed within
any time interval [tk, tk+1). This paper assumes that the switching is not infinitely fast,
i.e., it satisfies the minimum dwell time condition: tk+1 − tk ≥ τd for all k, where τd > 0 is a
positive constant.

To ensure that the leader’s information can be transmitted to every follower (thereby
enabling coordinated movement of the entire formation), this paper introduces the follow-
ing basic assumption regarding network connectivity:

Assumption 1. For any active topology at arbitrary time t, the composite matrix C(t) is nonsin-
gular. This is equivalent to the graph containing a directed spanning tree with the leader node 0 as
its root, meaning there exists a directed path from the leader node to any follower node.

Assumption 1 is a standard and necessary condition for distributed formation control.
Physically, if a follower is completely disconnected from the influence of the leader, it
is impossible for it to follow the trajectory of the leader, making the formation control
objective unattainable.

To aid readability, key symbols and variables used throughout the paper are summa-
rized in Table 1.

Table 1. Summary of Key Notation.

Symbol Definition

V = {0, . . . , N} Set of all platforms (0 = leader, 1 . . . N = followers)
E(t) Set of directed communication edges at time t
A(t), B(t), L(t) Adjacency, Navigation, and Laplacian matrices
C(t) Composite matrix L(t) + B(t)
ηi, vi Position/attitude vector and linear/angular velocity vector (of agent i)
Mi, Ci(vi), Di(vi) Inertia, Coriolis, and Damping matrices
τi, τact

i Commanded and Actual (post-fault) control input
Λi(t), bi(t) Actuator effectiveness matrix and bias fault vector
Λ̂i(t), Ŵi(t) Estimated effectiveness factor matrix and estimated RBFNN weights
τji(t) Communication delay from platform j to i
eη,i, ev,i Position and velocity formation tracking errors
es

η,i, es
v,i Sampled state measurement error (due to DETM)

σi(t) Dynamic event-triggering threshold
si(t) Sliding mode surface variable
W∗

i , Φi(Zi) Ideal and basis function vector of RBFNN

2.2. Heterogeneous Dynamic Models

To design a unified control framework adaptable to both USVs and AUVs, this paper
models the dynamics of each unmanned platform using the Euler–Lagrange method. This
approach provides a structured and generalized form for describing the motion of rigid
bodies in fluids.
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As shown in Figure 1, the operational scenario and coordinate systems are illustrated.
The global inertial frame (Earth-fixed) is denoted by OE − XEYEZE. Each platform i (USV or
AUV) has its own body-fixed frame, denoted as Oia − XiaYiaZia. The Navigation USV acts
as the leader (node i = 0), providing the reference trajectory. Follower USVs and Follower
AUVs (nodes i = 1 . . . N) track this leader while maintaining a desired formation. The ar-
rows labeled Information flow depict the communication topology, indicating possible data
transmission paths between the leader and followers, and among the followers themselves.
Critically, communication between USVs (surface-to-surface) is high-speed (radio), while
communication involving AUVs (surface-to-underwater or underwater-to-underwater)
relies on low-speed, high-delay acoustic links, posing a significant control challenge.

Navigation USV

Information flow

Follower USV

Follower AUV

Information flow

EO

EX

EZ

EY

aZ
aY

aX

aO

siO

siY

siX

siZ

Figure 1. USV-AUV Heterogeneous System.

For the i-th unmanned platform in the system, its motion in six degrees of freedom
(DOF) can be described by coupled dynamic and kinematic equations. As shown in Figure 1,
the kinematic equation characterizes the velocity transformation from the platform’s body-
fixed frame to the inertial frame:

η̇i = J(ηi)νi, (4)

where ηi = [xi, yi, zi, ϕi, θi, ψi]
T denotes the position and attitude (Euler angles: roll ϕi, pitch

θi, yaw ψi) vector of the platform in the inertial frame; νi = [ui, vi, wi, pi, qi, ri]
T represents

the linear and angular velocity vector in the body-fixed frame; and J(ηi) ∈ R6×6 is the
coordinate transformation matrix from the body-fixed frame to the inertial frame.

The dynamic equation, derived from Newton–Euler equations, describes the relation-
ship between the applied forces/moments and the platform’s acceleration:

Miν̇i + Ci(νi)νi + Di(νi)νi + gi(ηi) = τi + δi, (5)

where Mi ∈ R6×6 is a symmetric positive-definite inertia matrix, which includes the rigid-
body mass and added mass of the fluid. Ci(νi) ∈ R6×6 is the Coriolis and centripetal matrix.
Di(νi) ∈ R6×6 is the hydrodynamic damping matrix, typically containing linear and
nonlinear terms. gi(ηi) ∈ R6 is the restoring force and moment vector generated by gravity
and buoyancy. τi ∈ R6 is the control input vector (forces/moments) generated by actuators
such as propellers and rudders. δi ∈ R6 represents the combined effect of unmodeled
dynamics and external environmental disturbances (e.g., wind, waves, currents).

Manifestation of Heterogeneity: Although Equations (3) and (4) have a unified form,
the dynamic characteristics of USVs and AUVs exhibit significant differences within this
model—this is precisely where the system’s heterogeneity lies:
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1. Dimension Reduction: USVs primarily move in the horizontal plane, so their model
can usually be simplified to 3 DOF (surge ui, sway vi, yaw ri), i.e., ηi = [xi, yi, ψi]

T

and νi = [ui, vi, ri]
T . Their roll, pitch, and heave motions are generally treated as

bounded disturbances.
2. Restoring Force/Moment: For AUVs, the restoring force/moment term gi(ηi) is crucial.

It is determined by the positions of the center of gravity and center of buoyancy, and is
key to maintaining attitude stability. For USVs, this term can usually be neglected in
the horizontal-plane model.

3. Inertia and Damping: AUVs are fully submerged in water, so their added mass effect
and hydrodynamic damping are far more significant and complex than those of USVs
floating on the water surface.

4. External Disturbances: USVs are mainly affected by wind and waves, while AUVs
are primarily influenced by ocean currents. The characteristics and models of these
disturbances are completely different.

To facilitate the subsequent design of a unified controller, this paper converts the above
Euler–Lagrange model into a state-space form. Define the system state as ηi and νi. Taking
the derivative of ηi gives the following:

η̈i = J̇(ηi)νi + J(ηi)ν̇i

Solving for ν̇i from Equation (4) and substituting it into the above equation, while
noting that J−1(ηi) exists, this paper obtains the following second-order nonlinear
system model:

η̈i = fi(ηi, νi) + Gi(ηi)τi + di, (6)

where fi(ηi, νi) = J(ηi)M
−1
i [−Ci(νi)νi − Di(νi)νi − gi(ηi)] + J̇(ηi)νi represents the inter-

nal nonlinear dynamics of the system; Gi(ηi) = J(ηi)M
−1
i is the control input gain matrix;

and di = J(ηi)M
−1
i δi is the lumped unknown disturbance term.

Remark 1. Equation (5) provides a unified mathematical model for the entire heterogeneous system.
Although the form is identical, the specific forms and parameter values of the function fi and
matrix Gi for each platform i are different—this accurately characterizes the dynamic heterogeneity
between USVs and AUVs.

Remark 2. In practical applications, matrices such as the inertia matrix Mi and damping matrix Di

usually contain parameters that are difficult to obtain accurately. Therefore, in subsequent sections,
this paper assumes that the function fi and matrix Gi include unknown but bounded parameters.
This provides a theoretical basis for using adaptive control methods to online estimate and compensate
for these uncertainties.

2.3. Actuator Faults and Communication Delays

While Equation (6) and Remark 2 establish the unified ideal dynamic model and
its inherent uncertainties, a robust control design for real-world marine operations must
also account for non-ideal hardware and communication failures. Therefore, the fol-
lowing sections explicitly model two of the most critical challenges: actuator faults and
communication delays.

In practical marine operating environments, the physical components and communi-
cation links of unmanned platforms cannot work ideally. To make the control strategy more
applicable to real-world scenarios, this section mathematically models two key non-ideal
factors: actuator faults and communication delays.

(1) Actuator Fault Model
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For the k-th actuator of the i-th unmanned platform, the relationship between its actual
output and the command issued by the controller is modeled as follows:

τact
i,k = λi,k(t)τi,k + bi,k(t), (7)

where λi,k(t) ∈ (0, 1] is the unknown time-varying effectiveness factor: λi,k(t) = 1 indicates
the actuator works normally; λi,k(t) < 1 means the actuator is partially failed and can
only output a fraction of the command; λi,k(t) = 0 represents complete actuator failure
(not considered in this paper due to Assumption 2). bi,k(t) is the unknown time-varying
additive bias fault, such as an actuator jamming at a non-zero position.

Integrating the faults of all actuators into a vector form, the actual control input of the
i-th platform is as follows:

τact
i = Λi(t)τi + bi(t), (8)

where Λi(t) = diag{λi,1(t), λi,2(t), . . . , λi,6(t)} is the diagonal matrix of effectiveness fac-
tors, and bi(t) = [bi,1(t), bi,2(t), . . . , bi,6(t)]T is the bias fault vector.

Substituting this fault model (7) into the system dynamic Equation (5), the system
model in the presence of actuator faults is obtained as follows:

η̈i = fi(ηi, νi) + Gi(ηi)Λi(t)τi + Gi(ηi)bi(t) + di. (9)

For controller design and stability analysis, this paper makes the following reasonable
assumption:

Assumption 2. Actuator faults are unknown but bounded. Specifically, there exist unknown
positive constants λi and bi such that for all t ≥ 0, λi,k(t) ≥ λi > 0 (for k = 1, 2, . . . , 6) and
∥bi(t)∥ ≤ bi hold. This assumption implies that the actuator will not experience complete failure or
control direction reversal, and the fault bias will not grow unbounded.

This assumption is physically reasonable. The condition λi > 0 implies actuators do
not reverse direction or fail completely (which would require replacement, not control
compensation). Bounded bias ||bi(t)|| ≤ bi reflects physical limitations, such as a rudder
being stuck at a maximum angle or a thruster failing to a fixed (but not infinite) RPM.

(2) Communication Delay Model

Cross-domain collaboration between USVs and AUVs relies heavily on communica-
tion. Communication between USVs typically uses high-rate, low-latency radio, while
communication between USVs and AUVs must rely on low-rate, high-latency underwater
acoustic communication. This heterogeneous, time-varying communication delay is a key
factor that must be considered in system design.

This paper assumes that there exists a time-varying, bounded communication delay
τji(t) > 0 in the information transmission from platform j to platform i. Therefore, the state
information received by platform i at time t from platform j is actually the state of platform
j at time t − τji(t), i.e., ηj(t − τji(t)) and νj(t − τji(t)).

To ensure that the stability of the system can be theoretically analyzed, this paper
makes the following standard assumption about communication delays:

Assumption 3. Communication delays and their time derivatives are bounded. That is, there exist
known positive constants τmax and τ̇max such that for all i, j ∈ V and t ≥ 0, the following holds:

0 < τji(t) ≤ τmax, (10)

τ̇ji(t) ≤ τ̇max < 1. (11)
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Equation (9) ensures that the delay will not be infinite, while Equation (10) limits the
rate of change of the delay to avoid excessively fast variations. This is a key prerequisite
for analyzing the stability of time-delay systems using Lyapunov–Krasovskii functionals.

The upper bound τmax is physically guaranteed, as communication (even acoustic)
does not take infinite time. The bound τ̇max < 1 assumes the rate of change of the delay
(e.g., due to relative motion changing the acoustic path length) is not faster than time itself,
which is a mild and standard assumption for stability analysis of time-delay systems.

Remark 3. Combining the above models, the subsequent controller design faces a critical challenge:
each agent must calculate the control command based on its own current state ηi(t), νi(t), as well
as the outdated information from neighbors that is both event-triggered and delayed. This command
needs to actively compensate for the negative impacts caused by unknown effectiveness factors and
bias faults, thereby achieving cooperative control of the entire heterogeneous formation.

2.4. Formation Control Problem Modeling

Based on the aforementioned system dynamics, actuator fault, and communication
delay models, this section presents an accurate mathematical modeling of the cooperative
formation control problem for the heterogeneous USV-AUV system.

The core objective of formation control is to drive a group of follower unmanned
platforms to accurately track the motion of a leader, while maintaining a predefined and
potentially time-varying geometric configuration among them.

For each follower i (i = 1, 2, . . . , N), this paper defines a desired formation vector
δi(t) ∈ Rn (where n = 3 for USVs and n = 6 for AUVs, corresponding to their respective
degrees of freedom). This vector describes the desired position and attitude of follower i
relative to the leader. Thus, the desired state trajectory of follower i is defined as follows:

ηi,d(t) = η0(t) + δi(t), (12)

where η0(t) ∈ Rn denotes the state vector (position and attitude) of the leader. This paper
assumes that the leader’s state and its first and second time derivatives (η0(t), η̇0(t), η̈0(t))
are accessible to followers that can communicate directly with the leader, and all these
signals are bounded.

This paper defines the formation tracking error of follower i as the difference between
its actual state and the desired state:

eη,i(t) = ηi(t)− ηi,d(t). (13)

The entire formation control task can be formally stated as follows: design a control
law such that the formation tracking error of all followers converges to and remains within
a small neighborhood.

Definition 1. Consider an unmanned system consisting of one leader and N followers (USVs/AUVs),
where:

1. The dynamics of each follower are described by the nonlinear Equation (5);
2. The actuators of each follower may suffer from unknown effectiveness loss and bias faults as

shown in (8), with fault parameters satisfying Assumption 2;
3. Information interaction within the system is conducted through a time-varying communication

topology that satisfies Assumption 1;
4. Information transmission between any two unmanned platforms involves time-varying

bounded delays as described in (9) and (10), which satisfy Assumption 3.
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The core task of this paper is to design a distributed adaptive fault-tolerant control
protocol for each follower. Under the combined conditions of heterogeneity, faults, delays,
event triggering, and time-varying topology, this protocol aims to ensure that for any given
bounded initial conditions, all signals in the closed-loop system (including states, control
inputs, and adaptive parameter estimates) are bounded, and the formation tracking error of
all followers asymptotically converges to an adjustable compact set that can be arbitrarily
tuned by design parameters. Specifically, there exists a small positive constant ϵ > 0
such that

lim
t→∞

∥eη,i(t)∥ ≤ ϵ ∀ i = 1, 2, . . . , N. (14)

3. Formation Control Method Design and Stability Analysis
This section designs a distributed adaptive fault-tolerant controller to solve the for-

mation control problem defined in Definition 1 of Section 2.4. The core of this method
lies in integrating a dynamic event-triggered mechanism to achieve efficient communica-
tion, and combining adaptive technology to handle system uncertainties, actuator faults,
and communication delays. The control architecture is shown in Figure 2.
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Figure 2. The flowchart of the closed−loop system.

3.1. Dynamic Event-Triggered Mechanism

To enable the communication strategy to adapt to the dynamic performance of the
system, this paper designs a DETM. Its core idea is that the necessity of communication is
determined by a dynamic threshold related to the system state, thereby minimizing the
network communication load while ensuring the accuracy of formation control.

For each follower i (i = 1, 2, . . . , N), its communication moments are determined
by an event-triggering time sequence {ti,k}∞

k=0 where ti,0 = 0 < ti,1 < ti,2 < · · · < ∞.
At each triggering moment ti,k, platform i samples its own state and broadcasts it to all its
neighboring platforms through the network. Between two consecutive triggering moments,
i.e., for t ∈ [ti,k, ti,k+1), both the controller of platform i and the controllers of its neighboring
nodes calculate using the sampled values fixed by a “zero-order holder”. This intermittent
sampling introduces a measurement error between the sampled state and the real-time
state, which is defined as follows:

es
η,i(t) = ηi(ti,k)− ηi(t), es

ν,i(t) = νi(ti,k)− νi(t) ∀t ∈ [ti,k, ti,k+1), (15)
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where es
η,i(t) and es

ν,i(t) correspond to the measurement errors of position/attitude and
velocity, respectively. Obviously, es

η,i(ti,k) = 0 and es
ν,i(ti,k) = 0 at the triggering instant.

The next triggering moment ti,k+1 is determined by the following rule:

ti,k+1 = inf
{

t > ti,k | ∥ξi(t)∥2 ≥ σi(t)
}

, (16)

where inf denotes the infimum. Within a set of time points, the infimum represents the
smallest time point in the set, and its function is to capture the first instant that satisfies the
triggering condition. It can be seen from rule (15) that an event is triggered when the norm

of the measurement error ξi(t) =
[
(es

η,i(t))
T , (es

ν,i(t))
T
]T

increases beyond a dynamically
changing threshold σi(t).

Different from the static event-triggered mechanism, the threshold here is not a fixed
positive constant but an internal dynamic variable. Its update law is designed as follows:

σ̇i(t) = −αiσi(t)− βi∥si(t)∥2 + γi, (17)

where αi > 0, βi > 0, and γi > 0 are all positive design parameters, and si(t) is the sliding
mode surface variable to be defined in the next section, which directly reflects the control
error of the system.

Remark 4. The design of this dynamic threshold update law (16) has clear physical meanings:

1. When the system control error is large, the term −βi∥si(t)∥2 dominates, making σ̇i(t) a
relatively large negative number, and the threshold σi(t) decreases rapidly. A smaller threshold
means a lower tolerance for measurement errors, which will lead to more frequent event trig-
gering, thereby providing the controller with more timely state information to suppress errors.

2. When the system tends to be stable and the control error becomes very small, ∥si(t)∥2 ≈ 0,
which will make σ̇i(t) ≈ −αiσi(t) + γi. At this point, σi(t) will gradually stabilize around
γi/αi. The threshold is relatively large at this time, allowing the measurement error to vary
within a larger range, thus greatly reducing the communication frequency in the stable state
and saving energy consumption.

3. The existence of the constant term γi ensures that the threshold has a positive lower bound even
in the ideal case where the error is zero, which is crucial for avoiding the Zeno phenomenon.

The designed DETM can effectively avoid the Zeno phenomenon, i.e., the occurrence
of an infinite number of triggers within a finite time. This is because after any triggering
moment ti,k, the measurement error starts to increase from zero (ξi(ti,k) = 0). Since the
system dynamics (i.e., η̇i(t), ν̇i(t)) are bounded on any compact set, the growth rate of the
measurement error is also bounded. Meanwhile, it can be seen from (16) that the dynamic
threshold σi(t) remains positive at all times. Therefore, the measurement error needs a
non-zero period of time to grow from 0 to the positive threshold. Hence, there exists a
positive lower bound for the minimum time interval between two consecutive triggers,
thereby eliminating the Zeno phenomenon.

3.2. Distributed Adaptive Fault-Tolerant Controller

The objective of this section is to design a distributed control input for each fol-
lower i. This paper adopts a strategy that combines Sliding Mode Control (SMC) with
adaptive control: SMC provides robustness against uncertainties and disturbances, while
adaptive technology is used to online estimate and compensate for unknown system and
fault parameters.
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3.2.1. Composite Error and Sliding Mode Surface Design

To achieve the formation objective, this paper first needs to define an error variable
that comprehensively reflects the position and velocity tracking performance. For this
purpose, this paper designs a sliding mode surface for each follower i:

si(t) = eν,i(t) + Kieη,i(t), (18)

where eη,i(t) = ηi(t) − ηi,d(t) and eν,i(t) = η̇i(t) − η̇i,d(t) are the position and velocity
formation tracking errors respectively, and Ki ∈ Rn×n (with n = 3 for USVs and n = 6 for
AUVs) is a symmetric positive-definite design parameter matrix. The core of the control
task is to design a control law such that the sliding mode variable si(t) can quickly converge
to zero and remain within its neighborhood; according to sliding mode theory, this ensures
that the formation errors eη,i(t) and eν,i(t) also converge to the vicinity of zero.

Taking the time derivative of the sliding mode surface (17), we obtain the following:

ṡi(t) = η̈i(t)− η̈i,d(t) + Ki ėη,i(t) = η̈i(t)− η̈i,d(t) + Kieν,i(t). (19)

Substituting the system dynamic Equation (8) with faults into the above expression,
we have the following:

ṡi(t) = fi(ηi, νi) + Gi(ηi)Λi(t)τi(t) + Gi(ηi)bi(t) + di(t)

− η̈i,d(t) + Kieν,i(t).
(20)

The right-hand side of the above equation contains numerous unknown terms: the
nonlinear function fi(ηi, νi), input gain Gi(ηi), fault parameters Λi(t) and bi(t), as well as
external disturbances di(t).

3.2.2. Uncertainty Handling and Function Approximation

To address these complex uncertainties, this paper integrates all unknown terms.
Rewrite Equation (19) as follows:

ṡi(t) = Gi(ηi)Λi(t)τi(t) + fi,total(Zi(t)), (21)

where fi,total(Zi(t)) = fi(ηi, νi) + Gi(ηi)bi(t) + di(t) − η̈i,d(t) + Kieν,i(t), and Zi(t) is a
comprehensive state vector that includes all variables required for calculating fi,total.

This paper integrates all unknown terms that do not contain the control input into a
single nonlinear function fi,total(Zi(t)), i.e.,

fi,total(Zi(t)) = W∗
i Φi(Zi(t)) + εi(t), (22)

where Zi(t) ∈ Rp (with p being the dimension of the input vector) is a vector containing all
variables needed for computation; W∗

i ∈ Rn×m is the ideal neural network weight matrix
(with m being the number of neurons); Φi(Zi(t)) = [ϕi1(Zi(t)), ϕi2(Zi(t)), . . . , ϕim(Zi(t))]T

is the radial basis function vector (a common choice for ϕij(·) is the Gaussian function:
ϕij(Zi) = exp(−∥Zi − cij∥2/(2σ2

ij)), where cij and σij are the center and width of the j-th
radial basis function respectively); and εi(t) ∈ Rn is the bounded approximation error,
satisfying ∥εi(t)∥ ≤ εi,max (with εi,max > 0 being an unknown bounded constant).

To enable the RBFNN to fully learn and compensate for the complex dynamics and un-
certainties of the system, its input vector Zi(t) should be designed as a comprehensive state
vector that includes all relevant available information. Its specific form can be expressed
as follows:
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Zi(t) =

ηT
i (t), η̇T

i (t), ηT
0 (t), η̇T

0 (t), η̈T
0 (t), δT

i (t), δ̇
T
i (t), δ̈

T
i (t),

⋃
j∈Ni

{
ηT

j (t − τji(t)), η̇T
j (t − τji(t))

}T

, (23)

where ηi(t), η̇i(t) are the real-time state and velocity of platform i itself. η0(t), η̇0(t), η̈0(t) are the
available position/attitude, velocity, and acceleration of the leader. δi(t), δ̇i(t), δ̈i(t) are the pre-
set formation vector and its first and second derivatives.

⋃
j∈Ni

{
ηj(t − τji(t)), η̇T

j (t − τji(t))
}

contains the position/attitude and velocity information received from all neighboring platforms
j ∈ Ni (with Ni denoting the neighbor set of platform i).

3.2.3. Distributed Adaptive Fault-Tolerant Control Law

Based on the above analysis, this paper can now design the control law. The goal is to
select τi(t) to offset unknown terms and stabilize the sliding mode dynamics. Following
the certainty equivalence principle, this paper uses the estimated values of the RBFNN
to replace the unknown fi,total(Zi(t)), and use the estimated values of fault parameters to
compensate for effectiveness loss.

Thus, this paper proposes the following distributed adaptive fault-tolerant control law:

τi(t) = Λ̂
−1
i (t)G−1

i (ηi(t))
[
−Ŵi(t)Φi(Zi(t))− Ks,isi(t)− Kr,i tanh

(
si(t)

ϵi

)]
, (24)

where Λ̂i(t) = diag{λ̂i1(t), λ̂i2(t), . . . , λ̂in(t)} and Ŵi(t) ∈ Rn×m are the online estimates of
the unknown effectiveness factor matrix Λi(t) and RBFNN weight matrix W∗

i . Ks,i ∈ Rn×n

and Kr,i ∈ Rn×n are symmetric positive-definite sliding mode control gain matrices: Ks,i

is used to ensure convergence, while Kr,i is used to robustly suppress approximation
errors and disturbances. ϵi > 0 is the boundary layer thickness; to avoid the chattering
phenomenon, the traditional sign function sgn(si(t)) is usually replaced by a smooth
saturation function or hyperbolic tangent function tanh(si(t)/ϵi) in practical applications
(satisfying | tanh(x)| ≤ 1 for any x). The vector Zi(t) serves as the input to the RBFNN and
is composed of the platform’s own state and the event-triggered, delayed information it
receives from neighbors, which ensures the distributed nature of the control law.

To update the estimated parameters online, this paper designs the following adaptive
laws, the effectiveness of which will be proven in the stability analysis in the next section:

˙̂Λi(t) = ΓΛ,i

[
diag

(
G−1

i (ηi(t))τi(t)sT
i (t)

)
− σΛ,iΛ̂i(t)

]
, (25)

˙̂Wi(t) = ΓW,i

[
si(t)ΦT

i (Zi(t))− σW,iŴi(t)
]
, (26)

where ΓΛ,i ∈ Rn×n and ΓW,i ∈ Rn×m are positive-definite adaptive learning rate matri-
ces, which determine the convergence speed of the parameter estimates. σΛ,i > 0 and
σW,i > 0 are small positive constants, which are used to enhance the robustness of the
adaptive laws and prevent parameter estimate drift (the σ-modification terms σΛ,iΛ̂i(t)
and σW,iŴi(t) ensure that the estimates remain bounded even when the excitation of the
system is insufficient).

3.3. Stability Analysis

This section aims to prove the closed-loop stability of the heterogeneous USV-AUV
formation system through rigorous Lyapunov stability theory, under the combined action
of the designed distributed adaptive fault-tolerant controller (22), adaptive laws (23) and
(24), and dynamic event-triggered mechanism (15) and (16).
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Theorem 1. Consider the USV-AUV formation system described by Equation (8) that satisfies
Assumptions 1–3. If the distributed control law (22), adaptive laws (23) and (24), and dynamic event-
triggered mechanism (15) and (16) are adopted, then by selecting appropriate design parameters, all
signals in the closed-loop system (including state errors, parameter estimation errors, and dynamic
thresholds) can be guaranteed to be semi-globally uniformly ultimately bounded (SGUUB).

Proof of Theorem 1. To analyze the stability of the entire system, this paper constructs a
composite Lyapunov–Krasovskii functional, which consists of four parts corresponding to
sliding mode dynamics, parameter estimation errors, dynamic event-triggered thresholds,
and communication delays, respectively:

V(t) =
N

∑
i=1

[Vi1(t) + Vi2(t) + Vi3(t) + Vi4(t)], (27)

where each component is defined as follows:

Vi1(t) =
1
2

sT
i (t)si(t), (28)

Vi2(t) =
1
2

tr
(

Λ̃
T
i (t)Γ

−1
Λ,iΛ̃i(t)

)
+

1
2

tr
(

W̃T
i (t)Γ

−1
W,iW̃i(t)

)
, (29)

Vi3(t) =
1

2αi

(
σi(t)−

γi
αi

)2
, (30)

Vi4(t) = ∑
j∈Ni

∫ t

t−τji(t)

(
η̇T

j (θ)η̇j(θ) + esT(θ)
η,j es

η,j(θ)
)

dθ, (31)

where Λ̃i(t) = Λi(t) − Λ̂i(t) and W̃i(t) = W∗
i − Ŵi(t) are the parameter estimation

errors of the effectiveness factor and RBFNN weight matrix. αi, ΓΛ,i, and ΓW,i are positive
design parameters (consistent with those in Equations (16), (23), and (24)). τji(t) is the
communication delay from platform j to platform i (consistent with Assumption 3). tr(·)
denotes the trace of a matrix.

This paper calculates the time derivative of V(t): V̇(t) = ∑N
i=1

[
V̇i1(t) + V̇i2(t)+

V̇i3(t) + V̇i4(t)
]
.

Derivative of Vi1(t)
Taking the derivative of Equation (26) and substituting the sliding mode dynamics

(19) and RBFNN approximation (21), we obtain the following:

V̇i1(t) = sT
i (t)ṡi(t)

= sT
i (t)[Gi(ηi)Λi(t)τi(t) + W∗

i Φi(Zi(t)) + εi(t)].
(32)

When we substitute the control law (22) into Equation (30), we have the following:

V̇i1(t) = sT
i (t)

[
Gi(ηi)Λi(t)Λ̂

−1
i (t)G−1

i (ηi)
(
− Ŵi(t)Φi(Zi(t))

− Ks,isi(t)− Kr,i tanh
(

si(t)
ϵi

))
+ W∗

i Φi(Zi(t)) + εi(t)

]
.

(33)
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When using W∗
i = Ŵi(t) + W̃i(t) and simplifying the terms involving Gi(ηi) and its

inverse (which cancel out), we have the following:

V̇i1(t) = −sT
i (t)Λi(t)Λ̂

−1
i (t)Ks,isi(t)− sT

i (t)Λi(t)Λ̂
−1
i (t)Kr,i tanh

(
si(t)

ϵi

)
+ sT

i (t)W̃i(t)Φi(Zi(t)) + sT
i (t)εi(t)

. (34)

By Assumption 2, λi,k(t) ≥ λi > 0, so Λi(t)Λ̂
−1
i (t) is positive definite. Let λΛ,i =

mink{λi,k(t)/λ̂i,k(t)} > 0; then,

−sT
i (t)Λi(t)Λ̂

−1
i (t)Ks,isi(t) ≤ −λΛ,iλmin(Ks,i)∥si(t)∥2, (35)

where λmin(·) denotes the minimum eigenvalue of a matrix.
For the term involving the hyperbolic tangent function, using the property x tanh(x/ϵ) ≥

∥x∥2 − ϵn (for x ∈ Rn and ϵ > 0), we have the following:

−sT
i (t)Λi(t)Λ̂

−1
i (t)Kr,i tanh

(
si(t)

ϵi

)
≤ −λΛ,iλmin(Kr,i)

(
∥si(t)∥2 − ϵin

)
. (36)

Substituting Equations (33) and (34) into Equation (32), and applying Young’s inequal-
ity to the cross terms (sT

i W̃iΦi ≤ 1
2∥si∥2 + 1

2∥W̃iΦi∥2 and sT
i εi ≤ 1

2∥si∥2 + 1
2 ε2

i,max), this
paper can simplify V̇i1(t) into a form bounded by negative quadratic terms and positive
constant terms.

Derivative of Vi2(t)
Taking the derivative of Equation (27) and substituting the adaptive laws (23) and (24),

we obtain the following:

V̇i2(t) = tr
(

Λ̃
T
i (t)Γ

−1
Λ,i

˙̃Λi(t)
)
+ tr

(
W̃T

i (t)Γ
−1
W,i

˙̃Wi(t)
)

. (37)

Since ˙̃Λi(t) = − ˙̂Λi(t) and ˙̃Wi(t) = − ˙̂Wi(t), substitute the adaptive laws (23) and (24):

V̇i2(t) = −tr
(

Λ̃
T
i (t)

[
diag

(
G−1

i τisT
i

)
− σΛ,iΛ̂i(t)

])
− tr

(
W̃T

i (t)
[
siΦ

T
i − σW,iŴi(t)

])
.

(38)

Expanding the terms and using Λ̂i(t) = Λi(t) − Λ̃i(t) and Ŵi(t) = W∗
i − W̃i(t),

the cross terms (e.g., tr(Λ̃T
i diag(G−1

i τisT
i ))) cancel out with the corresponding terms in

V̇i1(t). The remaining terms are as follows:

V̇i2(t) = −σΛ,itr
(

Λ̃
T
i (t)Λi(t)

)
+ σΛ,i∥Λ̃i(t)∥2

F − σW,itr
(

W̃T
i (t)W

∗
i

)
+ σW,i∥W̃i(t)∥2

F, (39)

where ∥ · ∥F denotes the Frobenius norm of a matrix. By Assumption 2, Λi(t) is a positive
definite, so the first and third terms are negative semi-definite, and the entire V̇i2(t) can be
bounded by negative quadratic terms of Λ̃i(t) and W̃i(t).

Derivative of Vi3(t)
Taking the derivative of Equation (28) and substituting the threshold dynamics (16),

we get the following:
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V̇i3(t) =
1
αi

(
σi(t)−

γi
αi

)
σ̇i(t)

=
1
αi

(
σi(t)−

γi
αi

)(
−αiσi(t)− βi∥si(t)∥2 + γi

)
= −

(
σi(t)−

γi
αi

)2
− βi

αi

(
σi(t)−

γi
αi

)
∥si(t)∥2.

(40)

The first term in Equation (38) is always non-positive. Applying Young’s inequality to
the second term (−ab ≤ a2

2 + b2

2 ), this paper can bound it by a negative quadratic term of
∥si(t)∥ and a positive term of σi(t) (which is further bounded by the first term).

Derivative of Vi4(t)
Taking the derivative of Equation (29) and using Leibniz’s rule for integration, we

obtain the following:

V̇i4(t) = ∑
j∈Ni

[η̇T
j (t)η̇j(t) + esT(t)

η,j es
η,j(t)− (1 − τ̇ji(t))(η̇T

j (t − τji(t))η̇j(t − τji(t))

+ e
sT(t−τji(t))
η,j es

η,j(t − τji(t)))].

(41)

By Assumption 3, τ̇ji(t) ≤ τ̇max < 1, so 1 − τ̇ji(t) ≥ 1 − τ̇max > 0. Combined with the
event-triggered condition (15) (∥es

η,j(t)∥2 ≤ σj(t)) and the boundedness of η̇j(t) (derived

from system dynamics), V̇i4(t) can be bounded by a constant and negative terms involving
past states (which do not affect the ultimate boundedness).

Synthesis of Stability Results
Combining the derivatives of all four components and applying Young’s inequality to

all remaining cross terms, this paper can finally obtain the following inequality:

V̇(t) ≤ −κV(t) + δ, (42)

where κ > 0 is a positive constant dependent on control gains (e.g., Ks,i, Kr,i) and adaptive
parameters (e.g., ΓΛ,i, ΓW,i), which can be made sufficiently large by selecting appropriate
design parameters. δ > 0 is a positive constant determined by the upper bounds of RBFNN
approximation errors (εi,max), σ-modification terms, and communication delays.

According to Lyapunov stability theory, if Equation (40) holds, then V(t) will converge
to a compact set ΩV = {V(t) | V(t) ≤ δ/κ} as t → ∞. Since V(t) is a quadratic function of
all error signals (including si(t), Λ̃i(t), W̃i(t), and σi(t)), the boundedness of V(t) implies
the boundedness of all these signals. Furthermore, by the definition of the sliding mode
surface (17) (si(t) = eν,i(t) + Kieη,i(t)), the boundedness of si(t) and eν,i(t) ensures that
the formation tracking error eη,i(t) is also uniformly ultimately bounded.

The radius of the final error set can be arbitrarily reduced by adjusting design parame-
ters: for example, increasing the control gains Ks,i and Kr,i or adaptive learning rates ΓΛ,i

and ΓW,i will increase κ, thereby decreasing the bound δ/κ. The semi-global property stems
from the fact that RBFNN can only guarantee approximation accuracy on compact sets;
thus, this stability conclusion holds for any given set of bounded initial conditions.

4. Simulation
To validate the effectiveness and robustness of the distributed adaptive fault-tolerant

formation control algorithm proposed in this paper in handling complex issues such as
heterogeneity, communication constraints, actuator faults, and time delays, this chapter
conducts numerical simulation experiments. The simulation experiments were completed
on a device equipped with a 2.6 GHz Intel Core i7-8750H processor (6 CPU cores), running a
Windows 11 64-bit operating system, with the algorithm implemented in MATLAB R2023a.
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4.1. Conditions

(1) Formation System Configuration

• Platform Composition: The formation consists of one leader USV (v0),
two follower USVs (v1, v2), and three follower AUVs (v3, v4, v5). The USVs use a
3-degree-of-freedom (surge, sway, yaw) dynamic model, while the AUVs use a
6-degree-of-freedom dynamic model. Their specific dynamic parameters, includ-
ing mass, inertia matrix, and hydrodynamic coefficients, are set based on typical
values from the reference [29].

• Environment Setting: The simulation is conducted in a 2 km × 2 km × 0.5 km
three-dimensional marine space. To simulate a realistic environment, a constant
ocean current with a velocity of 0.3 m/s along the positive X-axis is introduced as
an external disturbance term di(t) for all platforms.

• Initial State: The initial positions and velocities of all follower platforms are
randomly set near the leader’s initial position to simulate a non-ideal initial
deployment state.

(2) Formation Task Setting

• Leader’s Trajectory: The leader USV v0 sails along a predefined sinusoidal trajec-
tory. Its position in the inertial frame is given by the following equation:

x0(t) = [3t, 20 sin(0.1t), 0]T . (43)

This trajectory simulates a common reciprocating survey path.
• Desired Formation: All followers are required to maintain a fixed pentagonal

formation relative to the leader. The desired relative position vectors hi for each
follower are set as follows:

h1 = [−50, 50, 0]T (USV v1),

h2 = [−50,−50, 0]T (USV v2),

h3 = [−100, 75,−20]T (AUV v3),

h4 = [−150, 0,−20]T (AUV v4),

h5 = [−100,−75,−20]T (AUV v5).

(44)

This formation requires the USVs to accompany on the surface, while the AUVs
maintain a wider formation at a depth of 20 m, simulating a typical cross-domain
collaborative operation scenario.

(3) Communication and Fault Settings
The basic communication topology of the formation is fully connected. At each time
step, each communication link has a probability p = 0.8 of remaining connected and a
probability 1 − p = 0.2 of disconnecting, thereby simulating a dynamically changing
communication topology. All topologies are assumed to satisfy Assumption 1.

To simulate the differences in communication methods, the time delays are set as
follows: the time-varying delay for electromagnetic communication between USVs is
τij(t) ∈ [0.1, 0.3] s; the time-varying delay for underwater acoustic communication between
USVs and AUVs is τij(t) ∈ [0.8, 1.2] s.

To test the fault-tolerant performance of the controller, two typical actuator faults are
introduced during the simulation:

(a) Effectiveness Fault: At t = 300 s, a 25% loss of effectiveness, a fault is injected into the
main thruster of USV v2, meaning its effectiveness factor ρ2 abruptly changes from 1
to 0.75.
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(b) Bias Fault: At t = 500 s, a persistent bias fault b4 of magnitude 5 N · m is injected into
the vertical rudder of AUV v4.

(4) Controller Parameter Settings

(a) Sliding mode surface parameters: λi = diag{1.5, 1.5, . . . } for all i ∈ F .
(b) Sliding mode control gains: Ks,i = diag{10, 10, . . . }, Kd,i = diag{0.5, 0.5, . . . }.
(c) Adaptive law gains: ΓW,i = diag{5, 5, . . . }, γρ,ij = 0.8, σW,i = σρ,ij = 0.01.
(d) Dynamic event-triggering parameters: kη,1 = 0.5, kη,2 = 1.0, ση = 5.0.
(e) Boundary layer thickness: ϵ = 0.5.
(f) RBF Neural Network: Each follower’s controller uses an RBFNN to approximate

the unknown nonlinear terms. Each RBFNN contains 20 neurons, with their
centers uniformly distributed within the expected range of the input variables,
and the width is uniformly set to 2, as shown in Figure 3.

4v 0v

1v

2v

3v

5v

Figure 3. Formation topology structure.

4.2. Results
4.2.1. Formation Tracking Performance

Figure 4 shows the motion trajectories of the entire heterogeneous formation in 3D
space and on a 2D plane, respectively. The leader USV (red solid line) accurately follows the
preset sinusoidal path. It can be visually observed from the figures that although all follow-
ers start from random initial positions, they can quickly converge to the desired pentagonal
formation centered on the leader. The two follower USVs (blue dashed lines) successfully
form the inner formation on the water surface (Z = 0), while the three follower AUVs (green
dash-dotted lines) form the outer formation at a depth of 20 m. Macroscopically, the entire
pentagonal formation configuration is well maintained throughout the mission and follows
the leader as a whole, visually verifying the effectiveness of the algorithm.

Figure 5 compares the positions of all platforms along the X, Y, and Z axes. It can be
seen that the position curves of all followers maintain the desired offset from the leader’s
curve, showing good consistency. Particularly in the Z-axis subplot, it is clearly shown that
the AUV cluster successfully maintains the target depth of −20 m, while the USVs remain
on the water surface.
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Figure 4. Overview of the USV−AUV formation trajectory. The 3D view (left) illustrates the overall
convergence of the heterogeneous swarm from random initial positions to the desired pentagonal
formation. The 2D view (top-right, with zoomed inset) explicitly shows the leader’s (red) sinusoidal
path in the X-Y plane and the followers successfully maintaining their predefined offsets.

Figure 5. Vehicle position states over time, demonstrating formation geometry maintenance. The top
plot (X axis) shows all agents tracking the leader’s ramp trajectory. The middle plot (Y axis) confirms
the sinusoidal offsets are maintained relative to the leader (red). The bottom plot (Z axis) validates
the system’s heterogeneity handling, with USVs (blue, orange) remaining at the surface (Z = 0) and
AUVs (green, yellow, purple) correctly maintaining the −20 m target depth.

The first figure in Figure 6 shows that the speeds of all followers quickly converge
and closely track the leader’s speed curve after the initial phase. The heading/yaw angle
comparison in the first figure in Figure 6 also shows a high degree of consistency. The first
figure in Figure 6 indicates that the pitch angles of the AUVs remain within a small range
of fluctuation around zero throughout the mission, demonstrating stable attitude.
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Figure 7 presents the time response curves of the position tracking error norm for each
follower. The tracking errors of all followers rapidly converge to a very small neighborhood
within the initial phase (approximately 50 s), indicating that the system has good transient
performance. At t = 300 s (fault) and t = 500 s (fault), the errors of the corresponding
unmanned platforms show brief, minor peaks, but are quickly suppressed by the adaptive
fault-tolerant controller and return to a stable state. Similarly, when the topology switches,
the error shows strong robustness with almost no fluctuation. This strongly demonstrates
the robustness of the controller to actuator faults and network topology changes, as well as
the uniformly ultimately bounded nature of the system error.

The performance of the controller is evaluated using several key metrics, summarized
in Table 2. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are
calculated for the formation tracking error norm ||eη,i(t)|| during the steady-state period
(t = 100 s to 800 s).

Figure 6. Kinematic state tracking performance. (Top) Follower speeds converge rapidly (within
approx. 50 s) to the leader’s time varying speed. (Middle) Follower headings (yaw) align and track
the leader’s heading changes. (Bottom) AUV pitch angles are stabilized near zero, indicating good
attitude control during 3D maneuvering.

Table 2. Quantitative Performance Analysis of Followers.

Metric USV 1 USV 2 AUV 1 AUV 2 AUV 3

RMSE (m) 0.09 0.14 0.12 0.13 0.12
MAE (m) 0.07 0.11 0.09 0.10 0.09
Total Triggers (800 s) 28 33 30 34 29
Avg. Trigger Interval (s) 28.5 24.2 26.7 23.5 27.6
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Figure 7. Formation tracking error norm (||eη,i(t)||). This plot demonstrates the controller’s robust-
ness and SGUUB performance. The error for all followers converges to a small compact set (<0.2 m)
within approximately 50 s. The insets highlight the system’s fault-tolerant capability: at t = 300 s
(USV 2 fault) and t = 500 s (AUV 4 fault, not shown in USV plot), only minor, brief error spikes
(peaking below 0.2 m) occur before being quickly suppressed by the adaptive controller.

The results in Table 2 quantify the visual findings from Figure 7. The steady-state
RMSE and MAE are consistently low (on the order of ∼0.1 m), confirming high tracking
accuracy. For USV 2 and AUV 2 (which experienced faults at t = 300 s and t = 500 s,
respectively, corresponding to AUV 4 in the setup), the maximum error variation during
the fault event remained small (0.19 m and 0.18 m), demonstrating the controller’s rapid
fault suppression capability.

Furthermore, the communication performance is notable. The average time between
communication triggers for the fleet is approximately 26.0 s. Compared to a typical periodic
control update (e.g., 10 Hz, or 0.1 s interval), which would require 8000 triggers per agent,
the proposed DETM (averaging ∼31 triggers) achieves a communication load reduction of
approximately 99.6% (calculated as 1 − (31/8000)). This validates the significant efficiency
of the proposed mechanism.

4.2.2. Communication Efficiency Analysis

The event-triggering interval plot (Figure 8) intuitively demonstrates the effectiveness
of the DETM. In the initial stage of the simulation, the triggering interval is small (frequent
communication) due to large errors. Once the system stabilizes, the triggering interval
significantly increases to several seconds, greatly reducing the communication frequency.
At the moment a fault occurs, the triggering interval of the corresponding platform briefly
decreases to cope with the sudden situation, reflecting the adaptiveness of the mechanism.
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(a) (b)

Figure 8. Event triggered simulation diagram. (a) Control inputs (b) Event-triggering intervals. Plot
(b) validates the efficiency of the DETM. The communication intervals are short (e.g., <5 s) during
the initial high-error transient phase. Once the system stabilizes (error is low), the intervals increase
significantly (up to 30 s+), drastically reducing communication load. Note that intervals briefly
shorten at t = 300 s and t = 500 s to provide more data precisely when faults occur, demonstrating
the mechanism’s dynamic adaptiveness.

4.2.3. Adaptive and Fault-Tolerant Capability Analysis

Figure 9 plots the norm of the adaptive bias estimate ∥b̂i∥. It can be seen that for
healthy platforms, this estimate remains close to zero. When USV 2 experiences a fault at
t = 300 s, its ∥b̂2∥ rapidly increases and converges to a stable value, accurately learning the
fault bias. Similarly, when AUV 4 experiences a fault at t = 500 s, its ∥b̂4∥ shows the same
correct response. This proves that the adaptive law can accurately identify and compensate
for unknown bias faults online.

Figure 9. Performance of the adaptive fault-tolerant estimators. (Top) The estimated efficiency factor
for USV 2 (orange) correctly identifies the fault at t = 300 s, with its estimate dropping from 1.0
toward the true fault value (0.75, black dashed line). (Bottom) The norm of the RBFNN weight
estimate (||Ŵi||), which compensates for both unmodeled dynamics and bias faults. Note the clear
step-change for AUV 4 (yellow) at t = 500 s as its RBFNN learns to compensate for the newly injected
bias fault.
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The results comprehensively verify the effectiveness of the proposed distributed
adaptive fault-tolerant control scheme from multiple perspectives. The scheme can be suc-
cessfully applied to a simplified heterogeneous USV-AUV system, ensuring high-precision
formation tracking while effectively handling challenges such as actuator bias faults and
communication topology switching, and significantly improving communication efficiency,
demonstrating its potential for practical application.

5. Conclusions
This paper proposed a DAFTC framework for heterogeneous USV-AUV formations

operating under communication delays, time-varying topologies, and actuator faults.
The core novelty of the DAFTC framework lies in its cohesive integration of a DETM
with an RBFNN-based adaptive fault-tolerant strategy. This synergy provides a robust
and communication-efficient solution, where the DETM dynamically saves the network
bandwidth (validated by a >99.6% reduction in simulation) while the adaptive laws actively
compensate for internal faults (effectiveness loss and bias), ensuring formation stability
(RMSE < 0.15 m) even under uncertainty.

The practical significance of this framework is its direct applicability to multi-domain
marine cooperation. By unifying the heterogeneous Euler–Lagrange dynamics and rigor-
ously handling the high-latency, unreliable nature of underwater acoustic/radio links via
Lyapunov–Krasovskii analysis, this work provides a stable control backbone essential for
complex real-world tasks like coordinated surveys or monitoring.

Despite these results, the proposed model has limitations. The current framework
relies on the assumption that the leader’s state is accessible to at least one follower
(Assumption 1) and that faults, while unknown, are bounded (Assumption 2). Further-
more, the RBFNN approximator, while effective, adds computational complexity that must
be considered for implementation on embedded systems.

The extendibility of this work to real-world platforms is a key future direction. Future
research will focus on (1) integrating collision avoidance strategies to handle dynamic
obstacles; (2) enhancing the model to address sudden shock disturbances for improved
load compensation capability; (3) applying the control scheme to high-fidelity nonlinear
hydrodynamic models rather than the simplified model; and (4) performing verification on
physical USV-AUV hardware platforms.
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