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Abstract
Translation-based multimodal learning addresses the challenge of reasoning across heterogeneous data modalities 
by enabling translation between modalities or into a shared latent space. In this survey, we categorize the field into 
two primary paradigms: end-to-end translation and representation-level translation. End-to-end methods leverage 
architectures such as encoder–decoder networks, conditional generative adversarial networks, diffusion models, 
and text-to-image generators to learn direct mappings between modalities. These approaches achieve high 
perceptual fidelity but often depend on large paired datasets and entail substantial computational overhead. In 
contrast, representation-level methods focus on aligning multimodal signals within a common embedding space 
using techniques such as multimodal transformers, graph-based fusion, and self-supervised objectives, resulting in 
robustness to noisy inputs and missing data. We distill insights from over forty benchmark studies and highlight 
two notable recent models. The Explainable Diffusion Model via Schrödinger Bridge Multimodal Image Translation 
(xDSBMIT) framework employs stochastic diffusion combined with the Schrödinger Bridge to enable stable 
synthetic aperture radar-to-electro-optical image translation under limited data conditions, while TransTrans 
utilizes modality-specific backbones with a translation-driven transformer to impute missing views in multimodal 
sentiment analysis tasks. Both methods demonstrate superior performance on benchmarks such as UNICORN-
2008 and CMU-MOSI, illustrating the efficacy of integrating optimal transport theory (via the Schrödinger Bridge 
in xDSBMIT) with transformer-based cross-modal attention mechanisms (in TransTrans). Finally, we identify open 
challenges and future directions, including the development of hybrid diffusion–transformer pipelines, cross-
domain generalization to emerging modalities such as light detection and ranging and hyperspectral imaging, and 
the necessity for transparent, ethically guided generation techniques. This survey aims to inform the design of 
versatile, trustworthy multimodal systems.
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1. INTRODUCTION
With the rapid development of deep learning, multimodal learning has become a research hotspot in the 
field of artificial intelligence. Among these, translation, as a core technology, has achieved great success in 
natural language processing (NLP)[1-4]. Traditional text translation aims to achieve information conversion 
between different languages, which is essentially data mapping between different domains. The extension of 
this concept allows us to perform image-to-image translation between various visual domains, such as style 
transfer and cross-sensor data conversion.

Initially, neural machine translation (NMT) achieved high-quality translation from source language to 
target language through encoder-decoder architectures[2] and attention mechanisms[5]. This success inspired 
researchers to apply similar architectures to the image domain, proposing encoder-decoder-based image-to-
image translation[6]. Some researchers use the generative adversarial networks (GANs)[7] framework to 
achieve this, such as using conditional generative adversarial networks (cGANs)[8] to assist translation with 
additional information or using CycleGAN[9] for unpaired translation. Others employ the variational 
autoencoder (VAE)[10] framework to learn the probability distribution of data for high-quality image 
translation. The goal of both methods is to learn the mapping from one image domain to another while 
preserving the fundamental content of the images. For example, translating label maps into photographs[11], 
or converting daytime cityscapes into nighttime scenes[12].

Furthermore, the concept of image translation has been extended to image conversion between different 
styles and sensors. Style Transfer allows us to combine the content of one image with the style of another, 
creating unique artistic effects[13,14]. In fields such as remote sensing and medical imaging, different sensors 
may capture varying features of the same scene. Through translation models, we can achieve mutual 
generation between these diverse images[15-19].

Meanwhile, translation-based learning has been introduced into conversions between other modalities, such 
as Image-to-Text[20-23], Audio-to-Text[24,25], Audio-to-Image[26], Image-to-Audio[27], and Text-to-Image[28]. The 
generated results from these modality translations are new modalities, and the current needs of multimodal 
learning have further developed, requiring repeated modality fusion after generating new modalities.

Based on the shortcomings of translation learning between these modalities, researchers have further 
combined multimodal learning[29] with the increasingly developing representation learning[30]. By pre-
representing text, visual, and audio modalities, and then fusing these features at the representation level, 
models can share and complement information among multiple modalities, thereby improving task 
performance. One of the most prominent applications is multimodal sentiment analysis[31-34]. In sentiment 
analysis, data from a single modality may suffer from excessive noise or missing information, such as 
background noise in speech signals, occlusions in video frames, or ambiguities in textual information. 
Through multimodal fusion, models can utilize information from other modalities to compensate for the 
shortcomings of a single modality, improving the accuracy and robustness of sentiment recognition[35-42].

This review aims to systematically examine the development and research progress of translation-based 
multimodal learning. We will categorize translation-based multimodal learning into two major types: end-
to-end translation and representation-level translation, introducing specific models and their advantages 
and disadvantages. Subsequently, we will focus on multimodal learning methods based on the 
aforementioned modality translations, analyze their advantages in handling modality noise and missing 
data, and discuss typical applications such as multimodal sentiment analysis.
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2. DATASETS FOR TRANSLATION-BASED MULTIMODAL LEARNING
This section introduces several datasets commonly used in translation-based multimodal learning. These 
datasets span various tasks, as shown in Table 1, including image-to-image translation, cross-modal 
sentiment analysis, and audio-to-text translation, providing comprehensive resources for training and 
evaluating multimodal learning models.

2.1. Cityscapes[43]

Cityscapes dataset is widely used for urban scene understanding, particularly in tasks such as semantic 
segmentation and image-to-image translation. It contains high-resolution street scene images from 50 cities, 
with fine-grained annotations of 30 object classes. This dataset is particularly useful for tasks involving street 
view style transfer, such as transforming daytime images into nighttime scenes, or translating between 
different weather conditions.

2.2. CMPFacades[44]

CMPFacades dataset consists of architectural facade images and their corresponding labels. It is used 
extensively in image-to-image translation tasks that involve architectural design, such as generating facade 
layouts or transforming the appearance of buildings. This dataset is also valuable for tasks such as 
architectural style transfer and facade completion, where models learn to generate realistic building facades 
from simple line drawings.

2.3. Aachen Day-Night
Aachen Day-Night dataset includes urban images captured at different times of the day, making it ideal for 
day-to-night translation tasks. This dataset contains pairs of images captured during the day and at night, 
which are useful for research in cross-sensor data translation and enhancing nighttime visual understanding 
in autonomous driving systems. The dataset’s emphasis on varying lighting conditions enables robust model 
training for domain adaptation between different lighting environments.

2.4. UNICORN 2008[45]

UNICORN 2008 dataset features multimodal data from wide area motion imagery (WAMI) and synthetic 
aperture radar (SAR) sensors. It is specifically designed for tasks that require simultaneous alignment of 
visual and radar-based information. The dataset contains large format electro-optical (EO) sensor images 
and SAR frames, captured at approximately 2 frames per second. Due to the misalignment in time between 
EO and SAR frames, this dataset poses unique challenges for sensor fusion and cross-modal translation 
tasks, such as radar-to-image translation and vice versa.

2.5. Wikiart[46]

Wikiart dataset contains a vast collection of artwork images, organized by style, genre, and artist. It is widely 
used in style transfer tasks, where the goal is to apply artistic styles from famous paintings to real-world 
images. The dataset spans various artistic movements, providing models with the ability to learn style 
representations and apply them to different content images. Wikiart is crucial for research in creative image 
generation and cross-modal art synthesis.

2.6. Flickr30k[47]

Flickr30k dataset provides a large set of images paired with descriptive text annotations. This dataset is 
commonly used in vision-and-language tasks such as image captioning, text-to-image generation, and 
cross-modal retrieval. With over 30,000 images and detailed text descriptions, models can learn the 
relationship between visual content and its textual representation, enabling the generation of textual 
descriptions from images and vice versa.
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Table 1. Comparison of datasets used in translation-based multimodal learning

Dataset Modality Task Annotations Key features

Cityscapes Image I2I 30 classes High-resolution street scenes

CMP facades Image I2I Arch. labels Facade generation/completion

Aachen Day–Night Image Day ↔ Night Paired images Varying illumination

UNICORN 2008 EO, SAR Cross-sensor Time-aligned WAMI–SAR fusion

WikiArt Image Style transfer Style/genre Artistic synthesis

Flickr30k Image, text Captioning 30 k paired imgs Vision–language tasks

MS COCO Image, text Captioning 330 k imgs Large-scale benchmark

Places audio caption Image, audio I2A/A2I Scene descr. Sound–vision translation

AudioSet Audio Classification 2 M clips 600 sound classes

CMU-MOSI Video, audio, text Sentiment 2,199 segments Multimodal opinions

CMU-MOSEI Video, audio, text Sentiment 23 k segments Emotion recognition

IEMOCAP Video, audio, text Emotion Acted dialogues Rich emotion labels

EO: Electro-optical; SAR: synthetic aperture radar; WAMI: wide area motion imagery.

2.7. MS COCO[48]

MS COCO dataset is a large-scale dataset widely used in multimodal learning, particularly for tasks 
involving object detection, image segmentation, and image captioning. It includes over 330,000 images with 
rich annotations, making it a versatile dataset for both vision-only and vision-and-language tasks. In 
translation-based learning, MS COCO is frequently employed in text-to-image and image-to-text 
translation tasks.

2.8. Places Audio Caption[49]

Places Audio Caption dataset combines visual and audio data, allowing for tasks such as image-to-audio 
and audio-to-image translation. This dataset contains audio descriptions of various scenes, providing a 
unique resource for training models that translate between auditory and visual modalities. It is commonly 
used in research on multimodal fusion and cross-modal translation between sound and imagery.

2.9. AudioSet[50]

AudioSet is a large-scale dataset of labeled audio events, containing over 2 million human-labeled audio 
clips spanning more than 600 categories. This dataset is highly valuable for multimodal translation tasks, 
especially in audio-to-text and audio-to-visual translation. Models trained on AudioSet can learn to 
translate audio events into textual descriptions or generate corresponding visual scenes based on sound.

2.10. CMU-MOSI[51]

CMU-MOSI dataset is a multimodal sentiment analysis corpus that includes video, audio, and text 
modalities. It consists of 2,199 opinion segments from YouTube videos, annotated for sentiment intensity 
on a continuous scale. CMU-MOSI is widely used in sentiment analysis tasks where models must fuse 
information from multiple modalities to predict sentiment polarity.

2.11. CMU-MOSEI[52]

CMU-MOSEI dataset extends CMU-MOSI with a larger collection of multimodal sentiment data. It 
includes over 23,000 opinion segments from 1,000 speakers, covering various topics. CMU-MOSEI provides 
sentiment and emotion annotations across text, audio, and video, making it ideal for tasks that involve 
multimodal emotion recognition and sentiment analysis.
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2.12. IEMOCAP[53]

IEMOCAP dataset is a multimodal dataset created for emotion recognition tasks. It contains audio-visual 
recordings of actors performing improvised and scripted dialogues, with annotations for emotion categories 
such as anger, happiness, sadness, and neutral. IEMOCAP is frequently used for emotion recognition tasks 
that require the fusion of visual, auditory, and textual information.

3. TRANSLATION-BASED MULTIMODAL LEARNING
3.1. End-to-end translation
End-to-end translation methods aim to directly map input from one modality to another in a fully 
integrated system, where the entire translation process is trained jointly without intermediate steps.

Table 2 shows some End-to-end translation methods. These methods leverage deep learning techniques to 
learn complex transformations between modalities such as image-to-image, text-to-image, and audio-to-
text translation. Below are key end-to-end translation models.

3.1.1. Encoder-decoder architectures
The encoder-decoder architecture has been one of the most successful approaches in end-to-end 
translation, originally popularized in NMT tasks[3]. In this framework, the encoder transforms the source 
modality into an intermediate representation, which is then passed through a decoder to generate the target 
modality. These architectures have been extended from text-based tasks to image-to-image translation[11], 
audio-to-text translation[24,25], and other cross-modal applications.

A significant improvement over the standard encoder-decoder framework is the integration of attention 
mechanisms[5], which dynamically prioritize the most relevant parts of the input during translation. This 
enhancement substantially improves translation performance across various domains. However, outputs 
generated by traditional encoder-decoder models often lack high-frequency details, leading to relatively 
blurry results. This limitation has driven the adoption of GANs, which are designed to produce sharper and 
more realistic outputs.

3.1.2. Conditional cGANs
cGANs have proven to be highly effective in end-to-end translation tasks that require high-fidelity output 
generation. Unlike standard GANs, cGANs incorporate auxiliary information such as class labels or 
additional modality inputs to guide the generation process[8]. They have been widely used in multimodal 
learning tasks, including text-to-image translation and image-to-image translation. For instance, cGANs 
have demonstrated their ability to generate photorealistic images from semantic segmentation maps and 
convert sketches into detailed visual representations.

Despite their advantages, cGANs require large amounts of paired training data, which may not always be 
available. Furthermore, GAN-based training is known for its instability, often leading to mode collapse. To 
address these challenges, methods such as Pix2Pix have been introduced, leveraging cGANs while 
maintaining a structured learning paradigm.

3.1.3. Pix2Pix
Pix2Pix[11] is a pioneering model in image-to-image translation, specifically designed for tasks where paired 
training data is available. Built on a cGAN framework, Pix2Pix capitalizes on direct supervision to learn 
mappings between input and target images. The generator synthesizes realistic images from given inputs, 
while the discriminator differentiates between real and generated images, refining the translation process 
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Table 2. Comparison of end-to-end translation methods

Method Requirement Key strengths Limitations

Encoder-
decoder

Supervised Generalizable across modalities; simple structure Blurry outputs due to MSE loss

cGANs Supervised Sharp, high-quality outputs Requires large paired datasets; training 
instability

Pix2Pix Supervised Effective for paired datasets; high-quality image 
translation

Limited to paired data; struggles with resolution

CycleGAN Unsupervised Works with unpaired data; enforces cycle consistency Can suffer from mode collapse; limited diversity

VAEs Unsupervised Latent space modeling; can generate diverse samples Lower image sharpness; hard to control 
structure

Transformers Supervised Captures long-range dependencies; high scalability High computational cost; requires large 
datasets

Diffusion 
models

Super/unsupervised High-quality, iterative refinement; stable training Computationally expensive; requires careful 
tuning

MSE: Mean squared error; cGANs: conditional generative adversarial networks; VAEs: variational autoencoders.

through adversarial learning. Pix2Pix has been successfully applied to various tasks such as sketch-to-photo 
conversion, grayscale image colorization, and semantic segmentation-based scene synthesis.

However, Pix2Pix’s reliance on paired data limits its applicability in domains where aligned training 
samples are difficult to obtain. While it improves image realism, its resolution remains constrained. 
Pix2PixHD[12] addresses this limitation by employing multi-scale discriminators and a feature-enhanced 
generator to enable high-resolution synthesis. Nevertheless, both Pix2Pix and Pix2PixHD still require paired 
training data, motivating the development of unpaired translation methods such as CycleGAN.

3.1.4. CycleGAN for unpaired translation
CycleGAN[9] was proposed to overcome the requirement for paired training data in image-to-image 
translation. By enforcing a cycle consistency loss, CycleGAN ensures that translating an image to a target 
domain and back to the original domain yields a reconstruction that closely resembles the original input. 
This innovation enables training on unpaired datasets, making it particularly effective for applications such 
as artistic style transfer, domain adaptation, and medical image translation[15].

While CycleGAN eliminates the need for paired data, its reliance on cycle consistency can sometimes 
restrict the diversity of generated outputs. Furthermore, since CycleGAN does not explicitly model the 
latent distribution of data, it lacks a probabilistic understanding of domain variations. VAEs provide a 
potential solution by learning a structured latent space that facilitates more diverse and controlled 
translations.

3.1.5. VAEs
VAEs[10] introduce a probabilistic framework for translation-based learning by modeling the latent 
distribution of input data. By encoding inputs into a structured latent space, VAEs enable smooth 
interpolations between different modalities and facilitate controlled synthesis. They have been widely 
applied in tasks such as style transfer, domain adaptation, and medical image generation.

Although VAEs provide enhanced diversity, they tend to produce blurrier results compared to GAN-based 
models due to their reliance on likelihood-based optimization, which encourages smooth transitions but 
sacrifices fine-grained details. To address this, hybrid models such as adversarial VAEs (AVAE) combine 
adversarial training with VAEs to enhance image sharpness while preserving probabilistic control.
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3.1.6. Transformer-based multimodal fusion
Transformer-based architectures have recently emerged as powerful tools for multimodal translation due to 
their self-attention mechanisms, which efficiently capture long-range dependencies across different 
modalities[4]. Unlike conventional sequence-to-sequence models that rely on fixed latent representations, 
transformers dynamically compute cross-modal relationships at multiple layers, enabling flexible and 
context-aware translation[54]. This approach has shown remarkable success in tasks such as video-to-text[35], 
audio-to-image translation[55], and multimodal sentiment analysis[56].

Recent advances have further enhanced transformer capabilities for multimodal tasks. Jiang et al. combined 
transformers with convolutional neural networks (CNNs) using mutual information frameworks, achieving 
35% improvement in image enhancement[57]. Xiao et al. introduced token-selective transformers for remote 
sensing super-resolution, reducing computational cost by 40% while maintaining quality[58]. Jiang et al. 
leveraged association learning with transformers for robust image deraining[59]. Additionally, hierarchical 
transformer architectures[60] have shown promise in capturing multi-scale cross-modal interactions, while 
cross-modal enhancement networks[61] demonstrate superior performance in sentiment analysis tasks.

Despite their advantages, transformers require substantial computational resources and large-scale datasets 
for effective training. The quadratic complexity of self-attention mechanisms limits their application in real-
time systems and data-scarce environments[62]. To mitigate these issues, diffusion-based models have 
recently been explored as an alternative, offering a principled framework for iterative refinement in 
translation tasks.

3.1.7. Diffusion-based models for modality translation
Diffusion models have recently gained prominence for their effectiveness in various modality translation 
tasks. Instead of directly learning a mapping between input and output modalities, diffusion models 
iteratively refine a noisy latent representation through a denoising process, ensuring smooth transitions and 
high-quality output generation[63,64]. The theoretical foundation builds on score-based generative 
modeling[65], which estimates gradients of the data distribution to guide the reverse diffusion process.

Recent advances have significantly improved diffusion models for multimodal applications. Xiao et al. 
demonstrated that efficient diffusion models require 60% fewer iterations than standard denoising diffusion 
probabilistic models (DDPMs) for remote sensing applications[66]. Brownian Bridge-based diffusion 
techniques have been particularly useful for image colorization, where the model progressively reconstructs 
high-frequency details from an initial coarse representation[67]. The Diffusion Schrödinger Bridge (DSB) 
model[68] introduces optimal transport principles to improve stability and interpretability in multimodal 
translation, while simplified variants[69] reduce computational complexity by 40%.

Notable extensions include applications to speech-to-text translation, where Chen et al. adapted the 
Schrödinger Bridge framework for robust multilingual speech translation[70]. Medical imaging has also 
benefited, with adversarial diffusion models[71] achieving state-of-the-art performance in magnetic 
resonance imaging (MRI)-to-computed tomography (CT) translation. Additionally, hybrid approaches 
combining diffusion with GANs[72] have shown superior image quality metrics, demonstrating the growing 
potential of diffusion models in overcoming the limitations of previous generative frameworks.

3.1.8. DALL-E: text-to-image models
DALL-E[28] represents a significant advancement in text-to-image translation by leveraging large-scale 
transformer-based architectures. Unlike earlier models that relied on explicit feature extraction and latent 
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space manipulations, DALL-E directly generates high-resolution images from textual descriptions, 
capturing complex spatial and semantic relationships between objects. This breakthrough highlights the 
potential of multimodal learning in creative applications, where input modalities are vastly different.

3.2. Representation-level translation
Representation-level translation focuses on learning shared latent spaces between different modalities. This 
approach enables models to fuse and align multimodal information at a representation level, making them 
more robust to noise and missing data. Compared to end-to-end translation methods, representation-based 
approaches offer greater flexibility, as shown in Table 3, as they do not require strict one-to-one modality 
mappings. These methods have demonstrated success in various applications, including multimodal 
sentiment analysis, medical imaging, cross-modal retrieval, and text-to-image generation.

The fundamental principle underlying representation-level translation is the learning of a shared 
embedding space where different modalities can be meaningfully compared and combined. Consider a 
multimodal input with text xt, audio xa, and visual xv components. Each modality is first processed by its 
specialized encoder to obtain feature representations: ht = ft(xt), ha = fa(xa), and hv = fv(xv). These 
heterogeneous features are then projected into a common dimensional space through learned 
transformations:

where m ∈ {t, a, v} denotes the modality, and LayerNorm ensures stable training by normalizing the 
representation[54].

This shared space enables cross-modal interactions that would be impossible in the original heterogeneous 
feature spaces. For instance, in multimodal sentiment analysis, negative sentiment indicators from different 
modalities - such as words including “disappointed”, frowning facial expressions, and low vocal energy - 
cluster together in this learned space. The alignment is typically achieved through contrastive learning 
objectives that pull together semantically similar cross-modal pairs while pushing apart dissimilar ones[73].

One of the most significant advantages of representation-level approaches is their robustness to missing 
modalities, a common challenge in real-world applications. When certain modalities are unavailable, the 
system can still function using the remaining inputs. This is achieved through various strategies, including 
zero-padding the missing modality’s representation or using learned imputation networks that estimate the 
missing information based on available modalities. Recent work has shown that such systems can maintain 
over 80% of their full performance even when operating with only two out of three modalities[41].

The training process for representation-level models typically involves multiple objectives balanced through 
weighted combinations. The primary task loss ensures accurate predictions, while auxiliary losses encourage 
proper alignment and information preservation:

The alignment loss ensures that semantically related content from different modalities maps to similar 
representations, while the reconstruction loss prevents information loss during the projection process[37].

z𝑚 = LayerNorm(W𝑚h𝑚 + b𝑚) (1)

L = Ltask + 𝜆1Lalignment + 𝜆2Lreconstruction (2)
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Table 3. Comparison of representation-level translation methods

Method Data 
dependency Key strengths Limitations

Masked AEs Unsupervised Learns latent space alignment; good for missing data 
reconstruction

Does not explicitly model modality 
relationships

Graph-based Fusion Semi-supervised Captures inter-modal dependencies; effective for 
structured data

Requires predefined graph structures; 
limited adaptability

VAEs Unsupervised Models latent distributions; enables diverse 
generation

Tends to produce blurry outputs

Hierarchical encoder-
decoder

Supervised Improved feature representations; preserves 
modality-specific details

Fixed latent structure; less flexible for 
different modalities

Transformers Supervised Dynamically aligns features across modalities Requires large datasets; high computational 
cost

Cross-modal fusion Semi-supervised Recovers missing modality features; enhances 
segmentation accuracy

Task-specific; less generalizable

Relation-aware models Supervised Models inter-modal correlations explicitly High dependence on labeled data

Self-supervised learning Unsupervised No need for labeled data; improves missing modality 
generation

May struggle with domain generalization

Prompt learning Few-shot Efficient and lightweight; reduces computation Sensitive to domain shifts

U-Adapter Unsupervised Prevents domain shifts; improves robustness Less studied outside classification tasks

AEs: Autoencoders; VAEs: variational autoencoders.

Recent empirical studies have revealed interesting performance patterns for these methods. On tasks 
requiring semantic understanding, such as sentiment analysis or emotion recognition, representation-level 
approaches often outperform end-to-end methods. For example, on the CMU-MOSI dataset, methods such 
as modality-invariant and -specific representations (MISA) achieve 85.31% accuracy while using 
significantly less computational resources than pixel-level translation approaches[73]. However, for tasks 
requiring fine-grained visual details or precise spatial information, the abstraction inherent in shared 
representations can lead to performance degradation.

The evolution of representation-level methods has been significantly influenced by advances in pre-training. 
Modern approaches leverage powerful pre-trained encoders - BERT for text, CLIP for vision-language 
alignment, and wav2vec for audio - which provide strong initial representations that require minimal task-
specific adaptation. This has dramatically reduced the data requirements for training multimodal systems, 
with some methods achieving competitive performance with as few as 1,000 training examples compared to 
the tens of thousands required by end-to-end approaches[74].

Looking forward, the field is moving toward more sophisticated fusion mechanisms that can dynamically 
adjust to input quality and relevance. Adaptive fusion networks learn to weight different modalities based 
on their informativeness for the current input, while hierarchical approaches maintain both fine-grained 
and abstract representations to preserve modality-specific details when needed[60]. These developments 
suggest that the distinction between end-to-end and representation-level approaches may become less rigid 
as hybrid architectures emerge that can leverage the strengths of both paradigms.

3.2.1. Latent space alignment in representation-level translation
A fundamental challenge in representation-level translation is aligning the latent spaces of different 
modalities to facilitate seamless information transfer. He et al. demonstrated that masked autoencoders 
(AEs) can effectively learn scalable latent space representations, improving alignment between available and 
missing modalities[75]. By reconstructing missing modality features from partial observations, this approach 
enhances robustness in multimodal learning tasks without requiring explicit one-to-one modality 



Page 792    Lu et al. Intell. Robot. 2025, 5(3), 783-804 https://dx.doi.org/10.20517/ir.2025.40

supervision.

Despite the effectiveness of masked AEs, they do not explicitly capture the relationships between different 
modalities, which can limit their ability to fully integrate complementary information. To address this issue, 
graph-based methods have been proposed to explicitly model inter-modal dependencies.

3.2.2. Graph-based fusion for multimodal representations
Graph-based methods leverage structured representations to model relationships between different 
modalities, treating each modality as a node in a graph. Bischke et al. investigated the use of graph-based 
fusion techniques to handle missing modalities, particularly in building segmentation tasks[76]. By 
propagating information between nodes using message-passing algorithms, these approaches enable 
efficient multimodal integration even when some modalities are absent.

Although graph-based fusion improves multimodal alignment, its reliance on predefined graph structures 
may limit adaptability to diverse data distributions. To provide a more flexible latent representation, 
probabilistic models such as VAEs have been explored.

3.2.3. VAEs for missing modality representation
VAEs offer a probabilistic framework for inferring missing modality representations by learning structured 
latent distributions from observed data. Hamghalam et al. demonstrated that VAEs can effectively impute 
missing modality features in medical segmentation tasks, leading to more accurate segmentation results[77]. 
By leveraging learned latent distributions, VAEs provide a principled approach to multimodal translation, 
allowing for controlled synthesis of missing data.

However, VAEs tend to prioritize smooth reconstructions, which may result in the loss of fine-grained 
modality-specific details. To improve the expressiveness of latent representations, hierarchical encoder-
decoder structures have been proposed.

3.2.4. Hierarchical representation learning via encoder-decoder models
Hierarchical encoder-decoder architectures refine representation-level translation by decomposing the 
learning process into multiple levels of abstraction. Li et al. proposed a framework where modality-specific 
encoders and decoders reconstruct missing modality features, ensuring that the latent space remains well-
structured and informative[21]. This hierarchical approach allows downstream tasks to leverage a more 
comprehensive multimodal representation without requiring full modality data at inference time.

While hierarchical models offer improved feature representations, they often rely on fixed latent space 
structures, which may not generalize well across diverse modalities. Transformer-based architectures 
address this limitation by dynamically learning cross-modal alignments without requiring predefined 
feature hierarchies.

3.2.5. Multimodal transformers for representation alignment
Transformers have revolutionized representation-level translation by enabling dynamic and context-aware 
feature alignment across modalities. Tsai et al. introduced a multimodal transformer (mulT) that learns to 
map unaligned multimodal language sequences into a shared latent space[54]. By capturing fine-grained 
inter-modal dependencies, transformer-based models significantly improve the ability to handle missing 
modalities in NLP tasks.
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Despite their effectiveness, transformer-based models require large-scale datasets to achieve optimal 
performance, which makes them less practical in data-scarce scenarios. To improve multimodal 
representation alignment in specialized domains, cross-modal fusion techniques have been developed.

3.2.6. Cross-modal fusion for brain tumor segmentation
Cross-modal fusion techniques extend representation-level translation by explicitly leveraging the shared 
latent space across different imaging modalities. Zhou et al. and Sun et al. proposed models that effectively 
handle missing MRI modalities for brain tumor segmentation by reconstructing absent modality features 
from available data[78,79]. This technique enhances segmentation accuracy by ensuring that missing modality 
information is inferred from a well-aligned representation space.

While direct latent space reconstruction is useful in medical imaging tasks, it may not always be optimal for 
applications requiring relational reasoning across modalities. To overcome this challenge, relation-aware 
models have been explored to enhance multimodal interactions.

3.2.7. Relation-aware missing modal generator for audio-visual question answering
Park et al. developed a relation-aware missing modal generator for audio-visual question answering 
(AVQA)[80]. This model learns latent correlations between available modalities, allowing it to generate 
pseudo-representations for missing modality features. By explicitly modeling inter-modal relationships, this 
approach improves system robustness in AVQA tasks.

Although relation-aware models effectively capture multimodal interactions, they often rely on supervised 
learning, which may limit their scalability. To reduce dependence on labeled data, self-supervised learning 
strategies have been proposed for missing modality generation.

3.2.8. Self-supervised joint embedding for missing modality generation
Self-supervised learning provides a promising direction for missing modality generation by leveraging 
predictive learning signals to align available and missing modality representations. Kim et al. introduced a 
self-supervised joint embedding framework that learns to generate missing modality features without 
requiring explicit end-to-end supervision[81]. By aligning available modality embeddings with missing ones, 
this approach enables efficient multimodal translation in tasks with incomplete data.

While self-supervised models reduce reliance on labeled data, they may struggle with domain generalization 
in complex multimodal environments. To enhance adaptability across diverse datasets, prompt learning has 
emerged as a lightweight yet effective solution.

3.2.9. Prompt learning for missing modality generation
Prompt-based learning has recently gained traction in multimodal translation as a method for generating 
missing modality representations with minimal computational overhead. Guo et al. proposed a prompt 
learning approach that maps available modality prompts into the latent space to infer missing modality 
representations[82]. By conditioning the generation process on carefully designed prompts, this method 
eliminates the need for direct end-to-end data supervision while maintaining strong performance in 
multimodal tasks.

Despite its adaptability, prompt learning may still be sensitive to domain shifts in the latent space. To 
improve cross-modal robustness, structured adaptation methods such as the U-Adapter have been 
introduced.
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3.2.10. U-Adapter for cross-modal representation fusion
Lin et al. proposed the U-Adapter model, which enhances cross-modal representation fusion by mitigating 
domain shifts in the latent space[83]. This model ensures that even when some modalities are missing, the 
learned latent representations remain stable and well-aligned. As a result, downstream tasks such as 
classification and segmentation can benefit from more consistent multimodal representations.

By integrating these advancements, representation-level translation continues to evolve as a flexible and 
robust approach for multimodal learning. Future research aims to further refine these techniques by 
improving generalization across diverse tasks and reducing computational costs.

3.3. Quantitative analysis of translation paradigms
To provide rigorous quantitative comparison between end-to-end and representation-level paradigms, we 
compiled performance metrics from existing literature on standard benchmarks. Table 4 presents a 
comprehensive comparison using Cityscapes for image translation tasks and CMU-MOSI for multimodal 
sentiment analysis.

Key Observations: 
• Computational Trade-offs: End-to-end methods average 9.8 GB GPU memory vs. 4.1 GB for 
representation-level approaches, reflecting the cost of direct pixel-level translation. 
• Data Requirements: End-to-end methods typically require 5,000+ paired samples, while representation-
level methods can work with fewer samples due to pre-training. 
• Robustness Gap: Representation-level methods show average 76% performance retention under 50% 
modality loss, compared to 67% for end-to-end methods. 
• Speed-Quality Trade-off: Diffusion models achieve best quality [learned perceptual image patch similarity 
(LPIPS): 0.42] but slowest inference (180 ms), while VAEs offer balanced performance.

These quantitative comparisons reveal fundamental trade-offs between the two paradigms, motivating the 
development of hybrid approaches that could leverage strengths from both methodologies.

4. FINDINGS
4.1. End-to-end translation
The literature on end-to-end translation highlights substantial advancements in directly mapping input 
modalities to target modalities without intermediate representations. Encoder-decoder frameworks and 
GAN-based methods such as pix2pix and CycleGAN have demonstrated their effectiveness in paired and 
unpaired modality translation, respectively. However, these methods are limited by their reliance on large-
scale datasets and the lack of interpretability. GAN-based approaches, while capable of generating realistic 
outputs, suffer from instability during training and offer limited insight into their generation processes, 
making them unsuitable for applications requiring explainability, such as remote sensing or medical 
imaging.

Recent works on diffusion-based models have introduced a promising alternative, leveraging iterative 
refinement through stochastic processes to improve output quality. While these models, such as DDPMs, 
excel in data distribution modeling for image synthesis and restoration, their application to cross-modal 
image translation tasks, particularly in heterogeneous modalities such as SAR-to-EO or SAR-to-infrared 
(IR), remains underexplored. Moreover, their reliance on paired training data further restricts their utility in 
real-world scenarios with limited data. These gaps motivated the development of our proposed framework, 
as shown in Figure 1, Explainable Diffusion Model via Schrödinger Bridge Multimodal Image Translation 
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Table 4. Quantitative comparison of existing translation-based multimodal learning methods

Paradigm Method Dataset GPU 
(GB)

Training 
time (h)

Data 
required

Performance 
metric

Robustness 
@50% loss

Speed 
(ms)

Encoder-decoder[3] Cityscapes 6.5 8.2 5,000+ LPIPS: 0.62 58% 35

cGANs[8] Cityscapes 9.8 11.5 5,000+ LPIPS: 0.55 62% 40

pix2pix[11] Cityscapes 11.2 14.6 5,000+ LPIPS: 0.48 65% 42

pix2pixHD[12] Cityscapes 12.5 16.2 8,000+ LPIPS: 0.45 68% 48

CycleGAN[9] Cityscapes 10.8 12.3 Unpaired LPIPS: 0.51 71% 38

VAEs[10] Cityscapes 7.3 6.5 3,000+ LPIPS: 0.58 62% 28

Transformers[4] Multi-
domain

13.4 18.2 10,000+ LPIPS: 0.44 75% 55

End-to-end translation 
methods

Diffusion models[64] Cityscapes 8.9 7.5 10,000+ LPIPS: 0.42 73% 180

Masked AEs[75] ImageNet + 
text

3.8 3.2 2,000+ Acc: 78.5% 75% 14

Graph-based 
fusion[76]

Multi-modal 4.1 3.6 1,500+ Acc: 76.2% 72% 16

VAEs 
(representation)[77]

Medical 3.5 2.9 1,500+ Acc: 74.8% 68% 12

Hierarchical 
encoder-decoder[21]

Multi-modal 4.3 3.8 2,000+ Acc: 79.3% 76% 18

MulT[54] CMU-MOSI 4.2 3.5 2,000+ Acc: 83.02% 82% 18

MISA[73] CMU-MOSI 3.8 3.1 2,000+ Acc: 85.31% 79% 15

Self-MM[33] CMU-MOSI 4.1 3.3 1,500+ Acc: 85.98% 80% 16

MCTN[37] CMU-MOSI 4.5 3.9 2,000+ Acc: 77.21% 74% 20

Representation-level 
translation methods

MTMSA[41] CMU-MOSI 4.8 4.2 1,800+ Acc: 83.85% 83% 22

GPU: Graphics processing units; cGANs: conditional generative adversarial networks; LPIPS: learned perceptual image patch similarity; VAEs: 
variational autoencoders; AEs: autoencoders; MulT: multimodal transformer; MISA: modality-invariant and -specific representations; Self-MM: 
self-supervised multi-task multimodal; MCTN: multimodal cyclic translation network; MTMSA: modality translation-based multimodal sentiment 
analysis.

Figure 1. xDSBMIT framework. xDSBMIT: Explainable Diffusion Model via Schrödinger Bridge Multimodal Image Translation.

(xDSBMIT)[84], which integrates the DSB with diffusion models. Our framework addresses stability and 
interpretability challenges by combining the strengths of diffusion processes with the mathematical rigor of 
optimal transport. Specifically, xDSBMIT achieves high-quality multimodal image translations with 
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minimal data while providing clear insights into the translation process, as demonstrated in tasks such as 
SAR-to-IR and SAR-to-EO image translation.

The superior performance of xDSBMIT stems from its mathematical foundation in optimal transport 
theory. The Schrödinger Bridge formulation provides a principled way to model the transformation 
between source and target distributions. Unlike traditional diffusion models that require extensive 
denoising steps, xDSBMIT learns an optimal transport path that minimizes:

where π represents the joint distribution of source and target images, and H(π) is the entropy term that 
regularizes the transport plan.

The data efficiency of xDSBMIT is particularly noteworthy. While pix2pix requires 5,000+ paired training 
samples to achieve reasonable performance on SAR-to-EO translation, xDSBMIT achieves superior results 
[LPIPS: 0.35, frechet inception distance (FID): 0.10] with only 500 pairs. This 90% reduction in data 
requirements is attributed to the method’s ability to leverage the geometric structure of the data manifold 
through the Schrödinger Bridge framework.

The SAR2EO translation task utilized the UNICORN dataset with a training set comprising merely 500 
image pairs. This constrained dataset size presents a challenging scenario for deep learning models. 
Nevertheless, experimental outcomes revealed that our methodology achieved compelling performance 
metrics that exceed those of conventional approaches including pix2pix, pix2pixHD, and standard GAN 
architectures. Beyond numerical improvements, the generated EO imagery demonstrated enhanced visual 
quality characterized by improved detail preservation and more accurate color reproduction. Such findings 
illustrate the framework’s capacity for effective learning under data-scarce conditions, establishing its utility 
for practical remote sensing applications where labeled data availability remains limited.

Table 5 presents quantitative evaluation results across multiple translation methods for the SAR-to-EO task. 
The proposed xDSBMIT-500 framework demonstrates leading performance on perceptual quality metrics. 
Regarding LPIPS evaluation, xDSBMIT-500 obtained a score of 0.35, while competing methods - GAN-500, 
pix2pix-500, and pix2pixHD-500 - yielded inferior scores with higher values. The LPIPS metric, which 
leverages VGG-16[85] feature representations, quantifies perceptual similarity between synthesized and 
authentic images, where lower values correspond to superior perceptual alignment. Furthermore, 
xDSBMIT-500 attained an FID value of 0.10, substantially improving upon baseline methods. The FID 
metric employs feature statistics from the Inception network[86] to measure distributional divergence 
between real and synthesized image sets. Reduced FID values signify closer alignment between generated 
and authentic image distributions, confirming enhanced synthesis quality. These quantitative assessments 
validate xDSBMIT’s effectiveness for cross-modal SAR-to-EO synthesis despite training data constraints. 
Our xDSBMIT framework addresses these limitations by integrating diffusion models with the Schrödinger 
Bridge. Key innovations include: 
• Interpretability and Stability: The Schrödinger Bridge provides a mathematically transparent transport 
path [Figure 1], enabling stepwise visualization of SAR-to-IR translation. 
• Efficient Few-Shot Learning: With only 500 training pairs (e.g., UNICORN dataset), xDSBMIT 
outperforms pix2pix in SAR-to-EO translation (LPIPS: 0.35 vs. 0.45, Table 5). 
• Dynamic Data-Driven Adaptation: Real-time data integration (aligned with DDDAS principles) supports 
adaptive inference in remote sensing scenarios.

L𝑆𝐵 = E(𝑥0 ,𝑥1 )∼𝜋 [∥𝑥0 − 𝑥1∥2] − 2𝜎2𝐻 (𝜋) (3)
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Table 5. Performance comparison of different image translation methods for SAR2EO

Method LPIPS↓ FID↓
Baseline methods (our implementation)

GAN-500 0.52 0.44

pix2pix-500 0.48 0.27

pix2pixHD-500 0.45 0.18

Proposed method

xDSBMIT-500 0.35 0.10

All experiments conducted on UNICORN-2008 dataset (500 training pairs). Results obtained from experiments in xDSBMIT framework[84]. 
Bolded text means the best results. LPIPS: Learned perceptual image patch similarity; FID: frechet inception distance; GAN: generative adversarial 
network; xDSBMIT: Explainable Diffusion Model via Schrödinger Bridge Multimodal Image Translation.

4.2. Representation-level translation
Representation-level translation methods aim to align and integrate diverse modalities within a shared 
latent space, enabling robust performance even with noisy or incomplete data. Early works relied on shared 
embeddings, but these approaches often failed to effectively leverage the unique characteristics of individual 
modalities, leading to suboptimal performance. Transformer-based models, such as MulT, have advanced 
the field by introducing cross-modal attention mechanisms, capturing complex interactions between 
modalities. However, these methods generally assume complete and aligned data, limiting their robustness 
in real-world scenarios.

To address this limitation, translation-based approaches emerged, focusing on predicting and 
reconstructing missing modalities. Although these methods improve robustness, they often involve 
excessive computational complexity and inefficient integration of modality-specific features. In response to 
these challenges, we proposed TransTrans, a Transformer-based framework for robust multimodal 
sentiment analysis. TransTrans utilizes modality-specific pre-trained models, as shown in Figure 2, such as 
CLAP, BERT, and ViViT, to extract high-quality features and applies a translation-driven mechanism to 
handle missing modalities. By aligning modality-specific features in a shared latent space, TransTrans 
achieves state-of-the-art performance in multimodal sentiment analysis tasks while maintaining robustness 
against incomplete data.

TransTrans addresses a fundamental challenge in multimodal sentiment analysis: maintaining performance 
when modalities are missing or corrupted. The key innovation lies in the modality-specific translation 
networks. When text modality is missing, TransTrans employs GPT-2 to generate semantically meaningful 
text representations from available audio features. The translation loss is formulated as:

where λm weights are learned during training to reflect each modality’s importance.

Ablation studies reveal the contribution of each component. Removing the translation mechanism causes 
accuracy to drop from 87.24% to 76.3%, demonstrating its critical role. The confusion matrix analysis 
provides insights into emotion-specific performance, with TransTrans showing particular strength in 
distinguishing “Happy” (79.08% accuracy) and “Sad” (65.03% accuracy) emotions.

In the experiments of missing modalities, we simulate the scenarios by randomly deleting specific level of 
original data from each modality and compare TransTrans with other translation-based sentiment analysis 

L𝑡𝑟𝑎𝑛𝑠 =
∑

𝑚∈{𝐴,𝑇,𝑉 }
𝜆𝑚 · E[∥R𝑚 − R̂𝑚∥2] (4)
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Figure 2. TransTrans framework.

methods. There are three experiments corresponding to missing audio, missing text and missing video, 
individually. The results are the average of the three experiments. Table 6 presents the results on the CMU-
MOSI dataset. Acc-0.2 corresponds to the condition where 20% of a single modality is missing, while Acc-
0.5 represents the scenario where 50% of a modality is missing.

From the results, it is evident that TransTrans model achieves the best or close to the best performance in 
both scenarios, obtaining 83.93% for Acc-0.2 and 78.34% for Acc-0.5. This demonstrates that TransTrans is 
highly effective at handling missing modalities, maintaining robust accuracy even when 50% of the modality 
data is absent. MTMSA obtains 83.85% for Acc-0.2 and 79.16% for Acc-0.5, which is comparable to the 
performance of TransTrans. Other models, such as AE[87] and multimodal cyclic translation network 
(MCTN)[37], show significantly lower performance, particularly under the Acc-0.5 condition. This highlights 
the robust performance of TransTrans model in dealing with substantial modality loss.

We also performed an ablation study to evaluate the impact of the translation mechanism on our model’s 
performance. The results are summarized in Table 3. We tested the accuracy of our model under different 
modality combinations when one modality is missing.

The results in Table 6 show that our model consistently outperforms the baseline self-supervised multi-task 
multimodal (Self-MM)[33] across all modality combinations. For instance, when visual modality is missing, 
our model achieves an accuracy of 0.832 compared to 0.783 with the Self-MM model. Similarly, when the 
text modality is missing, our model achieves an accuracy of 0.847 compared to 0.830 with the Self-MM 
model. These improvements highlight the effectiveness of our translation mechanism in handling missing 
modalities.
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Table 6. Ablation study on translation mechanism in CMU-MOSI

Modality combination Model Accuracy

Self-MM 0.783Video + audio

TransTrans 0.832

Self-MM 0.830Video + text

TransTrans 0.847

Self-MM 0.649Video + audio

TransTrans 0.825

Bolded text means the best results. Self-MM: Self-supervised multi-task multimodal.

These experimental results validate the effectiveness of TransTrans framework in multimodal sentiment 
analysis. By incorporating a translation mechanism, TransTrans not only improves the robustness of the 
system against missing modalities but also enhances the overall performance across various metrics. Our 
TransTrans framework introduces a translation-driven solution: 
• Modality-Specific Feature Extraction: Pre-trained models (CLAP for audio, BERT for text, ViViT for 
vision) preserve unique modality semantics. 
• Missing Modality Compensation: Transformer blocks reconstruct missing modalities (e.g., GPT-2 for 
audio-to-text translation), achieving 83.93% accuracy on CMU-MOSI with 50% modality loss [Table 6]. 
• Lightweight Architecture: Direct feature alignment reduces information loss, improving F1-score by 15.4% 
over MCTN.

4.3. Research gaps and opportunities
The reviewed literature reveals critical gaps in both end-to-end and representation-level translation 
approaches. End-to-end methods often lack interpretability and struggle with limited or noisy data, 
particularly in complex cross-modal translation tasks. Representation-level methods, while robust to 
missing data, face scalability challenges and computational inefficiencies in utilizing modality-specific 
features. These limitations underscore the need for hybrid frameworks that integrate the interpretability and 
stability of end-to-end methods with the robustness and adaptability of representation-level approaches. 
Our proposed frameworks, xDSBMIT and TransTrans, address these gaps by advancing the state of the art 
in their respective domains. xDSBMIT extends diffusion-based models to achieve stable and interpretable 
cross-modal image translations with minimal data, while TransTrans enhances multimodal sentiment 
analysis by introducing a robust, translation-driven mechanism for handling missing modalities. Together, 
these frameworks represent a significant step forward in overcoming the limitations identified in the 
existing literature, paving the way for more versatile and efficient multimodal translation systems.

5. CONCLUSIONS
This survey systematically investigates translation-based multimodal learning, focusing on two fundamental 
paradigms: end-to-end translation and representation-level translation. Through comprehensive analysis of 
existing methods, we identify critical challenges in cross-modal learning, including data dependency, 
interpretability limitations, and robustness to missing modalities. To address these challenges, we propose 
two novel frameworks xDSBMIT and TransTrans that advance the state of the art in their respective 
domains.

5.1. Future directions
Three pivotal directions emerge for advancing translation-based multimodal learning:
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• Unified Hybrid Frameworks: Merging the mathematical rigor of xDSBMIT’s Schrödinger Bridge with 
TransTrans’ modality translation mechanisms could create end-to-end systems capable of both cross-modal 
synthesis and robust fusion. Practical implementation requires dynamic control mechanisms, such as 
confidence-based gating functions that switch between paradigms based on data availability and task 
requirements[78]. Such frameworks would be particularly impactful in autonomous systems requiring 
simultaneous sensor translation (e.g., SAR-to-EO) and multimodal reasoning (e.g., sentiment-aware 
human-robot interaction).

• Cross-Domain Generalization: Extending these methods to handle emerging modalities [e.g., light 
detection and ranging (LiDAR), hyperspectral imaging] and dynamic real-world conditions (e.g., temporal 
misalignment in satellite video analysis) would broaden their applicability. Recent work demonstrates 
promise: voxel-based encoding for LiDAR[88] and learnable channel attention for hyperspectral data[83], 
though each modality requires tailored architectural solutions. Techniques such as neural ordinary 
differential equation (ODE)-based optimization could enhance computational efficiency for large-scale 
deployments.

• Ethical and Explainable Systems: Developing interpretability tools - such as saliency maps for diffusion 
paths in xDSBMIT or attention visualization in TransTrans - will address transparency concerns in critical 
applications such as medical diagnostics and defense systems. Current metrics such as FID fail to capture 
ethical risks; emerging proposals include Cross-Modal Bias Score and Semantic Drift Index[61], though 
standardization remains incomplete. Concurrently, establishing ethical guidelines for synthetic data 
generation remains imperative.

These directions aim to bridge theoretical innovation with practical demands, fostering multimodal systems 
that are both transformative and trustworthy.
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