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Abstract

Traditional cooperative navigation algorithms for multiple AUVs are typically designed for
a single specific configuration, such as parallel or leader-slave. This paper proposes a novel
cooperative navigation algorithm based on factor graph and Lie group to address the multi-
AUV localization problem, which is applicable to various multi-AUV configurations. First,
the motion state of an AUV is represented within the two-dimensional special Euclidean
group (SE(2)) space from Lie theory. Second, the motion of the AUV and acoustic-based
range and bearing measurements are modeled to derive the motion error function and
the range and bearing error function, respectively. Depending on the formulation of the
motion error function, the proposed approach comprises two methods: Method 1 and
Method 2. Third, the Gauss-Newton method is employed for nonlinear optimization to
obtain the optimal estimates of the motion states for all AUVs. Finally, a parameter-level
simulation system for AUV cooperative navigation is established to evaluate the algorithm’s
performance under two different multi-AUV configurations. Method 1 is designed for
parallel configurations, reducing the average RMSE of position and orientation errors by
29% compared to the EKF. Method 2 is tailored for leader-slave configurations, reducing the
average RMSE of position and orientation errors by 38% compared to the EKF. Simulation
results demonstrate that the proposed algorithm achieves superior performance across
different AUV configurations compared to conventional EKF-based approaches.

Keywords: factor graph; Lie group; cooperative navigation

1. Introduction
In the field of marine exploration and development, the cooperative operation mode

of Autonomous Underwater Vehicle (AUV) clusters demonstrates great potential in appli-
cations such as seabed mapping, resource exploration, and military operations [1–4]. For
large-scale underwater monitoring missions, the multi-AUV cooperative exploration and
data fusion mode offers advantages including extensive coverage, strong mission fault tol-
erance, and high data acquisition efficiency. The underwater environment is characterized
by limited communication capabilities and rapid attenuation of positioning signals, making
high-precision cooperative navigation (CN) systems a core technology for achieving multi-
AUV coordination [5–8]. Through CN technology, multiple AUVs can share positional
information and environmental perception data, effectively mitigating navigation error
accumulation in individual AUVs, and significantly enhancing the positioning accuracy
and mission reliability of cluster operations.
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At present, CN algorithms can be broadly categorized into the following three types:
filter-based, graph theory-based, and optimization theory-based.

1.1. Filter-Based CN Algorithms

Filter-based CN and localization algorithms predominantly adopt the Kalman fil-
ter (KF) framework. The Kalman filter is an optimal estimation method based on the
principle of minimum variance, capable of estimating system states, eliminating redun-
dancy, and predicting future states. Consequently, filter-based CN algorithms have been
extensively researched.

Harris et al. [9] utilized numerical simulations to assess the influence of range-rate
observations on the performance of the Centralized Extended Kalman Filter (CEKF) CN
algorithm. Their results demonstrate that the inclusion of range-rate measurements can
offer benefits compared to range-only approaches, particularly in scenarios where the
accuracy of range measurements is degraded. Gao et al. [10] developed a Huber-based
iterated divided difference filter (HIDDF) for cooperative localization of AUVs using a
single surface leader. This technique delivers improved accuracy and faster convergence
relative to the standard DDF under conditions of weak observability and significant initial
errors, while also exhibiting robustness against outliers. Zhao et al. [11] introduced an
unscented particle filter framework for multi-leader AUV cooperative localization aimed
at overcoming limitations related to low accuracy and non-Gaussian noise. The approach
effectively mitigates particle depletion and enhances positioning precision across diverse
noise environments. Huang et al. [12] presented a new adaptive extended Kalman filter
(EKF) to tackle the issue of unknown noise covariance in AUV cooperative localization. By
employing an online expectation-maximization strategy, the method dynamically estimates
both prediction error and measurement noise covariance. Zhang et al. [13] put forward a
consistent EKF-based cooperative localization method for multi-AUV systems to resolve
state estimation inconsistencies. Through correction of linearized measurements in the
Jacobian matrix, their strategy ensures estimation consistency. Kim et al. [14] formulated a
cooperative algorithm for multi-AUV navigation and sea current estimation that utilizes
fused Kalman filters. Requiring only one leader AUV equipped with Doppler Velocity
Log (DVL) and Ultra Short Baseline (USBL), the method enhances group localization
performance in environments with unknown currents, as supported by simulation studies.
Li et al. [15] constructed a robust leader–slave CN algorithm for AUVs based on Student’s
t extended Kalman filter (SEKF), which strengthens resistance to outliers arising from
acoustic communication and unreliable sensors in comparison to conventional Gaussian-
based EKF. Zhu et al. [16] proposes a leader-slave AUV CN method to overcome accuracy
degradation and limited beacon calibration range in underwater missions. To counter drift
from ocean currents, a navigation model incorporating current velocity as a state variable
is developed using five filtering methods.

1.2. Graph Theory-Based CN Algorithms

Graph theory-based algorithms address complex systems by constructing simple yet
effective graphical models and applying fundamental graph theory techniques to solve re-
lated problems. In cooperative localization systems, this involves first establishing a graph-
ical model of the system, then utilizing measurement data as connecting edges between
graph nodes, and finally employing graph theory algorithms to compute optimal estimates.

Fan et al. [17] proposes a novel factor graph and sum-product (FGS) based coop-
erative positioning algorithm for autonomous underwater vehicles (AUVs) to address
the limitations of traditional Kalman filter methods in multi-sensor fusion applications.
The proposed improved FGS (IFGS) algorithm employs a Bayesian framework to reduce
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linearization errors and incorporates a robust data processing mechanism to enhance es-
timation accuracy. Ben et al. [18] proposes a novel factor graph with cycles (CFG)-based
leader–slave CN algorithm for multi-AUV systems. By incorporating range and bearing
measurements, the method estimates the slave AUV’s position and orientation. Cycles
introduced by bearing data are resolved via clustering, enabling efficient inference using the
sum-product algorithm. Ma et al. [19] proposes a factor graph-based parallel CN algorithm
for AUVs in unknown underwater environments. The method constructs a factor graph
model that distributes local navigation and inter-AUV observation data across platform
nodes. Message passing within the graph enables optimal state estimation for each AUV.
Li et al. [20] proposes HTACL, a hybrid TOA/AOA cooperative localization algorithm
for multi-AUV systems in anchor-free environments. By jointly utilizing TOA and AOA
measurements, the method reduces inertial error accumulation and enhances relative po-
sitioning accuracy. Li et al. [21] proposes a factor graph-based cooperative localization
algorithm for multi-AUV systems that uses Mercator projection to bridge geodetic and
Cartesian coordinate discrepancies. The method constructs a cycle-free factor graph model
to efficiently estimate slave AUV states via the sum-product algorithm, avoiding additional
computational cycles. Guo et al. [22] addresses localization delays in multi-AUV cooper-
ative systems caused by slow underwater acoustic communication. A prediction model
is proposed that uses least squares to estimate unreceived distance data and incorporates
maximum correntropy criterion into factor graph optimization. Ben et al. [23] proposes a
factor graph-based CN algorithm with a stretching nodes’ strategy to mitigate unknown
ocean current disturbances in multi-AUV systems. By incorporating ocean current veloci-
ties as variable nodes and transforming cyclic graphs into cycle-free structures, the method
enables simultaneous estimation of AUV states and current velocities using a parametric
sum-product algorithm.

1.3. Optimization Theory-Based Cooperative Navigation Algorithms

Optimization algorithms enhance CN and localization performance by breaking down
complex problems into simpler subproblems. The process involves establishing constraint
equations for the system, defining an objective function, and solving for the optimum value
of this function to obtain an optimized solution.

Zhang et al. [24] proposes a dual-leader CN method for AUVs using the Cross-Entropy
(CE) algorithm and Markov Decision Process (MDP). By predefining slave AUV trajecto-
ries, the approach optimizes leader AUV paths probabilistically to minimize observation
error and maintain suitable ranging distances. Nerurkar et al. [25] proposes a distributed
Maximum A Posteriori (MAP) estimator for multi-robot cooperative localization. The
method distributes data and computations across robots to reduce memory and processing
demands compared to centralized approaches. It incorporates a distributed data-allocation
scheme and conjugate gradient optimization to improve computational efficiency and ro-
bustness. Zhou et al. [26] proposes SAPSO-AUFastSLAM, an improved algorithm for AUV
simultaneous localization and mapping (SLAM) that adaptively estimates time-varying
observation noise and optimizes particle resampling. It incorporates adaptive noise correc-
tion and simulated annealing particle swarm optimization to prevent filter divergence and
avoid local minima. Bo et al. [27] enhances a previously developed Huber-based robust
cooperative localization algorithm for AUVs by incorporating adaptive noise estimation.
The proposed method uses a covariance matching technique to estimate both Gaussian and
non-Gaussian process and measurement noise in real time, thereby adjusting the filter gain
adaptively. Zhu et al. [28] proposes a hierarchical reinforcement learning-based method for
leader-slave multi-AUV CN to mitigate positioning errors caused by low-precision sensors.
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The approach formulates the problem as a semi-Markov decision process and combines
hierarchical reinforcement learning with a polar Kalman filter for trajectory planning.

CN algorithm based on factor graph enables highly accurate and robust state estima-
tion by providing a transparent framework for modeling and optimizing over complex
measurement relationships. In this paper, we design a CN algorithm based on factor
graph and Lie group. To perform nonlinear optimization, the motion states of AUVs are
described using the two-dimensional special Euclidean group (SE(2)) space. To calibrate
and fuse data, error functions are derived by modeling AUV motion and acoustic ranging
and bearing measurements. The Gauss-Newton method is then employed to solve this
nonlinear optimization problem for optimal state estimation. To accurately simulate the
actual performance of AUVs, a parameter-level cooperative navigation simulation system is
established. Simulation experiments demonstrate that the proposed algorithm outperforms
the EKF algorithm across different AUV configurations.

Unlike prior factor-graph works for AUV CN that rely on the sum-product algorithm,
our method leverages a nonlinear optimization backend (Gauss-Newton) on Lie groups,
yielding higher accuracy and robustness. The main contributions of this paper and its
distinctions from the state of the art are summarized as follows:

(1) Novel State Representation: Unlike existing factor graph-based CN methods [17–23]

that typically represent the AUV state in vector space (e.g., x = [px, py, θ]T , this work
is the first to utilize the two-dimensional Special Euclidean Group SE(2) from Lie
theory to describe the motion state of AUVs. This representation provides a more
natural framework for handling the rigid-body motions of AUVs.

(2) Dual-Mode Optimization Framework: We propose two distinct optimization methods
tailored for different operational configurations. Method 1 is designed for paral-
lel configurations where all AUVs possess similar sensor accuracy. Method 2 is
specifically tailored for leader-slave configurations, which strategically leverages the
high-precision attitude information from a well-equipped leader AUV, preventing
the degradation of its attitude estimate by noisy acoustic measurements—a common
issue in standard EKF or single-method factor graph approaches.

(3) Comprehensive Performance Validation: A parameter-level simulation system that
incorporates AUV dynamics is established for evaluation. The proposed methods
demonstrate superior performance compared to the conventional EKF, with significant
reductions in average RMSE for both parallel (29% reduction with Method 1) and
leader-slave (38% reduction with Method 2) configurations.

2. Structures and Devices of Multiple AUVs
A CN system for multiple AUVs has two structures: parallel configuration and leader-

slave configuration.

2.1. Parallel Configuration

Parallel configuration, as shown in Figure 1, means that there is no distinction between
primary and secondary AUVs. Each AUV has the same function and uses its own naviga-
tion sensor to determine its own position. Through underwater acoustic communication, it
exchanges information with other AUVs in the system and obtains the position information
of neighboring AUVs. Parallel configuration, due to the equal status of each AUV and
flexible system configuration, the failure of one AUV will not have a significant impact on
the system. Therefore, it has good robustness and is suitable for performing tasks that are
easily damaged by some aircraft.
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Figure 1. Parallel configuration.

2.2. Leader-Slave Configuration

The leader-slave configuration refers to a small number of AUVs equipped with
high-precision navigation equipment as the main reference nodes, while other vehicles are
equipped with relatively low-precision navigation equipment. According to the different
number of leader AUVs, the positioning system can be divided into two modes: single
leader and multi leader. The single leader system selects one AUV equipped with high-
precision navigation equipment as the leader AUV, and the rest are slave AUVs. The
single leader system has simple navigation, easy deployment, relatively low cost, and
good operability. However, because the overall navigation performance of the CN system
depends on the main vehicle, high requirements are placed on the positioning ability,
reliability, and stability of the leader AUV. The typical leader-slave structure is shown
in Figure 2.

Figure 2. Leader-slave configuration.

The algorithm of CN between two AUVs can be extended to multiple AUVs. This
article studies the algorithm for CN between two AUVs. Without appointing configuration,
one AUV is referred to as the leader AUV and the other AUV is referred to as the slave
AUV. As shown in Figure 3, for CN system, AUVs will be equipped with IMU, DVL,
depth gauge, and acoustic transmission/receiving equipment. In addition, the distance
and direction measurement modes of cluster AUVs studied by different scholars are not
completely the same. The mode studied in this article is the transmission from the leader
AUV to the receiving from the slave AUV, which means that only from slave AUV has
measuring functions.
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Figure 3. Navigation equipment.

3. Factor Graph Optimization Theory
This section reviews the well-established theories of factor graph and maximum a

posteriori estimation, which form the foundational framework for our proposed algo-
rithm [29,30].

Factor graph is a bipartite graph model used to represent the joint probability dis-
tribution of random variables. The factor graph model G can be defined as a set of state
nodes X, a set of factor nodes U, and an edge set E connecting nodes. State nodes xi ∈ X
represent random variables of the probability distribution. Factor nodes ϕi ∈ U represent
the probability function of local state variables and are also local functions of factorization.
The edge ez ∈ E represents the relationship between factor nodes and state variables. The
factor graph model represents the joint probability distribution of state variables through
state nodes, factor nodes, and edges, and the posterior estimation solution of state variables
is the optimal estimation value under joint constraints. According to Bayes’ formula, if
there are m state variables x0:m ∈ X and n measurement values z0:n ∈ Z at a given time, the
posterior probability density p(X|Z) of the set of state variables X can be decomposed into:

p(X|Z) = p(Z|X)p(X)

p(Z)
∝ p(Z|X)p(X) (1)

In the decomposition results of the above equation, p(X) and p(Z|X ) correspond to
the likelihood probability density of the state variables and measurement information in
the factor graph, respectively. In the factor graph, both the posterior probability density
p(X|Z ) and the prior probability p(X) are represented by factor nodes ϕ(X). Therefore,
the posterior probability density of the state variable X in Equation (1) can be rewritten as
a factorization form:

p(X|Z)∞∏
i

ϕi(xi) = ϕ(X) (2)

where xi is the subset of state nodes connected to factor ϕi. The maximum posterior estimate
of the state variable X in the factor diagram is:

XMAP = argmax
X

∏
i

ϕi(xi) (3)

For Gaussian distributed noise, factors have probability distributions in the
following form:

ϕi(xi)∞ exp
{
−1

2
∥hi(xi)⊟ zi∥2

σi

}
(4)

Among them, hi() represents the observation function of the state variable, zi repre-
sents the actual observation value, ⊟ represents generalized subtraction, and σi represents
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the weight matrix. The nonlinear least squares optimization objective of factor graph can
be written as

XMAP = argmin
X

F(X) = argmin
X

(∑
i
∥hi(xi)⊟ zi∥2

σi
) = argmin

X
(∑

i
∥ fi(xi)∥2

σi
) (5)

Among them, fi(xi) = ∥hi(xi)⊟ zi∥2
σi

, F(X) = ∑
i

fi(xi) represents the error function

of nonlinear optimization in the factor graph.
The specific factor graph model for our multi-AUV cooperative navigation system,

which visualizes these state nodes and factors (e.g., motion, range, bearing), is depicted in
Figure 7 in Section 4.3.

4. Modeling Based on Li Group
4.1. Model Design

As shown in Figure 4, the navigation process of AUV is generally divided into navi-
gation coordinate system Onxnyn and body coordinate system Obxbyb. In CN system, all
AUVs use the same navigation coordinate system.

Figure 4. Coordinate System.

The depth gauge equipped on AUVs usually has high accuracy, and the cooperation
tasks of AUVs are usually carried out in a fixed depth state, so it can be considered that all
AUVs move in a two-dimensional plane. The state of AUV at time i can be represented as:

xi =
{

pi,x, pi,y, θi
}

(6)

where pi,x and pi,y represent the position of the AUV in the xn and yn directions of the
navigation coordinate system, and θi represents the heading angle of the AUV in the
navigation coordinate system. Obviously, xi is in the vector space.

In the factor graph, the set of AUV states from time 0 to time m can be represented as:

X = [x0, x1, . . . , xm] (7)

The pose of a vehicle in a two-dimensional plane can also be represented using the
SE(2) space in the Lie group, and the motion state of the AUV at the time i can also be
expressed as pose matrix:

Mi =

[
Ri Ti

0 1

]
(8)
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where Ri = Exp(θi) =

[
cos θi − sin θi

sin θi cosθi

]
represents the rotation matrix from the naviga-

tion coordinate system to the body coordinate system, and Ti =
[
pi,x pi,y

]
represents the

translation transformation vector from the navigation coordinate system to the body coor-
dinate system. Mi in SE(2) space and xi =

{
pi,x, pi,y, θi

}
in the vector space correspond to

each other, and their conversion relationship is represented by the symbols Log and Exp
as follows:

Mi = Exp(xi)

xi = Log(Mi)

Mi+1 = Mi·∆M = Mi·Exp(∆x)
(9)

where ∆M is the variation in SE(2) space with respect to the increment ∆x in the vector
space. Two-dimensional Lie group SE(2) uses a single matrix multiplication to describe
complex transformations uniformly, represents orientation via rotation matrices, naturally
avoids singularities, and enables unconstrained optimization on its corresponding Lie
algebra, resulting in more efficient and stable computations. The set operation definitions
for the two-dimensional Lie group SE(2) are as follows:

M·p = T + Rp, p = [px py]
T (10)

Its Jacobian matrix can be derived using the following formula:

JM·p
M = ∂(M·p)

∂M =
[
R R[1]× p

]
JM·p
p = ∂(M·p)

∂p = R

[1]× =

[
0 −1
1 0

] (11)

When p = p0 = [0 0], Equation (11) can be transformed into:

JM·p0
M =

∂(T)
∂M

= [R 0] (12)

The adoption of the SE(2) Lie group for state representation is motivated by the
limitations of optimizing over states parameterized in vector space (e.g., using Euler angles
for orientation). Such parameterizations can suffer from singularities (gimbal lock) and
constraints, leading to instability and inefficiency in nonlinear optimization. The Lie
group framework provides a more natural and robust foundation for describing the rigid-
body motions of AUVs. By representing the state on the SE(2) manifold, we achieve a
more stable and efficient estimation process. This constitutes a fundamental aspect of our
novel methodology.

4.2. Observation Model Based on Li Group

The AUV CN process includes motion observation and measurement of range
and bearing.

4.2.1. Motion Model

Assuming that at time i, the velocity measurements of DVL are ṽl
i,x, ṽl

i,y and the angle

measurement of IMU is θ̃i, as shown in Figure 5.
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Figure 5. Schematic diagram of motion model.

The pose change measurements from time 0 to time m can be represented by SE(2). So,
the error function f of the pose change measurement can be expressed as:

fi,p(x) =
∥∥∥Log(Z−1

i,i+1M−1
i Mi+1)

∥∥∥2

σp
(13)

The notation ∥·∥A denotes the A-norm induced by a symmetric positive definite matrix
A. It is defined for a vector b as: ∥b∥A =

√
bT Ab. Where σp denotes the weight matrix of

pose transformation measurement.

4.2.2. Range and Bearing Model

At time i, the pose of the leader AUV is
(

pl
i,x, pl

i,y, θl
i

)
, the pose of the follower AUV

is
(

p f
i,x, p f

i,y, θ
f
i

)
, and the measurements of range and bearing are

(
L̃i, φ̃i

)
. The schematic

diagram of direction and distance measurement process is shown in Figure 6:

Figure 6. Schematic diagram of range and bearing.

The range error function fi,L(x) at time i can be expressed as:

fi,L(x) =

∥∥∥∥∥L̃i −
√
(pl

i,x − p f
i,x)

2
+ (pl

i,y − p f
i,y)

2
∥∥∥∥∥

2

σL

(14)
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where σL represents the weight matrix of ranging. The bearing error function fi,φ(x) at
time i can be expressed as:

fi,φ(x) =

∥∥∥∥∥∥θ̃
f
i + φ̃i − arctan

pl
i,x − p f

i,x

pl
i, f − p f

i, f

∥∥∥∥∥∥
2

σφ

(15)

where σφ represents the weight matrix of bearing.

4.3. System Structure of Factor Graph

From time 0 to time m, the leader AUV has a pose set
(

pl
0,x, yl

0,y, θl
0

)
. . .

(
pl

m,x, pl
m,y, θl

m

)
,

and the slave AUV has a pose set
(

p f
0,x, y f

0,x, θ
f
0

)
. . .

(
p f

m,x, p f
m,y, θ

f
m

)
. Figure 7 depicts the

motion model and range and bearing factors of the entire process.

, ,( , )l l
m x m yp p1, 1,( , )l l

x yp p 1, 1,( , )l l
m x m yp p− −2, 2,( , )l l

m x m yp p− −0, 0,( , )l l
x yp p

, ,( , )f f
m x m yp p1, 1,( , )f f

x yp p 1, 1,( , )f f
m x m yp p− −2, 2,( , )f f

m x m yp p− −0, 0,( , )f f
x yp p

, ( )m Lf x

, ( )mf xϕ

1, ( )l
m pf x−

1, ( )l
m pf x−

2, ( )l
m pf x−

2, ( )l
m pf x−

1, ( )m Lf x−

1, ( )mf xϕ−

2, ( )m Lf x−

2, ( )mf xϕ−

1, ( )Lf x

1, ( )f xϕ

0, ( )Lf x

0, ( )f xϕ

0, ( )l
pf x

0, ( )l
pf x

Slave AUV

Leader AUV

Figure 7. System structure of factor graph.

According to (5), the nonlinear least squares optimization objective of the factor graph
can be written as:

XMAP = argmin
X

F(x) = argmin
X

∑
i

fi(xi)

f l
i (xi) =

∥∥∥∥Log
((

Zl
i,i+1

)−1(
Ml

i

)−1
Ml

i+1

)∥∥∥∥2

σl
p

f f
i (xi) =

∥∥∥∥Log
((

Z f
i,i+1

)−1(
M f

i

)−1
M f

i+1

)∥∥∥∥2

σ
f
p

fi,L(xi) =

∥∥∥∥∥L̃i −
√
(pl

i,x − p f
i,x)

2
+ (pl

i,y − p f
i,y)

2
∥∥∥∥∥

2

σL

fi,φ(xi) =

∥∥∥∥∥∥θ̃
f
i + φ̃i − arctan

pl
i,x − p f

i,x

pl
i, f − p f

i, f

∥∥∥∥∥∥
2

σφ

(16)

Optimizing the above equation can obtain the optimal estimation value of the master
and slave AUV poses at all times, which is denoted as

(
p̂l

0,x, p̂l
0,y, θ̂l

0

)
. . .,

(
p̂l

m,x, p̂l
m,y, θ̂l

m

)
,(

p̂ f
0,x, p̂ f

0,y, θ̂
f
0

)
. . .,

(
p̂ f

m,x, p̂ f
m,y, θ̂

f
m

)
.

The modeling method for the error function in the factor diagram mentioned above is
called Method 1, which optimizes the heading angles of both the master and slave AUVs
simultaneously. This is suitable for situations where both AUVs use low-precision IMUs.

The aforementioned factor graph error function modeling approach is referred to
as Method 1. It simultaneously optimizes the heading angles of both the master and
slave AUVs, which is suitable for scenarios where both AUVs are equipped with low-
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precision IMUs. During the factor graph fusion process, this method essentially performs a
weighted average between the leader AUV’s attitude angle measurements and the slave
AUV’s attitude angle measurements, which are augmented with underwater acoustic range
and angle measurements. However, in cases where the leader AUV is equipped with
a high-precision IMU, this fusion approach may in fact compromise the accuracy of its
attitude estimates.

Therefore, Method 2 is adopted to model the motion measurement errors of the leader
AUV. The error function f l

i (x) for its position change measurements can be expressed as:

f l
i (x) =

∥∥∥(pl
i,x + ṽl

i,xdt cos θ̃l
i − ṽl

i,ydt sin θ̃l
i − pl

i,x+1)
2
+ (pl

i,y + ṽl
i,xdt sin θ̃l

i + ṽl
i,ydt cos θ̃l

i − pl
i,y+1)

2
∥∥∥2

σl
p

(17)

Compared to Equation (13), the error function of the leader AUV motion model only
includes the measurement error of position, without considering the measurement error of
attitude. The nonlinear least squares optimization objective of factor graph for Method 2 is
as follows:

XMAP = argmin
X

F(x) = argmin
X

∑
i

fi(xi)

f l
i (xi) =

∥∥∥(pl
i,x + ṽl

i,xdt cos θ̃l
i − ṽl

i,ydt sin θ̃l
i − pl

i,x+1)
2
+ (pl

i,y + ṽl
i,xdt sin θ̃l

i + ṽl
i,ydt cos θ̃l

i − pl
i,y+1)

2
∥∥∥2

σl
p

f f
i (xi) =

∥∥∥∥Log
((

Z f
i,i+1

)−1(
M f

i

)−1
M f

i+1

)∥∥∥∥2

σ
f
p

fi,L(xi) =

∥∥∥∥∥L̃i −
√
(pl

i,x − p f
i,x)

2
+ (pl

i,y − p f
i,y)

2
∥∥∥∥∥

2

σL

fi,φ(xi) =

∥∥∥∥∥∥θ̃
f
i + φ̃i − arctan

pl
i,x − p f

i,x

pl
i, f − p f

i, f

∥∥∥∥∥∥
2

σφ

(18)

The factor graph serves as a transparent and flexible framework for probabilistic
modeling, representing the joint probability distribution of all AUV states given the mea-
surements. The innovation of this work lies in the synergy between this modeling frame-
work and the Lie group representation. While the factor graph elegantly encapsulates the
system’s probabilistic constraints, the use of the SE(2) Lie group provides the mathematical
foundation for the state representation and the subsequent optimization on the manifold.
This combination allows for a principled and accurate formulation of the cooperative
navigation problem.

4.4. Method of Solving Factor Graph

The Gauss-Newton method is used to solve the nonlinear least squares problem. The
key step is to linearize the error functions on the manifold. we define a perturbation ∆X in
the vector space. The error function is approximated as:

fi(X + ∆X) ≈ fi(X) + Ji∆X (19)

where Ji is the Jacobian matrix of the error function fi(X) with respect to X. Substituting it
into the least squares optimization objective of (13) (15):

F(X + ∆X) ≈ ∑
i
( fi(X) + Ji∆X)T( fi(X) + Ji∆X)

= ∑
i

f T
i (X) fi(X) + 2∑

i
∆XT JT

i fi(X) + ∑
i

∆XT JT
i Ji∆X

(20)
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By making the first-order derivative of F(X + ∆X) is equal to 0, we can obtain:

∑
i

JT
i Ji∆X = −∑

i
JT
i fi (21)

By iteratively solving the above equation to obtain ∆X, the optimal estimate of X can
be obtained. The flowchart of the Gauss Newton method is shown in Figure 8.

Initialization parameters

Calculate Jacobian matrix

Calculate the increment of 
state variables

Whether the increment less 
than the threshold

Update status 
variables

Output state variable

Yes

No

Start

Figure 8. The flow chart of algorithm.

The Lie group formulation inherently facilitates the computation of Jacobian matrices
by providing a structured manifold framework. To demonstrate this advantage, the range
error function fi,L(xi), excluding weighting factors, is analyzed as a representative case for
Jacobian derivation

fi,L(xi) =

∥∥∥∥∥L̃i −
√
(pl

i,x − p f
i,x)

2
+ (pl

i,y − p f
i,y)

2
∥∥∥∥∥

2

2
= L̃i −

∥∥∥Ml
i ·p0 − M f

i ·p0

∥∥∥
2

∂ fi,L(xi)

∂xl
i

=
Ml

i ·p0−M f
i ·p0∥∥∥Ml

i ·p0−M f
i ·p0

∥∥∥
2

[Rl
i 0]

∂ fi,L(xi)

∂x f
i

= − Ml
i ·p0−M f

i ·p0∥∥∥Ml
i ·p0−M f

i ·p0

∥∥∥
2

[R f
i 0]

(22)

In practical applications of solving factor graphs for cooperative navigation, a key
distinction of our approach lies in the solver selection. Unlike prior factor graph methods
for AUVs that often rely on the Sum-Product Algorithm [17–19], the core innovation of
this work is the adoption of the Gauss-Newton method as the backend solver on the Lie
group manifold. This paradigm shift from a probabilistic inference algorithm to a nonlinear
optimization technique is crucial. Operating directly on the SE(2) manifold, the Gauss-
Newton method provides higher linearization accuracy and better estimation consistency
by avoiding the approximations often required by the Sum-Product Algorithm, especially
in graphs with cycles.

To ensure the practical feasibility of this optimization-based approach, a sliding win-
dow strategy is employed. Only a limited number of recent states are maintained for
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optimization, as the influence of earlier historical states on the current state is negligible.
This approach effectively controls computational complexity by focusing on the most rel-
evant states. For a sliding window of size W time steps, the number of state variables
optimized in each iteration remains constant at 2 × W × 3 (for two AUVs in SE(2)), pre-
venting unbounded growth in computational cost over time. For example, with a window
size of W = 30, the number of optimized variables is 180.

We analyzed the computational efficiency to demonstrate the real-time capability of
the proposed algorithm. The simulations were conducted on a standard desktop CPU. The
average time required to solve the nonlinear optimization problem per update was empiri-
cally measured to be below 50 ms. Given that the acoustic ranging and communication
updates typically occur at a 1 s interval in AUV applications, the computational demand of
our algorithm is well within the available time budget, confirming its potential for real-time
operation. It is important to note that the EKF, due to its recursive nature, has a lower
and constant computational cost per update. The significant gain in estimation accuracy
(29–38% reduction in RMSE, as shown in Sections 5.2 and 5.3) achieved by our method
justifies this acceptable increase in computational load. The scalability of the approach for
larger teams of AUVs will be a focus of our future work.

4.5. AUV Cooperative Navigation Simulation System
It is often difficult to obtain accurate ground truth poses of AUVs in underwater

navigation experiments, so precise simulation experiments can be used to compare and
verify the above algorithms. According to reference [31], the dynamic equation of AUV is
as Equation (23), and the meanings represented by each variable are shown in Table 1.



(m − X .
u) 0 0 0 mzg −myg

0 (m − Y.
v) 0 −mzg 0 −(mxg − Y.

r)

0 0 (m − Z .
w) myg −(mxg + Z .

q) 0
0 −mzg myg (Ixx − K .

p) 0 0
mzg 0 −(mxg + M .

w) 0 (Iyy − M .
q) 0

−myg (mxg − N .
v) 0 0 0 (Izz − N.

r)





.
u
.
v
.

w
.
p
.
q
.
r


=



XHS + Xu|u|u|u|+ (Xwq − m)wq + (Xqq + xgm)q2 + (Xvr + m)vr + (Xrr + xgm)r2 − myg pq − mzg pr + Xprop

YHS + Yv|v|v|v|+ Yr|r|r|r|+ mygr2 + (Yur − m)ur + (Ywp + m)wp + (Ypq − mxg)pq + Yuvuv + myg p2 − mzgqr + Yuuδr u2δr

ZHS + Zw|w|w|w|+ Zq|q|q|q|+ (Zuq + m)uq + (Zvp − m)vp + (Zrp − mxg)rp + Zuwuw + mzg(p2 + q2)− mygrq + Zuuδs u2δs

KHS + Kp|p|p|p| − (Izz − Iyy)qr + m(uq − vp)− mzg(wp − ur) + Kprop

MHS + Mw|w|w|w|+ Mq|q|q|q|+ (Muq − mxg)uq + (Mvp + mxg)vp + (Mrp − (Ixx − Izz))rp + mzg(vr − wq) + Muwuw + Muwuw + Muuδs u2δs

NHS + Nv|v|v|v|+ Nr|r|r|r|+ (Nur − mxg)ur + (Nwp + mxg)wp + (Npq − (Iyy − Ixx))pq − myg(vr − wq) + Nuvuv + Nuuδr u2δr



(23)

Table 1. Description of symbols in simulation system.

Description Symbol

Linear velocity in body frame
.
u,

.
v,

.
w

Angular velocity in body frame
.
p,

.
q,

.
r

Restoring force and moments XHS, YHS, ZHS, KHS, MHS, NHS

Added mass coefficient X .
u, Y .

v, Z .
w, K .

p, M .
q, N.

r

Linear damping coefficient Yuv, Yur, Zuw, Zuq, Muw, Nuv, Nur

Quadratic damping coefficient Xuu, Yvv, Zww, Kpp, Mqq, Nrr

Cross-flow damping coefficient Xwq, Xvr, Xqq, Xrr, Ywp, Ypq,
Zvp, Zrp, Mrp, Mvp, Npq, Nwp

Control coefficients Yuudr, Nuudr, Zuuds, Muuds

Propulsion Coefficients Xprop, Kprop

By iteratively calculating Equation (23) using the Euler method, the linear velocity and
angular velocity of the AUV at each moment can be obtained, as well as the true position
and angle.
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AUVs can acquire simulated measurements such as acceleration, angular velocity,
velocity, and inter-AUV distance and angle, corresponding to IMU, DVL, and sonar sensors
for ranging and bearing. The

.
u,

.
v,

.
w of Equation (23) refer to the acceleration ab of the AUV

in the body coordinate system, while the measurement of IMU is the acceleration in the
navigation coordinate system. The relationship between the velocity of the body coordinate
system and the navigation coordinate system is:

vn = Rvb (24)

where vn is the velocity of navigation coordinate system, and vb is velocity of the body
coordinate system. By taking the derivative, the acceleration of AUV in the navigation
coordinate system can be obtained:

an = R
.
vb +

.
Rvb = Rab + ω × vb (25)

where an is the velocity of navigation coordinate system, and ω is angular velocity of AUV.
By adding Gaussian noise to the above measurements, a parameter level CN simulation
system can be constructed.

5. Experiments and Results
5.1. Experimental Setup

The relative deviation between the planned trajectories of the leader AUV and the
follower AUV is set to 10 m. The controller receives the real motion data of the AUVs to
ensure they follow the planned trajectories. During this process, Gaussian noise is added to
the true values of the AUV’s acceleration, angular velocity, linear velocity, relative distance,
and relative angle to simulate the corresponding measured values.

Two simulation conditions were set up for the AUV cluster structure, corresponding
to parallel and leader-slave configurations. In the first experiment, a parallel configuration
is adopted: both the leader and follower AUVs are equipped with the same low-precision
IMU1. In the second experiment, a leader-slave configuration is used: the leader AUV
is equipped with a high-precision IMU2, while the follower AUV uses the low-precision
IMU1. The relevant equipment parameters are provided in Table 2 below.

Table 2. Equipment parameters.

Equipment Parameter Value

IMU1

Constant Bias of Gyroscope 10(◦)/h

Angular Random Walk 0.35(◦)/h1/2

Constant Bias of Accelerometer 15 × 10−6 g

Velocity Random Walk 60 × 10−6 g

Update Frequency 100 Hz

IMU2

Constant Bias of Gyroscope 5(◦)/h

Angular Random Walk 0.03(◦)/h1/2

Constant Bias of Accelerometer 10 × 10−6 g

Velocity Random Walk 30 × 10−6 g

Update Frequency 100 Hz
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Table 2. Cont.

Equipment Parameter Value

DVL
Velocity Measurement Noise 0.1 m/s

Update Frequency 10 Hz

Sonar
Range Measurement Noise 3 m

Bearing Measurement Noise 2.55◦

Update Frequency 1 Hz

5.2. Simulation Result of Parallel Configuration

Under the first set of simulation conditions, the trajectory of the AUV was estimated
using dead reckoning (Dr), extended Kalman filtering (EKF) [32], Method 1, and Method 2,
as shown in Figure 9.

 

Figure 9. Estimation trajectory of different algorithms. (a) Comparison between true track and DR
track; (b) Comparison between true track and EKF track; (c) Comparison between true track and
Method1 track; (d) Comparison between true track and Method 2 track.

It can be observed that due to the relatively low accuracy of the IMU and the absence
of sonar-based ranging and directional information, the trajectories of the two AUVs under
Dr increasingly deviate from the true values, with significant heading angle errors, posing
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challenges in practical applications. The trajectories of the leader and follower AUVs
estimated by the Kalman filter generally follow the true trajectory and remain relatively
parallel. However, since the Kalman filter relies solely on single-instance ranging and
directional measurements with substantial error noise, the estimated trajectory exhibits
considerable oscillations.

In contrast, the trajectories estimated by Method 1 also follow the true trajectory and
maintain mutual parallelism, with the leader’s trajectory showing smaller oscillations
compared to the Kalman filter. Method 2, on the other hand, produces a leader trajectory
consistent with Dr. While it partially mitigates oscillations in the follower’s estimated
trajectory, the leader’s heading deviation results in an overall bias in the trajectories.

From Figure 10 and Table 3, it can be seen that in the case of using two low-precision
IMUs in a distributed cluster, Method 1, with the minimum RMSE, should be used for
parallel configuration. It can be observed that in terms of the position of the leader AUV,
the orientation of the leader AUV, the position of the follower AUV, and the orientation
of the follower AUV, the error RMSE of Method 1 is reduced by 24%, 43%, 16%, and 33%,
respectively, compared to the EKF, with an average reduction of 29%.

(a) (b)

(c) (d)

Figure 10. Error of different algorithms. (a) Comparison of position errors of leader AUVs using
different algorithms; (b) Comparison of orientation errors of leader AUVs using different algorithms;
(c) Comparison of position errors of slave AUVs using different algorithms; (d) Comparison of
orientation errors of slave AUVs using different algorithms. Orientation error is presented in radians.
For improved readability, note that 0.1 rad ≈ 5.73.
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Table 3. Error analysis (RMSE: Root Mean Square Error; MAXE: Maximum Absolute Error).

The Algorithms Description Position Error of
Leader AUV (m)

Orientation
Error of Leader

AUV (Rad)

Position Error of
Slave AUV (m)

Orientation
Error of Slave

AUV (Rad)

Dr
RMSE 6.13 0.05 29.05 0.27

MAXE 15.98 0.12 69.69 0.49

EKF
RMSE 3.51 0.07 3.37 0.06

MAXE 9.94 0.22 8.46 0.18

Method 1
RMSE 2.67 0.04 2.86 0.04

MAXE 4.16 0.15 4.64 0.16

Method 2
RMSE 6.31 0.05 6.40 0.07

MAXE 16.32 0.12 16.15 0.20

5.3. Simulation Result of Leader-Slave Configuration

Under the second set of simulation conditions, the trajectory of the AUV was estimated
using Dr, EKF, Method 1, and Method 2, as shown in Figure 11.

 

Figure 11. Estimation trajectory of different algorithms. (a) Comparison between true track and DR
track; (b) Comparison between true track and EKF track; (c) Comparison between true track and
Method1 track; (d) Comparison between true track and Method 2 track.
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It can be observed that due to the high precision of the leader AUV’s IMU, the trajectory
estimated by Dr remains very close to the true value throughout. However, the trajectory of
the follower AUV based solely on Dr deviates significantly from the true trajectory. Noises
in ranging, bearing, and the follower’s IMU affect the estimated trajectory of the leader,
causing both the leader’s and the followers’ estimated paths to deviate from the true values.

In Method 2, the trajectory of the leader AUV is estimated entirely using the attitude
angles provided by the high-precision IMU. The ranging and bearing noises do not degrade
its heading accuracy. As a result, the leader’s trajectory almost coincides with that of
the Dr leader, and the trajectory of the follower AUV is also significantly corrected. As
demonstrated in Figure 12 and Table 4, the pose errors of the leader AUV in Method 2 are
consistent with those of Dr and are smaller than those of the EKF and Method 1. Meanwhile,
the pose errors of the follower AUV are noticeably smaller than those of the previous
two methods.

(a) (b)

(c) (d)
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Figure 12. Error of different algorithms. (a) Comparison of position errors of leader AUVs using
different algorithms; (b) Comparison of orientation errors of leader AUVs using different algorithms;
(c) Comparison of position errors of slave AUVs using different algorithms; (d) Comparison of
orientation errors of slave AUVs using different algorithms. Orientation error is presented in radians.
For improved readability, note that 0.1 rad ≈ 5.73.
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Table 4. Error Analysis.

The Algorithms Description Position Error of
Leader AUV (m)

Orientation
Error of Leader

AUV (Rad)

Position Error of
Slave AUV (m)

Orientation
Error of Slave

AUV (Rad)

Dr
RMSE 4.9 0.02 15.33 0.15

MAXE 8.38 0.03 35.60 0.24

EKF
RMSE 7.19 0.08 6.92 0.07

MAXE 14.51 0.19 14.27 0.23

Method 1
RMSE 4.11 0.04 3.76 0.07

MAXE 10.48 0.11 10.56 0.21

Method 2
RMSE 4.97 0.02 4.73 0.06

MAXE 8.53 0.03 8.69 0.21

It can be observed that in terms of the position of the leader AUV, the orientation of
the leader AUV, the position of the follower AUV, and the orientation of the follower AUV,
the error RMSE of Method 2 is reduced by 31%, 75%, 32%, and 14%, respectively, compared
to the EKF, with an average reduction of 38%.

As stated in Section 4.5, the average optimization time per update was consistently
below 50 ms in our simulations. This timing data solidly supports the real-time capa-
bility of the proposed method, as it is an order of magnitude faster than the 1 s cycle of
acoustic measurements.

6. Conclusions
This paper addressed the cooperative navigation problem for multi-AUV systems

under different configurations by proposing a novel optimization algorithm based on factor
graph theory and Lie group theory.

The main contributions and conclusions of this study are summarized as follows:
Novel Methodology: This work is the first to utilize the two-dimensional Special

Euclidean Group SE(2) to describe the motion state of AUVs. Based on this representation,
error functions for both the motion model and the acoustic ranging/bearing model were
formulated, effectively transforming the cooperative navigation problem into a nonlinear
least-squares optimization problem on the Lie group.

Dual Optimization Strategies: Two distinct optimization methods (Method 1 and
Method 2) were proposed to cater to different AUV configurations. Method 1 is designed
for parallel configurations, simultaneously optimizing the poses of both the leader and
follower AUVs. Method 2 is tailored for leader–follower configurations; it fully trusts the
leader’s high-precision attitude sensor, optimizing only its position, thereby preventing the
contamination of the leader’s attitude estimate by acoustic measurement noise.

Superior Performance: The effectiveness of the proposed algorithms was validated
through parameter-level simulation experiments. The results demonstrate that in parallel
configurations, Method 1 reduces the average RMSE of position and orientation errors by
29% compared to the traditional Extended Kalman Filter (EKF). In leader–follower configu-
rations, Method 2 performs even better, achieving a significant 38% average reduction in
RMSE, which highlights a substantial improvement in navigation accuracy.

The proposed algorithm is not dependent on a specific AUV formation configura-
tion. Its flexible factor graph model effectively fuses observations from diverse sources,
demonstrating strong generality and robustness.
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In conclusion, the factor graph and Lie group-based cooperative navigation algorithm
proposed in this paper provides an effective and versatile solution for the precise pose
estimation of multi-AUV systems. Future work will focus on extending the algorithm to
three-dimensional space (SE(3)) and further investigating its performance under more prac-
tical challenges, such as communication delays and packet loss. It is important to note that
a direct comparative analysis with other state-of-the-art multi-AUV localization algorithms
was not conducted. This is due to the current absence of standardized benchmark scenarios
and the fact that advanced algorithms are typically validated under specific, non-uniform
simulation setups or configurations that differ from this study. Future work will aim to
address this gap by engaging in collaborative efforts to establish common benchmarks for
the community.
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