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Abstract
The proposed fault-tolerant control strategy based on the slime mold algorithm (FTC-SMA) enhances the resilience
of multi-thruster unmanned underwater vehicles against thrust loss. In the event of a propulsion system failure, the
strategy enables rapid thrust redistribution to restore the original torque and sailing direction, even in the event of
a catastrophic thruster failure. This strategy follows the physical limits of the thruster and can effectively solve the
over-actuated problem. The effectiveness, efficiency, and stability of FTC-SMA are confirmed through simulation
experiments under various fault conditions, demonstrating significant improvements over other algorithms such as
particle swarm optimization and grasshopper optimization algorithm.
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1. INTRODUCTION
With the growth of control applications in complex environments, fault-tolerant control (FTC) has found
widespread applications across various fields. During the past three decades, extensive and comprehensive
studies have been conducted on FTC, particularly in the aviation, spacecraft, automobiles, and industrial man-
ufacturing sectors [1–4]. These investigations focus on developing systems capable of accommodating compo-
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nent failures during operation, ensuring overall device stability with minimal or acceptable declines in perfor-
mance. However, research on FTC in underwater vehicles remains limited, largely due to the complexities
associated with the underwater environment and marine vehicle systems [5]. Underwater vehicles play a cru-
cial role in a variety of underwater tasks, including deep-sea exploration, ocean rescue, resource exploitation,
and underwater target search. The propulsion system is essential for the efficient operation of these vehicles,
where the thrusters that consist of the propulsion system control the underwater vehicle’s motion by adjust-
ing the torque across six degrees of freedom (DOFs) [6,7]. Thrusters exposed to the elements for a long time
are easily affected by the complex marine environment, causing many faults such as mud and aquatic plant
attachment, circuit short circuits, thruster collision damage, etc., resulting in thrust loss of varying degrees [8].
Therefore, FTC of underwater propulsion systems is crucial for ensuring robust and efficient navigation of the
vehicle [9,10].

Numerous scholars dedicate their efforts to maintaining system stability and preventing losses under various
potential failure conditions [11–14]. However, the inherent diversity and uncertainty of failures often pose chal-
lenges in achieving comprehensive consideration. Some research suggests an alternative approach by utilizing
an excess number of thrusters to optimally redistribute the control system, enabling mission completion and
sustaining high performance despite vehicle malfunctions [15,16]. For instance, in the event of a thruster failure
during an underwater mission, installing a propulsion system equal to or greater than the DOF provides addi-
tional flexibility to compensate for the torque required across all six DOFs. To facilitate thrust reallocation, the
weighted pseudo-inverse algorithm is commonly employed for calculations [17]. However, since the physical
limitations of the thrusters are not involved, the results obtained by the algorithm may exceed the feasible
range, resulting in an overdrive problem; that is, the control input exceeds the actual maximum control range.

To address the challenge of vehicle over-actuation, researchers [18] proposed a fault diagnosis method combin-
ing self-organizingmapping and fuzzy logic clustering. They utilized theweighted pseudo-inverse to determine
the reassigned control vector, employing truncation or scaling as approximation methods to ensure solution
feasibility. However, these two approximation methods roughly force the output to be limited within the feasi-
ble range after the calculation is completed. When the calculation result is far beyond the feasible range, direct
truncation or scaling will not guarantee accuracy.

Combining optimization methods to find the optimal solution within the allowed range is the current main-
stream research direction. Researchers have achieved good results in the FTC field using genetic algorithms,
neural network methods, greedy algorithms, etc. However, high-quality data input and long computing time
are not easy to apply in underwater submersibles [3,19]. Meta-heuristic algorithms have gained prominence
in various applied disciplines [20–23]which can achieve higher performance in a shorter time. Moreover, the
solution space for thruster torque redistribution is often uncertain or infinite [24]. In such cases, finding the
optimal solution by traversing the entire solution space may be impractical. Meta-heuristic algorithms address
this by detecting an approximate optimal solution through random sampling within a vast solution space. Zhu
et al. proposed a particle swarm optimization (PSO)-based thruster reconstruction control method to find so-
lutions within the feasible space without relying on truncation or scaling approximation methods to limit the
control vector [25]. This method demonstrated a small control error compared to the weighted pseudo-inverse
method. Tian et al., considering the uncertainty of ocean currents, introduced an improved cooperative PSO
(CPSO) algorithm for FTC [26]. However, due to its simple structure, PSO often struggles to meet the accuracy
requirements for complex tasks [27]. Zhu et al. proposed grasshopper optimization algorithm (GOA), which
obtained satisfactory results [28,29]. However, there is still room for improvement in real-time processing and
accuracy.

This paper proposes for the first time a practical case application of combining the slimemold algorithm (SMA)
with FTC to solve the thrust loss fault of underwater vehicle propellers. By quantifying the thrust loss of each
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Figure 1. “Haijian” UUV. UUV: Unmanned underwater vehicle.

propeller, SMA is used to quickly and effectively redistribute the thrust. Compared with traditional methods
such as T-approximation or S-approximation, the SMA algorithm can solve the drive saturation problem, and
comparedwith themost advanced swarm intelligence optimizationmethodGOAcurrently used in underwater
submersibles, it achieves higher accuracy and faster computational efficiency.

The contributions of this paper are as follows:
The fault-tolerant control strategy based on the slime mold algorithm (FTC-SMA) effectively solves over-
actuation, a common challenge in conventional control systems.
The proposed FTC-SMA not only boasts fast convergence speeds but also maintains high accuracy. This dual
advantage allows for the quick settling of redistributing thrust to the thrusters.
Three fault cases, single-fault case, double-fault case and quadruple-fault case, were designed and simulated to
demonstrate the adaptability and reliability of FTC-SMA under different fault conditions.

The article is organized as follows. Section 2 provides an in-depth introduction to the thruster configuration
in unmanned underwater vehicles (UUVs) and the underlying principles of FTC for underwater vehicles. Sec-
tion 3 explores the characteristics of the SMA and details its integration with FTC methodologies. Section
4 presents and discusses the outcomes of computer simulations applying the proposed algorithm to various
fault conditions, and compares results obtained under different fault scenarios using computer simulation al-
gorithms. Section 5 summarizes key findings from the simulations, draws conclusions based on the results
and discusses potential implications for the field of FTC in UUVs.

2. THRUSTER CONFIGURATION AND PROBLEM STATEMENT
In this section, a detailed model and illustration of the propulsion system of the UUV being developed in our
lab is provided. The operational context of FTC in the vehicle is elucidated and analyzed comprehensively.

2.1. Thruster configuration
“Haijian” submarine is a small search and rescue UUV that can perform exploration, detection and grabbing
operations [Figure 1] [30]. The vehicle features a configurationwith six thrusters distributed around its structure,
as depicted in Figure 2. Each thruster is denoted by 𝑇𝑖, where 𝑖 ranges from 1 to 6. Specifically, 𝑇1, 𝑇2, 𝑇3, 𝑇4
are four transverse thrusters positioned horizontally at a 30° angle with the X-axis, all situated in the 𝑋𝑜𝑌 plane.
𝑇5, 𝑇6 are two vertical thrusters positioned longitudinally, both located in the 𝑌𝑜𝑍 plane. Each individual
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Figure 2. Top view and side view of UUV thruster system distribution. UUV: Unmanned underwater vehicle.

thruster is responsible for generating the necessary torque across five DOFs (lack of the pitch DOF), resulting
in a comprehensive set of torques. These torques, corresponding to different DOFs, collectively contribute to
achieving the desired motion and attitude of the UUV. Throughout this article, the torque vector 𝜏 serves as a
representative notation for these five torques,

𝜏 =



𝜏𝑥
𝜏𝑦
𝜏𝑧
𝜏𝑘
𝜏𝑛


(1)

where 𝑥, 𝑦, 𝑧, 𝑘, 𝑛 represent axes constructed with five DOFs (surge, sway, heave, roll, yaw), respectively.

Combined with the position structure information of the thruster, the relationship between its torque vector
and thruster force is as follows:

𝜏 =



𝜏𝑥
𝜏𝑦
𝜏𝑧
𝜏𝑘
𝜏𝑛


=



0.866𝑇1 + 0.866𝑇2 + 0.866𝑇3 + 0.866𝑇4
−0.5𝑇2 − 0.5𝑇3 + 0.5𝑇1 + 0.5𝑇4

𝑇5 + 𝑇6
0.265𝑇5 − 0.265𝑇6

0.453𝑇1 + 0.453𝑇3 − 0.453𝑇2 − 0.453𝑇4


(2)

where 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6 are the forces applied to the six thrusters around the vehicle. The transformation of
the torque vector and the force vector can be written as:



𝜏𝑥
𝜏𝑦
𝜏𝑧
𝜏𝑘
𝜏𝑛


=



0.866 0.866 0.866 0.866 0 0
0.5 −0.5 −0.5 0.5 0 0
0 0 0 0 1 1
0 0 0 0 0.265 −0.265

0.453 −0.453 0.453 −0.453 0 0





𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6


= 𝐵𝑇 (3)
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where 𝐵 is the thruster control matrix and 𝑇 is the thruster force matrix.

The whole propulsion system is composed of two different types of thrusters, among which 𝑇1, 𝑇2, 𝑇3, 𝑇4 are
the same type, and 𝑇5,𝑇6 are the same type. It is assumed that they have the maximum thrust 𝑇𝑚1 and 𝑇𝑚2,
respectively, and thus the maximum torque vector 𝜏𝑚 is derived

𝜏𝑚 =



𝜏xm
𝜏𝑦𝑚
𝜏𝑧𝑚
𝜏𝑘𝑚
𝜏𝑛𝑚


=



4 × 0.866𝑇𝑚1
4 × 0.5𝑇𝑚1

2 × 𝑇𝑚2
2 × 0.265𝑇𝑚2
4 × 0.453𝑇𝑚1


(4)

Dividing Equation (2) by Equation (4) limits the output in a certain range of -1 to 1, and set 𝜏 = 𝜏/𝜏𝑚 ,𝑇 = 𝑇/𝑇𝑚 ;
the vector is transformed into

𝜏 =



𝜏x
𝜏𝑦
𝜏𝑧
𝜏𝑘
𝜏𝑛


=



𝜏x/𝜏xm
𝜏y/𝜏ym
𝜏z/𝜏zm
𝜏𝑘/𝜏km
𝜏𝑛/𝜏nm


=



(0.866𝑇1 + 0.866𝑇2 + 0.866𝑇3 + 0.866𝑇4)/4 × 0.866𝑇𝑚1
(−0.5𝑇2 − 0.5𝑇3 + 0.5𝑇1 + 0.5𝑇4)/4 × 0.5𝑇𝑚1

(𝑇5 + 𝑇6)/2 × 𝑇𝑚2
(0.265𝑇5 − 0.265𝑇6)/2 × 0.265𝑇𝑚2

(0.453𝑇1 + 0.453𝑇3 − 0.453𝑇2 − 0.453𝑇4)/4 × 0.453𝑇𝑚1


=



0.25 0.25 0.25 0.25 0 0
0.25 −0.25 −0.25 0.25 0 0

0 0 0 0 0.5 0.5
0 0 0 0 0.5 −0.5

0.25 −0.25 0.25 −0.25 0 0





𝑇1/𝑇𝑚1
𝑇2/𝑇𝑚1
𝑇3/𝑇𝑚1
𝑇4/𝑇𝑚1
𝑇5/𝑇𝑚2
𝑇6/𝑇𝑚2


= 𝐵



𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6


= 𝐵𝑇

(5)

Finally, the conversion between thruster forces and torques was achieved and standardized, limiting the range
of all torques and forces in the equation to -1 to 1; this enables better understanding and easier visualization
of the problem.

All physical parameters are removed from the matrix during the normalization process. The compact form of
𝐵 simplifies calculations and, as will be shown later, leads to the very simple representation of the SMA and a
clear geometric interpretation of the control allocation problem.

In order to quantify the damage of each thruster, the thruster weight matrix is usually defined as

𝑊 =



𝑤1 0 0 0 0 0
0 𝑤2 0 0 0 0
0 0 𝑤3 0 0 0
0 0 0 𝑤4 0 0
0 0 0 0 𝑤5 0
0 0 0 0 0 𝑤6


(6)

where 𝑤𝑖 is the corresponding weight value of the thruster; if any thruster experiences a power loss, its corre-
sponding weight value will be reduced according to the degree of power loss. For instance, 𝑤𝑖 = 1 when all
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thrusters are operating properly, and 𝑤2 = 0.7when𝑇2 thruster fails and can only operate at 70% of maximum
force or torque.

Combine Equation (5) with Equation (6) to get the following transition

𝜏 = 𝐵𝑊𝑇 = 𝐵𝑇∗ (7)

where𝑇 is the thruster control parameters, derived and solved through optimization; 𝑇∗ are the actual thruster
control parameters sent to the system.

2.2. Problem statement
This section delineates the FTC problem within the UUVmulti-thruster system, elucidating the target require-
ments and constraint information pivotal to the control process.

For the UUV multi-thruster system, the ideal FTC is through

∥e∥ = ∥𝜏𝑑 − 𝜏∥ → 0 (8)

∥𝜃e∥ = arccos
𝜏𝑑 · 𝜏

∥𝜏𝑑 ∥ · ∥𝜏∥
→ 0 (9)

where 𝜏𝑑 represents the expected state, 𝜏 represents the actual obtained state, the magnitude error ∥e∥ signifies
the modulus of the difference vector between the expected state and the actual state, and the direction error
∥𝜃e∥ indicates the angle between the expected state and the actual state. The two performance indicators
specifically measure the accuracy of the thrust control of the UUV and the accuracy of its directional control.
When designing the fault-tolerant control, these two performance indicators should be as small as possible.

In practical applications, due to limitations in thruster capabilities, such as the inability to provide infinite drive
input for completing voyages, an over-actuated phenomenon occurs. Therefore, in optimization calculations,
the actual torque or force that the thruster can output must be physically constrained to ensure reliable navi-
gation. The maximum thrust of the thruster is determined by the maximum torque provided by the vehicle,
which serves as a fundamental constraint in the vehicle control problem.

In subsequent experiments, both the maximum torque and the maximum thrust were constrained within the
range of -1 to 1. These variables were employed to quantify their influence on the results during the control
process.

3. FTC BASED ON SMA DESIGN
This section reviews the basic principles of SMA and then explores its application in FTC.

3.1. SMA
The SMA is a novel meta-heuristic algorithm, which primarily emulates the behavior andmorphological trans-
formations of slime molds during foraging in nature [31]. The adoption of distributed computing principles in
SMA allows multiple agents to simultaneously explore the solution space, enhancing search efficiency through
collaborative information exchange. This distributed approach empowers SMA to facilitate the discovery of
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global optimal solutions while avoiding the pitfalls of local minima. The self-organizing nature of SMA, char-
acterized by entities interacting and adapting through localized planning, contributes to its adaptability and
robustness in complex and dynamic environments. Specifically, SMA comprises three key stages: approach
food stage, wrap food stage, and oscillation stage.

3.1.1 Approach food
In the approach food stage, the slime mold moves towards the food source guided by the scent in the air. Its
approach behavior can be mathematically given by

𝑋 (𝑡 + 1) ≡
{
𝑋𝑏 (𝑡) + 𝑣𝑏(𝑊𝑠 × 𝑋𝐴 (𝑡) − 𝑋𝐵 (𝑡)), 𝑟 < p (10a)
𝑣𝑐 × 𝑋 (𝑡), 𝑟 ≥ p (10b)

where 𝑋 (𝑡 + 1) and 𝑋 (𝑡) represent the positions of slime molds at iterations 𝑡 + 1 and 𝑡, respectively, and
𝑋𝑏 (𝑡) denotes the positions with the highest food concentration at iteration 𝑡. 𝑋𝐴 (𝑡) and 𝑋𝐵 (𝑡) represent two
randomly selected slime molds at iteration 𝑡. The range of 𝑣𝑏 is [−𝑎, 𝑎], where 𝑎 = arctanh(1− 𝑡/𝑡max), 𝑡 is the
current iteration number, and 𝑡𝑚𝑎𝑥 is the maximum iteration number. The range of 𝑣𝑐 linearly decreases from
1 to 0. 𝑟 is a random number between 0 and 1. 𝑝 = tanh( |𝑆(𝑖) − 𝐷𝐹 |), where 𝑖 = 1, 2, ..., 𝑁 , 𝑆(𝑖) represents the
fitness value of the 𝑖𝑡ℎ slime mold individual, 𝐷𝐹 represents the optimal fitness value across all iterations, and
𝑁 represents the population size of slime molds. 𝑊𝑠 represents the weight of slime molds, and it is calculated
by

𝑊𝑠 (𝑆𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(𝑖)) ≡


1 + 𝑟 × log( 𝑏𝐹 − 𝑆(𝑖)
𝑏𝐹 − 𝑤𝐹

+ 1), condition (11a)

1 − 𝑟 × log( 𝑏𝐹 − 𝑆(𝑖)
𝑏𝐹 − 𝑤𝐹

+ 1), others (11b)

where 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 represents the individuals whose fitness values rank in the top half of the group, 𝑏𝐹, 𝑤𝐹
represent the best and worst fitness values in the current iteration, respectively, and 𝑆𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥 represents the
sorted fitness value sequence. During the approach food stage, the position of searching individual is updated
based on variations in the optimal position 𝑋𝑏, fine-tuning of 𝑣𝑏, 𝑣𝑐 and𝑊𝑠. The function of 𝑟 is to generate
a search vector at any angle, enabling exploration of the solution space in any direction, thus increasing the
likelihood of discovering an optimal solution.

3.1.2 Wrap food
Thewrap food stage simulates the contraction pattern ofmyxomycetes vein tissue. As the concentration of food
increases in venous contact, the biological oscillator produces a stronger propagation wave, accelerating the
cytoplasmic flow. Equation (11) models the positive and negative feedback process between slimemold weight
and food concentration. The logarithm function 𝑙𝑜𝑔() is utilized to moderate the rate of change and stabilize
the contraction frequency. 𝑐𝑜𝑛𝑑𝑖𝑡𝑜𝑛 simulates the process of slime mold adjusting its position according to
food concentration. When the food concentration is higher, the weight of slime mold in the vicinity increases.
Conversely, if the food concentration is low, slime molds will redirect their search to other areas, leading to a
reduction in the weight of slime molds in that region. Based on these principles, the mathematical formula for
updating the location of slime molds in this stage is:
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Figure 3. The structure diagram of tolerant control system.

𝑋 (𝑡 + 1) ≡

𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏, 𝑟𝑎𝑛𝑑 < 𝑧 (12a)
𝑋𝑏 (𝑡) + 𝑣𝑏(𝑊𝑠 × 𝑋𝐴 (𝑡) − 𝑋𝐵 (𝑡)), 𝑟 < p (12b)
𝑣𝑐 × 𝑋 (𝑡), 𝑟 ≥ p (12c)

where 𝑟𝑎𝑛𝑑 and 𝑟 represent random values generated within the range of 0 to 1, and 𝑢𝑏 and 𝑙𝑏 denote the upper
and lower bounds of the search space, respectively. 𝑧 represents the proportion of randomly distributed slime
mold individuals in the total slime mold population. This parameter is utilized by the algorithm to transition
between the global search stage and the local search stage.

3.1.3 Oscillation
In the grabbing food stage, slimemolds utilize propagation waves generated by biological oscillators to alter the
velocity of cytoplasm flow within veins. Parameters 𝑣𝑏, 𝑣𝑐 and𝑊𝑠 simulate the adjustment of vein width and
the oscillation frequency of biological oscillators. Consequently, slime molds approach food more gradually
when the food concentration is low, and conversely, they move toward food more rapidly when encountering
high-quality food. Essentially, this stage involves the update of parameters 𝑣𝑏, 𝑣𝑐 and𝑊𝑠.

𝑣𝑏 and 𝑣𝑐 are crucial parameters in simulating oscillation, which simulate the selective behavior of slime mold.
Slime molds with lower fitness engage in global search, while slime molds with higher fitness engage in local
search, and the oscillation of 𝑣𝑏 and 𝑣𝑐 diffuses the search direction of slime molds. Additionally, when 𝑟𝑎𝑛𝑑

is less than 𝑧, slime molds undergo random initialization. This indicates that while the SMA searches for the
optimal solution, it simultaneously dispatches a smaller segment of the slime mold to explore for potentially
better solutions. This strategy effectively addresses the issue of the GOA frequently becoming trapped in local
optima.

3.2. FTC-SMA
In this paper, the SMA is employed to determine the optimal control vector. The tolerant control system struc-
ture is illustrated in Figure 3. The input to the system is the desired torque vector. The fault identification unit
monitors the status of the thrusters, and the output is the thruster weight matrix Equation (6) that encapsulates
the fault information, and the FTC-SMA makes corresponding adjustments within the limit parameters, the
recalculated thrust required by each thruster is output to the thruster system to achieve the purpose of FTC.
It is worth noting that, given that the main focus of this paper is FTC, we assume that the fault identification
unit has accurately identified and calculated the thrust loss of each thruster when a fault occurs.

The pseudo-code of FTC-SMA is presented, which helps to understand its principle and structure better. The
specific steps are as follows:

1. Given thruster weight matrix 𝑊 and desired torque matrix 𝜏𝑑 , set parameters, and initialize 𝑝𝑜𝑝𝑠𝑖𝑧𝑒,
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and the position of each slime mold. Using ten sets of six random numbers between -1
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Algorithm 1Multi-thruster FTC based on SMA algorithm

Input: thruster weight matrix𝑊 and desired torque vector 𝜏𝑑
Initialize the parameter 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and position of slime mold
while 𝑡 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do

Calculate the ∥e∥, ∥𝜃e∥ of each search agent by Equations (8) and (9)
Update ∥e∥, ∥𝜃e∥ and 𝑇∗

Calculate the𝑊𝑠 by Equation (11) and a by 𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(1 − 𝑡/𝑡𝑚𝑎𝑥)
for each search portion do

Update 𝑝, 𝑣𝑏, 𝑣𝑐
Update positions by Equation (12)

end for
𝑡 = 𝑡 + 1

end while
Output: ∥e∥, ∥𝜃e∥, 𝑇∗

and 1 to represent normalized thrusters, each set is treated as a search agent.
2. Calculate fitness ∥e∥, ∥𝜃e∥, slime mold weight 𝑊𝑠, and parameter 𝑎 for each search agent with Equations

(8), (9) and (11), and 𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(1 − 𝑡/𝑡𝑚𝑎𝑥).
3. Generate random number 𝑟 and evaluate the magnitude of 𝑟 and parameter 𝑧: If 𝑟 < 𝑧, update position with

Equation (12a); otherwise, update parameters 𝑝, 𝑣𝑏 and 𝑣𝑐. Evaluate the magnitude of 𝑟 and parameter 𝑝.
If 𝑟 < 𝑝, update position with Equation (12b); otherwise, update position with Equation (12c).

4. Calculate fitness value after updating the position and update the global optimal solution.
5. Check termination condition; if met, output global optimal solution (force of each thruster after redistribu-

tion 𝑇∗) and fitness value ∥e∥, ∥𝜃e∥; otherwise, repeat steps 2-5.

4. SIMULATION AND ANALYSIS
In this section, the computer simulation results of the T-approximation, S-approximation, PSO, GOA and SMA
for multi-thruster FTC are presented. The purpose is to compare their performance under identical working
conditions. Various fault cases have been selected to highlight the superiority of the FTC-SMA in terms of
accuracy and stability. All simulations are conducted using Python 3.9, ensuring that each run achieves optimal
convergence for all algorithms. In this paper, it is assumed that there are no other faults except the thruster,
such as incorrect sensor readings or controller failures. It is also assumed that the thrust loss of the thruster
has been accurately identified by the Fault Identification unit and the thruster weight matrix𝑊 is output. The
following subsections detail the results and errors observed in each algorithm, providing a comprehensive
understanding of their strengths and weaknesses in handling multi-thruster FTC.

4.1. Single-fault case
Thedesired torque vector 𝜏𝑑 is assigned as [0.6, 0.2, 0.2, 0.0, 0.1]. At the 60-secondmark, thruster𝑇3 experi-
enced a failure, resulting in a 20% reduction in its power output, the corresponding𝑊 = [1.0, 1.0, 0.8, 1.0, 1.0, 1.0].
In response to this fault occurrence, various optimization algorithms, namely T-approximation, S-approximation,
PSO, GOA and SMA, were employed to derive optimal power allocation solutions. The obtained calculation
results are shown in Table 1.

The pseudo-inverse solution𝑇 is [0.4526, 0.6526, 0.9474, 0.3474, 0.2, 0.2] and one component is unfeasible
because 𝑇3 > 0.8. Utilizing the T-approximation method, values exceeding control constraints are truncated.
Specifically, 0.9474 will be set to 0.8, so that 𝑇 is adjusted to 𝑇∗ = [0.4526, 0.6526, 0.8, 0.3474, 0.2, 0.2], and
the corresponding 𝜏 = [0.5232, 0.1232, 0.2, 0.0, 0.0232]. S-approximationwill be obtained by𝑚𝑖𝑛

(
1/𝑚𝑎𝑥𝑖∈{1,2,3,4,5,6}

��𝑇𝑖/𝑊𝑖

��) 𝑇 .
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Table 1. Results of single-fault case

T∗ 𝜏 ∥e∥ ∥ 𝜃e ∥

T-approximation [0.4526, 0.6526, 0.9474, 0.3474, 0.2000, 0.2000] [0.5232, 0.1232, 0.2000, 0.0000, 0.0232] 0.1331 0.1472

S-approximation [0.3822, 0.5511, 0.8000, 0.2933, 0.1689, 0.1689] [0.4667, 0.1289, 0.1689, 0.0000, 0.0444] 0.1640 0.0852

PSO [0.5551, 0.6828, 0.3381, −0.0447, 0.1276, 0.1276] [0.3828, 0.1276, 0.1276, 0.0000, 0.0638] 0.2428 0.0001

GOA [0.1980, 0.3408, 0.8000, 0.3724, 0.1425, 0.1426] [0.4278, 0.1426, 0.1425, 0.0000, 0.0712] 0.1926 0.0002

SMA
[0.8013, 1.0000, 0.5965, 0.0001, 0.2023, 0.1986] [0.5995, 0.1988, 0.2004, 0.0019, 0.0994] 0.0024 0.0033

PSO: Particle swarm optimization; GOA: grasshopper optimization algorithm; SMA: slime mold algo-rithm.

Since the first component exceeds the control constraint by a greater extent, all the components times 0.8/0.9474,
so that𝑇 is adjusted to𝑇∗ = [0.3822, 0.5511, 0.8, 0.2933, 0.1689, 0.1689], and the corresponding 𝜏=[0.4667,
0.1289, 0.1689, 0.0, 0.0444].

Figure 4 clearly shows the results of all algorithms. Without a doubt, the SMA stands out with the best result
(orange line), which closely matches the actual torque required. Errors in the T-approximation (blue line) and
S-approximation (green line) are unavoidable due to the method of directly truncating and scaling the portion
beyond the limit. Since only thrusters 𝑇5 and 𝑇6 affect the heave and roll axes, but they have no thrust loss,
the T approximation effectively mitigates the errors of the heave and roll axes. However, in the case of the
S-approximation, significant deviations from the required torque occur due to the adjustments made to all
components. The GOA (black line) and PSO (magenta line) achieve similar results. Both correct direction
error well, but their performance in correcting magnitude errors is less effective. This implies that the adjusted
torque output could significantly decrease the robot’s operational efficiency. However, after optimization using
the SMA method, the torque output errors for each axis are minimal and can essentially be disregarded. The
force distribution among the thrusters has been successfully reallocated within acceptable limits.

4.2. Double-fault case
The desired torque vector 𝜏𝑑 is also assigned as [0.6, 0.2, 0.2, 0.0, 0.1]. At the 60-second mark, thrusters
𝑇2 and 𝑇3 experienced a failure, resulting in a 30% and 20% reduction in its power output, respectively; the
corresponding𝑊 = [1.0, 0.7, 0.8, 1.0, 1.0, 1.0]. The obtained calculation results are shown in Table 2.

The pseudo-inverse solution 𝑇 is [0.5086, 0.7086, 0.8914, 0.2914, 0.2, 0.2] and two components are un-
feasible because 𝑇2 > 0.7, 𝑇3 > 0.8. Utilizing the T-approximation method, values exceeding control con-
straints are truncated. Specifically, 0.7086 will be set to 0.7, and 0.8914 will be set to 0.8, so that 𝑇 is adjusted to
𝑇∗ = [0.5086, 0.7, 0.8, 0.2914, 0.2, 0.2], and the corresponding 𝜏 = [0.4825, 0.0825, 0.2, 0.0, 0.0918]. Uti-
lizing the S-approximation method, all the components times 0.8/0.8914, so that 𝑇 is adjusted to 𝑇∗=[0.4564,
0.6359, 0.8, 0.2615, 0.1795, 0.1795], and the corresponding 𝜏 = [0.4508, 0.0918, 0.1795, 0.0, 0.0974].

When more thrusters experience thrust loss, the error rates for all methods increase compared to single-fault
case [Figure 5]. As seen in the single-fault case, the faulty thrusters do not include T5 and T6. Therefore, the
torque output error on the Heave and Roll axes remains zero through the T-approximation. However, both
the T-approximation and S-approximation show large errors in direction, reaching 15%. The magnitude error
also exceeds 15%. The magnitude error with PSO increases significantly, almost hitting 30%. In contrast, both
GOA and SMAmanaged to adjust the submarine’s direction effectively. SMA outperforms GOA in controlling
magnitude error, keeping it within 5%. Even with two thrusters experiencing thrust loss, SMA’s torque output
optimization still shows good performance.
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Figure 4. Multi-thruster reallocation problem for single-fault case.

Table 2. Results of double-fault case

T∗ 𝜏 ∥e∥ ∥ 𝜃e ∥

T-approximation [0.5086, 0.7000, 0.8000, 0.2914, 0.2000, 0.2000] [0.4825, 0.0825, 0.2000, 0.0000, 0.0918] 0.1664 0.1642

S-approximation [0.4564, 0.6359, 0.8000, 0.2615, 0.1795, 0.1795] [0.4508, 0.0918, 0.1795, 0.0000, 0.0974] 0.1855 0.1372

PSO [0.1309, 0.2449, 0.6754, 0.3289, 0.1096, 0.1121] [0.3450, 0.1151, 0.1108, −0.0013, 0.0581] 0.2863 0.0110

GOA [0.3051, 0.4630, 0.8000, 0.3264, 0.1579, 0.1579] [0.4736, 0.1579, 0.1579, 0.0000, 0.0789] 0.1413 0.0001

SMA
[0.5134, 0.7000, 0.8000, 0.2409, 0.1879, 0.1888] [0.5636, 0.1864, 0.1883, −0.0004, 0.0931] 0.0411 0.0027

PSO: Particle swarm optimization; GOA: grasshopper optimization algorithm; SMA: slime mold algo-rithm.

4.3. Quadruple-fault case
The desired torque vector 𝜏𝑑 is also assigned as [0.6, 0.2, 0.2, 0.0, 0.1]. At the 60-secondmark, a catastrophic
failure has significantly impacted the power distribution among all four thrusters. Specifically, the power out-
put of 𝑇1 is reduced by 50%, 𝑇2 by 30%, 𝑇3 by 20%. The situation is more critical for T5, which has undergone
a substantial 80% decrease in power, the corresponding𝑊 = [0.5, 0.7, 0.8, 1.0, 0.2, 1.0]. This drastic power
imbalance poses a formidable challenge to the overall functionality and stability of the vehicle. The obtained
calculation results are shown in Table 3.

The pseudo-inverse solution 𝑇 is [0.5933, 0.7933, 0.8067, 0.2067, 0.2, 0.2] and three components are un-
feasible because 𝑇1 > 0.5, 𝑇2 > 0.7, 𝑇3 > 0.8. Utilizing the T-approximation method, values exceeding
control constraints are truncated. Specifically, 0.5933 will be set to 0.5, and 0.7933 will be set to 0.7, 0.8067
will be set to 0.8, so that 𝑇 is adjusted to 𝑇∗ = [0.5, 0.7, 0.8, 0.2067, 0.2, 0.2], and the corresponding
𝜏=[0.3967, 0.1683, 0.12, -0.08, 0.0483]. Utilizing the S-approximation method, all the components times
0.5/0.5933, so that 𝑇 is adjusted to 𝑇∗=[0.5, 0.6685, 0.6798, 0.1742, 0.1685, 0.1685], and the corresponding
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Figure 5. Multi-thruster reallocation problem for double-fault case.

Table 3. Results of quadruple-fault case

T∗ 𝜏 ∥e∥ ∥ 𝜃e ∥

T-approximation [0.5000, 0.7000, 0.8000, 0.2067, 0.2000, 0.2000] [0.3967, 0.1683, 0.1200, −0.0800, 0.0483] 0.2405 0.1989

S-approximation [0.5000, 0.6685, 0.6798, 0.1742, 0.1685, 0.1685] [0.3590, 0.1469, 0.1011, −0.0674, 0.0379] 0.2812 0.1927

PSO [0.1718, 0.3097, 0.7937, 0.3799, 0.1379, 0.1379] [0.4138, 0.1379, 0.1379, 0.0000, 0.0690] 0.2081 0.0001

GOA [−0.1937, −0.1123, 0.7637, 0.5194, 0.0814, 0.0814] [0.2443, 0.0814, 0.0814, 0.0000, 0.0407] 0.3977 0.0001

SMA
[0.5000, 0.6878, 0.7999, 0.2444, 0.1858, 0.1857] [0.5580, 0.1858, 0.1858, 0.0000, 0.0919] 0.0473 0.0017

PSO: Particle swarm optimization; GOA: grasshopper optimization algorithm; SMA: slime mold algo-rithm.

𝜏 = [0.359, 0.1469, 0.1011, −0.0674, 0.0379].

Due to damage to the vertical thruster, both T-approximation and S-approximation lost control over the Heave
and Roll axes, leading to increased errors and loss of effective submarine control [Figure 6]. Despite these
challenges, PSO, GOA, and SMA corrected the direction error successfully. Notably, even in such difficult
conditions, SMA managed to keep the magnitude error within 5%. This control strategy maintained the sub-
marine’s direction without reducing its operational efficiency. SMA consistently delivered the best results
in cases involving single-fault, double-fault, or quadruple-fault, demonstrating its potential as a reliable FTC
method.

4.4. Efficiency and stability
This section compares the efficiency of the three algorithms: PSO, GOA, and SMA. Figure 7 illustrates the
relationship between time and optimum fitness for three algorithms applied to thruster power redistribution
under single-fault, double-fault, and quadruple-fault cases. Notably, after a large number of experiments, we
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Table 4. Fitness and time of PSO, GOA, FTC-SMA in different fault cases

Single-fault case Double-fault case Quadruple-fault case

Fitness Time (s) Fitness Time (s) Fitness Time (s)

PSO 0.2429 0.1112 0.2973 0.1183 0.2082 0.1191
GOA 0.1928 0.2809 0.1413 0.2711 0.3978 0.2977
SMA 0.0058 0.2370 0.0439 0.2353 0.0490 0.2480

PSO: Particle swarm optimization; GOA: grasshopper opti-mization
algorithm; FTC-SMA: fault-tolerant control strat-egy based on the
slime mold algorithm.

Figure 6. Multi-thruster reallocation problem for quadruple-fault case.

found that the increase in the number of thruster failures does not significantly affect the running time of each
algorithm. Therefore, the running times shown in the paper are the average results obtained from multiple
times.

The results are displayed in Table 4. All operating parameters are consistent. Runtime represents the total
duration required for the algorithm to complete 200 iterations, ensuring that all algorithms have fully con-
verged after these iterations. Due to its simple structure, PSO achieves the fastest running speed at just 0.119
s. However, PSO consistently falls short in terms of accuracy across all fault conditions. GOA, on the other
hand, exhibits strong performance in accuracy for both single and double-fault cases. Despite this, its slower
speed, approximately 0.3 s, fails to meet the real-time requirements for FTC systems. Moreover, under the
quadruple-fault case, the performance of GOA deteriorates significantly; a sharp increase in magnitude er-
ror makes it incapable of FTC. SMA may not match the speed of PSO, with a running time of 0.24 s, but it
consistently delivers the best results across all cases, including extreme ones. These observations affirm the
effectiveness of FTC in UUVs and underscore the superior adaptability of SMA under various fault cases.
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Figure 7. Runtime and fitness of PSO, GOA and SMAmethods using the same operating parameters for different fault cases. PSO: Particle
swarm optimization; GOA: grasshopper optimization algorithm; SMA: slime mold algorithm.

5. CONCLUSION
This paper employs an effective FTC-SMA. The FTC strategy leverages the SMA for rapid redistribution of
thruster power, effectively constraining dynamic output within the limits of physical constraints. Simulation
experiments were conducted using the weighted pseudo-inverse algorithm, PSO, GOA, and SMA for single-
fault, double-fault, and quadruple-fault cases. The comparative analysis reveals that the control strategy based
on SMA consistently yields superior results across various fault conditions. This conclusion is reinforced by
the comprehensive comparison of the efficiency of PSO, GOA, and SMA under different fault conditions. In
the future, pool experiments are planned to further evaluate the performance of the FTC-SMA algorithm in
actual operations.
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