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Abstract

This study presents a deep learning–assisted integrated navigation scheme implemented on
an autonomous underwater vehicle carrying a Chinese domestically developed strapdown
inertial navigation system, designed for operation in surface and littoral environments. The
system integrates measurements from SINS, the global positioning system, and a Doppler
velocity log, while integrating a Decoder-based covariance estimator into the error state-
extended Kalman filter. This hybrid architecture adaptively models time-varying processes
and measurement noise from raw sensor inputs, greatly improving robustness for surface
navigation in dynamic marine environments. To improve learning efficiency, we design a
compact and informative feature representation that can be adapted to navigation error
dynamics. The novel structure captures temporal dependencies and the evolution of nonlin-
ear error more effectively than typical sequence models, achieving faster convergence and
superior accuracy compared to GRU and Transformer baselines. The experimental results
based on real sea trial data show that our method significantly outperforms model-based
and learning-based methods in terms of navigation solution accuracy and stability, and the
adaptive estimation of noise covariance. Specifically, it achieves the lowest RMSE of 0.0274,
reducing errors by 94.6–34.6%, compared to conventional ES-EKF-integrated navigation,
Transformer, GRU, and a DCE variant. These findings underscore the practical signifi-
cance of integrating domain-informed filtering methodologies with deep noise modeling
frameworks to achieve robust and accurate AUV surface navigation.

Keywords: error state-extended Kalman filter; deep learning; autonomous underwater
vehicle; integrated navigation

1. Introduction
With the continuous development and progress of the machinery, materials, and elec-

tronic information industries, underwater robot technology has also been developing
rapidly. Compared with remotely operated vehicles (ROVs) that can be controlled in
real time by humans, autonomous underwater vehicles (AUVs), as a new generation of
unmanned submersibles, are free from cables and deck units. They are characterized by
high maneuverability, strong autonomy, and a wide operational range, making them essen-
tial tools for submarine cable inspection, marine environmental monitoring, and subsea
pipeline inspection [1–5].

AUVs are typically equipped with a suite of pressure-resistant sensors and naviga-
tion devices, including strapdown inertial navigation system (SINSs), a magnetometer, a
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Doppler velocity log (DVL), a global positioning system (GPS), a depth gauge, an altime-
ter, and underwater cameras, among others. These navigation and positioning systems
each have inherent limitations in terms of accuracy, reliability, and operational robust-
ness. In highly dynamic and complex marine environments, relying on any single sensor
modality often fails to meet the stringent navigation requirements of AUVs [6]. There-
fore, integrating multiple navigation sensors into a cooperative system to enhance overall
performance has become a mainstream approach in modern navigation technology [7–9].

Considering the typical operational workflow of AUVs, which includes deployment
and descent, autonomous underwater operation, and recovery [10,11], there exists a clear
demand for navigation solutions across both surface and submerged environments. This
study focuses on improving the accuracy and robustness of a loosely coupled integrated
navigation scheme specifically designed for surface navigation. In this scheme, GPS is
utilized to correct the long-term drift in the SINS, thereby mitigating accumulated errors.
The DVL improves the short-term accuracy and stability of the system by providing
relative velocity measurements. When GPS or DVL signals are unavailable, SINS can still
independently provide continuous position, velocity and attitude solutions. Moreover,
by employing an optimal estimation approach based on the Kalman filter, the multi-source
data from these sensors can be effectively fused to produce reliable and robust navigation
outputs [12,13].

The error state-extended Kalman filter (ES-EKF) is the core algorithm typically em-
ployed in integrated navigation schemes [14,15]. It fuses heterogeneous sensor measure-
ments to compute integrated navigation solutions. Unlike conventional Kalman filters,
the ES-EKF estimates inertial measurement unit (IMU) errors as part of the system state,
rather than estimating the full navigation states directly. Since these error states remain
small and near zero, the ES-EKF is less susceptible to parameter singularities and global
divergence issues [16]. However, the effectiveness of the ES-EKF heavily depends on the
manual design of the IMU error model, which requires significant domain expertise and
prior knowledge of sensor characteristics [17,18]. In this context, the main source of error
in AUV navigation arises from static errors in the IMU, whereas the bias error in the static
error of the IMU is usually highly coupled with attitude error and velocity error. Improper
modeling can make it difficult to converge the error state estimation of the IMU, thereby
affecting the overall accuracy and reliability of the entire navigation system.

In recent years, research on the application of deep learning (DL) in navigation and
positioning has advanced rapidly, with particular focus on addressing sensor outages,
compensating for dynamic errors, and enhancing positioning performance [19–22]. In
research on using DVL or a global navigation satellite system (GNSS) to assist in SINS
navigation, studies such as [23–25] have demonstrated how the nonlinear relationship
between the IMU and GNSS during periods of normal GPS availability is learnt. When
GPS signals are lost, these methods generate pseudo-GPS signals to maintain navigation
accuracy. Refs. [26,27] estimate the current vehicle’s velocity under complete DVL outages
by leveraging inertial data and historical DVL velocity measurements. Refs. [20,21] enhance
inertial navigation by using deep learning to model and correct IMU errors without GNSS
signals. They integrate neural networks with traditional navigation to improve position
and velocity accuracy. One uses an Echo State Network for error modeling; the other
applies CNN-BiLSTM to map IMU data to GNSS references. Both show that data-driven
correction effectively reduces inertial navigation errors.

These advances in DL indicate that they can directly capture the nonlinearity and
dependencies of complex systems from the data, thereby reducing the need for explicit
system modeling and feature engineering. This has led to a feasible research trend, namely
a hybrid approach that integrates DL with real-time state estimation techniques.
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Recent research in real-time state estimation has increasingly adopted hybrid ap-
proaches that combine physical modeling with DL [28]. These methods typically concen-
trate on two main challenges: (1) dynamically modeling time-varying noise, and (2) refining
the Kalman gain update mechanism through learning. Methods such as NNAKF [29] and
EKFNet [30] focus on learning process and measurement noise covariances directly from
data. NNAKF leverages RNNs to dynamically adjust process noise, improving adaptabil-
ity and tracking accuracy in non-stationary environments. Similarly, EKFNet employs
offline training and custom loss functions to refine noise statistics. While effective, these
approaches generally do not explore model architecture choices in depth, nor do they sys-
tematically investigate feature selection strategies adapted to the complex spatiotemporal
characteristics of inertial and navigation data. Ref. [31] explores the accuracy and feasibility
of several time series models in estimating the errors of inertial measurement units in the
context of two-dimensional simulation data. The other line of research focuses on replacing
or enhancing the computation of the Kalman gain using deep learning techniques [32,33].
Among them, KalmanNet proposed in [34], is based on the KF paradigm and innovatively
replaces the traditional Kalman gain calculation with an RNN-based encapsulation mecha-
nism. Although it enhances the modeling ability of the temporal characteristics of noise, it
also deviates from the theoretical basis of the optimal estimation of the minimum mean
square error (MMSE) and lacks a rigorous characterization of the posterior covariance.
Nowadays, many research projects involve addressing both challenges simultaneously.
However, replacing the Kalman gain with purely data-driven methods may alter the stan-
dard ES-EKF framework, which relies on linearized error state propagation and covariance
updates. Such a substitution can affect the stability, consistency, and interpretability of the
resulting estimator, even though strict optimality guaranteed by the classical Kalman filter
does not apply to nonlinear systems like the ES-EKF.

In the study of surface-integrated navigation for AUVs, both the measurement and
motion models are generally well defined and can be constructed through physical mod-
eling, requiring minimal reliance on data-driven learning. While both model-based and
learning-based algorithms are capable of correcting navigation errors, their performance is
often sensitive to the selection of initial parameters and convergence criteria. Furthermore,
the error accumulated in inertial navigation is inherently unbounded, meaning that the
positioning error from SINS can grow indefinitely over time. This makes dynamic noise
modeling within the Kalman filter particularly critical for maintaining long-term navigation
accuracy and system robustness.

To address this issue, we propose a novel hybrid navigation scheme that integrates a
learning-based covariance estimator into the ES-EKF. Our method adaptively optimizes
both the process and measurement noise covariance matrices in real time, while preserving
the conventional ES-EKF architecture. It can better capture long-distance dependencies
and richer cross-temporal difference information. In addition, we design a compact and
efficient input feature representation that captures key dynamic patterns while reducing
computational overhead. This not only improves the real-time applicability of the model
but also accelerates network convergence. Extensive experiments on real-world marine
datasets demonstrate that our proposed method outperforms the conventional ES-EKF
and typical learning-based models such as a gated recurrent unit (GRU) [35] and Trans-
former [36], achieving higher accuracy, better stability, and faster convergence in AUV
surface navigation scenarios.

The rest of this article is organized as follows: Section 2 introduces the SINS/GPS/DVL
integration system model formulation, Section 3 presents the deep learning-assisted error
state Kalman filter structure, Section 4 presents the performance analysis of the proposed
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method, and finally Section 5 concludes this article. The code of this work can be found at
https://github.com/Yybcbjy/DL-assisted-ESEKF.git (accessed on 6 October 2025).

2. System Model Formulation
The position and velocity in this study are expressed in the local navigation frame n

(East-North-Up), while the measurements from the IMU are provided in the body frame b.
The body frame is fixed to our AUV, with the x-axis aligned with the forward direction of the
vehicle, the y-axis pointing to the right side of the vehicle, and the z-axis pointing directly
upward from the AUV. Figure 1 shows the reference frame mentioned above. Depending
on the specific application requirements, SINS, GPS, and DVL can be integrated using
loosely coupled, tightly coupled, or deeply coupled configurations [37]. Loosely coupled
navigation fuses GPS-derived positions, DVL-estimated velocities, and IMU measurements
to provide accurate navigation solutions. The INS inherently accumulates drift errors
over time, which are periodically corrected by an ES-EKF using GPS and DVL updates.
This approach is favored for its simplicity and versatility, as it can accommodate a wide
range of INS and GNSS devices, making it ideal for retrofit and enhancement applications.
Besides the fused navigation output, the system also provides standalone GNSS and
independent INS solutions, enabling effective integrity monitoring during operation. The
loosely coupled SINS/GPS/DVL-integrated navigation scheme employed in this study is
shown in Figure 2.

Figure 1. The navigation frame and body frame of AUV.

Figure 2. Loosely coupled integrated navigation scheme based on SINS/GPS/DVL.

https://github.com/Yybcbjy/DL-assisted-ESEKF.git
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The loosely coupled system operates recursively in two main steps: first, the inertial
solution continuously integrates accelerometer and gyroscope measurements to estimate
the nominal state x, which comprises the position, velocity, attitude, and bias. Second,
when GPS and DVL data are available, the filter algorithm estimates and corrects the error
state δx of the inertial solution. The error-state is defined as the small perturbation between
the true state and the nominal state:

δx = xtrue ⊖ x, (1)

where ⊖ denotes the appropriate composition operator: for translational components, it
reduces to subtraction, while attitude errors are expressed in a small-angle vector form.
Concretely, the nominal state x and the error state δx are defined as follows:

x =[θyaw, θpitch, θroll , vn
x , vn

y , vn
z , pn

x , pn
y , pn

z , ζb
x, ζb

y, ζb
z ,

ϵb
x, ϵb

y, ϵb
z ]

T ∈ R15×1,

δx =[δθyaw, δθpitch, δθroll , δvn
x , δvn

y , δvn
z , δpn

x , δpn
y , δpn

z ,

δζb
x, δζb

y, δζb
z , δϵb

x, δϵb
y, δϵb

z ]
T ∈ R15×1,

(2)

where δp, δv, and δθ are the estimated position, velocity, and attitude errors, respectively;
δϵ and δζ are the estimated accelerometer and gyroscope bias errors, respectively. Al-
though our AUV mainly operates at the sea surface, the full navigation state is maintained
for consistency with the inertial frame definition. The DVL velocity mv and GPS position
mp are used as measurements y:

y = [mvn
x , mvn

y , mvn
z , mpn

x , mpn
y , mpn

z ]
T ∈ R6×1. (3)

Their superscripts and subscripts denote the corresponding reference frame and axis.

2.1. IMU Measurement Errors Modeling

The IMU measurement noise comprises the combined effects of gyroscope and ac-
celerometer noise, as given below:

w̃ = w + ϵ + Sw + Nw + nw, (4)

f̃ = f + ζ + S f + N f + n f + δg, (5)

where ŵ and w denote the true and measured angular velocities obtained from the gy-
roscope, respectively. f̂ and f represent the measured and true specific forces of the
accelerometer. S(·) and N(·) are the scale factor error matrix and the cross-axis coupling
error matrix, while n(·) denotes the sensor noise vector, and δg represents the gravity
anomaly measured by the accelerometer. Such decomposition of IMU measurement errors
is commonly adopted in navigation studies [38].

2.2. Error State Kalman Filter

Before conducting the experiments, we calibrate the inertial sensors to compensate for
systematic errors. All sensors are time-synchronized and geometrically aligned, and lever
arm compensation is applied to maintain consistency in spatial reference. The underlying
nonlinear system of our method can be expressed as follows:

ẋt = f (xt, ut) + wt,

yt = h(xt) + vt.
(6)
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where ut represents IMU inputs, wt and vt denote process and measurement noise, re-
spectively. The nonlinear dynamics in (6) are linearized to obtain the discrete-time error
state model:

δxt+1 = Ft δxt + Gt wt,

yt = Ht δxt + vt,
(7)

where Gt is the noise input matrix. The state transition matrix Ft and measurement matrix
Ht represent the linearized system and measurement models, respectively. The system
propagation is performed by applying the state transition matrix Ft, which is formulated
by linearizing the nonlinear error propagation equations, as discussed in previous stud-
ies [39,40]:

Ft =


M1 M2 M3 −Cn

b 03×3

M4 M5 M6 03×3 Cn
b

03×3 M7 M8 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

, (8)

M1 =
0

νn
E tan φ

RN+h + ωie sin φ −
νn
E

RN+h − ωie cos φ

νn
E tan φ

RN+h − ωie sin φ 0 −
νn

N
RM+h

νn
E tan φ

RN+h + ωie cos φ
νn

N tan φ

RM+h 0

, (9)

M2 =


0 1

RM+h 0

1
RN+h 0 0

tan φ
RN+h 0 0

, (10)

M3 =



0 0 νn
N

(RM+h)2

−ωie sin φ 0 − νn
E

(RN+h)2

ωie cos φ +
νn

E
(RN+h) cos2 φ

0 − νn
E tan φ

(RN+h)2


, (11)

M4 =

 0 − f n
U f n

N
f n
U 0 − f n

E
− f n

U f n
E 0

, (12)

M5 =
νn

N tan φ−νn
U

RN+h
νn
E tan φ

RN+h + 2ωie sin φ −
νn
E

RN+h − 2ωie cos φ

−
νn
E tan φ

RN+h − 2ωie sin φ −
νn
U

RM+h −
νn

N
RM+h

2νn
E

RN+h + 2ωie cos φ
νn

N
RM+h 0

, (13)

M6 =
νn
E νn

N(
RN+h

)
cos2 φ

+ 2ωie
(

νn
U sin φ + νn

N cos φ
)

0
νn
Eνn

U−νn
Eνn

N tan φ(
RN+h

)2

−2ωie cos φ −

(
νn
E

)2(
RN+h

)
cos2 φ

0
νn

N νn
U(

RM+h
)2 +

(
νn
E

)2
tan φ(

RN+h
)2

2νn
E

RN+h + 2ωieνn
E sin φ 0 −

(
νn

N

)2

(
RM+h

)2 +

(
νn
E

)2

(
RN+h

)2


, (14)
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M7 =


0 1

(RM+h)2 0

1
(RN+h) cos φ

0 0

0 0 0

, (15)

M8 =


0 0 − vn

N
(RM+h)2

vn
E tan φ

(RN+h) cos φ
0 − vn

E
(RN+h)2 cos φ

0 0 0

, (16)

where RM and RN denote the meridian radius of curvature and the prime vertical radius
of curvature, respectively. φ denotes the geodetic latitude and h is the altitude of the
AUV. Cn

b denotes the rotation matrix from the body frame to the navigation frame used for
coordinate transformation, 03×3 represents a 3 × 3 zero matrix commonly used as a zero
block in state-space matrices, and ωie denotes the Earth’s rotation rate vector. The state
transition matrix Ft represents the linearized error-state dynamics around the nominal
state x. Certain values in Ft are evaluated using the nominal state integrated from IMU
measurements. This Ft allows the filter to propagate the error covariance without requiring
additional derivatives or online linearization. For discrete implementation with sampling
interval ∆t, we use the first-order approximation,

Φt ≈ I + Ft∆t, (17)

to propagate the error covariance P:

Pt|t−∆t = ΦtPt−∆t|t−∆tΦ
T
t + Q (18)

where Q is the discrete process noise covariance matrix. I denotes the identity matrix. The
measurement matrix can be formulated as follows:

H =

[
03×3 I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

]
. (19)

The measurement matrix H remains constant because the GPS and DVL measurement
models are already linear in the error-state formulation. Thus, although the analytical
structure of Ft and H is predetermined, the filter still operates within a linearized, time-
varying framework consistent with the ES-EKF methodology. The predicted measurements
yt|t−∆t can be computed by applying the measurement matrix H to the nominal state xt :

yt|t−∆t = Hxt|t−∆t. (20)

The error state and its covariance matrix are estimated during the measurement update
phase by incorporating the latest noisy GPS and DVL measurements. The measurement
noise covariance matrix R characterizes the statistical uncertainty of these sensor measure-
ments and directly affects the computation of the Kalman gain Kt, which determines the
relative weighting between the measurements and the current inertial navigation solutions.

Kt = Pt|t−∆tHT
[

HPt|t−∆t HT + R
]−1

(21)

where R denotes the measurement noise covariance matrix. Similar to Q, it is empirically
designed based on the known measurement uncertainties. Specifically, σp represents the
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standard deviation of the GPS position measurements, while σv denotes the uncertainty
associated with DVL velocity measurements. The measurement noise covariance matrix is
defined as follows:

R =

[
σ2

p 0
0 σ2

v

]
. (22)

The posterior error state is computed by multiplying Kt with the innovation, which
is defined as the difference between yt and yt|t−∆t, both expressed in the local naviga-
tion frame:

δxt = Kt(yt − yt|t−∆t). (23)

The posterior error state covariance matrix is updated according to the Joseph form:

Pt = (I − KtH)Pt|t−∆t(I − KtH)T + KtRKT
t . (24)

In this study, Pt represents the covariance of the error-state, not the full navigation
state. Although this update form is mathematically identical to that of the classical Kalman
filter, it is applied here within the ES-EKF framework to maintain the consistency of the
linearized error dynamics.

Finally, the corrected true state can be calculated as follows:

x̂t = xt ⊕ δxt (25)

where ⊕ denotes the state composition operator, which incorporates the estimated errors in
the attitude, velocity, position, and sensor biases into the nominal state xt. Attitude correc-
tion is performed using the exponential map on the special orthogonal group, SO(3), which
maps small error rotation vectors to valid rotation matrices. After correction, the updated
nominal state x̂t serves as the prior for the next iteration, ensuring a consistent closed-loop
estimation process.

3. Deep Learning-Assisted Error State Kalman Filter
The performance of ES-EKF largely depends on the degree of mastery of prior knowl-

edge during the model construction process. Although the high-frequency sampling
interval adopted in this work allows the linearized state transition matrix to approximate
the error dynamics of the nonlinear system, inaccurate specification of the process noise
covariance Q or the measurement noise covariance R can still cause significant degradation.
Misconfiguration can induce numerical instabilities, such as the explosion of the error
covariance matrix P and divergence of the state transition matrix eF∆t, eventually causing
filter divergence and estimation failure. Therefore, we propose a DL-assisted ES-EKF
scheme that incorporates carefully designed filter-based features and a lightweight neural
network architecture to dynamically adjust the noise covariance matrices for improved
positioning accuracy and robustness.

3.1. High-Level Architecture

Figure 3 illustrates the proposed architecture of the DL-assisted ES-EKF algorithm.
The Decoder-based covariance estimator (DCE) is deeply integrated into the ES-EKF. Dur-
ing the system propagation phase, the error-state is used to extract features required for
DCE construction before it is reset. After the ES-EKF completes one full iteration over
the navigation dataset, the training phase of the DCE begins. Once trained, the DCE
can be embedded into the ES-EKF to dynamically estimate the noise covariance during
online navigation.



J. Mar. Sci. Eng. 2025, 13, 2035 9 of 18

Figure 3. The proposed DL-assisted ES-EKF scheme for integrated navigation.

3.2. Input Features

To enable the DCE to effectively learn the implicit characteristics of the accelerometer
and gyroscope biases in the IMU, informative input features must be carefully designed
during the training stage. Building upon previous work [31,34], we refine and extend the
feature extraction process as follows:

1. At time step t, the difference between the estimated error-state and the predicted
error-state is as follows: f1 = δxt − δxt|t−∆t.

2. The difference between the estimated error-state at time step t and the predicted
error-state at time step t + ∆t is as follows: f2 = δxt − δxt+∆t|t.

3. The difference between the measured measurement at time step t and t − ∆t is as
follows: f3 = yt − yt−∆t.

4. The innovation difference at time step t is as follows: f4 = yt − yt|t−∆t.
5. The measurement difference of the IMU between time step t and t − ∆t is as follows:

f5 = [αt, ωt]− [αt−∆t, ωt−∆t].
6. The evolution of the error state difference at the time step t is as follows: ( f1, f2) =

U Σ VT︸︷︷︸
f6

.

7. The evolution of the measurement difference at time step t is as follows: ( f3, f4) =

U Σ VT︸︷︷︸
f7

.

The differences from f1 to f5 can eliminate the inherent characteristics of the state and
measurement during the propagation process. f6 and f7 are decomposed via singular-value
decomposition using the matrix V, capturing the temporal evolution patterns of the error
states and measurements, respectively.

3.3. Decoder-Based Covariance Estimator Architecture

To design a neural network architecture suitable for surface-integrated navigation
tasks of our AUV, we considered several state-of-the-art time series prediction models and
conducted comparative experiments. The final architecture is illustrated in Figure 4.

During the forward propagation process of the DCE, the input sequence δx first passes
through a linear projection layer, which maps each 15-dimensional input feature at each
time step to a higher-dimensional representation. The representations of these matrix are
as follows: 

Q = δxWQ

K = δxWK

V = δxWV

(26)
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where WQ, WK, and WV are trainable weight matrices. This representation then undergoes
normalization through layer normalization and is simultaneously used as the query Q,
key K, and value V in the multi-head self-attention mechanism. Owing to the sequential
computation nature of the ES-EKF, we employ self-attention to compute the attention
scores, which are subsequently passed through a residual connection and a dropout layer
to mitigate overfitting. In the attention mechanism, dk is the dimension of the key vectors.
Next, the output undergoes a second round of layer normalization before being fed into a
feed-forward network, which consists of two linear layers separated by a ReLU activation
function, followed by another dropout layer. The result of the feed-forward network is
added back to its input via another residual connection. Then, a transposition operation
is carried out, and the projection is performed through an adaptive average pooling layer
and a final linear layer to generate a 21-dimensional output vector. The first 15 dimensions
correspond to the diagonal elements of the process noise covariance matrix, while the
remaining 6 dimensions correspond to the elements of the measurement noise covariance
matrix. To ensure that all values are strictly positive, both parts are passed through a
softplus function, followed by the addition of a small positive constant.

Figure 4. Decoder-based covariance estimator architecture.

Furthermore, since the sequence length of all inputs is 1, the attention mechanism
simplifies to performing scalar self-attention operations on a single vector without any inter-
action across time steps. The masking operation has no practical effect in this case; however,
we chose to retain its form to ensure compatibility with potential future extensions.

3.4. Loss Function

The DCE conducts end-to-end training using supervised learning. We use the highly
accurate position information obtained by the precision high-performance inertial navi-
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gation system (PHINS) as the ground truth, and define the loss function ℓ by comparing
it with the position obtained through our DL-assisted method. The specific process is
as follows:

ℓ(t) =
∥∥∥(pPHINS − p)E,N

∥∥∥
2

(27)

where ℓ(t) denotes the value of the loss function at time step t, which measures the deviation
between the estimated position p, based on the predicted Q and R, and the ground truth
position pPHINS in the east and north directions of the local horizontal frame. The DCE
aims to optimize the model parameters through the gradient descent, achieving this by
determining the set of parameters that can efficiently minimize ℓ(Θt). The parameter
update rule using gradient descent is given as follows:

Θ(t+∆t) = Θ(t) − η
∂ℓ(Θ)

∂Θ
(28)

where Θt represents all the parameters of the DCE at time step t.

4. Experiments
4.1. Experimental Setting

All experiments in this study were conducted on a system equipped with an NVIDIA
GeForce GTX 1060 5 GB GPU and an Intel Core i9-10900X CPU, running Python 3.13
and PyTorch 2.7. We conducted data collection in the coastal waters near Sanya, Hainan
Province, China, using an AUV equipped with a PHINS (iXblue, Saint-Germain-en-Laye,
France), a domestically developed SINS, a GPS receiver (Septentrio, Leuven, Belgium), and
a DVL (Teledyne RDI, San Diego, CA, USA) to collect surface navigation data. When all
sensors were operational, data was recorded at a frequency of 1 Hz, resulting in a total
of 17,130 trajectory points. To preserve local temporal consistency, the dataset was split
into groups of 10 consecutive data points each. Within each group, the first seven points
were used for training and the remaining three for testing, maintaining a 70:30 split that
preserves short-term temporal dependencies essential for training models on sequential
navigation data. Although the experiments in this study focus on surface navigation,
the Z-axis is retained in the definitions of both the nominal and error states to maintain
completeness and consistency with standard AUV navigation formulations. This design
also facilitates future extensions of the proposed method to scenarios involving vertical
motion or depth variations.

Table 1 presents a comparison of the horizontal positioning errors observed under
SINS, GPS, and the integrated navigation system.

Table 1. Position estimation accuracy of our method and other navigation solutions.

Navigation Solutions Horizontal Error (m) RMSE

SINS 1715.8108 1209.5987
GPS 0.6714 0.5114

SINS/DVL 2.3478 0.5086
SINS/DVL/GPS 0.6287 0.5016

Additionally, Figure 5 visualizes the aforementioned trajectories, providing an intuitive
comparison of the navigation paths. Figure 6 further illustrates the error variations of
GPS and SINS along both longitude and latitude directions over time, highlighting the
differences in their positioning accuracy and drift characteristics.
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Figure 5. Comparison of navigation trajectories for different methods.

Figure 6. Error variations of GPS and SINS in longitude and latitude directions over time.
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The measurement noise covariance matrix R and the process noise covariance matrix
Q are initialized as follows:

Q × ∆t =


0.1 · I3 0 0 0 0

0 0.05 · I3 0 0 0
0 0 0.05 · I3 0 0
0 0 0 0.25 · I3 0
0 0 0 0 0.05 · I3



R =



0.82 0 0 0 0 0
0 0.62 0 0 0 0
0 0 0.32 0 0 0
0 0 0 0.62 0 0
0 0 0 0 0.42 0
0 0 0 0 0 0.32



(29)

where I3 denotes the 3 × 3 identity matrix.
To ensure efficient model convergence, we employ the AdamW optimizer in combi-

nation with the OneCycleLR scheduler. The initial learning rate is set to 1 × 10−3, with a
maximum learning rate of 1 × 10−1. The scheduler uses a 30% warm-up phase followed
by cosine annealing decay, which enables the model to escape sharp local minima early
and converge toward flatter, and more generalizable solutions. Empirically, this dynamic
learning rate adjustment leads to faster convergence and lower validation errors compared
to fixed learning rate baselines.

4.2. Results

Firstly, the performance of the Adaptive Extended Kalman Filter (AEKF), which
dynamically adjusts the process and measurement noise covariances, is compared with
that of the proposed method in terms of the eastward and northward positional errors [41],
as illustrated in Figure 7.

Figure 7. Comparison of positioning errors in the East–North frame. The left axis shows the East-
direction error and the right axis shows the North-direction error over time. Solid lines represent the
error time series for each method, while shaded areas indicate the ±1 standard deviation range. Mean
(µ) and standard deviation (σ) values are computed for both directions and methods to quantitatively
evaluate performance.

The AEKF employed in our comparative experiments, with a forgetting factor of
λ = 0.995, updates the Q and R according to the short-term statistical characteristics of the
innovation sequence. However, its adaptive capability is inherently constrained by local lin-
earization and Gaussian statistical assumptions, rendering the AEKF vulnerable to transient
measurement anomalies and dynamic maneuvers. Such limitations often lead to oscillatory
or inconsistent covariance adaptation. In contrast, the proposed method leverages data-
driven global mapping to learn the nonlinear relationships and long-term dependencies
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between the optimal noise parameters and system states from observational data. As a
result, it effectively captures complex, non-Gaussian, and context-dependent noise patterns,
thereby providing smoother and more robust covariance estimation alongside improved
noise modeling accuracy.

To further verify the comprehensive improvements in implicit learning efficiency
brought about by our designed features and model architecture, we compare the proposed
method with two representative models, Transformer and GRU, in terms of positioning
accuracy, convergence speed, the duration of a single epoch, and model parameter size.
In addition, we include a variant of our method that excludes features f6 and f7 to further
evaluate the contribution of these inputs. The training parameters of our DCE are listed in
Table 2.

Table 2. Parameter settings used for training the proposed DCE.

Settings Value

Epoch 100
Batch 1

Sequence length 1
Multi-heads 4

Linear dimension 128
Input dimension 61

Output dimension 21
The shape of Q (15, 15)
The shape of R (6, 6)

Initial learning rate 1 × 10−3

Figure 8 presents the training curves of the RMSE and loss value for the four models
above. The minimum values attained by each model are visually highlighted in the figure
to facilitate performance comparison.

Figure 8. The progression of RMSE and loss values throughout training for the four models.

All metrics reported in Table 3 are averaged over multiple runs. Our proposed method
demonstrates comprehensive advantages over the compared methods. It achieves the
highest positioning accuracy, with the lowest RMSE of 0.0274. Compared to conventional
loosely coupled integrated navigation, Transformer, GRU, and the variant of DCE without
using f6 and f7, our method reduces the RMSE by 94.6%, 68.7%, 55.9%, and 34.6%, respec-
tively. The horizontal error of our model is minimized to 0.0003, representing reductions of
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99.99%, 99.94%, 57.14%, and 40.00% compared to the above approaches, respectively. In
addition, it requires fewer trainable parameters, resulting in reduced computational com-
plexity. The testing phase is also more efficient, with the shortest inference time among all
methods. This provides a feature design perspective in which appropriate feature extraction
techniques trade off some computational efficiency for faster convergence and enhanced
accuracy. These results indicate that our DL-assisted ES-EKF scheme has higher accuracy,
a lighter structure, and stronger real-time performance in integrated navigation tasks.

As the trajectories of the four models largely overlap, making them difficult to dis-
tinguish when plotted together, they are displayed separately in Figure 9. In each plot,
two identical segments of the trajectory are enlarged to better highlight the differences in
local behavior.

Figure 9. Trajectory comparison among the Transformer, DCE, and GRU.
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Table 3. Evaluation of the proposed method against other covariance estimators.

Covariance Estimator Loss (RMSE) Trainable Parameters Convergence Epoch Test Duration (s)

Transformer 0.4776 (0.0877) 1,196,693 92 17.44
GRU 0.0007 (0.0622) 175,125 23 14.62

Our model (excluding f6 and f7) 0.0005 (0.0419) 108,565 95 12.70
Our method 0.0003 (0.0274) 110,229 91 13.72

5. Conclusions
In summary, the DL-assisted integrated navigation scheme proposed in this study

leverages the powerful representational capabilities of deep neural networks to effectively
address the challenges inherent in complex maritime navigation and the intricate error
characteristics of inertial measurement units. Specifically, the method is designed for our
AUV operating on the water surface, where conventional integrated navigation systems
often experience degraded accuracy due to the dynamic and uncertain marine environ-
ment. By incorporating learned features and model structures suited to these conditions,
the proposed approach enhances both positioning precision and robustness. Compared
with model-based and learning-based methods, our proposed approach achieves signifi-
cantly higher navigation solution accuracy while maintaining acceptable computational
complexity and improved interpretability. Nevertheless, the current methodology exhibits
a pronounced reliance on the continuous availability of GPS signals, thereby constraining
its applicability in scenarios subject to frequent GPS signal outages. In response to this
challenge, future research will be directed towards extending the proposed approach to
submerged navigation environments and exploring robust mechanisms to ensure consistent
and accurate navigation in the presence of GPS signal outages.
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