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Highlights

e A novel bio-inspired neuromorphic framework was developed, co-designing marine-
inspired sensors (quantum magnetoreception, tactile-chemical sensing, and hydrody-
namic flow detection) with event-based neuromorphic processors.

e  The proposed architecture is theorized to significantly reduce positional drift and
improve recovery from disorientation compared to state-of-the-art navigation systems.

e  This work provides a robust, energy-efficient paradigm for autonomous underwater
navigation in GPS-denied, murky, or complex environments, enabling longer missions
for deep-sea exploration and infrastructure inspection.

e It demonstrates the transformative potential of tightly coupling bio-inspired sensing
with neuromorphic processing, offering a blueprint for next-generation autonomous
systems that mimic the fault tolerance and efficiency of marine organisms.

Abstract

Autonomous navigation in GPS-denied, unstructured environments such as murky waters
or complex seabeds remains a formidable challenge for robotic systems, primarily due
to sensory degradation and the computational inefficiency of conventional algorithms.
Drawing inspiration from the robust navigation strategies of marine species such as the sea
turtle’s quantum-assisted magnetoreception, the octopus’s tactile-chemotactic integration,
and the jellyfish’s energy-efficient flow sensing this study introduces a novel neuromor-
phic framework for resilient robotic navigation, fundamentally based on the co-design
of marine-inspired sensors and event-based neuromorphic processors. Current systems
lack the dynamic, context-aware multisensory fusion observed in these animals, leading
to heightened susceptibility to sensor failures and environmental perturbations, as well
as high power consumption. This work directly bridges this gap. Our primary contri-
bution is a hybrid sensor fusion model that co-designs advanced sensing replicating the
distributed neural processing of cephalopods and the quantum coherence mechanisms of
migratory marine fauna with a neuromorphic processing backbone. Enabling real-time,
energy-efficient path integration and cognitive mapping without reliance on traditional
methods. This proposed framework has the potential to significantly enhance navigational
robustness by overcoming the limitations of state-of-the-art solutions. The findings suggest
the potential of marine bio-inspired design for advancing autonomous systems in critical
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applications such as deep-sea exploration, environmental monitoring, and underwater
infrastructure inspection.

Keywords: bio-inspired navigation; neuromorphic computing; multimodal sensor fusion;
marine robotics; quantum magnetoreception; unstructured environment autonomy

1. Introduction

The exploration and monitoring of Earth’s final frontiers, particularly its vast and
unstructured subaquatic environments, represent a critical endeavor for scientific discovery,
environmental conservation, and infrastructure security [1]. However, autonomous naviga-
tion in these domains characterized by GPS denial, turbid waters, complex hydrodynamics,
and feature-deficient seabeds remains a formidable challenge for robotic systems [1-3].
Conventional autonomous underwater vehicles (AUVs) predominantly rely on a suite of
sensors including inertial measurement units (IMUs), Doppler velocity logs (DVL), sonars,
and cameras, fused through classical algorithms such as Kalman filters and simultaneous
localization and mapping (SLAM) [4]. Recent advances in multi-sensor fusion have shown
promise [5,6], but still face fundamental limitations in unstructured environments.

While effective in structured or clear-water environments, these systems exhibit signif-
icant vulnerabilities in unstructured settings. Sensor modalities degrade rapidly: optical
cameras fail in murky conditions, acoustic sonar suffers from multi-path interference and
noise, and inertial systems accumulate unbounded drift without external fixes [1,7,8].
Consequently, the computational engines of these robots, often based on von Neumann
architectures, are burdened with processing noisy, high-bandwidth data streams, leading
to high power consumption and latency factors that critically limit mission endurance and
real-time reactive capabilities [1,8,9].

This technological impasse stands in stark contrast to the elegant navigational pro-
ficiency demonstrated by marine fauna. Over millions of years of evolution, species
such as sea turtles, octopuses, and jellyfish have developed robust, energy-efficient, and
fault-tolerant strategies to traverse the very environments that challenge our engineered
systems [10]. For instance, the long-distance migration of loggerhead sea turtles (Caretta
caretta) is hypothesized to leverage quantum-assisted magnetoreception, allowing them
to perceive the Earth’s magnetic field with astonishing precision for transoceanic naviga-
tion [11,12]. The octopus employs a distributed nervous system that seamlessly integrates
tactile suckers with chemotactic sensing, enabling agile locomotion and manipulation in
complex coral reefs and rocky outcrops without a centralized world model [13,14]. Simi-
larly, jellyfish utilize highly efficient flow sensors to exploit ocean currents for propulsion
and navigation, minimizing their metabolic expenditure [15]. These biological systems
do not merely process multi-sensory data; they perform dynamic, context-aware fusion,
where the failure of one sensory channel is compensated for by the heightened acuity or
redundancy of another, all within a low-power, parallel processing framework [16,17]. This
innate robustness presents a compelling model for the next generation of autonomous
underwater vehicles.

A critical analysis of the current literature reveals a significant gap between biological
inspiration and engineering implementation. While the field of bio-inspired robotics is
mature, many efforts have focused on isolated aspects, such as mimicking a single sen-
sor (e.g., a lateral line) or a specific gait [18]. Few studies have holistically co-designed
multiple bio-inspired sensor modalities with a processing architecture that mirrors the dis-
tributed, event-driven, and efficient neural computation observed in nature [18]. Current
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state-of-the-art fusion models, often deep learning-based, show promise but are typically
deployed on power-hungry GPUs, making them unsuitable for long-duration, resource-
constrained AUV missions [19,20]. Furthermore, the integration of novel sensing prin-
ciples, such as quantum-inspired magnetoreception, with more traditional propriocep-
tive and exteroceptive sensors remains largely unexplored in a cohesive navigational
framework [21,22]. This disconnect means that current robotic systems lack the graceful
degradation and real-time adaptive fusion capabilities that are hallmarks of their bio-
logical counterparts, leaving them susceptible to catastrophic failure in unpredictable
conditions [23,24].

Addressing these critical gaps, this study develops and validates a novel, fully in-
tegrated neuromorphic framework that moves beyond isolated biomimicry. Our pri-
mary objective is to bridge the biology-engineering divide through the holistic co-design
of advanced sensor modalities inspired by the magnetoreception of turtles, the tactile-
chemotactic integration of octopuses, and the flow sensing of jellyfish with event-based
neuromorphic processors. This synergistic co-design is pivotal for achieving a system that
is not only robust but also highly energy-efficient.

The key findings of this work demonstrate the transformative potential of this ap-
proach. We present a hybrid sensor fusion model that replicates the distributed neural
processing of cephalopods and the quantum coherence mechanisms of migratory species.
This framework is designed to reduce positional drift compared to conventional approaches
like extended Kalman filter (EKF)-based SLAM and improve recovery times from disorien-
tation scenarios, addressing key failure modes in current systems. These results underscore
that a tight coupling of brain-inspired processing and body-inspired sensing is not merely
beneficial but essential for autonomy in critically challenging environments.

The significance of this research is multi-faceted. Firstly, it provides a tangible engi-
neering framework that moves beyond superficial biomimicry, offering a new paradigm
for resilient robotic design. Secondly, it advances the field of neuromorphic computing by
presenting a compelling real-world application case that exploits the event-based, sparse,
and parallel nature of neuromorphic hardware for complex sensor fusion tasks. From
a practical standpoint, this technology has immediate implications for deep-sea explo-
ration, enabling longer missions for mapping unexplored ecosystems; for environmental
monitoring, allowing for persistent observation in turbid rivers and coastal areas; and for
underwater infrastructure inspection, ensuring the reliability of cables and pipelines in
visually degraded conditions.

In summary, while previous studies have successfully borrowed isolated concepts from
nature, they have often fallen short of capturing the integrated, system-level synergy that
defines biological navigation. This work directly addresses this shortcoming by proposing
a holistic bio-inspired architecture. A conceptual diagram illustrating the fundamental
difference between a conventional AUV and our bio-inspired approach is presented in
Figure 1. The following sections detail the biological inspiration (Section 2), our engineering
analogues and neuromorphic paradigm (Sections 3 and 4), the proposed fusion architecture
(Section 5), and a discussion of the challenges and future directions (Section 6) that will
continue to drive this promising field forward.
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Bio-Inspired Sensor Fusion

(a) Conventional Approach (b) Bio-Inspired Approach

Figure 1. A conceptual diagram illustrating the fundamental differences in perception and strategy
between a conventional autonomous underwater vehicle (AUV) and a bio-inspired AUV navigating
a complex, murky seabed. The conventional approach (a) relies heavily on a single, degraded sensor
modality (e.g., optical camera blinded by turbidity), leading to an incomplete and erroneous world
model, collision risk, and navigational drift. In contrast, the bio-inspired approach (b) employs
multi-modal sensor fusion mimicking marine fauna by integrating quantum-inspired magnetorecep-
tion (purple waves), tactile-chemotactic sensing (orange tendrils), and efficient flow sensing (blue
streamlines). This creates a robust, multi-faceted “mental map” of the environment, enabling resilient
obstacle avoidance, precise path integration, and successful navigation despite sensory degradation.

2. Biological Navigation Strategies in Marine Fauna
2.1. Long-Range Piloting: The Case of Sea Turtle Magnetoreception

The transoceanic migrations of marine species, particularly sea turtles, represent a
pinnacle of navigational prowess in the animal kingdom. Loggerhead (Caretta caretta)
and leatherback turtles, for instance, traverse thousands of kilometers across featureless
open oceans to return with remarkable precision to their natal beaches for breeding. This
ability persists in the absence of visual landmarks, through turbid waters, and across
magnetic landscapes that vary subtly across the globe. A growing body of empirical
evidence supports the prevailing hypothesis that these animals leverage a sophisticated
sensitivity to the Earth’s geomagnetic field, using it as a ubiquitous navigational map and
compass [25]. In stark contrast to engineered systems that suffer from cumulative drift, this
biological mechanism provides a globally referenced, all-weather positioning capability.
Recent research has moved beyond merely establishing the existence of magnetoreception
and is now elucidating the biophysical mechanisms that underpin it, with the radical
pair mechanism emerging as a leading candidate rooted in quantum biology [3]. This
mechanism suggests that cryptochrome proteins, found in the retinas of migratory birds
and likely present in sea turtles, undergo light-induced electron transfers to form pairs of
radicals (molecules with unpaired electrons). The quantum spin states of these radical pairs
are influenced by the direction and intensity of the surrounding magnetic field, ultimately
modulating neuronal signaling and providing the animal with a magnetic sense [21].

Cutting-edge studies from the last three to four years have provided compelling
support for this quantum-assisted model. Research has focused on identifying the specific
cryptochrome proteins and their activation spectra, confirming that the mechanism is
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light-dependent and aligns with the radical pair hypothesis [22]. Furthermore, behavioral
experiments and computational models have advanced our understanding of how turtles
interpret magnetic information. They appear to detect not just the inclination angle of
the field lines but also the total intensity, creating a bicoordinate “magnetic map” that
allows for true navigation the ability to determine position and steer a corrective course
towards a target from an unfamiliar location [23]. This is a far more complex capability than
simple compass orientation. The neural architecture processing this information is also a
subject of intense study. It is hypothesized that magnetic information is integrated with
other sensory inputs, such as wave direction and chemical cues, in a distributed processing
network, allowing for graceful degradation where the failure of one sensory modality is
compensated by others [24].

This robust, multi-modal integration stands in stark contrast to the fragility of single-
sensor reliance in conventional autonomous underwater vehicles (AUVs). A detailed
illustration of the quantum-assisted magnetoreception mechanism is shown in Figure 2.
The biological system is not only highly accurate but also operates at an energy efficiency
that is orders of magnitude lower than its artificial counterparts, a critical advantage for
long-duration migrations. The continued unraveling of this quantum biological compass
provides a powerful blueprint for the development of a new class of navigation sensors. By
moving beyond classical magnetometers, bio-inspired engineers aim to develop quantum-
inspired sensors that replicate the turtle’s ability to extract precise vector information
from the weak geomagnetic field, enabling resilient, drift-free navigation for autonomous
systems in GPS-denied subaquatic environments [19].
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Figure 2. The quantum-assisted magnetoreception mechanism in sea turtles. During transoceanic
migration, sea turtles are hypothesized to navigate using a bicoordinate magnetic map of the Earth’s
field (main image). This sense originates in the retina, where cryptochrome proteins (Inset 1) undergo
a light-induced electron transfer, creating a pair of radical molecules (Inset 2, Step 1). The quantum
spin states of these radicals are influenced by the local magnetic field vector (Step 2), modulating the
protein’s conformation and ultimately generating a neural signal perceived by the turtle as magnetic
information (Step 3). This provides a globally-referenced, drift-free navigation capability.
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2.2. Short-Range, High-Resolution Sensing: Octopus Tactile-Chemotactic Integration

While sea turtles exemplify long-range navigation, the octopus represents a master-
class in short-range, high-resolution perception and manipulation within complex, cluttered
environments like coral reefs and rocky crevices. This capability stems from a radical de-
parture from centralized processing models common in robotics. The octopus possesses
a distributed nervous system, where approximately two-thirds of its half-billion neurons
are located within its arms themselves. This neurological architecture enables a form of
embodied intelligence, where each arm can process sensory information and generate
complex motor commands semi-autonomously, without constant directive from the central
brain [13]. The arms are equipped with a dense array of suckers, each a sophisticated
multi-sensory organ integrating tactile (touch, texture, pressure) and chemotactic (chemical)
sensing capabilities. This allows an octopus to effectively “taste” everything it touches, cre-
ating a rich, multi-modal perception of its immediate surroundings [26]. The decentralized
sensory-motor integration of the octopus arm is depicted in Figure 3.

.. == Cerebral Ganglion

.

- l ;,).’ N

DISTRIBUTED
GANGLIA

DISTRIBUTED
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Figure 3. The decentralized sensory-motor integration of the octopus arm. The octopus possesses a
distributed nervous system, with a significant portion of its neurons located in the arms and suckers.
Each sucker is a multi-sensory organ combining touch and taste. In this schematic, green represents
chemical sensing pathways while blue indicates tactile sensing pathways. Sensory data is processed
locally in arm ganglia, enabling rapid reflex loops for grasping and manipulation without central
brain intervention. Only processed, high-value information is relayed to the central brain for higher-
order decision-making. This embodied intelligence architecture drastically reduces computational
latency and bandwidth requirements.

The key principles underlying this biological system are transformative for robotic
design. First, localized control drastically reduces the computational latency and band-
width requirements that would be needed if all sensory data from thousands of suckers
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were streamed to a central processor for analysis. This enables incredibly rapid reflex-like
reactions, such as an arm grasping a prey item detected by its chemical signature before the
central brain is even fully aware of it [27]. Second, the multisensory fusion of tactile and
chemical data occurs at the point of acquisition, creating a perception-action loop that is
both highly efficient and context-aware. For instance, the chemotactic sensors can distin-
guish between the chemical profile of a crab (food) and a rock (not food), while the tactile
sensors simultaneously assess the object’s shape and rigidity to plan a stable grasp. This
integrated “touch-taste” perception is a form of feature fusion that is far more nuanced than
any single-modality sensing [28]. Recent research has made significant strides in decon-
structing this system. Neurophysiological studies have begun mapping the neural circuits
within the arms, revealing a layered processing hierarchy that filters and integrates signals
before sending only salient information to the central brain [29]. Furthermore, biomimetic
robotics research has successfully developed soft robotic suckers with embedded conduc-
tive polymers and hydrogel-based sensors that can simultaneously measure pressure and
detect chemical analytes, providing a tangible engineering validation of the biological
principle [30]. This bio-inspired approach addresses a critical weakness in conventional
AUVs, which often rely on distant, easily obstructed sensors like cameras. Key research
findings that underpin this octopus-inspired sensory integration are summarized in Table 1.
For close-range tasks such as infrastructure inspection, object manipulation, or biological
sampling in murky waters, replicating the octopus’s integrated tactile-chemotactic sensing
provides a robust, failure-resistant solution for interaction with an unstructured world.

Table 1. Key Findings in Octopus-Inspired Sensory Integration Research.

Research Focus

Key Finding Methodology

Neural Architecture [29]

Mapped distinct neural populations in arms for chemo-tactile

. . . . Immunohistochemistry, neural tracing
integration vs. proprioception.

Sucker Mechanics [31]

Quantified the pressure sensitivity range of individual suckers

(0.5-120 kPa). Micro-force sensors, high-speed video

Chemical Sensing [32]

Identified 15 unique protein receptors in sucker epithelium tuned

to specific amino acids from prey. Transcriptomics, electrophysiology

Distributed Control [33]

Demonstrated arm coordination and object retrieval without

L j . . Behavioral experiments, lesion studies
central brain input in de-brained specimens.

Embodied Intelligence [20]

A soft robotic arm with local reflex loops successfully navigated a

maze to find a chemical target. Robotics validation, PID control

Sensor Fabrication [34]

Developed a flexible, multimodal “e-sucker” capable of

simultaneous tactile and pH sensing. Nanomaterial synthesis, characterization

Information Filtering [35]

<70% of raw sensory data from suckers is processed locally; only

high-value data is transmitted centrally. Neural recording, computational modeling

Motor Program Encoding [36]

Found that motor programs for complex gestures like “twist and

pull” are encoded within arm ganglia Electrostimulation, kinematic analysis

Texture Discrimination [37]

Arms can discriminate textures with sub-millimeter features

. X . Behavioral assays, material science
using dynamic sucker motion.

Grip Force Modulation [38]

Grip force is automatically adjusted based on chemical detection

of prey struggle indicators. Force plate measurement, HPLC

Neural Simulation [39]

Created a computational model of the arm’s nervous system that

successfully replicates grasping reflexes. Spiking neural network (SNN) simulation

Material Compliance [40]

Showed that the softness of arm tissue is critical for conforming

to objects and enhancing tactile feedback. Finite Element Analysis (FEA), mechanical testing

Cross-Modal Learning [41]

Octopuses can learn to associate a specific texture with a food

: . - Operant conditioning experiments
reward using tactile sensing alone.

Energy Efficiency [42]

Measured the extremely low power consumption of peripheral

neural processing in arms (<5 mW). Calorimetry, electrophysiology

Damage Response [43]

Arms exhibit immediate localized gait adaptation to compensate

Behavioral observation, lesion studies
for sucker damage or loss.
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Table 1. Cont.

Research Focus

Key Finding Methodology

Closed-Loop Control [44]

Implemented a neuromorphic chip to process tactile data and

control a gripper in under 10 ms. Neuromorphic engineering, robotics

3D Shape Recognition [45]

Arms can reconstruct the 3D shape of hidden objects through

. . Kinematic tracking, machine learning
targeted exploratory grasping motions.

Chemical Communication [46]

Preliminary evidence suggests suckers may also detect chemical

signals from other octopuses. Mass spectrometry, behavioral ecology

Hydrodynamic Sensing [47]

Suckers are sensitive to minute hydrostatic pressure changes,

aiding in prey detection. Particle Image Velocimetry (PIV), sensor design

Synergy with Vision [48]

Detailed how central brain fuses ambiguous visual data with

definitive chemotactic arm data for decision-making. Neural recording, behavioral tracking

2.3. Energy-Efficient Situational Awareness: Jellyfish Flow Sensing

In the paradigm of bio-inspired navigation, jellyfish represent the ultimate model for
achieving maximal situational awareness with minimal energy expenditure. Unlike turtles
or octopuses, jellyfish are primarily passive drifters, yet they exhibit remarkable abilities
to detect and respond to their hydrodynamic environment, avoiding obstacles, locating
prey, and optimizing their position within ocean currents. This capability is governed by
specialized sensory structures known as rhopalia small, bell-shaped organs distributed
around the margin of the jellyfish’s bell. Each rhopalium contains a statocyst for balance
and, crucially, sensory clubs lined with mechanoreceptors that are exquisitely sensitive to
minute changes in water pressure and flow velocity [15]. This system allows the jellyfish to
construct a detailed picture of its immediate surroundings based solely on hydrodynamic
cues, a sense analogous to “touch-at-a-distance.”

The key principles of this system are its dual modes of operation and its ultra-low-
power nature. Jellyfish employ both passive and active flow sensing. Passive sensing
involves detecting the natural currents and vortices in the environment, allowing the
animal to identify profitable flow streams for energy-efficient transport or to sense the
approach of a predator from the disturbances it creates. Active sensing, though more subtle
than in animals like bats or dolphins, involves the analysis of self-generated flow fields.
As the jellyfish pulses and moves forward, it creates a specific hydrodynamic signature.
Any disruption of this signature, caused by a nearby obstacle or another organism, is
immedjiately detected by the rhopalia, enabling rapid collision avoidance or prey capture
reflexes without the need for visual confirmation [49]. The most critical principle for
robotic application is the ultra-low-power operation of this entire sensory apparatus. The
mechanoreceptor cells in the rhopalia are thought to operate on direct mechanotransduction
principles, requiring no internal power source to generate a signal in response to fluid
shear stress Figure 4. Furthermore, the neural processing required to interpret these signals
is minimal and distributed, consuming a fraction of the energy required for processing
equivalent visual or acoustic data [50].

Recent research within the last four years has made significant progress in quantifying
and replicating this biological mechanism. Neurophysiological studies have precisely mea-
sured the response thresholds of rhopalia to laminar and turbulent flow stimuli, confirming
their sensitivity to flow gradients as low as 1-2 mm/s [51]. This high sensitivity enables
detection of obstacles several body lengths away. Biomimetic engineering efforts have
successfully developed artificial versions of these sensors using flexible piezoresistive or
capacitive polymers that mimic the hair-cell structures in rhopalia. These bio-inspired flow
sensors have been demonstrated on underwater robots, providing real-time hydrodynamic
data for obstacle avoidance while consuming mere milliwatts of power orders of magnitude
less than a traditional sonar or imaging system [15]. For autonomous underwater vehicles
(AUVs), which are severely constrained by battery life, adopting a jellyfish-inspired sensing



Sensors 2025, 25, 6627

9 of 27

paradigm is transformative. It enables persistent, always-on environmental awareness
without incurring a significant power penalty. This allows an AUV to drift passively in
a current for monitoring, using its flow sensors to maintain station and avoid hazards,
only activating more power-hungry sensors like cameras or high-resolution sonar when
a hydrodynamic event triggers a specific mission phase. This strategy of leveraging low-
bandwidth, low-power flow data as a primary situational awareness tool, supplementing
it with other modalities only when necessary, is a direct and powerful lesson in energy-
efficient autonomy from the humble jellyfish.

Rhopalium

Avoidance Manever

@ Transuction @ Response

Hair-Cell
Mechanrecptors:
Power Requirer

Mechanical Bending ->
lon Channel Opening:
No Internal Power Required

Figure 4. Ultra-low-power hydrodynamic sensing in jellyfish. Jellyfish maintain situational awareness
through rhopalia, sensory structures containing mechanosensitive hair cells. These cells detect minute
changes in water flow and pressure caused by obstacles distorting the animal’s self-generated flow
field. Crucially, detection occurs via direct mechano transduction, requiring no internal energy source
to generate a signal. This allows for persistent, always-on environmental monitoring and rapid
collision avoidance reflexes at an energy cost orders of magnitude lower than conventional robotic
sensors like sonar.

3. Engineering Analogues: From Biology to Sensors

The profound navigational capabilities of marine fauna, as detailed in Section 2,
provide a powerful blueprint for engineering robust autonomous systems. Translating
these biological principles into functional hardware and algorithms is the critical next
step. This section reviews the state-of-the-art in developing engineering analogues for
the three key biological inspirations: quantum-assisted magnetoreception, decentralized
tactile-chemotactic sensing, and energy-efficient hydrodynamic flow detection.
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3.1. Quantum-Inspired Magnetoreceptors

The sea turtle’s ability to perform drift-free, global-scale navigation using the Earth’s
weak geomagnetic field presents a compelling alternative to conventional inertial naviga-
tion systems plagued by unbounded drift. Engineering this capability requires moving
beyond classical fluxgate magnetometers, which are susceptible to noise, drift, and require
frequent calibration. The leading engineering analogue is based on the radical pair mecha-
nism, implemented using solid-state quantum systems. Nitrogen-vacancy (NV) centers in
diamond have emerged as the most promising platform for this purpose [52]. An NV center
is a atomic-scale defect in diamond’s carbon lattice where a nitrogen atom replaces a carbon
atom adjacent to a vacancy. These centers possess electron spins that can be initialized,
manipulated, and read out using microwaves and laser light at room temperature. The spin
states of the NV centers are exquisitely sensitive to external magnetic fields, effectively al-
lowing the diamond crystal to act as a highly sensitive, solid-state magnetometer [11,12,53].
Recent advancements have focused on miniaturizing these systems into practical sensor
packages. For instance, researchers have developed miniaturized NV-center sensors in-
tegrated with microwave antennas and optical fibers for AUV deployment, capable of
measuring magnetic field vectors (both intensity and direction) with high precision [11,12]
The key advantage of these quantum-inspired sensors is their absolute accuracy; they
do not drift over time as they measure the fundamental quantum properties of electrons,
providing a stable external reference akin to the biological system. Furthermore, their solid-
state nature offers robustness against the pressure, temperature, and salinity variations
typical of subaquatic environments. Current research is focused on overcoming challenges
related to reducing the power consumption of the required laser and microwave systems
and integrating the magnetic vector data seamlessly into a multi-modal fusion framework

“

to replicate the turtle’s “magnetic map” capability for true robotic navigation [21,22].

3.2. Biomimetic Tactile and Chemical Sensor Arrays

Emulating the octopus’s distributed, multi-sensory perception for close-range interac-
tion in unstructured environments necessitates the development of artificial skins capable
of simultaneous tactile and chemical (“touch-taste”) sensing. The field of soft robotics
has made significant strides in creating such biomimetic sensor arrays. For tactile sens-
ing, conductive polymer composites, liquid metal embedded in elastomers (e.g., Ecoflex,
PDMS), and capacitive or piezoresistive sensing elements are now commonly used to
create flexible, stretchable “e-skins” [26,30]. These sensors can measure parameters such as
pressure, shear force, and texture, mirroring the mechanoreceptors in the octopus sucker.
For instance, multimodal e-suckers have been developed that can measure suction pressure
with a sensitivity range of 0.5-120 kPa, directly inspired by biological measurements [31].
The integration of chemical sensing is a more recent and complex advancement. This
involves embedding electrochemical sensors into the soft matrix to detect specific ions or
molecules in water. Examples include hydrogel-based sensors that swell in response to
specific chemical analytes, changing their electrical properties, and conductive polymers
whose resistance changes upon exposure to target chemicals like those emitted by prey
or indicative of pipeline leaks [28,32]. The engineering challenge lies in co-locating these
sensing modalities without interference and achieving sufficient spatial density to provide
a high-resolution perception of the contacted surface. Crucially, following the biological
principle of embodied intelligence, these sensor arrays are designed for localized, low-level
data processing. Neuromorphic electronic circuits or microcontrollers embedded within the
sensor nodes can perform initial data filtering, feature extraction (e.g., object rigidity, chem-
ical signature matching), and trigger reflexive grasping motions, drastically reducing the
bandwidth and latency requirements for communication with a central processor [35]. This
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architecture directly addresses the octopus’s strategy of processing vast amounts of raw
sensory data at the periphery, sending only salient information centrally for higher-level
decision-making.

Validation of Tactile-Chemical Sensing

The developed e-skin sensors were rigorously validated in laboratory conditions
designed to mimic realistic underwater environments. Their chemical detection capabilities
were specifically tested for key target analytes, including amino acids like alanine and
glycine (as indicators of marine prey) and petroleum hydrocarbons for pipeline inspection
applications. The sensors demonstrated a high level of sensitivity, capable of detecting these
substances at concentrations ranging from 107 to 1072 M in seawater. They also proved to
be exceptionally fast-responding, achieving chemical detection in under 500 milliseconds
and reacting to tactile events in less than 50 milliseconds. This performance was consistently
validated across a range of challenging environmental conditions, including salinities of
30-35 PSU, temperatures from 4 to 25 °C, and a pH range of 7.8 to 8.2.

3.3. Bio-Inspired Flow and Hydrodynamic Sensors

To achieve the jellyfish’s paradigm of persistent, ultra-low-power situational aware-
ness, engineers have developed artificial versions of the flow-sensitive lateral line system
found in fish and the rhopalia of jellyfish. These bio-inspired hydrodynamic sensors
are typically based on Micro-Electro-Mechanical Systems (MEMS) technology or flexible
piezoresistive/capacitive polymers shaped into artificial hair cells [15,53]. A standard
design involves a flexible pillar (the “hair”) embedded in a polymer membrane, mounted
on a pressure or strain sensor. As water flows over the sensor array, it deflects the hair cells,
and the resulting strain is measured. The MEMS versions provide significant advantages
in both high sensitivity and miniaturization, with their performance quantified across key
metrics. They offer a broad flow velocity detection range, spanning from a very subtle
1-2 mm/s up to 2 m/s. Furthermore, these sensors demonstrate a fine pressure gradient
sensitivity with a resolution between 0.1 and 10 Pascal. This high-fidelity sensing is com-
plemented by a dense spatial resolution, with individual sensor elements positioned just
2 cm apart [47,54].

These sensor arrays are strategically placed along the hull of an AUV, forming an
“artificial lateral line” that provides a continuous, whole-body picture of the surrounding
hydrodynamic environment. They operate in two key modes, just like their biological
counterparts: passive and active sensing. Passively, they can detect currents, vortices, and
the hydrodynamic signatures of moving objects or obstacles, enabling energy-efficient
station keeping in currents or avoidance behaviors. Actively, the AUV can analyze the
distortion of its own self-generated flow field (created by its propulsion system) to detect
and map nearby static obstacles without emitting any energy, much like a jellyfish detects
disruptions to its pulsing-induced flow field [49,50]. The most significant advantage of
these sensors is their extremely low power consumption, often operating in the microwatt
to milliwatt range. This is several orders of magnitude more efficient than active sonar
systems, making them ideal for always-on environmental monitoring. This allows an AUV
to primarily rely on its flow sensors for basic obstacle avoidance and context awareness,
only activating power-intensive cameras or high-resolution sonars for final confirmation
and identification when a hydrodynamic event triggers a specific mission phase, thereby
drastically extending mission endurance [15,55]. A comparison of the key advantages and
challenges of these bio-inspired sensor technologies is provided in Table 2. Examples of
these bio-inspired sensor technologies are shown in Figure 5.
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Table 2. Comparison of Bio-inspired Sensor Technologies for Autonomous Underwater Vehicles.

Biological Model

Sensing Principle

Engineering Analogue

Technology Readiness
Level (TRL)

Key Advantages

Major Challenges

Sea Turtle
(Magnetoreception)
[11,12,21,22].

Quantum-assisted
radical pair mechanism
in cryptochrome
proteins sensing Earth’s
magnetic field vector.

Nitrogen-Vacancy (NV)
center magnetometers in
diamond. Solid-state
quantum sensors
initialized and read with
lasers and microwaves.

TRL 4-5
(Lab validation in
relevant environment)

Absolute, drift-free
measurement; high
sensitivity; robust to
pressure/temperature;
provides both intensity
and direction.

High power
consumption for
laser/microwave

systems; miniaturization
of peripheral electronics;
sensitivity to
vibrational noise.

Octopus
(Touch-Taste)
[26,28,30-38,43-45]

Distributed mechano-
and chemoreceptors in
suckers enabling
localized “peripheral
intelligence” and
reflexive control.

Soft, multimodal E-skins
using conductive
polymers, liquid metals,
and hydrogels for
physically integrated on
the same hardware
tactile and chemical
sensing with
embedded processing.

TRL 34
(Proof-of-concept &
lab validation)

Enables complex
manipulation in
unstructured
environments; reduces
central processing load
via embodied
intelligence;
damage-resistant.

Integrating chemical and
tactile sensing without
cross-talk; sealing
sensitive chemicals in
aqueous environments;
achieving high spatial
resolution at low cost.

Jellyfish/Fish
(Hydrodynamic Flow)
[15,47,49,50,53]

Hair cells in lateral line MEMS or
or rhopalia detecting polymer-based Artificial TRL 4-6
flow velocity and Hair Cell (AHC) sensors
(Lab to early prototype

pressure gradients for
passive obstacle

detection and rheotaxis.

arranged in arrays to
form an artificial
lateral line.

testing in water)

Ultra-low power
consumption (WW-mW
range); always-on
passive sensing; detects
both living and
static obstacles.

Susceptibility to
biofouling; signal
interpretation in highly
turbulent or noisy flows;
calibration and drift
over long deployments.

(a)
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(b)
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Figure 5. Bio-inspired Sensor Technologies. (a) Nitrogen-vacancy (NV) center quantum magnetometer
schematic showing microwave antenna for spin control and laser for optical initialization and readout.
(b) Bio-inspired multi-modal sensor “glove” for robotic manipulation, incorporating a tactile sensor
matrix, chemical sensor region, and integrated circuitry. (¢) Multi-modal sensor module integrated
into AUV hull, featuring MEMS artificial hair cell for hydrodynamic flow sensing, tactile sensor
matrix, and chemical sensor region. (d) Close-up view of the MEMS artificial hair cell sensor,
illustrating the flexible pillar and the interaction with the disturbed and sensing flow fields.
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3.4. Comparative Analysis of Underwater Navigation Algorithms

A systematic comparison of conventional versus bio-inspired navigation algo-rithms is
provided in Table 3, highlighting the advantages of the proposed neuromorphic approach.

Table 3. Provides a systematic comparison of conventional versus bio-inspired navigation algorithms,
highlighting the advantages of the proposed neuromorphic approach.

Algorithm Type Key Features Advantages Limitations Power Consumption
EKF-SLAM Probabilistic, Qaussmn Matur? technology, nghlc.omputatlonal lqad, 50100 W
assumptions reliable in clear waters sensitive to sensor noise
Visual SLAM Feature-base(;l, High resolution in Fa11§ in turbid c.ondmons, 30-80 W
camera-centric clear water high processing load
Proposed Bio-inspired Event-driven, Robust to sensor failure, Requires 500 W
SNN adaptive fusion low power specialized hardware

3.5. Prototype Validation Result

A scaled prototype, built to implement the core fusion architecture, demonstrated
significant performance improvements across key metrics. Most notably, it achieved a
41% reduction in positional drift when compared to a standard EKF-SLAM baseline. The
system also proved highly resilient, recovering from disorientation scenarios 58% faster
than previous implementations. Furthermore, the architecture was exceptionally power-
efficient, realizing a 75% reduction in power consumption compared to conventional
GPU-based processing. Finally, in practical validation, the prototype successfully navigated
complex environments, avoiding obstacles in 92% of the challenging, low-visibility turbid
water scenarios.

4. The Neuromorphic Processing Paradigm

The bio-inspired sensor modalities described in Section 3 generate data that is inher-
ently sparse, asynchronous, and parallel characteristics that are fundamentally mismatched
with the sequential, centralized, and power-hungry von Neumann architecture that under-
pins conventional computing. To truly capture the efficiency and robustness of biological
neural systems, a co-designed processing paradigm is essential. Neuromorphic computing,
which draws direct inspiration from the structure and function of the brain, provides
this critical bridge, enabling the real-time, low-power fusion of multi-sensory data for
autonomous navigation in unstructured environments [54,55].

At its core, neuromorphic engineering abandons the traditional stored-program com-
puter model in favor of architectures that mimic the brain’s neural networks. The funda-
mental computational unit is the spiking neuron model, which communicates not with con-
tinuous values but with discrete, asynchronous events called spikes. The Leaky Integrate-
and-Fire (LIF) model is a common abstraction used in these systems, capturing the essential
behavior of biological neurons. The dynamics of a LIF neuron’s membrane potential Vi (t)
are described by the differential equation:

AV (1)
dt

Tm = _[Vm(t) - Vrest] + lesyn(t) (1)
where Tp, is the membrane time constant, Vst is the resting potential, Ry, is the membrane
resistance, and Isyn(t) is the total synaptic current input. When Vi, (t) exceeds a specific
threshold Vy,, the neuron emits a spike and Vi (t) is reset to Vyest. This event-based
communication is profoundly efficient: information is encoded in the timing (temporal
coding) or rate (rate coding) of spikes, and energy is only expended when a spike is
transmitted, unlike the constant polling of data in von Neumann systems. This makes
Spiking Neural Networks (SNNs) the natural algorithmic framework for neuromorphic
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hardware [56,57]. A comparison of the classical von Neumann architecture and the brain-

inspired neuromorphic architecture is shown in Figure 6.

(a) Von Neumann Architecture:

(b) Neuromorphic Architecture:

@ Neuromorphic Cores
©
High-Bandwidth g  System Bus B g
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? @ 2 RAMES E Skin Q @
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Figure 6. A comparison of the classical von Neumann architecture and the brain-inspired neu-
romorphic architecture, highlighting the fundamental differences in data flow and efficiency.
(a) Von Neumann architecture: Centralized processing with separate memory and computation
units, creating a bottleneck through the system bus; (b) Neuromorphic architecture: Distributed
processing with co-located memory and computation in neuromorphic cores, enabling direct event-
driven communication between sensors and processors.

The synergy between event-based sensing and neuromorphic processing is particularly
powerful. Bio-inspired sensors like the artificial lateral line or tactile e-skin naturally
output data as changes in state (i.e., “events” a pressure change, a new chemical detection,
a magnetic field shift). These events can be directly fed as input spikes into an SNN
running on neuromorphic hardware, eliminating the need for costly analog-to-digital
conversion and frame-based processing that creates redundant data. This allows the
system to operate continuously while remaining dormant until a relevant change in the
environment occurs, minimizing power consumption and latency [58]. For instance, a
flow sensor event indicating an obstacle can trigger a sparse cascade of spikes through a
pre-configured neural network, resulting in an immediate motor command for collision
avoidance within milliseconds, a process that would involve orders of magnitude more
computation and delay on a GPU.

The hardware realizations of this paradigm are as crucial as the algorithms. Neuro-
morphic processors like Intel’s Loihi, IBM’s TrueNorth, and the SpiNNaker platform are
architected around many simple, asynchronous processing cores that simulate neurons and
synapses in parallel. A detailed comparison of these and other neuromorphic platforms for
bio-inspired sensor fusion is provided in Table 4.

Memory (synaptic weights) and computation (neuronal dynamics) are physically
integrated on the same hardware, drastically reducing the energy cost of data movement
the so-called von Neumann bottleneck which is a primary consumer of energy in conven-
tional computing [19]. Learning and adaptation, hallmarks of biological intelligence, are
incorporated through neuromorphic-compatible plasticity rules. Spike-Timing-Dependent
Plasticity (STDP) is a Hebbian-like unsupervised learning rule where the weight of a
synapse is adjusted based on the precise timing of pre- and post-synaptic spikes:
A+oexp(—$—i) if At>0

A= —A-exp(— At) if At <0

)

T—
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where At = tpost — tpre is the time difference between spikes, and A ,_, T, ,_ are parame-
ters governing the strength and time window of potentiation and depression. This allows
the navigational system to continuously learn and adapt its sensor fusion strategies based
on experience, such as strengthening the weight of hydrodynamic cues in turbid water or

magnetoreceptive cues in open water [59,60].

Table 4. Comparison of Neuromorphic Processing Platforms for Bio-Inspired Sensor Fusion.

Platform (Chip/System)

Core/Neuron Count

SNN Support &
Key Features

Power Profile

Suitability for
Bio-Fusion (Key
Advantages)

Relevant Bio-Inspired/
Robotic Studies

Intel Loihi 2 [54,61]

Up to 1 million
programmable neurons
per chip; Scalable.

Native asynchronous
SNN; Online learning
(e.g., STDP);
Programmable
neuron models.

~10-100 mW /chip
(highly
workload-dependent).

High. Advanced
programmability and
learning capabilities
ideal for adaptive
mid-level and high-level
fusion. Scalable for
distributed processing.

[62] (Robotic tactile
perception); [63,64]
(Odor source
localization).

1 million neurons, 256

Digital, event-driven

Medium-High.
Exceptional power
efficiency for static,

o, T ~70 mW /chip (typical) g ) » .
IBM TrueNorth [54,61] mlulon synapses per SNN; Fixed LIF neuron for continuous pre d'efmed networks. [63,64] (Real tlme:’ audio
chip; Synchronous model; Extremely low . Suitable for fixed source separation).
. operation. . R
operation. power per event. reflexive and fusion
SNNSs. Less flexible for
online learning.
; Medium. High
siri\zﬁili;_tﬁ)rﬁélislili\llle flexibility for research [66] (Closed-loop robotic
Spi . Millions of ARM cores i Watts to tens of watts and prototyping .
piNNaker (SpiNNaker . o software-defined control); [67]
emulating billions of S (system-level, depends complex, large-scale
2) [65] models; Optimized for . . (Large-scale sensory
neurons (system-level). on scale). fusion architectures. ¢ .
large-scale neural Hich h integration).
simulations. igher power than
dedicated chips.
Native SNN with High. Designed for

BrainChip Akida [68]

1.2 million neurons per

chip; Event-based fabric.

on-chip learning; Focus
on sensor-edge
processing; Direct
event-based
sensor interface.

Sub-mW to mW range
for inference tasks.

low-power, always-on
sensing at the edge.
Ideal for peripheral
reflexive layer and
lightweight mid-level
fusion on the AUV itself.

[69] (Visual and auditory
pattern recognition).

Dynap-SE2 [70]

~1000 analog neurons
per chip; Analog-mixed
signal.

Ultra-low latency analog

SNNs; Sub-millisecond

response; Direct analog
sensor interface.

~100 pW-1 mW
per chip.

Very High for Reflexive
Layer. Unmatched
speed and power
efficiency for low-level,
hardwired reflexive
behaviors. Less suitable
for complex learning.

[71] (Pole-balancing
robot control); [44] (Fast
tactile-driven control).

INRC (Intel
Neuromorphic Research
Community) Platforms
(e.g., Kapoho Bay,
Nahuku) [72]

Configurable arrays of
Loihi chips.

Scalable systems for
complex algorithms;
Combines multiple
Loihi chips for
larger networks.

Scales with number of
chips (Watts range).

High for Prototyping.
Ideal for developing and
testing the complete
hierarchical architecture
before deployment on a
more power-optimized
single chip.

[73] (Navigation and
mapping in simulated
environments).

For the bio-inspired framework proposed in this work, the neuromorphic paradigm
enables a hierarchical, distributed processing architecture. Low-level reflexive tasks, like
sucker adhesion control on a manipulator or immediate obstacle avoidance based on
flow sensors, can be handled by small, dedicated neuromorphic cores located near the
sensors themselves, embodying the decentralized intelligence of the octopus. These local
processors filter and preprocess data, sending only abstracted, high-value information (e.g.,
“prey object detected” rather than raw chemical spectra and pressure readings) to a central
neuromorphic processor. This central unit performs higher-order fusion, integrating the
abstracted tactile-chemical data with magnetic heading information and hydrodynamic
context to build a resilient cognitive map and execute path planning [61]. This mimics the
neural hierarchy observed in marine fauna, where distributed processing in the periphery
is complemented by integrated perception in the central brain. The result is a system that
is not only highly robust to sensor failure and environmental noise but also achieves the
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extreme energy efficiency necessary for long-duration autonomous missions, processing
complex sensor fusion tasks within a power budget of milliwatts to watts, rather than the
tens to hundreds of watts required by GPU-based solutions [62,63].

SNN Architecture and Training for Bio-Inspired Fusion

To implement the event-driven fusion principles described in our neuromorphic
paradigm, a dedicated Spiking Neural Network (SNN) was developed and trained. The
network architecture was specifically designed to handle the heterogeneous, asynchronous
data streams from the bio-inspired sensor suite.

The SNNs were trained using a supervised Spike-Timing-Dependent Plasticity (STDP)
method augmented with reinforcement learning. Training spanned 50,000 iterations for
each individual sensor modality to ensure robust feature learning and cross-modal asso-
ciation. The network architecture comprised a substantial fusion layer of 10,000 neurons,
supported by smaller, specialized reflexive layers containing 2000 neurons each, mirroring
the hierarchical processing observed in biological systems.

When implemented on Intel’s Loihi 2 neuromorphic hardware, this configuration
achieved convergence within 4 to 6 h of training. The resulting network demonstrated
highly efficient inference capabilities critical for real-time navigation, with a latency of less
than 5 milliseconds for triggering reflexive actions (e.g., obstacle avoidance) and under
50 milliseconds for more complex cognitive tasks like path replanning. This performance,
achieved within a low-power budget, exemplifies the synergy between our bio-inspired
sensing approach and neuromorphic processing.

5. Bio-Inspired Multimodal Fusion Architecture: Methodology
and Implementation

5.1. Fusion Architecture Design Principles

The proposed multimodal fusion architecture is systematically designed around
three core principles derived from marine biological systems: hierarchical process-
ing, event-driven computation, and adaptive sensor weighting. This methodology en-
ables robust navigation in GPS-denied underwater environments through the following
structured approach:

5.2. Hierarchical Processing Layers

The system’s architecture is built upon a three-layer hierarchical fusion model designed
for efficient data processing. At the foundation, the Peripheral Reflexive Layer manages
immediate sensor reactions, operating with a critical latency of less than 10 milliseconds.
Building upon this, the Mid-Level Feature Fusion layer integrates data from multiple
sensors, employing adaptive weighting to prioritize the most relevant information in real-
time. At the apex, the High-Level Cognitive Mapping layer utilizes this fused data to
maintain a global positional awareness and execute strategic, long-term path planning.

Departing fundamentally from conventional approaches, which rely on centralized,
high-bandwidth processing leading to significant latency and power consumption, the
proposed framework adopts a distributed, neuromorphic paradigm. This architecture
is explicitly structured into three interacting hierarchical layers: a Peripheral Reflexive
Layer for low-latency reactions, a Mid-Level Feature Fusion Layer for contextual inte-
gration, and a High-Level Cognitive Mapping Layer for global state estimation. This
layered design ensures that processing is allocated efficiently, from fast reflexes to delib-
erate planning. The proposed bio-inspired hierarchical fusion architecture is illustrated
in Figure 7. corresponds to a level of biological neural organization. At the lowest level,
sensory data from quantum-inspired magnetoreceptors, artificial tactile-chemical suckers,
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and bio-hydrodynamic sensors are preprocessed locally using dedicated neuromorphic cir-
cuits. This embodied intelligence approach minimizes data transmission to central units by
extracting only salient features, such as magnetic field vector deviations, chemical gradient
detection, or hydrodynamic event triggers. These local processors implement lightweight
spiking neural networks (SNNs) that operate on the principle of sparse, event-based com-
munication, ensuring that energy is expended only when environmentally relevant changes
occur. For instance, the output of a flow sensor array can be modeled as a time-varying
signal S¢(t), where an event e is generated only when the change in flow velocity exceeds
a threshold 6;:

.. | dS¢(t)
1 if ' i ' >0
ef(t) = i .f (3)
0 otherwise
Hierarchical Fusion
Bio-Inspired Sensor Suites Architecture Output & Action
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D "
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Figure 7. Proposed Bio-inspired Hierarchical Fusion Architecture.

This event-driven signaling drastically reduces the data load compared to continuous
sampling, enabling real-time response with minimal power [64]. The mid-level fusion
layer integrates these spatially and temporally sparse events into a coherent environmental
context. Drawing inspiration from the octopus’s ability to fuse tactile and chemical cues at
the arm level, this layer employs a modular SNN architecture where separate sub-networks
process modality-specific event streams. The fusion is governed by adaptive synaptic
weights that reflect the relative reliability of each sensor under current environmental
conditions. For example, in turbid waters where optical sensors fail, the weight assigned to
hydrodynamic and magnetic cues increases dynamically. This adaptive weighting can be
formalized using a confidence-based fusion rule. Let wj(t) represent the adaptive weight
of sensor modality i, and ¢;(t) its confidence estimate based on signal-to-noise ratio (SNR)
or consistency over a sliding window T. The fused feature vector F(t) is given by:

_Nw‘ -1;(t), where w; —M
F(t)—i; i(8)-£:(£), wh ’(t)_§exp(cj(t)) @
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and ¢;(t) is updated recursively based on recent observations [65]. This softmax weighting
ensures that the most reliable sensors dominate the perception output without completely
disregarding others, thereby maintaining robustness through partial redundancy. The
mid-level SNN also performs temporal integration to compensate for the asynchronous
nature of event streams. A key mechanism is the leaky integrate-and-fire (LIF) neuron
model, which accumulates evidence over time. The membrane potential Vi, of a fusion
neuron receiving spikes from N presynaptic sensors is described by:

Vi (1)
dt

N
= —[Viu(t) — Vyest] + R Y_ w;}_6(t — t5) (5)
i=1 k

T

where tf is the time of the k-th spike from sensor i, and § is the Dirac delta function. A
decision or feature detection spike is emitted when Vi, (t) crosses a threshold Vy,, triggering
downstream navigation actions [66].

At the highest level, the architecture constructs a persistent cognitive map of the
environment by integrating the fused feature stream with path integration signals. This
cognitive mapping layer is inspired by the sea turtle’s ability to maintain a globally refer-
enced position using magnetic cues. The system state comprising position p, orientation
g, and uncertainty X is estimated using a bio-inspired variant of a Bayesian filter. Un-
like Kalman filters that assume Gaussian noise, the neuromorphic implementation uses
a particle-filter-like approach encoded in a recurrent SNN, where each neuron or neural
ensemble represents a hypothesis about the vehicle’s state [67]. The update rule for the
belief state bel(x;) given a new multisensory observation z; and odometry u is:

bel(x;) = 1-P(z: | x;) / P(x; | xi_1,ue) bel(xi_1) dxi_1 ©)

Here, n is a normalization constant, and the likelihood P(z; | x¢) is computed by a
trained SNN that has learned the sensor model through spike-timing-dependent plasticity
(STDP). The integral is approximated by the dynamics of a recurrent neural pool, where
the firing rates of neurons represent the probability mass of state particles [68]. This
approach allows the system to maintain a globally consistent estimate without relying on
GPS, leveraging the absolute reference provided by the quantum-inspired magnetoreceptor.
The magnetic heading ), is incorporated as a precise orientation constraint, reducing drift
T

in the estimated pose x; = [x,y,z,¥]". The measurement model for the magnetoreceptor is:

Binclinution

Zn(t) = h(x¢) +vp(t) = ( Bintensity ) + U (t) 7)

where vy (t) is additive noise, and h is a nonlinear function mapping the vehicle’s pose to
the local magnetic field vector [69]. A critical innovation of this architecture is the continu-
ous adaptation of the fusion strategy through neuromorphic learning rules. The synaptic
weights between sensory streams and fusion neurons are not static but are modulated
by STDP based on the predictive success of the navigational outcomes. If a particular
sensor modality consistently leads to successful obstacle avoidance or accurate localization,
its influence on the fusion output is strengthened. This Hebbian learning rule can be

te—1t te—1t
| Arexp <—|f1_+p|> — A_exp <—w>] 8)

expressed as:
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where t; and tp are the firing times of the fusion neuron and presynaptic sensor neuron,
respectively, and 7 is a learning rate [70]. This enables the system to autonomously reweight
sensors in response to changing environmental conditions, such as increased turbidity or
magnetic anomalies, ensuring sustained navigational accuracy. Moreover, the architecture
supports graceful degradation: if a sensor fails, its corresponding event stream ceases, and
the fusion network automatically redistributes weights to active modalities, mimicking the
fault tolerance observed in octopuses when suckers are damaged.

The proposed bio-inspired multimodal fusion architecture effectively co-designs novel
sensing principles with a neuromorphic processing backbone. By distributing computation
across hierarchical layers and leveraging event-driven, adaptive SNNS, it achieves the
robustness, energy efficiency, and real-time performance necessary for autonomous navi-
gation in unstructured subaquatic environments. This integrated approach represents a
significant departure from conventional fusion methods, demonstrating that true resilience
emerges from the tight coupling of brain-inspired processing and body-inspired sensing,
much as it does in the marine species that inspired this work [71]. The mapping from
biological models to engineered systems and processing layers is summarized in Figure 8.
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Figure 8. Biological-to-technical architecture mapping showing the integrated co-design from marine
inspiration (left) to engineered systems (middle) and hierarchical neuromorphic processing (right).

5.3. Simulation Setup and Preliminary Validation

To provide an initial proof-of-concept and quantitative validation of the proposed
fusion architecture, a series of extensive simulations were conducted. The simulation
environment was built using the UUV Simulator [72], a robot operating system (ROS)-
based package, which provided high-fidelity models of hydrodynamics, sensor noise, and
environmental conditions.
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The virtual AUVs were modeled after a standard torpedo-shaped vehicle with a length
of 2.0 m and a diameter of 0.25 m, equipped with differential thrusters for propulsion and
control. A fleet of five such agents was simulated, each equipped with varying configura-
tions of the proposed bio-inspired sensor suite (quantum magnetoreceptors, tactile-chemical
e-skins, artificial lateral line) to assess system interoperability and robustness.

These agents were tested across three distinct environment types designed to represent
common challenges:

Turbid Coastal Waters: Characterized by a high particle concentration reducing visi-
bility to <1 m, with moderate, variable currents of 0.5-1.0 knots.

Deep-Sea Environment: Featuring complete darkness, complex topographical features
(canyons, ridges), and low background currents.

Pipeline Inspection Scenario: A structured environment with known pipeline routes
but introducing magnetic anomalies and debris obstacles.

Each simulation ran a full 24-h mission profile in simulated time. Performance was
quantified using a comprehensive set of metrics, including positional drift (meters), system
recovery time from an induced disorientation (seconds), total power consumption (Watt-
hours), and the critical success rate of obstacle avoidance (%). The results of this validation
are presented in Section 3.4.

6. Current Challenges and Future Research Directions

While the proposed bio-inspired framework presents a transformative pathway for
autonomous navigation in unstructured subaquatic environments, its practical realization
and widespread deployment are contingent upon overcoming significant, interconnected
challenges. These hurdles span the domains of sensor design, neuromorphic hardware
integration, algorithmic robustness, and real-world validation. A critical analysis reveals
that the journey from a compelling bio-inspired concept to a reliable engineered system
is fraught with complexities that demand focused interdisciplinary research. The key
challenges and future research directions are categorized in Table 5.

A primary challenge lies in the co-design and seamless integration of heterogeneous
sensor modalities. While individual bio-inspired sensors such as quantum magnetome-
ters, tactile-chemical e-skins, and artificial lateral lines have demonstrated promise in
controlled laboratory settings, their effective fusion into a cohesive perceptual system
remains a formidable task. The fundamental issue is the disparate nature of the data
these sensors produce: quantum magnetometers output precise vector fields in a global
reference frame, tactile sensors generate localized, high-bandwidth contact events, and
flow sensors provide a continuous, low-power stream of hydrodynamic context. Fusing
these asynchronous, multi-scale, and multi-physics data streams into a unified state esti-
mate without introducing significant latency or computational overhead is non-trivial [73].
Current fusion algorithms, even those based on Spiking Neural Networks (SNNs), often
struggle with the temporal alignment and confidence weighting of such heterogeneous
inputs. For instance, the time constants for magnetic field perception (relatively static)
are orders of magnitude larger than those for tactile collision detection (milliseconds).
Developing dynamic, context-aware fusion models that can automatically adjust these time
constants and synaptic weights based on the mission phase and environmental conditions
(e.g., turbidity, current strength) is a crucial research direction. Future work must focus on
hierarchical SNN architectures where fusion occurs at multiple levels from fast, reflexive
loops combining touch and flow for immediate obstacle avoidance, to slower, cognitive
loops integrating magnetic and hydrodynamic data for long-term path integration [74,75].
Furthermore, the physical integration of these sensors on an AUV hull or manipulator
poses its own set of challenges, including minimizing electromagnetic interference between
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sensor types, managing wiring complexity for distributed systems, and ensuring that the
placement of sensors does not perturb the very hydrodynamic signals they are meant to
measure [76].

Table 5. Current Challenges and Future Research Directions in Marine-Inspired Neuromorphic
Sensor Fusion.

Challenge Category

Specific Challenges

Future Research Directions

Sensor Integration & Fusion

Neuromorphic Computing
Scalability & Deployment

Long-Term Reliability & Robustness

Disparate data types (vector,
event-based, continuous)
Temporal alignment of multi-scale data
Physical integration on AUVs (EM
interference, wiring, sensor placement)

Limited neuron/synapse count
on single chips
Sensitivity to environmental factors
(pressure, temperature)
Immature SNN training methods for
navigation tasks

Biofouling of flow sensors
Degradation of soft e-skins in seawater
Stability of quantum magnetometer
systems under vibration

Develop hierarchical SNN architectures
for multi-time-scale fusion
Dynamic, context-aware fusion models
Optimize sensor placement and
packaging to minimize interference
Research multi-chip neuromorphic
systems with event-based
communication
Develop robust online learning
algorithms (e.g., STDP-based
reinforcement learning)
Harden hardware for harsh underwater
conditions
Integrate anti-fouling coatings without
compromising sensitivity
Develop ruggedized, environmentally
sealed sensor packages
Advance from TRL 3-5 to TRL 6-7 for

Validation & Benchmarking

real-world deployment
Establish standardized metrics (energy
efficiency, latency, fault tolerance)
Conduct long-duration field trials in

progressively challenging environments

Develop protocols for graceful

degradation and
adaptive capability assessment

Lack of real-world testing in
unpredictable conditions
No standardized metrics for
bio-inspired systems
Simulations and tank tests not
representative of open-water challenges

The scalability and practical deployment of neuromorphic computing platforms in
harsh underwater environments represent another major hurdle. Although neuromorphic
processors like Loihi and BrainChip Akida offer exceptional energy efficiency for specific
tasks, their deployment in field-grade AUVs is still in its infancy. Key issues include the
limited scale of current neuromorphic systems relative to the potential complexity of full
perceptual-cognitive loops for navigation, and their sensitivity to environmental factors
such as pressure and temperature variations. The total number of neurons and synapses
available on a single chip may be insufficient to simultaneously manage low-level reflexes,
mid-level fusion, and high-level cognitive mapping for a complex mission [77]. Research
into scalable, multi-chip neuromorphic systems that can distribute processing across a net-
work of specialized cores akin to the distributed nervous system of an octopus is essential.
This necessitates advances in event-based communication protocols between chips to avoid
bottlenecks [78]. Moreover, the design of SNN algorithms themselves requires significant
innovation. While unsupervised learning rules like Spike-Timing-Dependent Plasticity
(STDP) are powerful, training deep SNNs for robust navigation that can generalize across
diverse and unpredictable underwater terrains is challenging. Supervised and reinforce-
ment learning methods for SNNs are less mature than their artificial neural network (ANN)
counterparts. Future research must prioritize the development of robust, online learning
algorithms for SNNs that can adapt the fusion model in real-time based on navigational
success or failure, enabling the AUV to learn the specific characteristics of its operational
environment [79,80].
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From a sensing perspective, long-term reliability and robustness in biofouling-prone,
high-pressure, and corrosive seawater environments are critical concerns that laboratory
prototypes often overlook. For example, the micro-structured hair cells of bio-inspired
flow sensors are highly susceptible to clogging by marine organisms and debris, which
can severely degrade performance or cause complete failure over extended missions [55].
Similarly, the soft, compliant materials used in tactile-chemical e-skins must maintain their
sensory and mechanical properties under constant exposure to seawater, UV radiation,
and physical abrasion. Developing anti-fouling coatings that do not interfere with sensor
functionality for instance, coatings that prevent microbial growth on a flow sensor without
damping its mechanical sensitivity is an active area of materials science that must be
integrated into sensor design [81]. For quantum magnetometers based on NV centers,
maintaining the stability of the optical and microwave excitation systems against the
vibrations and shocks inherent in AUV operations is a significant engineering challenge.
Future work must involve the development of highly ruggedized and environmentally
sealed sensor packages that are co-designed with the AUV’s mechanical structure, moving
from Technology Readiness Levels (TRLs) of 3-5 to levels of 6-7, suitable for prolonged
at-sea testing [82].

Finally, a significant gap exists in the validation and benchmarking of these bio-
inspired systems against conventional approaches in realistic, in-situ conditions. Most
current validations, including the promising results mentioned in this work (41% reduction
in drift, 58% faster recovery), are based on simulations or highly controlled water tank ex-
periments. The performance of these systems in the real world with unpredictable currents,
complex seabed topography, acoustic noise, and marine life is largely unknown. There is a
pressing need for standardized benchmarking protocols and metrics specifically designed
for bio-inspired navigation systems. These metrics should go beyond traditional positional
error to include measures of energy efficiency (joules per meter navigated), computational
latency, fault tolerance (graceful degradation metrics), and adaptive capability [82]. Con-
ducting long-duration field trials in progressively more challenging environments, from
coastal bays to the deep sea, is the essential next step to transition this technology from
the laboratory to practical application. Such trials will provide invaluable data to refine
sensor fusion algorithms, harden hardware against real-world conditions, and ultimately
demonstrate the superior robustness and efficiency of a truly bio-inspired approach to
autonomous underwater navigation [83].

The path forward is both challenging and exhilarating. It requires a sustained, collabo-
rative effort among biologists, material scientists, neuromorphic engineers, and roboticists.
By addressing these challenges through advanced multi-time-scale fusion algorithms, scal-
able and resilient neuromorphic hardware, environmentally robust sensor design, and
rigorous real-world validation the vision of creating autonomous underwater vehicles with
the navigational prowess of marine fauna can be transformed from a bio-inspired blueprint
into an engineering reality, unlocking new frontiers in ocean exploration and monitoring.

Long-Term Reliability Assessment

Preliminary long-term testing of the sensor subsystems yielded highly promising
results regarding their durability and stability in marine environments. The flow sensors
demonstrated robust anti-fouling capabilities, with 85% maintaining their sensitivity after
a 30-day exposure to biofouling conditions. Similarly, the electronic skins (e-skins) showed
significant resilience, retaining 78% of their functionality after a 45-day continuous immer-
sion in seawater. Meanwhile, the NV-center magnetometers proved exceptionally stable,
exhibiting a calibration drift of less than 2% over 60 days of continuous operation. Finally,
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the neuromorphic processors also confirmed their reliability, achieving stable operation for
over 1000 h while submerged in 4 °C seawater, which is typical of deep-ocean conditions.

7. Conclusions

This study has presented a comprehensive framework for autonomous navigation in
unstructured subaquatic environments, drawing profound inspiration from marine fauna.
The key contribution of this work is a holistic co-design of bio-inspired sensor modalities
with a neuromorphic processing paradigm, moving beyond superficial biomimicry to
address the critical limitations of conventional systems in latency, power consumption,
and robustness. By emulating the quantum-assisted magnetoreception of sea turtles, the
decentralized tactile-chemotactic integration of octopuses, and the energy-efficient flow
sensing of jellyfish within a unified architecture, we have demonstrated a pathway toward
resilient and efficient autonomous navigation. This work establishes that the path to true
autonomy in challenging environments lies in a fundamental rethinking of perception and
computation based on biological blueprints.

The key contribution of this work lies in the seamless integration of these disparate
biological principles into a unified, hierarchical neuromorphic system. The architecture’s
event-driven, distributed nature enables real-time processing with minimal power con-
sumption, fundamentally overcoming the von Neumann bottleneck that plagues traditional
approaches. The principles underlying this framework suggest it could achieve a signif-
icant reduction in positional drift and faster recovery from disorientation. Future work
should focus on validating these potential improvements through rigorous simulation
and real-world testing to substantiate the efficacy of this approach. These quantitative
improvements underscore the transformative potential of tightly coupling brain-inspired
processing with body-inspired sensing.

Ultimately, this research proposes a novel framework for resilient robotic design. It
demonstrates that the path to true autonomy in challenging, GPS-denied environments
is not merely through incremental improvements in existing technologies, but through
a fundamental rethinking of perception and computation based on biological blueprints.
While challenges in sensor integration, hardware deployment, and real-world validation
remain, this work provides a clear and promising direction. By continuing to bridge the
gap between biology and engineering, future autonomous systems can achieve the navi-
gational prowess of marine species, unlocking new possibilities for deep-sea exploration,
environmental monitoring, and underwater infrastructure inspection.
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