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Abstract

Translation-based multimodal learning addresses the challenge of reasoning across heterogeneous data modalities
by enabling translation between modalities or into a shared latent space. In this survey, we categorize the field into
two primary paradigms: end-to-end translation and representation-level translation. End-to-end methods leverage
architectures such as encoder—decoder networks, conditional generative adversarial networks, diffusion models,
and text-to-image generators to learn direct mappings between modalities. These approaches achieve high
perceptual fidelity but often depend on large paired datasets and entail substantial computational overhead. In
contrast, representation-level methods focus on aligning multimodal signals within a common embedding space
using techniques such as multimodal transformers, graph-based fusion, and self-supervised objectives, resulting in
robustness to noisy inputs and missing data. We distill insights from over forty benchmark studies and highlight
two notable recent models. The Explainable Diffusion Model via Schrédinger Bridge Multimodal Image Translation
(xDSBMIT) framework employs stochastic diffusion combined with the Schrédinger Bridge to enable stable
synthetic aperture radar-to-electro-optical image translation under limited data conditions, while TransTrans
utilizes modality-specific backbones with a translation-driven transformer to impute missing views in multimodal
sentiment analysis tasks. Both methods demonstrate superior performance on benchmarks such as UNICORN-
2008 and CMU-MOS], illustrating the efficacy of integrating optimal transport theory (via the Schrodinger Bridge
in xDSBMIT) with transformer-based cross-modal attention mechanisms (in TransTrans). Finally, we identify open
challenges and future directions, including the development of hybrid diffusion—transformer pipelines, cross-
domain generalization to emerging modalities such as light detection and ranging and hyperspectral imaging, and
the necessity for transparent, ethically guided generation techniques. This survey aims to inform the design of
versatile, trustworthy multimodal systems.
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1. INTRODUCTION

With the rapid development of deep learning, multimodal learning has become a research hotspot in the
field of artificial intelligence. Among these, translation, as a core technology, has achieved great success in
natural language processing (NLP)"*. Traditional text translation aims to achieve information conversion
between different languages, which is essentially data mapping between different domains. The extension of
this concept allows us to perform image-to-image translation between various visual domains, such as style
transfer and cross-sensor data conversion.

Initially, neural machine translation (NMT) achieved high-quality translation from source language to
target language through encoder-decoder architectures® and attention mechanisms'. This success inspired
researchers to apply similar architectures to the image domain, proposing encoder-decoder-based image-to-
image translation'”. Some researchers use the generative adversarial networks (GANs)"” framework to
achieve this, such as using conditional generative adversarial networks (cGANs)™ to assist translation with
additional information or using CycleGAN" for unpaired translation. Others employ the variational
autoencoder (VAE)" framework to learn the probability distribution of data for high-quality image
translation. The goal of both methods is to learn the mapping from one image domain to another while
preserving the fundamental content of the images. For example, translating label maps into photographs™"/,
or converting daytime cityscapes into nighttime scenes"?.

Furthermore, the concept of image translation has been extended to image conversion between different
styles and sensors. Style Transfer allows us to combine the content of one image with the style of another,
creating unique artistic effects">'*. In fields such as remote sensing and medical imaging, different sensors
may capture varying features of the same scene. Through translation models, we can achieve mutual

[15-19]

generation between these diverse images'***.

Meanwhile, translation-based learning has been introduced into conversions between other modalities, such
as Image-to-Text*"*!, Audio-to-Text"**, Audio-to-Image, Image-to-Audio®”’, and Text-to-Image"®. The
generated results from these modality translations are new modalities, and the current needs of multimodal
learning have further developed, requiring repeated modality fusion after generating new modalities.

Based on the shortcomings of translation learning between these modalities, researchers have further

combined multimodal learning*”!

with the increasingly developing representation learning"”. By pre-
representing text, visual, and audio modalities, and then fusing these features at the representation level,
models can share and complement information among multiple modalities, thereby improving task
performance. One of the most prominent applications is multimodal sentiment analysis"**. In sentiment
analysis, data from a single modality may suffer from excessive noise or missing information, such as
background noise in speech signals, occlusions in video frames, or ambiguities in textual information.
Through multimodal fusion, models can utilize information from other modalities to compensate for the

shortcomings of a single modality, improving the accuracy and robustness of sentiment recognition* .,

This review aims to systematically examine the development and research progress of translation-based
multimodal learning. We will categorize translation-based multimodal learning into two major types: end-
to-end translation and representation-level translation, introducing specific models and their advantages
and disadvantages. Subsequently, we will focus on multimodal learning methods based on the
aforementioned modality translations, analyze their advantages in handling modality noise and missing
data, and discuss typical applications such as multimodal sentiment analysis.
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2. DATASETS FOR TRANSLATION-BASED MULTIMODAL LEARNING

This section introduces several datasets commonly used in translation-based multimodal learning. These
datasets span various tasks, as shown in Table 1, including image-to-image translation, cross-modal
sentiment analysis, and audio-to-text translation, providing comprehensive resources for training and
evaluating multimodal learning models.

2.1. Cityscapes™

Cityscapes dataset is widely used for urban scene understanding, particularly in tasks such as semantic
segmentation and image-to-image translation. It contains high-resolution street scene images from 50 cities,
with fine-grained annotations of 30 object classes. This dataset is particularly useful for tasks involving street
view style transfer, such as transforming daytime images into nighttime scenes, or translating between
different weather conditions.

2.2. CMPFacades™!

CMPFacades dataset consists of architectural facade images and their corresponding labels. It is used
extensively in image-to-image translation tasks that involve architectural design, such as generating facade
layouts or transforming the appearance of buildings. This dataset is also valuable for tasks such as
architectural style transfer and facade completion, where models learn to generate realistic building facades
from simple line drawings.

2.3. Aachen Day-Night

Aachen Day-Night dataset includes urban images captured at different times of the day, making it ideal for
day-to-night translation tasks. This dataset contains pairs of images captured during the day and at night,
which are useful for research in cross-sensor data translation and enhancing nighttime visual understanding
in autonomous driving systems. The dataset’s emphasis on varying lighting conditions enables robust model
training for domain adaptation between different lighting environments.

2.4. UNICORN 2008

UNICORN 2008 dataset features multimodal data from wide area motion imagery (WAMI) and synthetic
aperture radar (SAR) sensors. It is specifically designed for tasks that require simultaneous alignment of
visual and radar-based information. The dataset contains large format electro-optical (EO) sensor images
and SAR frames, captured at approximately 2 frames per second. Due to the misalignment in time between
EO and SAR frames, this dataset poses unique challenges for sensor fusion and cross-modal translation
tasks, such as radar-to-image translation and vice versa.

2.5. Wikiart™*®

Wikiart dataset contains a vast collection of artwork images, organized by style, genre, and artist. It is widely
used in style transfer tasks, where the goal is to apply artistic styles from famous paintings to real-world
images. The dataset spans various artistic movements, providing models with the ability to learn style
representations and apply them to different content images. Wikiart is crucial for research in creative image
generation and cross-modal art synthesis.

2.6. Flickr30k*”

Flickr3aok dataset provides a large set of images paired with descriptive text annotations. This dataset is
commonly used in vision-and-language tasks such as image captioning, text-to-image generation, and
cross-modal retrieval. With over 30,000 images and detailed text descriptions, models can learn the
relationship between visual content and its textual representation, enabling the generation of textual
descriptions from images and vice versa.
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Table 1. Comparison of datasets used in translation-based multimodal learning

Dataset Modality Task Annotations Key features

Cityscapes Image 121 30 classes High-resolution street scenes
CMP facades Image 121 Arch. labels Facade generation/completion
Aachen Day—Night Image Day < Night Paired images Varying illumination
UNICORN 2008 EOQ, SAR Cross-sensor Time-aligned WAMI-SAR fusion

WikiArt Image Style transfer Style/genre Artistic synthesis

Flickr30k Image, text Captioning 30 k paired imgs Vision—language tasks

MS COCO Image, text Captioning 330 kimgs Large-scale benchmark
Places audio caption Image, audio 12A/A2] Scene descr. Sound-vision translation
AudioSet Audio Classification 2 M clips 600 sound classes
CMU-MOSI Video, audio, text Sentiment 2,199 segments Multimodal opinions
CMU-MOSEI Video, audio, text Sentiment 23 k segments Emotion recognition
IEMOCAP Video, audio, text Emotion Acted dialogues Rich emotion labels

EO: Electro-optical; SAR: synthetic aperture radar; WAMI: wide area motion imagery.

2.7. MS coco™
MS COCO dataset is a large-scale dataset widely used in multimodal learning, particularly for tasks
involving object detection, image segmentation, and image captioning. It includes over 330,000 images with
rich annotations, making it a versatile dataset for both vision-only and vision-and-language tasks. In
translation-based learning, MS COCO is frequently employed in text-to-image and image-to-text
translation tasks.

2.8. Places Audio Caption™

Places Audio Caption dataset combines visual and audio data, allowing for tasks such as image-to-audio
and audio-to-image translation. This dataset contains audio descriptions of various scenes, providing a
unique resource for training models that translate between auditory and visual modalities. It is commonly
used in research on multimodal fusion and cross-modal translation between sound and imagery.

2.9. AudioSet®™

AudioSet is a large-scale dataset of labeled audio events, containing over 2 million human-labeled audio
clips spanning more than 600 categories. This dataset is highly valuable for multimodal translation tasks,
especially in audio-to-text and audio-to-visual translation. Models trained on AudioSet can learn to
translate audio events into textual descriptions or generate corresponding visual scenes based on sound.

2.10. CMU-MOSI®"!

CMU-MOSI dataset is a multimodal sentiment analysis corpus that includes video, audio, and text
modalities. It consists of 2,199 opinion segments from YouTube videos, annotated for sentiment intensity
on a continuous scale. CMU-MOSI is widely used in sentiment analysis tasks where models must fuse
information from multiple modalities to predict sentiment polarity.

2.11. CMU-MOSEI*?

CMU-MOSEI dataset extends CMU-MOSI with a larger collection of multimodal sentiment data. It
includes over 23,000 opinion segments from 1,000 speakers, covering various topics. CMU-MOSEI provides
sentiment and emotion annotations across text, audio, and video, making it ideal for tasks that involve
multimodal emotion recognition and sentiment analysis.
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2.12. IEMOCAP™

IEMOCAP dataset is a multimodal dataset created for emotion recognition tasks. It contains audio-visual
recordings of actors performing improvised and scripted dialogues, with annotations for emotion categories
such as anger, happiness, sadness, and neutral. IEMOCAP is frequently used for emotion recognition tasks
that require the fusion of visual, auditory, and textual information.

3. TRANSLATION-BASED MULTIMODAL LEARNING

3.1. End-to-end translation

End-to-end translation methods aim to directly map input from one modality to another in a fully
integrated system, where the entire translation process is trained jointly without intermediate steps.

Table 2 shows some End-to-end translation methods. These methods leverage deep learning techniques to
learn complex transformations between modalities such as image-to-image, text-to-image, and audio-to-
text translation. Below are key end-to-end translation models.

3.1.1. Encoder-decoder architectures

The encoder-decoder architecture has been one of the most successful approaches in end-to-end
translation, originally popularized in NMT tasks". In this framework, the encoder transforms the source
modality into an intermediate representation, which is then passed through a decoder to generate the target
modality. These architectures have been extended from text-based tasks to image-to-image translation'”),
audio-to-text translation”**”), and other cross-modal applications.

A significant improvement over the standard encoder-decoder framework is the integration of attention
mechanisms", which dynamically prioritize the most relevant parts of the input during translation. This
enhancement substantially improves translation performance across various domains. However, outputs
generated by traditional encoder-decoder models often lack high-frequency details, leading to relatively
blurry results. This limitation has driven the adoption of GANs, which are designed to produce sharper and
more realistic outputs.

3.1.2. Conditional cGANs

c¢GANs have proven to be highly effective in end-to-end translation tasks that require high-fidelity output
generation. Unlike standard GANs, cGANs incorporate auxiliary information such as class labels or
additional modality inputs to guide the generation process'®. They have been widely used in multimodal
learning tasks, including text-to-image translation and image-to-image translation. For instance, cGANs
have demonstrated their ability to generate photorealistic images from semantic segmentation maps and
convert sketches into detailed visual representations.

Despite their advantages, cGANs require large amounts of paired training data, which may not always be
available. Furthermore, GAN-based training is known for its instability, often leading to mode collapse. To
address these challenges, methods such as Pix2Pix have been introduced, leveraging cGANs while
maintaining a structured learning paradigm.

3.1.3. Pix2Pix

Pix2Pix"" is a pioneering model in image-to-image translation, specifically designed for tasks where paired
training data is available. Built on a cGAN framework, Pix2Pix capitalizes on direct supervision to learn
mappings between input and target images. The generator synthesizes realistic images from given inputs,
while the discriminator differentiates between real and generated images, refining the translation process
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Table 2. Comparison of end-to-end translation methods

Method Requirement Key strengths Limitations

Encoder- Supervised Generalizable across modalities; simple structure Blurry outputs due to MSE loss

decoder

cGANs Supervised Sharp, high-quality outputs Requires large paired datasets; training
instability

Pix2Pix Supervised Effective for paired datasets; high-quality image Limited to paired data; struggles with resolution

translation

CycleGAN Unsupervised Works with unpaired data; enforces cycle consistency  Can suffer from mode collapse; limited diversity

VAEs Unsupervised Latent space modeling; can generate diverse samples  Lower image sharpness; hard to control
structure

Transformers Supervised Captures long-range dependencies; high scalability High computational cost; requires large
datasets

Diffusion Super/unsupervised High-quality, iterative refinement; stable training Computationally expensive; requires careful

models tuning

MSE: Mean squared error; cGANs: conditional generative adversarial networks; VAEs: variational autoencoders.

through adversarial learning. Pix2Pix has been successfully applied to various tasks such as sketch-to-photo
conversion, grayscale image colorization, and semantic segmentation-based scene synthesis.

However, Pix2Pix’s reliance on paired data limits its applicability in domains where aligned training
samples are difficult to obtain. While it improves image realism, its resolution remains constrained.
Pix2PixHD"” addresses this limitation by employing multi-scale discriminators and a feature-enhanced
generator to enable high-resolution synthesis. Nevertheless, both Pix2Pix and Pix2PixHD still require paired
training data, motivating the development of unpaired translation methods such as CycleGAN.

3.1.4. CycleGAN for unpaired translation

CycleGAN" was proposed to overcome the requirement for paired training data in image-to-image
translation. By enforcing a cycle consistency loss, CycleGAN ensures that translating an image to a target
domain and back to the original domain yields a reconstruction that closely resembles the original input.
This innovation enables training on unpaired datasets, making it particularly effective for applications such
as artistic style transfer, domain adaptation, and medical image translation!”.

While CycleGAN eliminates the need for paired data, its reliance on cycle consistency can sometimes
restrict the diversity of generated outputs. Furthermore, since CycleGAN does not explicitly model the
latent distribution of data, it lacks a probabilistic understanding of domain variations. VAEs provide a
potential solution by learning a structured latent space that facilitates more diverse and controlled
translations.

3.1.5. VAEs

VAEs" introduce a probabilistic framework for translation-based learning by modeling the latent
distribution of input data. By encoding inputs into a structured latent space, VAEs enable smooth
interpolations between different modalities and facilitate controlled synthesis. They have been widely
applied in tasks such as style transfer, domain adaptation, and medical image generation.

Although VAEs provide enhanced diversity, they tend to produce blurrier results compared to GAN-based
models due to their reliance on likelihood-based optimization, which encourages smooth transitions but
sacrifices fine-grained details. To address this, hybrid models such as adversarial VAEs (AVAE) combine
adversarial training with VAEs to enhance image sharpness while preserving probabilistic control.
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3.1.6. Transformer-based multimodal fusion

Transformer-based architectures have recently emerged as powerful tools for multimodal translation due to
their self-attention mechanisms, which efficiently capture long-range dependencies across different
modalities'. Unlike conventional sequence-to-sequence models that rely on fixed latent representations,
transformers dynamically compute cross-modal relationships at multiple layers, enabling flexible and
context-aware translation®. This approach has shown remarkable success in tasks such as video-to-text"*,
audio-to-image translation””, and multimodal sentiment analysis"**..

Recent advances have further enhanced transformer capabilities for multimodal tasks. Jiang et al. combined
transformers with convolutional neural networks (CNNs) using mutual information frameworks, achieving
35% improvement in image enhancement””. Xiao et al. introduced token-selective transformers for remote
sensing super-resolution, reducing computational cost by 40% while maintaining quality”™. Jiang et al.
leveraged association learning with transformers for robust image deraining™. Additionally, hierarchical
transformer architectures'® have shown promise in capturing multi-scale cross-modal interactions, while
cross-modal enhancement networks'’! demonstrate superior performance in sentiment analysis tasks.

Despite their advantages, transformers require substantial computational resources and large-scale datasets
for effective training. The quadratic complexity of self-attention mechanisms limits their application in real-
time systems and data-scarce environments®. To mitigate these issues, diffusion-based models have
recently been explored as an alternative, offering a principled framework for iterative refinement in
translation tasks.

3.1.7. Diffusion-based models for modality translation

Diffusion models have recently gained prominence for their effectiveness in various modality translation
tasks. Instead of directly learning a mapping between input and output modalities, diffusion models
iteratively refine a noisy latent representation through a denoising process, ensuring smooth transitions and
high-quality output generation*. The theoretical foundation builds on score-based generative
modeling®’, which estimates gradients of the data distribution to guide the reverse diffusion process.

Recent advances have significantly improved diffusion models for multimodal applications. Xiao et al.
demonstrated that efficient diffusion models require 60% fewer iterations than standard denoising diffusion
probabilistic models (DDPMs) for remote sensing applications'®. Brownian Bridge-based diffusion
techniques have been particularly useful for image colorization, where the model progressively reconstructs
high-frequency details from an initial coarse representation”. The Diffusion Schrédinger Bridge (DSB)
model introduces optimal transport principles to improve stability and interpretability in multimodal
translation, while simplified variants' reduce computational complexity by 40%.

Notable extensions include applications to speech-to-text translation, where Chen et al. adapted the
Schrédinger Bridge framework for robust multilingual speech translation”. Medical imaging has also
benefited, with adversarial diffusion models”" achieving state-of-the-art performance in magnetic
resonance imaging (MRI)-to-computed tomography (CT) translation. Additionally, hybrid approaches
combining diffusion with GANs" have shown superior image quality metrics, demonstrating the growing
potential of diffusion models in overcoming the limitations of previous generative frameworks.

3.1.8. DALL-E: text-to-image models
DALL-E™ represents a significant advancement in text-to-image translation by leveraging large-scale
transformer-based architectures. Unlike earlier models that relied on explicit feature extraction and latent
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space manipulations, DALL-E directly generates high-resolution images from textual descriptions,
capturing complex spatial and semantic relationships between objects. This breakthrough highlights the
potential of multimodal learning in creative applications, where input modalities are vastly different.

3.2. Representation-level translation

Representation-level translation focuses on learning shared latent spaces between different modalities. This
approach enables models to fuse and align multimodal information at a representation level, making them
more robust to noise and missing data. Compared to end-to-end translation methods, representation-based
approaches offer greater flexibility, as shown in Table 3, as they do not require strict one-to-one modality
mappings. These methods have demonstrated success in various applications, including multimodal
sentiment analysis, medical imaging, cross-modal retrieval, and text-to-image generation.

The fundamental principle underlying representation-level translation is the learning of a shared
embedding space where different modalities can be meaningfully compared and combined. Consider a
multimodal input with text x,, audio x,, and visual x, components. Each modality is first processed by its
specialized encoder to obtain feature representations: h, = f(x,), h, = f,(x,), and h, = f,(x,). These
heterogeneous features are then projected into a common dimensional space through learned
transformations:

z,, = LayerNorm(W,,h,, + b,,,) (1)

where m € {t, a, v} denotes the modality, and LayerNorm ensures stable training by normalizing the

representation”.

This shared space enables cross-modal interactions that would be impossible in the original heterogeneous
feature spaces. For instance, in multimodal sentiment analysis, negative sentiment indicators from different
modalities - such as words including “disappointed”, frowning facial expressions, and low vocal energy -
cluster together in this learned space. The alignment is typically achieved through contrastive learning
objectives that pull together semantically similar cross-modal pairs while pushing apart dissimilar ones'”.

One of the most significant advantages of representation-level approaches is their robustness to missing
modalities, a common challenge in real-world applications. When certain modalities are unavailable, the
system can still function using the remaining inputs. This is achieved through various strategies, including
zero-padding the missing modality’s representation or using learned imputation networks that estimate the
missing information based on available modalities. Recent work has shown that such systems can maintain
over 80% of their full performance even when operating with only two out of three modalities*"..

The training process for representation-level models typically involves multiple objectives balanced through
weighted combinations. The primary task loss ensures accurate predictions, while auxiliary losses encourage
proper alignment and information preservation:

L= Ltask + /ll-galignment + A2 Lreconstruction (2)

The alignment loss ensures that semantically related content from different modalities maps to similar
representations, while the reconstruction loss prevents information loss during the projection process™”.
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Table 3. Comparison of representation-level translation methods

Page 791

Method

Data
dependency

Key strengths

Limitations

Masked AEs

Graph-based Fusion

Unsupervised

Semi-supervised

Learns latent space alignment; good for missing data

reconstruction

Captures inter-modal dependencies; effective for

structured data

Does not explicitly model modality
relationships

Requires predefined graph structures;
limited adaptability

VAEs Unsupervised Models latent distributions; enables diverse Tends to produce blurry outputs
generation

Hierarchical encoder- Supervised Improved feature representations; preserves Fixed latent structure; less flexible for

decoder modality-specific details different modalities

Transformers Supervised Dynamically aligns features across modalities Requires large datasets; high computational

cost

Cross-modal fusion Semi-supervised  Recovers missing modality features; enhances

segmentation accuracy

Task-specific; less generalizable

Relation-aware models  Supervised Models inter-modal correlations explicitly High dependence on labeled data

Self-supervised learning  Unsupervised No need for labeled data; improves missing modality May struggle with domain generalization

generation

Prompt learning Few-shot Sensitive to domain shifts

U-Adapter

Efficient and lightweight; reduces computation

Unsupervised Prevents domain shifts; improves robustness Less studied outside classification tasks

AEs: Autoencoders; VAEs: variational autoencoders.

Recent empirical studies have revealed interesting performance patterns for these methods. On tasks
requiring semantic understanding, such as sentiment analysis or emotion recognition, representation-level
approaches often outperform end-to-end methods. For example, on the CMU-MOSI dataset, methods such
as modality-invariant and -specific representations (MISA) achieve 85.31% accuracy while using
significantly less computational resources than pixel-level translation approaches”. However, for tasks
requiring fine-grained visual details or precise spatial information, the abstraction inherent in shared
representations can lead to performance degradation.

The evolution of representation-level methods has been significantly influenced by advances in pre-training.
Modern approaches leverage powerful pre-trained encoders - BERT for text, CLIP for vision-language
alignment, and wav2vec for audio - which provide strong initial representations that require minimal task-
specific adaptation. This has dramatically reduced the data requirements for training multimodal systems,
with some methods achieving competitive performance with as few as 1,000 training examples compared to
the tens of thousands required by end-to-end approaches™.

Looking forward, the field is moving toward more sophisticated fusion mechanisms that can dynamically
adjust to input quality and relevance. Adaptive fusion networks learn to weight different modalities based
on their informativeness for the current input, while hierarchical approaches maintain both fine-grained
and abstract representations to preserve modality-specific details when needed*”. These developments
suggest that the distinction between end-to-end and representation-level approaches may become less rigid
as hybrid architectures emerge that can leverage the strengths of both paradigms.

3.2.1. Latent space alignment in representation-level translation

A fundamental challenge in representation-level translation is aligning the latent spaces of different
modalities to facilitate seamless information transfer. He et al. demonstrated that masked autoencoders
(AEs) can effectively learn scalable latent space representations, improving alignment between available and
missing modalities”. By reconstructing missing modality features from partial observations, this approach
enhances robustness in multimodal learning tasks without requiring explicit one-to-one modality
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Despite the effectiveness of masked AEs, they do not explicitly capture the relationships between different
modalities, which can limit their ability to fully integrate complementary information. To address this issue,
graph-based methods have been proposed to explicitly model inter-modal dependencies.

3.2.2. Graph-based fusion for multimodal representations

Graph-based methods leverage structured representations to model relationships between different
modalities, treating each modality as a node in a graph. Bischke et al. investigated the use of graph-based
fusion techniques to handle missing modalities, particularly in building segmentation tasks”. By
propagating information between nodes using message-passing algorithms, these approaches enable
efficient multimodal integration even when some modalities are absent.

Although graph-based fusion improves multimodal alignment, its reliance on predefined graph structures
may limit adaptability to diverse data distributions. To provide a more flexible latent representation,
probabilistic models such as VAEs have been explored.

3.2.3. VAEs for missing modality representation

VAEs offer a probabilistic framework for inferring missing modality representations by learning structured
latent distributions from observed data. Hamghalam et al. demonstrated that VAEs can effectively impute
missing modality features in medical segmentation tasks, leading to more accurate segmentation results'””.
By leveraging learned latent distributions, VAEs provide a principled approach to multimodal translation,
allowing for controlled synthesis of missing data.

However, VAEs tend to prioritize smooth reconstructions, which may result in the loss of fine-grained
modality-specific details. To improve the expressiveness of latent representations, hierarchical encoder-
decoder structures have been proposed.

3.2.4. Hierarchical representation learning via encoder-decoder models

Hierarchical encoder-decoder architectures refine representation-level translation by decomposing the
learning process into multiple levels of abstraction. Li et al. proposed a framework where modality-specific
encoders and decoders reconstruct missing modality features, ensuring that the latent space remains well-
structured and informative’®’. This hierarchical approach allows downstream tasks to leverage a more
comprehensive multimodal representation without requiring full modality data at inference time.

While hierarchical models offer improved feature representations, they often rely on fixed latent space
structures, which may not generalize well across diverse modalities. Transformer-based architectures
address this limitation by dynamically learning cross-modal alignments without requiring predefined
feature hierarchies.

3.2.5. Multimodal transformers for representation alignment

Transformers have revolutionized representation-level translation by enabling dynamic and context-aware
feature alignment across modalities. Tsai et al. introduced a multimodal transformer (mulT) that learns to
map unaligned multimodal language sequences into a shared latent space®”. By capturing fine-grained
inter-modal dependencies, transformer-based models significantly improve the ability to handle missing
modalities in NLP tasks.
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Despite their effectiveness, transformer-based models require large-scale datasets to achieve optimal
performance, which makes them less practical in data-scarce scenarios. To improve multimodal
representation alignment in specialized domains, cross-modal fusion techniques have been developed.

3.2.6. Cross-modal fusion for brain tumor segmentation

Cross-modal fusion techniques extend representation-level translation by explicitly leveraging the shared
latent space across different imaging modalities. Zhou et al. and Sun et al. proposed models that effectively
handle missing MRI modalities for brain tumor segmentation by reconstructing absent modality features
from available data”*”!. This technique enhances segmentation accuracy by ensuring that missing modality
information is inferred from a well-aligned representation space.

While direct latent space reconstruction is useful in medical imaging tasks, it may not always be optimal for
applications requiring relational reasoning across modalities. To overcome this challenge, relation-aware
models have been explored to enhance multimodal interactions.

3.2.7. Relation-aware missing modal generator for audio-visual question answering

Park et al. developed a relation-aware missing modal generator for audio-visual question answering
(AVQA)™. This model learns latent correlations between available modalities, allowing it to generate
pseudo-representations for missing modality features. By explicitly modeling inter-modal relationships, this
approach improves system robustness in AVQA tasks.

Although relation-aware models effectively capture multimodal interactions, they often rely on supervised
learning, which may limit their scalability. To reduce dependence on labeled data, self-supervised learning
strategies have been proposed for missing modality generation.

3.2.8. Self-supervised joint embedding for missing modality generation

Self-supervised learning provides a promising direction for missing modality generation by leveraging
predictive learning signals to align available and missing modality representations. Kim et al. introduced a
self-supervised joint embedding framework that learns to generate missing modality features without
requiring explicit end-to-end supervision™'!. By aligning available modality embeddings with missing ones,
this approach enables efficient multimodal translation in tasks with incomplete data.

While self-supervised models reduce reliance on labeled data, they may struggle with domain generalization
in complex multimodal environments. To enhance adaptability across diverse datasets, prompt learning has
emerged as a lightweight yet effective solution.

3.2.9. Prompt learning for missing modality generation

Prompt-based learning has recently gained traction in multimodal translation as a method for generating
missing modality representations with minimal computational overhead. Guo et al. proposed a prompt
learning approach that maps available modality prompts into the latent space to infer missing modality
representations™. By conditioning the generation process on carefully designed prompts, this method
eliminates the need for direct end-to-end data supervision while maintaining strong performance in
multimodal tasks.

Despite its adaptability, prompt learning may still be sensitive to domain shifts in the latent space. To
improve cross-modal robustness, structured adaptation methods such as the U-Adapter have been
introduced.
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3.2.10. U-Adapter for cross-modal representation fusion

Lin et al. proposed the U-Adapter model, which enhances cross-modal representation fusion by mitigating
domain shifts in the latent space!*”. This model ensures that even when some modalities are missing, the
learned latent representations remain stable and well-aligned. As a result, downstream tasks such as
classification and segmentation can benefit from more consistent multimodal representations.

By integrating these advancements, representation-level translation continues to evolve as a flexible and
robust approach for multimodal learning. Future research aims to further refine these techniques by
improving generalization across diverse tasks and reducing computational costs.

3.3. Quantitative analysis of translation paradigms

To provide rigorous quantitative comparison between end-to-end and representation-level paradigms, we
compiled performance metrics from existing literature on standard benchmarks. Table 4 presents a
comprehensive comparison using Cityscapes for image translation tasks and CMU-MOSI for multimodal
sentiment analysis.

Key Observations:

« Computational Trade-offs: End-to-end methods average 9.8 GB GPU memory vs. 4.1 GB for
representation-level approaches, reflecting the cost of direct pixel-level translation.

» Data Requirements: End-to-end methods typically require 5,000+ paired samples, while representation-
level methods can work with fewer samples due to pre-training.

+ Robustness Gap: Representation-level methods show average 76% performance retention under 50%
modality loss, compared to 67% for end-to-end methods.

» Speed-Quality Trade-off: Diffusion models achieve best quality [learned perceptual image patch similarity
(LPIPS): 0.42] but slowest inference (180 ms), while VAEs offer balanced performance.

These quantitative comparisons reveal fundamental trade-offs between the two paradigms, motivating the
development of hybrid approaches that could leverage strengths from both methodologies.

4. FINDINGS

4.1. End-to-end translation

The literature on end-to-end translation highlights substantial advancements in directly mapping input
modalities to target modalities without intermediate representations. Encoder-decoder frameworks and
GAN-based methods such as pix2pix and CycleGAN have demonstrated their effectiveness in paired and
unpaired modality translation, respectively. However, these methods are limited by their reliance on large-
scale datasets and the lack of interpretability. GAN-based approaches, while capable of generating realistic
outputs, suffer from instability during training and offer limited insight into their generation processes,
making them unsuitable for applications requiring explainability, such as remote sensing or medical
imaging.

Recent works on diffusion-based models have introduced a promising alternative, leveraging iterative
refinement through stochastic processes to improve output quality. While these models, such as DDPMs,
excel in data distribution modeling for image synthesis and restoration, their application to cross-modal
image translation tasks, particularly in heterogeneous modalities such as SAR-to-EO or SAR-to-infrared
(IR), remains underexplored. Moreover, their reliance on paired training data further restricts their utility in
real-world scenarios with limited data. These gaps motivated the development of our proposed framework,
as shown in Figure 1, Explainable Diffusion Model via Schrédinger Bridge Multimodal Image Translation
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Table 4. Quantitative comparison of existing translation-based multimodal learning methods
. GPU Training Data Performance Robustness Speed
Paradigm Method Dataset (GB) time (h) required metric @50% loss (ms)
End-to-end translation Encoder-decoder”™’ Cityscapes 6.5 8.2 5,000+ LPIPS: 0.62 58% 35
methods cGANs'® Cityscapes 9.8 15 5000+  LPIPS:0.55 62% 40
pix2pix™" Cityscapes 112 14.6 5,000+ LPIPS: 0.48 65% 42
pix2pixHD!™ Cityscapes 125 162 8,000+  LPIPS: 0.45 68% 48
CycleGANY” Cityscapes 10.8 123 Unpaired  LPIPS: 0.51 71% 38
VAEs™ Cityscapes 7.3 6.5 3,000+ LPIPS: 0.58 62% 28
Transformers' Multi- 3.4 182 10,000+  LPIPS: 0.44 75% 55
domain
Diffusion models®' Cityscapes 8.9 75 10,000+  LPIPS: 0.42 73% 180
Representation-level ~ Masked AEs"’ ImageNet+ 3.8 32 2,000+  Acc:78.5% 75% 14
translation methods text
Graph-based Multi-modal 4.1 3.6 1,500+ Acc: 76.2% 72% 16
fusion
VAEs Medical 3.5 29 1,500+ Acc: 74.8% 68% 12
(representation)[m
Hierarchical Multi-modal 4.3 3.8 2,000+ Acc: 79.3% 76% 18
encoder-decoder””
MulT?4 CMU-MOSI 4.2 3.5 2,000+ Acc: 83.02% 82% 18
MISAT CMU-MOSI 3.8 3.1 2,000+ Acc: 85.31% 79% 15
Self-MMP*! CMU-MOSI 4.1 33 1,500+ Acc: 85.98% 80% 16
MCTNE"! CMU-MOSI 45 39 2,000+  Acc:77.21% 74% 20
MTMSAHY CMU-MOSI 4.8 42 1,800+ Acc: 83.85% 83% 22

GPU: Graphics processing units; cGANs: conditional generative adversarial networks; LPIPS: learned perceptual image patch similarity; VAEs:
variational autoencoders; AEs: autoencoders; MulT: multimodal transformer; MISA: modality-invariant and -specific representations; Self-MM:
self-supervised multi-task multimodal; MCTN: multimodal cyclic translation network; MTMSA: modality translation-based multimodal sentiment

analysis.

t=1

t=0

Paired Image Diffusion Schrodinger Bridge

Figure 1. xDSBMIT framework. xDSBMIT: Explainable Diffusion Model via Schrédinger Bridge Multimodal Image Translation.

(xDSBMIT)"™, which integrates the DSB with diffusion models. Our framework addresses stability and
interpretability challenges by combining the strengths of diffusion processes with the mathematical rigor of

optimal transport. Specifically, xDSBMIT achieves high-quality multimodal image translations with
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minimal data while providing clear insights into the translation process, as demonstrated in tasks such as
SAR-to-IR and SAR-to-EO image translation.

The superior performance of xDSBMIT stems from its mathematical foundation in optimal transport
theory. The Schrodinger Bridge formulation provides a principled way to model the transformation
between source and target distributions. Unlike traditional diffusion models that require extensive
denoising steps, xDSBMIT learns an optimal transport path that minimizes:

Lsp = E(xyx1)~xLlIXo = x111*] = 202 H (rr) (3)

where 7 represents the joint distribution of source and target images, and H(x) is the entropy term that
regularizes the transport plan.

The data efficiency of xDSBMIT is particularly noteworthy. While pix2pix requires 5,000+ paired training
samples to achieve reasonable performance on SAR-to-EO translation, xDSBMIT achieves superior results
[LPIPS: 0.35, frechet inception distance (FID): 0.10] with only 500 pairs. This 90% reduction in data
requirements is attributed to the method’s ability to leverage the geometric structure of the data manifold
through the Schrodinger Bridge framework.

The SAR2EO translation task utilized the UNICORN dataset with a training set comprising merely 500
image pairs. This constrained dataset size presents a challenging scenario for deep learning models.
Nevertheless, experimental outcomes revealed that our methodology achieved compelling performance
metrics that exceed those of conventional approaches including pix2pix, pix2pixHD, and standard GAN
architectures. Beyond numerical improvements, the generated EO imagery demonstrated enhanced visual
quality characterized by improved detail preservation and more accurate color reproduction. Such findings
illustrate the framework’s capacity for effective learning under data-scarce conditions, establishing its utility
for practical remote sensing applications where labeled data availability remains limited.

Table 5 presents quantitative evaluation results across multiple translation methods for the SAR-to-EO task.
The proposed xDSBMIT-500 framework demonstrates leading performance on perceptual quality metrics.
Regarding LPIPS evaluation, xDSBMIT-500 obtained a score of 0.35, while competing methods - GAN-500,
pix2pix-500, and pix2pixHD-500 - yielded inferior scores with higher values. The LPIPS metric, which
leverages VGG-16'* feature representations, quantifies perceptual similarity between synthesized and
authentic images, where lower values correspond to superior perceptual alignment. Furthermore,
xDSBMIT-500 attained an FID value of 0.10, substantially improving upon baseline methods. The FID
metric employs feature statistics from the Inception network”™ to measure distributional divergence
between real and synthesized image sets. Reduced FID values signify closer alignment between generated
and authentic image distributions, confirming enhanced synthesis quality. These quantitative assessments
validate xXDSBMIT’s effectiveness for cross-modal SAR-to-EO synthesis despite training data constraints.
Our xDSBMIT framework addresses these limitations by integrating diffusion models with the Schrodinger
Bridge. Key innovations include:

« Interpretability and Stability: The Schrodinger Bridge provides a mathematically transparent transport
path [Figure 1], enabling stepwise visualization of SAR-to-IR translation.

- Efficient Few-Shot Learning: With only 500 training pairs (e.g., UNICORN dataset), xDSBMIT
outperforms pix2pix in SAR-to-EO translation (LPIPS: 0.35 vs. 0.45, Table 5).

+ Dynamic Data-Driven Adaptation: Real-time data integration (aligned with DDDAS principles) supports
adaptive inference in remote sensing scenarios.
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Table 5. Performance comparison of different image translation methods for SAR2EO

Method LPIPS| FID|
Baseline methods (our implementation)

GAN-500 0.52 0.44
pix2pix-500 0.48 0.27
pix2pixHD-500 0.45 0.18

Proposed method

xDSBMIT-500 0.35 0.10

All experiments conducted on UNICORN-2008 dataset (500 training pairs). Results obtained from experiments in xXDSBMIT framework®.

Bolded text means the best results. LPIPS: Learned perceptual image patch similarity; FID: frechet inception distance; GAN: generative adversarial
network; xDSBMIT: Explainable Diffusion Model via Schrédinger Bridge Multimodal Image Translation.

4.2. Representation-level translation

Representation-level translation methods aim to align and integrate diverse modalities within a shared
latent space, enabling robust performance even with noisy or incomplete data. Early works relied on shared
embeddings, but these approaches often failed to effectively leverage the unique characteristics of individual
modalities, leading to suboptimal performance. Transformer-based models, such as MulT, have advanced
the field by introducing cross-modal attention mechanisms, capturing complex interactions between
modalities. However, these methods generally assume complete and aligned data, limiting their robustness
in real-world scenarios.

To address this limitation, translation-based approaches emerged, focusing on predicting and
reconstructing missing modalities. Although these methods improve robustness, they often involve
excessive computational complexity and inefficient integration of modality-specific features. In response to
these challenges, we proposed TransTrans, a Transformer-based framework for robust multimodal
sentiment analysis. TransTrans utilizes modality-specific pre-trained models, as shown in Figure 2, such as
CLAP, BERT, and ViViT, to extract high-quality features and applies a translation-driven mechanism to
handle missing modalities. By aligning modality-specific features in a shared latent space, TransTrans
achieves state-of-the-art performance in multimodal sentiment analysis tasks while maintaining robustness
against incomplete data.

TransTrans addresses a fundamental challenge in multimodal sentiment analysis: maintaining performance
when modalities are missing or corrupted. The key innovation lies in the modality-specific translation
networks. When text modality is missing, TransTrans employs GPT-2 to generate semantically meaningful
text representations from available audio features. The translation loss is formulated as:

Lirans= ). A B[Ry~ Ronll*] @)

me{A,T,V}

where 4, weights are learned during training to reflect each modality’s importance.

Ablation studies reveal the contribution of each component. Removing the translation mechanism causes
accuracy to drop from 87.24% to 76.3%, demonstrating its critical role. The confusion matrix analysis
provides insights into emotion-specific performance, with TransTrans showing particular strength in
distinguishing “Happy” (79.08% accuracy) and “Sad” (65.03% accuracy) emotions.

In the experiments of missing modalities, we simulate the scenarios by randomly deleting specific level of
original data from each modality and compare TransTrans with other translation-based sentiment analysis
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Figure 2. TransTrans framework.

methods. There are three experiments corresponding to missing audio, missing text and missing video,
individually. The results are the average of the three experiments. Table 6 presents the results on the CMU-
MOSI dataset. Acc-0.2 corresponds to the condition where 20% of a single modality is missing, while Acc-
0.5 represents the scenario where 50% of a modality is missing.

From the results, it is evident that TransTrans model achieves the best or close to the best performance in
both scenarios, obtaining 83.93% for Acc-0.2 and 78.34% for Acc-0.5. This demonstrates that TransTrans is
highly effective at handling missing modalities, maintaining robust accuracy even when 50% of the modality
data is absent. MTMSA obtains 83.85% for Acc-0.2 and 79.16% for Acc-0.5, which is comparable to the
performance of TransTrans. Other models, such as AE® and multimodal cyclic translation network
(MCTN)"", show significantly lower performance, particularly under the Acc-0.5 condition. This highlights
the robust performance of TransTrans model in dealing with substantial modality loss.

We also performed an ablation study to evaluate the impact of the translation mechanism on our model’s
performance. The results are summarized in Table 3. We tested the accuracy of our model under different
modality combinations when one modality is missing.

The results in Table 6 show that our model consistently outperforms the baseline self-supervised multi-task
multimodal (Self-MM)® across all modality combinations. For instance, when visual modality is missing,
our model achieves an accuracy of 0.832 compared to 0.783 with the Self-MM model. Similarly, when the
text modality is missing, our model achieves an accuracy of 0.847 compared to 0.830 with the Self-MM
model. These improvements highlight the effectiveness of our translation mechanism in handling missing
modalities.
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Table 6. Ablation study on translation mechanism in CMU-MOSI

Modality combination Model Accuracy
Video + audio Self-MM 0.783
TransTrans 0.832
Video + text Self-MM 0.830
TransTrans 0.847
Video + audio Self-MM 0.649
TransTrans 0.825

Bolded text means the best results. Self-MM: Self-supervised multi-task multimodal.

These experimental results validate the effectiveness of TransTrans framework in multimodal sentiment
analysis. By incorporating a translation mechanism, TransTrans not only improves the robustness of the
system against missing modalities but also enhances the overall performance across various metrics. Our
TransTrans framework introduces a translation-driven solution:

 Modality-Specific Feature Extraction: Pre-trained models (CLAP for audio, BERT for text, ViViT for
vision) preserve unique modality semantics.

« Missing Modality Compensation: Transformer blocks reconstruct missing modalities (e.g., GPT-2 for
audio-to-text translation), achieving 83.93% accuracy on CMU-MOSI with 50% modality loss [Table 6].

» Lightweight Architecture: Direct feature alignment reduces information loss, improving F1-score by 15.4%
over MCTN.

4.3. Research gaps and opportunities

The reviewed literature reveals critical gaps in both end-to-end and representation-level translation
approaches. End-to-end methods often lack interpretability and struggle with limited or noisy data,
particularly in complex cross-modal translation tasks. Representation-level methods, while robust to
missing data, face scalability challenges and computational inefficiencies in utilizing modality-specific
features. These limitations underscore the need for hybrid frameworks that integrate the interpretability and
stability of end-to-end methods with the robustness and adaptability of representation-level approaches.
Our proposed frameworks, xDSBMIT and TransTrans, address these gaps by advancing the state of the art
in their respective domains. xXDSBMIT extends diffusion-based models to achieve stable and interpretable
cross-modal image translations with minimal data, while TransTrans enhances multimodal sentiment
analysis by introducing a robust, translation-driven mechanism for handling missing modalities. Together,
these frameworks represent a significant step forward in overcoming the limitations identified in the
existing literature, paving the way for more versatile and efficient multimodal translation systems.

5. CONCLUSIONS

This survey systematically investigates translation-based multimodal learning, focusing on two fundamental
paradigms: end-to-end translation and representation-level translation. Through comprehensive analysis of
existing methods, we identify critical challenges in cross-modal learning, including data dependency,
interpretability limitations, and robustness to missing modalities. To address these challenges, we propose
two novel frameworks xDSBMIT and TransTrans that advance the state of the art in their respective
domains.

5.1. Future directions
Three pivotal directions emerge for advancing translation-based multimodal learning:
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+ Unified Hybrid Frameworks: Merging the mathematical rigor of xDSBMIT’s Schrodinger Bridge with
TransTrans’ modality translation mechanisms could create end-to-end systems capable of both cross-modal
synthesis and robust fusion. Practical implementation requires dynamic control mechanisms, such as
confidence-based gating functions that switch between paradigms based on data availability and task
requirements”™. Such frameworks would be particularly impactful in autonomous systems requiring
simultaneous sensor translation (e.g., SAR-to-EO) and multimodal reasoning (e.g., sentiment-aware
human-robot interaction).

+ Cross-Domain Generalization: Extending these methods to handle emerging modalities [e.g., light
detection and ranging (LiDAR), hyperspectral imaging] and dynamic real-world conditions (e.g., temporal
misalignment in satellite video analysis) would broaden their applicability. Recent work demonstrates
promise: voxel-based encoding for LIDAR"™ and learnable channel attention for hyperspectral data™,
though each modality requires tailored architectural solutions. Techniques such as neural ordinary
differential equation (ODE)-based optimization could enhance computational efficiency for large-scale
deployments.

« Ethical and Explainable Systems: Developing interpretability tools - such as saliency maps for diffusion
paths in xXDSBMIT or attention visualization in TransTrans - will address transparency concerns in critical
applications such as medical diagnostics and defense systems. Current metrics such as FID fail to capture
ethical risks; emerging proposals include Cross-Modal Bias Score and Semantic Drift Index*”, though
standardization remains incomplete. Concurrently, establishing ethical guidelines for synthetic data
generation remains imperative.

These directions aim to bridge theoretical innovation with practical demands, fostering multimodal systems
that are both transformative and trustworthy.
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