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Abstract

Accurately predicting the long-term behavior of complex dynamical systems is a central
challenge for safety-critical applications like autonomous navigation. Mechanistic models
are often brittle, relying on difficult-to-measure parameters, while standard deep learning
models are black boxes that fail to generalize, producing physically inconsistent predic-
tions. Here, we introduce a physics-informed framework that learns the continuous-time
dynamics of an Autonomous Underwater Vehicle (AUV) by discovering its underlying
energy landscape. We embed the structure of Port-Hamiltonian mechanics into a neural
ordinary differential equation (NODE) architecture, learning not to imitate trajectories
but rather to identify the system’s Hamiltonian and its constituent physical matrices from
observational data. Geometric consistency is enforced by representing rotational dynamics
on the SE(3) manifold, preventing numerical error accumulation. Experimental validation
reveals a stark performance divide. While a state-of-the-art black-box model matches our
accuracy in simple, interpolative maneuvers, its predictions fail catastrophically under
complex controls. Quantitatively, our physics-informed model maintained a mean 10 s
position error of a mere 3.3 cm, whereas the black-box model’s error diverged to 5.4 m—an
over 160-fold performance gap. This work establishes that the key to robust, generalizable
models lies not in bigger data or deeper networks but in the principled integration of
physical laws, providing a clear path to overcoming the brittleness of black-box models in
critical engineering simulations.

Keywords: physics-informed machine learning; Hamiltonian neural networks; underwater
vehicle dynamics; neural ordinary differential equations; long-term prediction

1. Introduction

Autonomous Underwater Vehicles (AUVs) are unmanned ocean observation platforms
with intelligence. They are known for their compact size, high maneuverability, and ability
to operate in deep-sea environments. AUVs incorporate various sensors enabling them to
carry out thorough surveys and research in underwater environments, which allows them
to undertake submersible exploration without temporal and spatial constraints.

In marine science, AUVs collect oceanic environmental data, survey seafloor geology
and topography, and prospect for resources like oil. In marine engineering, AUVs evaluate
dam structures, help maintain underwater foundations, aid divers with their tasks, and
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perform underwater target observation, search, and rescue missions. In military applica-
tions, AUVs detect targets, collect intelligence, perform surveillance and reconnaissance,
and engage in anti-submarine warfare and related activities.

Differential equations are typically used to describe the motion model of an underwa-
ter vehicle. For a particular type of underwater vehicle, Figure 1 illustrates how certain
parameters in the motion equations, like the inertial matrix and the Coriolis—centripetal
moment matrix, among others, can be accurately obtained through experimental mea-
surements or theoretical calculations once the interior structure and exterior design are
established. Nevertheless, another set of parameters, such as hydrodynamic damping
coefficients, require acquisition through computational fluid dynamics (CFD) simulations
or water tank experiments, despite the fact that the resulting values frequently display a
certain degree of discrepancy from the actual ones [1].
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Fluid Mechanics —l

[Motion Control Equation]

Tank Experiment / |
CFD Simulation Parameters Fitting

(@
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Motion Modeling
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Figure 1. Underwater vehicle motion modeling methods. (a) Traditional modeling method based on

mechanism analysis. (b) Data-driven modeling method.

Considerable research has focused on overcoming the challenge of estimating in-
accurate hydrodynamic parameters. System identification methods have emerged as a
common pathway for obtaining high-precision hydrodynamic parameters among vari-
ous approaches. This method enables a cost-effective online or offline identification of
parameters. To identify and optimize parameters, the fundamental approach involves
designing parameter identification experiments and subsequently utilizing techniques such
as the least squares method [2], Kalman filtering [3], Gaussian processes [4], or neural
networks [5].

System identification can attain the desired accuracy by minimizing the discrepancy
between theoretical models and actual data [6]. Nevertheless, these methods have some
limitations. Firstly, the accuracy of system identification methods depends on the quality
of the theoretical model used. In situations where the model is faulty, accurate motion
models can still be hard to achieve, even if the identification method shows high precision.
Secondly, to completely excite the dynamic characteristics of underwater vehicles, tailored
parameter identification experiments must be designed. This leads to a considerable need
for high-quality trajectory data. Lastly, when multiple parameters need identification, it
may cause challenges for algorithm convergence. It becomes necessary to decouple the
motion of the underwater vehicle followed by identifying hydrodynamic parameters in
separate channels. Nevertheless, this method may result in inaccuracies when estimating
strongly coupled parameters.

Moreover, the theoretical model may lack accuracy inherently because of the absence
of a universally accepted method for modeling hydrodynamic damping terms. Numerous
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methods have been summarized in reference [7] with varying assumptions made regarding
the vehicle and fluid characteristics. The generated models differ in their applicability and
computational complexity across various scenarios. Furthermore, certain factors within
the vehicle dynamics model, including manufacturing errors, assembly discrepancies,
external disturbances, and changes in physical characteristics over time, present challenges
for explicit modeling. Therefore, predicting the motion behavior of underwater vehicles
through differential equations to obtain long-term accurate explanations is exceedingly
difficult. Establishing a motion model through experiments, even with a lot of effort, is
only applicable to a specific type of vehicle and is difficult to generalize to other vehicles.

Recently, deep learning technology has seen rapid development and has been ex-
tensively applied in various fields, including visual recognition [8], natural language
understanding [9], robot manipulation, and control [10]. Deep learning has demonstrated
much better performance than traditional methods. Deep neural networks are theoretically
capable of fitting any nonlinear function, as they serve as universal function approxima-
tors. Deep neural networks can automatically extract latent features from large amounts
of data, which is supported by carefully designed network architectures and advanced
training strategies.

Modeling underwater vehicle dynamics through theoretical analysis presents chal-
lenges due to the inherent incompleteness of theoretical models and difficulties associated
with obtaining certain parameters accurately. In contrast, deep learning methods can
effectively utilize the impressive fitting capacity of neural networks. These methods learn
the dynamics of underwater vehicles directly from their trajectory data, surpassing the
mere task of fitting parameters within theoretical models.

It is important to note that deep neural networks are black-box models and lack
interpretability in their operational mechanisms. Although deep neural networks usually
have high model capacity to fit training data well, they may not capture the true underlying
patterns in some cases. Instead, they may identify specific local optimal solutions. When
confronted with scenarios outside the training data, such models can exhibit significant
performance degradation, which is commonly referred to as over-fitting.

To enhance the generalization ability of deep neural networks in unfamiliar contexts
and to guide their learning of appropriate data patterns, it is necessary to incorporate task-
relevant prior information, i.e., biases, into the learning process. The embedding of bias
information into neural networks can be categorized into the following three approaches:
a. Input bias: During the data pre-processing stage, domain knowledge can be used to
normalize the data by bringing different scales of data to the same. If the data distribution
is unfavorable, domain knowledge can be applied to adjust the data distribution, thus
facilitating a more effective modeling of the target area [11]. b. Inductive bias: Designing
specialized neural network architectures for specific tasks is one way to implicitly embed
prior information into the learning process. For example, convolutional neural networks
exploit the symmetry and distributed pattern representation present in natural images.
By using network structures based on local connectivity and parameter sharing, they
have revolutionized the field of computer vision [12-15]. c. Learning bias: Incorporating
task-relevant prior information into the loss function as penalty terms is another strategy.
This is similar to multi-task learning, where the learning algorithm not only adapts to the
training data but also ensures that the network predictions satisfy certain constraints (e.g.,
conservation of quality and momentum, monotonicity, etc.). Typical methods include deep
Galerkin methods [16] and physics-informed neural networks [17,18].

In addition, traditional neural network methods often deal only with discrete data,
while the sampling intervals of actual motion data may be irregular. The challenge of
recovering continuous dynamics of underwater vehicles from such observational data
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remains another critical issue. In this study, we establish the neural ordinary differential
equation (neural ODE) [19] as a fundamental framework to modeling underwater vehicle
dynamics. This framework combines ordinary differential equations with neural networks,
starting only from the initial state of the system and using non-uniform observation data to
model continuous dynamics. We then express the motion model of underwater vehicles
in the form of Hamiltonian mechanics, using the Hamiltonian neural network (HNN)
to model system conservation and dissipation quantities, respectively [20,21]. By using
exponential mapping methods to handle rotational motion, we ensure that the resulting
motion model satisfies the dynamic constraints of underwater vehicles. Finally, we compare
the derived dynamic model to a fully data-driven modeling method. The experimental
results show that our proposed modeling approach has significant advantages in terms of
model robustness and long-term prediction accuracy.
The key contributions of this work are therefore threefold:

*  We propose a novel physics-informed framework for AUV dynamics modeling that
integrates a Port-Hamiltonian structure within a neural ordinary differential equation
(NODE) to explicitly separate and learn energy-conserving and dissipative effects
from data.

*  We ensure geometric consistency and numerical stability for long-term prediction by
representing the full 6-DOF rigid-body motion on the SE(3) manifold, which inherently
respects the constraints of rotational dynamics and avoids singularities.

¢ We provide rigorous quantitative evidence demonstrating that our physics-informed
approach overcomes the inherent brittleness of black-box models, maintaining high-
fidelity predictions in complex, out-of-distribution scenarios where purely data-driven
methods fail.

The paper is organized as follows. Section 2 provides some preliminaries of this work.
Section 3 describes the proposed method for the dynamic modeling of underwater vehicles.
Experimental results and the discussion are presented in Section 4. And the conclusion is
given in Section 5.

2. Sequence Modeling Based on Neural Ordinary Differential Equations
2.1. Problem Statement

We can conceptualize the motion modeling of underwater vehicles as a time series
prediction problem. Let us assume that at time ¢, the motion state of the underwater
vehicle can be represented by a vector x; containing both position and velocity information.
Therefore, within the time interval from t = 0 to t = T, the changing motion states form
a sequence X = (xo, x1,..., x7). For simplicity, we assume that the control inputs of the
underwater vehicle remain constant during this period. As a result, the motion modeling
problem for the underwater vehicle revolves around predicting a sequence of motion states
Y = (x7,1,X742,..., x71N) for a duration from time T + 1 to T + N based on the known
sequence X.

In the context of deep learning, the time series prediction can be seen as a supervised
learning problem, which allows us to express the above problem in a more general form.
Given the sets ) := RN*L and X := RM*L, sampled from an unknown distribution p,
denoted as D € (X x ), and a loss function £ := Y x Y — R, the goal is to find a
function F := X — Y that minimizes the expected loss

minE((y y) y)~p (L (Y, F(x,9))), (1)

where x € X represents the known sequence, y,y' € Y are the predicted and target
sequences, respectively, and the function F can be parameterized as a neural network that
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takes x as input and produces y as output. The goal is to minimize the expected loss given
by the loss function £, considering pairs of predicted and target sequences sampled from
the distribution p.

Commonly used neural network architectures for time series modeling include re-
current neural networks (RNNSs), long short-term memory networks (LSTMs), and the
Transformer [22]. Among them, the Transformer has gained increasing attention due to
its ability to capture long-term dependencies and interactions. Compared to RNNs and
LSTMs, the Transformer can parallelize the processing of input sequences, providing com-
putational advantages for large-scale data processing. Although these neural network
models applied to sequence prediction may differ, they generally share similar architectural
forms, as shown in Figure 2.

-

Output layer

Hidden layers

Input layer

N

Figure 2. The general architecture of the sequence prediction model.

While these models have the advantages of simplicity and the ability to handle long-
term or short-term dependencies, they are typically applied to uniformly sampled time
series data. When applied to underwater vehicle motion modeling, it is often required
that each state in the sequence has an equal time interval. Although the limitation of non-
uniformly sampled data can be addressed by resampling or interpolation, these methods
may compromise the original temporal information in the data. To avoid the loss of valuable
information, another method is to include time stamps of the time series data as input to the
neural network. However, compared to modeling methods based on differential equations,
these methods still remain as discrete data modeling and may struggle to effectively model
continuous dynamics.

2.2. Neural Ordinary Differential Equations

Neural ODE is a modeling method that combines ordinary differential equations with
residual networks (ResNet) [8] to learn the dynamics of a system from data without having
to explicitly define the differential equation. Unlike methods such as RNNs, neural ODEs
require only the initial state of the system as input, eliminating the need for a sequence of
data as input. This feature allows neural ODEs to naturally model time series data with
non-uniform sampling and predict the dynamics of a system over continuous time.

As Figure 3 shows, the transformation of hidden states within a neural network can
be expressed as

h(t+1) = f(h(£),6(1)), 2

where f represents a network layer, 11(t) and 6(t) denote the state output and weight matrix
of layer t, and h(t 4 1) represents the state output of layer  + 1.
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Figure 3. The neural network with residual connection module.
For residual networks, the expression is
h(t+1) = h(t) + f(h(t),0(t)), (©)

where /(t) can skip the network layer at t + 1 and be added to the output.
To make the connection between the ODE and the residual network, consider a simple
ordinary differential equation

v (t) = fy,t). 4)

Given an initial value y(0) = yo and a time step of 1, the iterative solution process can be
expressed as

¥(0) = yo
y(1) = y(0) +4'(0)
y(2) =y(1)+y' (1) (5)

y(t) =yt —=1)+y'(t-1)

This process is also known as Euler’s method for solving differential equations. If we
consider the hidden layer index t in (4) as the time step ¢ in (5), the forward propagation process
of a ResNet has the same form as the iterative solution process of a differential equation.

However, there are two differences: (a) when solving an ODE, the time step can take
any continuous value, while for ResNet, the time step is discrete, i.e., the number of network
layers; (b) different residual blocks of ResNet have different f functions, while in an ODE,
there is essentially a single f function defined by (5). Based on this, all residual blocks can
be assigned the same parameters. In addition, since the time step is fixed, it can be chosen
to be sufficiently small, allowing the network to become deep. As a result, a neural network
based on an ODE with continuous depth can be formulated.

2.3. Hamiltonian Neural Networks

A neural ODE provides a general method for learning continuous-time dynamics from
non-uniformly sampled data without imposing constraints on the underlying dynamical
system. This provides versatility but also makes it difficult to accurately model specific
physical processes. From a learning theory perspective, this is because a neural ODE has
fewer inductive biases and lacks certain necessary assumptions about the target function to
be learned.

Hamiltonian mechanics describes the evolution of the system state over time
in phase space, where the system state is represented by generalized coordinates
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q9 = (91,92,...,9n) € R" and generalized moments p = (p1,p2,...,pn) € R". The

Hamiltonian function H : R?” — R maps the state of the system to a scalar representing

the total energy of the system. In the context of classical mechanics, the Hamiltonian H

represents the sum of the kinetic and potential energies of the system. The Hamiltonian

function specifies a vector field in phase space that describes all possible dynamic behaviors

of the system. Each state of the system corresponds to a unique trajectory in phase space.
The Hamiltonian function can be expressed as

H(q, p) =T(p) +V(q), (6)

where T(p) is the kinetic energy and V/(g) is the potential energy. The evolution of the state
of the system over time is described by the Hamiltonian equations

dg_on dp_ on o
dt — op’ dt  oq’

The direction of the vector field defined by (7) is typically called the symplectic
gradient of the Hamiltonian system.
It is easy to show that

dH _oJHdgq  JoHdp

G " agdt Topar Y ®)

This implies that the total energy of the system is conserved when moving along the
direction of the symplectic gradient [23].

In recent years, deep neural networks have been used to learn the Hamiltonian
mechanics [24,25]. The Hamiltonian neural network is proposed to model the Hamiltonian
function using deep neural networks and satisfy the dynamics of (7), ensuring that the
system obeys the law of conservation of energy.

As Figure 4 shows, during forward computation, the HNN takes the generalized
coordinates and momenta of the system as input and outputs the total energy of the system
Hy, where 6 represents the learnable network parameters. In the backpropagation process,
the derivatives of the output with respect to the inputs are computed using automatic
differentiation. The loss function of the HNN can be expressed as

~ ||aHy oHy
LuNN = ‘ ap H )

et oH o0H
Su(q,p) = < ap’ aq) (10)

represent the dynamics of the system'’s evolution over time. If the system state (go, po) at
time ¢y is known, the neural ODE can be used to obtain the system state at time #;,

51
(g1, 71) = (90, po) + , Su(q, p)dt (11)
0

Compared to the conventional neural ODE, the HNN offers faster training speeds,
better generalization performance, and the ability to learn the dynamics of conservative
systems more effectively.
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Figure 4. The architecture of Hamiltonian neural networks.
3. Motion Modeling Based on Hamiltonian Neural Networks
3.1. Hamiltonian-Based Motion Equation
The kinematic model of an underwater vehicle can be expressed as
=T, (12)

where 7 = (p", @) = (x",y",2",¢,0,1)T represents the position and orientation vector
in the Earth-fixed coordinate system {n}. Here, the Euler angles ¢, 8, and i correspond to
the vehicle’s roll, pitch, and yaw, respectively. The vector v = (v, w)T = (u,v,w,p,q,7)T
represents the velocity vector in the body-fixed coordinate system {b}.

The coordinate transformation matrix J(#) can be written as

J(n) = ( h 03”’), (13)

033 J2
where
cpcld  —sPcd 4 cpstsp  sps¢ + cipepsH
J1 = | spcd cipcd + spsbsyp  —cipsp + sbspce |, (14)
—s6 cOs¢p clcgp
and
1 s¢ptd  cotd
L=10 c¢ —s¢ |- (15)

0 s¢/cd c¢/ch

J1 denotes the rotation matrix, which can often be written as R, and ¢(+), s(-), and #(-),
respectively, denote cos(+), sin(-), and tan(-).
The dynamic model of an underwater vehicle can be written as

Mv+Cv)v+Dv)v+g(y) =T, (16)

where M = Mgp + M4 represents the inertia matrix, Mrp and M4 denote the rigid body
mass and hydrodynamic added mass, respectively. C(v) = Crp(v) + C4(v) defines the
Coriolis and centripetal matrix. D(v) is the hydrodynamic damping matrix. g(#) represents
the combined gravitational and buoyancy forces, while T represents the control force vector.

In the case of small and low-speed underwater vehicles, several hydrodynamic
effects can be considered negligible, leading to significant hydrodynamic model
simplification [26-28]. According to [29], in an ideal fluid, M4 can be expressed as a
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semi-positive definite matrix, and this characteristic holds true even in the case of real
fluids. In the case of low-speed underwater vehicles, it is often possible to ignore the
off-diagonal elements found in the M4 matrix. The term Cy4 (v) is always represented as
an anti-symmetric matrix, where C4(v) = —Cy (v)T. The damping terms in high-speed
underwater vehicles are highly nonlinear and coupled. Contributions from non-diagonal
elements in the damping matrix are also typically negligible for low-speed vehicles.

Due to the influence of hydrodynamics and external control, the underwater vehicle is
not a conservative system. Its motion can be described using the Port-Hamiltonian (PH)
framework [30]. The PH equation can be written as

. 9H
<7> = (J(q.p) —R(q,p)) (5}2) + G(q, p)Tetnt, (17)
p ap

where J(q,p) is an anti-symmetric matrix describing the conservational aspects of the
system. R(q, p) is a positive definite matrix representing the dissipative effects. T is the
control input, and G(q, p) T4, describes external energy inputs. When there are no dissipa-
tive terms or external inputs, (17) can degenerate into the standard Hamiltonian equation.

The dynamic model of the underwater vehicle [31], the derivation of which is detailed
in Appendix A, can be written as

. oH
; ) I > <0 : ) ) <aq> <0>
= — + T, (18)
)
(p) ( <— JI —C 0 D £ I
where q = 51, p = Mv, and the Hamiltonian function can be expressed as

1 5
H=>p"M p+V(g). (19)

3.2. Representation of Rotational Motion

The orientation of underwater vehicles is typically represented by Euler angles. To
unify the generalized coordinates in real space, the angle coordinates g can be represented
as a two-dimensional embedding (cos g, sin q) [23,32]. However, when dealing with the
rotation of underwater vehicles, the exponential map provides a more effective solution.
The exponential map is a method that maps angular velocity vectors to their corresponding
rotation matrices and can be used to update the orientation of the underwater vehicle.

The advantages of using the exponential map to represent rotations are as follows: (a)
ensuring orthogonality and normalization of the rotation matrices, preventing the accumu-
lation of numerical errors; (b) maintaining energy conservation within the system, avoiding
energy drift; (c) avoiding coordinate singularities and local minimization problems, improv-
ing numerical stability and accuracy; (d) conveniently representing small-angle rotations of
rigid bodies, improving computational efficiency.

By using the exponential map, changes in the orientation of underwater vehicles can
be more accurately and stably modeled and updated. This method has significant value in
simulating the motion of underwater vehicles, as well as in tasks such as control and path
planning, and offers important applications in various scenarios.

The rotation matrix R in (14) can be represented as R = (11,73, 73), where R belongs
to the special orthogonal group SO(3), which is defined as

SO(3) = {R e R3*3

RRT = I, detR = 1}. (20)
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The derivative of the rotation matrix R(t) with respect to time can be expressed as
R(t) = R(Hw(t)", (21)

where ()/\ represents the skew-symmetric matrix, and w” corresponds to the Lie algebra
50(3) associated with SO(3), which is given by

0 —w v
w' =1 w 0 —-ul. (22)
-0 u 0

Solving the differential equation in (21), we can express the orientation at time ¢ based
on its initial state R(fy) and the angular velocity history. Assuming t; = 0 and a constant
angular velocity wg over a small time step, the solution is given by the matrix exponential:

R(t) = R(0) exp(wit) 3)

It is important to note that the solution depends on the initial orientation R(0). In many
simulation and control scenarios, including those in this work, the vehicle is assumed to
start from a reference orientation, for which R(0) = I, where I is the 3 x 3 identity matrix.

If the translational motion of an underwater vehicle is also considered, a transforma-
tion matrix T can be defined. T belongs to the special Euclidean group SE(3) and is defined

n
SE(3) = {T— ((FT ”1> € Réx4

The derivative of transformation matrix T with respect to time can be expressed as

R €5S0(3), p" € R3}. (24)

) w v
T=Tv'=T , 25
y (OT O) @5

where ()" extends the definition of the skew-symmetric matrix to transform a six-
dimensional vector into a four-dimensional matrix, and v” corresponds to the Lie algebra
se(3) associated with SE(3).

3.3. Hamiltonian-Based Motion Model for Underwater Vehicles

After representing the attitude of the underwater vehicle using the rotation matrix
instead, the generalized coordinates can be expressed as

T
q= (p”T, rlT, rZT,r3T> € R12, (26)

Ifv = (v, w?) T continues to represent the generalized velocity, then the dimensions
of the generalized coordinates g and generalized momentum p are different, but they still
satisfy the constraint condition of (25). The derivative of the generalized coordinates g in
this case can be expressed as § = g v [33], where

T
RT 0 o0 0
X _ c R12X6. 27
q <0 T{\T fé\T ré\T> ( )

The Lagrangian function on the SE(3) manifold can be written as

Lig.v) = 3v"M(g)v — V(q). 28)
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The generalized momentum in Hamiltonian form can be described as the partial
derivative of the Lagrangian function with respect to the generalized velocity, as follows:

6
p—a—M(q)veR. (29)

Let p = (pl, pL) T and by comparing (17) and (18), we have
0
Ja,p) = ( o
- p
0 0
R(g,p) = , (30)
q,p) (O DY q)>

0
G(q,p) =
(9,p) <g(q)>
where
0 p, 66
p* = eR
(PQ pﬁ;)

D(g) = P 03] ¢ gexs, (31)
03x3 Dx

g(q) = (2) €RS

Substituting (30) into (18), we obtain

. JoH
n— R
p Ipo
fiZTiXai, 121,2,3
oPw
. _9H _;oH oH
pv—vam—R W—D11a+gv(q)u (32)
) — X aiH + X aiH — Zr. X aﬂ
Pw = Po 3Pv Pw 3Pw i or;
JoH
—D22m+gw(‘7)u

The derivative of the generalized velocity with respect to time can be obtained from
the Lagrangian function

o= (M) )p M e, )

Consequently, the complete Hamiltonian-based dynamic model of the underwater
vehicle can be represented using (32) and (33).

3.4. Training Strategy
3.4.1. Definition of the Loss Function

Let D represent a dataset containing M motion trajectories,

i i MM
D~ {1 s} o

i=1"
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where each trajectory includes a sequence of motion states under the influence of control

inputs /) at time steps t((;)N

(i)

The system state at time ¢;,° can be written as

) , T AT\ T
x(l)(tn) _ x,(ql) _ (qu) ,v,sl) >

T T T T o HT\L (35)

_ (,,nm AT 0T T 0T 0 ) RS,

Let fg) denote the predicted motion state at time t,(f) given an initial state x(()i) and

control input #(?). The loss function for the model can be defined as
L=L(p")+ LR)+L(v). (36)

The first part concerns the prediction error of the underwater vehicle’s position p”,

OEDN IR 7)
The second part addresses the prediction error of the rotation matrix R,
~() ()T
R) = ZH (logRY'RY )| (39)
2

where log (-) denotes the logarithmic mapping from SO(3) to s0(3), and (-)" represents the
inverse operation of (-)" ([34]).
The third part focuses on the prediction error of the underwater vehicle’s velocity v,

)= L[

_Vn

) : (39)

3.4.2. Selection of Integration Scheme

When simulating Hamiltonian systems over long horizons, the choice of numerical
integrator is critical. Non-symplectic algorithms, such as the standard Euler method, often
introduce numerical dissipation that leads to an artificial drift in the system’s total energy,
accumulating significant errors over time. In contrast, symplectic integrators are specifically
designed to preserve the geometric structure of Hamiltonian dynamics, which makes them
far more stable for long-term predictions [35]. For this reason, we select the widely used,
second-order symplectic algorithm, the Leapfrog integrator, for solving the learned ODEs.

A key parameter for any integrator is the time step, Jt. In our implementation, a
deliberate choice is made to match the integration time step with the sampling period of the
trajectory data. While it is common practice to use an integration step significantly smaller
than the data sampling period, our approach is justified by the physical characteristics of
the system under study. The AUV dynamics, particularly in the low-speed maneuvers con-
sidered, are sufficiently smooth and non-stiff, allowing for stable and accurate integration
without requiring a finer time step. This methodology provides a significant advantage
in computational efficiency. The specific parameter values are detailed in Section 4.1, and
the successful long-term prediction results in our experiments serve as strong empirical
validation for this approach.
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The Leapfrog integration scheme is expressed as follows:

1_dpy
Pupy = Pt 50t
dq, 1

Gui1 = g+ Ot—22 (40)

1.4
Pri1 =Py + 50t £ o

where the subscript n corresponds to the iteration step. This algorithm is more precise
than the Euler method for Hamiltonian systems and effectively alleviates the problem of
unstable error growth during multi-step integration.

4. Experiment and Results
4.1. Experimental Setup

The proposed HNN-based motion modeling method is validated using the REMUS
100 underwater vehicle, which is depicted in Table 1 [29]. The REMUS 100 achieves axial
propulsion through a stern thruster and maneuverability via symmetrically arranged sets
of rudders and elevators.

Table 1. Parameters of REMUS 100 AUV.

No. Name Value Unit
1 Length 1.6 m
2 Diameter 0.19 m
3 Mass 31.9 kg
4 Maximum speed 2.5 m/s
5 Center of gravity position 0,0,0.02) m
6 Center of buoyancy position 0,0,0) m
7 Propeller diameter 0.14 m
8 Propeller maximum speed 1525 rpm
9 Rudder longitudinal position —0.85 m
10 Rudder maximum angle 30 deg
11 Elevator longitudinal position —0.85 m
12 Elevator maximum angle 30 deg

To model the Hamiltonian equations for the underwater vehicle, we employ four
independent neural networks to learn the system’s constituent matrices: the generalized
mass matrix M(q), the potential energy V (q), the damping matrix D(q), and the control
input matrix g(g). All networks share a common architecture, consisting of two hidden
layers with 128 nodes each and using the Tanh activation function. Furthermore, they
are all conditioned on the same input: the 12-dimensional generalized coordinate vector
q = (p"T,r], ], +1)T, which fully describes the vehicle’s position and orientation.

The output structure of each network is tailored to incorporate prior physical knowl-
edge about the vehicle, which is a strategy that significantly reduces the dimensionality of
the learning problem and improves training efficiency. For instance, based on the vehicle’s
known symmetries and its operation in a low-speed regime, the M(q) network is designed
to output only seven scalar values, corresponding to the six principal diagonal elements
and the dominant off-diagonal coupling term (Mjs). Similarly, the D(q) network learns the
six diagonal elements of the hydrodynamic damping matrix. The V(g) network outputs a
single scalar for the system’s potential energy, and the g(q) network learns an 18-element
vector that forms a 6 x 3 matrix, mapping the three control inputs (propeller revolution,
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rudder angle, and elevator angle) to the corresponding forces and torques in the 6 degrees
of freedom.

It is crucial to emphasize that these output simplifications are a practical application of
prior knowledge—not an inherent limitation of our framework. The proposed HNN-based
methodology is fully capable of learning complete, dense mass and damping matrices
for vehicles with more complex or less understood dynamics provided that sufficient and
adequately exciting training data are available.

4.2. Experimental Result

The REMUS 100 motion model provided by [29] was used to generate training data.
One hundred motion trajectories of 5 s each were generated under random control inputs,
starting from the initial state of § = 0 and p = 0. The control and motion sampling
frequencies were 10 Hz and 50 Hz, respectively. Following this, non-overlapping samples
of 0.1 s each were obtained by randomly cropping 3 s segments from each trajectory while
keeping the control input unchanged. We obtained a total of 3000 data samples through
this process. The data were randomly split into training and testing sets at an 8:2 ratio.

All models were implemented using the PyTorch framework. The training and evalu-
ation were conducted on a workstation equipped with a single NVIDIA RTX 3090 GPU.
For training, we used the Adam optimizer with default parameters and a batch size of 128.
The learning rate was set to 5 x 10~# and was kept constant throughout the 500 training
epochs. To ensure the statistical significance and robustness of our results, all experiments
were repeated five times using different random seeds for data shuffling and network
initialization. Figure 5 shows the variation of the loss on the dataset during the training.

train loss

test loss

Loss

107°F K

1
0 100 200 300 400 500
Epochs

Figure 5. Loss variation curves during training.

The loss on the training set decreases consistently with a more rapid decline in the
final 100 epochs. At the same time, the loss on the test set remains consistently lower than
that on the training set, although its trend is more complex. Starting from the 100th epoch,
the test loss experiences a rapid decrease to the 1 x 1073 level, which is followed by almost
constant maintenance with intense fluctuations over the next 250 epochs. Nonetheless,
during the final 100 epochs, the test loss set decreases rapidly again, eventually approaching
the 1 x 107° level. Although the loss curve is not always smooth, the model’s loss reduces
to a very low level after 500 epochs of training, indicating successful completion.

To more intuitively evaluate the training results, we generated 100 random motion
trajectories of 10 s each using the same method described earlier. Next, we used the trained
model to predict changes in the motion state of the vehicle from the same initial state within
10 s. It is important to note that the model has not predicted continuous trajectories beyond
0.1 s during training. As a result, this evaluation provides a better test of the model’s
generalization ability.
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Figure 6 shows the predicted generalized mass matrix by the trained model, where
the learned elements remain nearly constant throughout the 10 s prediction. A remarkable
result is the clear symmetry discovered by the network, where My, ~ M3z and Mss ~ M.
This is not a trivial consequence of the model’s architecture but rather a meaningful
demonstration of learning physical consistency.

— My

Moo
40 — M3
— Mu
Mss
— Mes

M5

Value

20 -

t/s

Figure 6. The value of the generalized mass matrix.

Crucially, the neural network architecture imposes no prior structural constraints that
would force these matrix elements to be equal; each output is parameterized and learned
independently. The observed symmetry is a direct reflection of the physical properties
of the REMUS 100 AUV, which, as an axisymmetric vehicle, exhibits an identical hydro-
dynamic response to motions in the sway and heave directions. The fact that our model
autonomously discovered and internalized this fundamental physical principle purely from
observing trajectory data serves as strong validation. It shows that the framework is gen-
uinely learning the underlying system physics, distinguishing it from a simple black-box
curve-fitter.

Figure 7 shows the variation of two variables associated with the rotation matrix over
time, whose expected values are zero. Despite a gradual increase over time, the predicted
values provided by the Hamiltonian neural network remain small with their absolute value
peaking at around 1 x 10~7. Therefore, it can be concluded that these values stay within
a certain range. Our proposed method based on the Hamiltonian neural network does
not rely on complex physical priors and parameter estimation, as opposed to traditional
modeling methods based on differential equations. Despite its relatively simple structure,
it efficiently captures the dynamic characteristics of underwater vehicles. Furthermore, the
high accuracy in predicting rotational motion in the long term is still evident, which will be
further demonstrated in subsequent case studies.

—— |det(R) — 1
IRRT —1||

t/s

Figure 7. The variation of variables associated with the rotation matrix.
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Figure 8 shows the predicted changes in the Hamiltonian over time. The Hamiltonian
is not constant in this case; however, its fluctuations are very small. This implies that the
model has learned the Hamiltonian’s invariance. With increasing prediction time, these
fluctuations become larger, although they still remain confined to a very narrow range
overall. This observation demonstrates that predicting the long-term motion of underwater
vehicles is a challenging task, as errors tend to accumulate over time.

14.0

13.5

13.0 |

Hamiltonian

12.0 L 1 1 1 L 1
0 2 4 6 8 10

t/s

Figure 8. The variation of Hamiltonian over time.

4.3. Case Study

This section presents a comparison between our HNN method and another one
based on temporal convolutional networks (TCNs) [36]. The TCN takes as input the
historical motion state information of the underwater vehicle over a certain time window.
It employs multiple layers of temporal convolutional operations to compress the high-
dimensional input, extracting effective low-dimensional features in chronological order.
The extracted features are passed through several fully connected layers with nonlinear
activation functions to produce the acceleration information for the current moment. The
TCN has a simpler structure than our HNN. However, after extensive training with a massive
amount of data, it can also demonstrate strong performance. We trained the TCN using the
dataset mentioned earlier and implemented it according to the guidelines presented in [36].

4.3.1. Simple Scenarios

Figure 9 shows how the TCN and HNN perform when predicting the straight-line
motion of underwater vehicles. In this scenario, the rudder angles for both yaw and pitch
are held steady at 0 degrees, while the propeller’s rotational speed gradually increases to
1500 rpm. Both neural network-based methods effectively simulate the vehicle’s motion
with predictions of remarkably similar precision. The accuracy of the TCN slightly sur-
passes that of the HNN. Notably, due to the coupling effects of motion, the vehicle does not
strictly move in a straight line along the inertial X-axis. Instead, it exhibits slight deviations
in the Y and Z-axis directions, which stabilize over time.

Figure 10 shows the variation in the motion state of the underwater vehicle after it is
steered 10, 20, and 30 degree to the right while maintaining a propeller speed of 1500 rpm.
The initial two columns depict the positional changes of the vehicle over time, and the third
column demonstrates the variations in the yaw angle. The predictive outcomes of both
neural network-based methods are almost identical. This suggests that both the TCN and
HNN are skilled in anticipating the vehicle’s turning motion, thereby upholding a high
degree of predictive accuracy, even in intricate scenarios.
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Figure 9. Prediction of the linear motion of REMUS 100 using two models.
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Figure 10. Motion of REMUS 100 was observed after turning the rudder to 10°, 20°, and 30° toward
the right.

Figure 11 illustrates the motion of the underwater vehicle as the pitch angle is adjusted

by 5, 10, and 15 degrees while maintaining a constant propeller speed of 1500 rpm. The

vehicle initiates a descent in this scenario. The first two columns display the temporal

evolution of the vehicle’s position, and the third column demonstrates the changes in the
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pitch angle. Both methods adeptly model the descent motion of the underwater vehicle
with predictive outcomes closely aligning with benchmark data.
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Figure 11. Motion of REMUS 100 was observed after lowering the elevator by 5°, 15°, and 25°.

4.3.2. Complex Scenarios

The above analysis shows that the TCN method performs exceptionally well in simple
scenarios with straight-line and turning motions even in the absence of physical priors.
However, to demonstrate the benefits of the proposed HNN method, we analyze more
complex motion scenarios.

Figure 12 shows the changes in the motion state of the underwater vehicle due to ran-
dom controls. The first two rows demonstrate the vehicle’s orientation in three-dimensional
space, and the following two rows show the variations in velocity and angular velocity
over time. Figure 13 shows the control inputs corresponding to Figure 12, where dashed
lines represent desired control generated randomly, and solid lines represent the applied
inputs.

As the complexity of the control inputs increases, the TCN method maintains relatively
accurate predictions of the motion of the underwater vehicle for a short time. However,
approximately 2 s after the initiation of motion, TCN'’s predictions of velocity vectors other
than the longitudinal velocity start to deviate from the benchmark. This results in a gradual
difference between the predicted and the actual motion of the vehicle. It is important to
note that the TCN method demonstrated exceptional performance in the simple motion
scenarios that came before.
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Figure 12. Motion of REMUS 100 influenced by random external control.
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Figure 13. Random external control acting on the REMUS 100, where dashed lines represent control
commands and solid lines represent actual control inputs.

Although the HNN method did not demonstrate superior performance to the TCN in
previous scenarios, it now outperforms the TCN'’s performance in the more complex control
scenario. In spite of HNN’s minor overestimation in predicting the vehicle’s velocity, it
consistently delivers highly accurate predictions of the vehicle’s pose that closely match
the actual outcomes. This emphasizes that the HNN-based motion modeling approach,
which is based on robust physical principles, better captures the dynamic characteristics
of underwater vehicles, going beyond mere data fitting. The HNN method maintains
consistent predictive accuracy across a spectrum of control inputs that range from simple
to complex.

Figures 14-17 show the motion variation in response to two additional sets of random
control inputs. The TCN method maintains high accuracy only during the initial stages
of motion, which is followed by a sharp decline in performance. In contrast, our HNN
maintains high accuracy consistently and produces predictive outcomes that closely match
the true motion. It is worth noting that both the TCN and HNN provide relatively accurate
predictions of the longitudinal motion of the underwater vehicle. This is attributed to
underwater vehicles such as REMUS 100, which have torpedo-like profiles and predomi-
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nantly move longitudinally, accounting for a considerable part of all motion components.
Through extensive data training, the TCN method is also capable of capturing this leading
motion pattern. However, the proposed HNN method, which is built on the physical prin-
ciples of underwater vehicle motion, consistently performs well in predicting all motion
components. Therefore, the HNN outperforms in various scenarios.

While the trajectory plots in Figures 14-17 provide a compelling qualitative illustration
of the HNN's superior robustness, a quantitative analysis is necessary to rigorously assess
the performance gap between the two models. To this end, we conducted a series of 10 tests
using unique, randomly generated complex control inputs, mirroring the conditions in the
qualitative examples. In each test, we evaluated the 10 s prediction performance of both
the HNN and TCN models against the ground truth. The root mean square error (RMSE)
was calculated across the entire trajectory for key state variables.

The aggregated results of this analysis are presented in Table 2. The data reveal a dra-
matic and unambiguous difference in performance. The HNN model consistently achieves
extremely low prediction errors across all metrics, with a mean position error of only 3.3 cm
and very low variance, indicating its stable and reliable performance across different chaotic
scenarios. In stark contrast, the TCN model’s predictions diverge significantly, resulting in
a mean position error of over 5.4 m—more than 160 times greater than that of the HNN.
Its errors for attitude, linear velocity, and angular velocity are also one to two orders of
magnitude higher than those of our model.
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Figure 14. Motion resulting from the 2nd set of random control.
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Figure 15. The 2nd set of random control acting on the REMUS 100, where dashed lines represent
control commands and solid lines represent actual control inputs.
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Figure 16. Motion resulting from the 3rd set of random controls.
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Figure 17. The 3rd set of random control acting on the REMUS 100, where dashed lines represent
control commands and solid lines represent actual control inputs.

This quantitative analysis provides conclusive evidence that the physics-informed

structure of the HNN is essential for maintaining long-term prediction stability and accu-

racy when faced with complex, out-of-distribution control inputs. Under these challenging

conditions, the purely data-driven TCN model, despite its strong performance in simple

scenarios, proves to be unreliable and fails catastrophically.
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Table 2. Quantitative comparison of 10 s prediction RMSE for HNN and TCN models, aggregated
over 10 different complex random control scenarios. Values are presented as mean + standard

deviation.
Metri HNN (Ours) TCN
etric (Mean + Std Dev) (Mean = Std Dev)
Position [m] 0.033 £ 0.012 5.419 £ 0.026
Attitude [deg] 0.490 +0.169 5.999 + 1.842
Linear Velocity [m/s] 0.007 £ 0.002 0.141 £+ 0.005
Angular Velocity [deg/s] 0.659 £ 0.128 4.771 £0.678

5. Discussion

The experimental results offer a clear narrative about the differing capabilities of purely
data-driven and physics-informed models, highlighting the critical distinction between
interpolation and physical generalization.

5.1. The Power of Inductive Bias for Generalization

Our findings reveal a fundamental divergence in model capabilities: the TCN, as a
high-capacity black-box model, excels at interpolation, whereas our HNN demonstrates
superior extrapolation. The TCN's slightly better performance in simple scenarios is a direct
consequence of these test cases mirroring the constant-control structure of the training
data. It is an excellent pattern-matcher for on-distribution tasks. However, this is also
its critical weakness. As quantitatively demonstrated in Table 2, the TCN’s performance
collapses catastrophically when faced with complex, out-of-distribution control inputs
with prediction errors orders of magnitude larger than those of our HNN. This reveals the
inherent brittleness of black-box models: they often learn superficial correlations rather
than the underlying physical laws, making them unreliable when confronted with novel
situations.

In contrast, our HNN model embodies the benefit of a strong, physically grounded in-
ductive bias. By being architecturally constrained to adhere to the principles of Hamiltonian
mechanics, it sacrifices a marginal degree of interpolative fitting capability for immense
robustness and generalizability. Its ability to maintain high-fidelity predictions under
chaotic conditions is its defining feature. This is powerfully evidenced by its independent
discovery of the AUV’s physical symmetries (M ~ M3z and Mss ~ Mgs), which is a
property learned purely from data rather than being hard-coded in the network architecture.
This demonstrates that the model does not simply fit data; it successfully discovers the
system’s fundamental laws of motion, which is the key to its robust performance.

5.2. Framework Generality and the Path to Real-World Application

It is crucial to distinguish between the implementation choices for our case study and
the inherent generality of the proposed framework. The use of a simplified, predominantly
diagonal structure for the learned mass and damping matrices was a deliberate engineering
choice, which was justified by the well-understood, low-speed dynamics of the torpedo-
shaped REMUS 100 AUV. This is not a fundamental limitation. For vehicles with more
complex geometries or for high-speed regimes with strong hydrodynamic coupling, our
framework can be directly configured to learn full, dense mass and damping matrices by
simply adjusting the network output layers. This inherent scalability is a core strength of
our methodology.

Furthermore, while this study serves as a crucial proof-of-concept within a controlled
simulation environment, we recognize that bridging the “sim-to-real” gap is the ultimate
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objective. The current work lays the necessary foundation for this transition. Future
research will proceed along a clear roadmap to address real-world complexities:

e Data-driven Robustness: We will focus on transfer learning, using the current model
pre-trained on extensive simulation data as a powerful prior, and then fine tuning it
on smaller, targeted datasets of real-world experimental trajectories. This strategy is
expected to drastically reduce the need for expensive and time-consuming physical
experiments.

¢  Environmental Disturbances: The Port-Hamiltonian structure can be extended to
include input ports for unmodeled dynamics and external disturbances like ocean
currents. Future work will investigate learning these disturbance terms or integrating
the model with online estimation algorithms.

* Noise Modeling: To enhance robustness, domain randomization techniques will
be applied during training, augmenting the simulation data with realistic sensor
noise models (e.g., for IMUs and DVLs) to prepare the model for deployment on
physical hardware.

This structured approach, built upon the validated physics-informed foundation of
our current work, charts a clear course toward developing highly reliable and deployable
dynamics models for real-world maritime systems.

6. Conclusions

In this paper, we introduced a novel physics-informed framework for the high-fidelity,
long-term prediction of underwater vehicle dynamics by embedding Port-Hamiltonian
mechanics within a neural ordinary differential equation architecture. By structurally sepa-
rating energy-conserving and dissipative effects and leveraging a symplectic integrator,
our model successfully learns the underlying energy landscape of the AUV directly from
trajectory data. Our comprehensive experiments demonstrated that the Hamiltonian neural
network (HNN) achieves exceptional robustness and accuracy, particularly under complex,
chaotic control inputs where conventional black-box models like the TCN catastrophically
fail. The quantitative results, revealing a performance gap of orders of magnitude, under-
score the critical role of physical priors in ensuring model trustworthiness. While validated
in a high-fidelity simulation, this work establishes a crucial baseline for real-world de-
ployment. Our work provides compelling evidence that integrating physical laws is a
foundational requirement for overcoming the inherent brittleness of purely data-driven
methods, offering a clear path toward developing reliable, generalizable, and safe dynamic
models for critical engineering systems.
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Nomenclature

This nomenclature provides a list of the essential variables and symbols used throughout the
manuscript.

Coordinate Frames and Kinematics

{n} Earth-fixed coordinate frame

{b} Body-fixed coordinate frame

1 Generalized position /orientation vector in frame n; 7 = [p"T, @T]T
p" Position vector (x,y, z) of the vehicle origin in Earth-fixed frame
(C) Orientation vector (Euler angles) (¢, 6, ¢) in Earth-fixed frame
¢,0,¢p Roll, pitch, and yaw angles

v Generalized velocity vector in body-fixed frame; v = [ZJT, wT] T
v Linear velocity vector (1, v, w) in body-fixed frame

w Angular velocity vector (p, g, r) in body-fixed frame

J(n) Kinematic transformation matrix from frame {b} to frame {n}
Rigid Body and Hydrodynamics

M System inertia matrix (rigid body + added mass)

Cv) Coriolis and centripetal matrix (rigid body + added mass)
D(v) Hydrodynamic damping matrix

g(n) Vector of gravitational and buoyancy forces and moments

T Vector of control inputs (forces and moments from actuators)
Hamiltonian Formulation

q Generalized coordinates in phase space

P Generalized momentum in phase space; p = Mv

H(q,p) Hamiltonian function (total system energy)

T(p) Kinetic energy component of the Hamiltonian

Vi(q) Potential energy component of the Hamiltonian

J(qa.p) Interconnection matrix (describes conservative effects)
R(gq,p) Dissipation matrix (describes dissipative effects)

G(gq,p) Control input matrix in the Port-Hamiltonian formulation
SE(3) Representation for Rotation

R Rotation matrix from frame {b} to frame {n}; an element of SO(3)
r1,72,v3  Column vectors of the rotation matrix R

SO(3) Special orthogonal group in three dimensions (rotation matrices)
50(3) Lie algebra of SO(3) (3% 3 skew-symmetric matrices)

SE(3) Special Euclidean group in three dimensions (rigid-body motions)
se(3) Lie algebra of SE(3)

()N Hat operator, mapping a vector to its skew-symmetric matrix form
()Y Vee operator, the inverse of the hat operator

Appendix A. Derivation of the Port-Hamiltonian AUV Model

This appendix provides a detailed derivation of the Port-Hamiltonian (PH) formula-
tion from the classical 6-DOF underwater vehicle model presented in Section 3.1.

To reformulate the traditional model in PH form, we first define the state variables
in phase space. We select the generalized coordinates g to be the vehicle’s position and
orientation vector, and we select the generalized momentum p as the product of the inertia
matrix and the velocity vector:

qg=1 p=Mv (A1)

With these definitions, the kinematic equation (Equation (12)) can be expressed in
terms of the momentum:

g=J(q)v=]qM 'p (A2)
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Next, we reformulate the dynamic equation (Equation (16)). By substitutingv = M~ 1p
and assuming the inertia matrix M is constant (a common assumption for rigid-body
vehicles), we can express the rate of change of momentum p = Mv as

p=-CM 'p)M'p—DM 'p)M 'p—g(q) + 7 (A3)

The total energy of the system is described by the Hamiltonian function H(q, p), which
is the sum of the kinetic energy T(p) and potential energy V(q):

Ha,p) = T(p) + V(g) = 3p"M 'p+ V(g) (AY)

The gradients of the Hamiltonian with respect to the generalized coordinates and
momentum are
B—H:a—v, a—H:Mflpzv (A5)
dq  9q° Ip
Using these components, we can now write the full system dynamics in the standard
Port-Hamiltonian form:

q 5. [o
H =(J(qrp)—R(q,p))[§£I T (A6)
p ap

where the skew-symmetric interconnection matrix J (representing conservative effects)
and the positive semi-definite dissipation matrix R (representing dissipative effects) are

o W o o
1= [_m,,) —c<M4p>]' "o D(M-lml o

For this formulation to be consistent, the potential energy function V(g) must be

defined as

chosen such that its gradient correctly represents the gravitational and buoyancy forces
g(q). This relationship is given by

I (@)= = 8(q) (A8)

While this equation may not have a general analytical solution, an analytical solution
can often be derived for neutrally buoyant vehicles with coincident centers of gravity and
buoyancy in the lateral plane. This is a reasonable assumption for slender underwater
vehicles, which are typically trimmed to be neutrally or slightly positively buoyant. For
more complex vehicle geometries, numerical methods may be required to find a suitable
potential energy function.
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