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Abstract: Underwater autonomous path planning is a critical component of intelligent underwater
vehicle system design, especially for maritime conservation and monitoring missions. Effective path
planning for these robots necessitates considering various constraints related to robot kinematics,
optimization objectives, and other pertinent factors. Sample-based strategies have successfully
tackled this problem, particularly the rapidly exploring random tree star (RRT*) algorithm. However,
conventional path-searching algorithms may face challenges in the marine environment due to
unique terrain undulations, sparse and unpredictable obstacles, and inconsistent results across
multiple planning iterations. To address these issues, we propose a new approach specifically tailored
to the distinct features of the marine environment for navigation path planning of underwater
vehicles, named bidirectional cached rapidly exploring random tree star (BCRRT*). By incorporating
bidirectional path planning and caching algorithms on top of the RRT*, the search process can be
expedited, and an efficient path connection can be achieved. When encountering new obstacles,
ineffective portions of the cached path can be efficiently modified and severed, thus minimizing
the computational workload while enhancing the algorithm’s adaptability. A certain number of
simulation experiments were conducted, demonstrating that our proposed method outperformed
cutting-edge techniques like the RRT* in several critical metrics such as the density of path nodes,
planning time, and dynamic adaptability.

Keywords: autonomous path planning; rapidly exploring random tree star; path cache; two-way
extended random tree; underwater vehicle

1. Introduction

Basic monitoring of the marine environment is essential for early warning and assess-
ment of marine hydro-meteorological conditions, urban climate change, and ecosystem
disasters [1,2]. In the present age, we are facing a range of ocean changes that threaten the
sustainable development of the human race, such as rising seawater temperatures [3,4],
increased acidity in the oceans [5], oxygen reduction [6], coral bleaching [7], declining num-
bers of sea creatures [8], and various forms of pollution [9], including plastic waste. Over
recent decades, growths in ocean farming, mineral extraction, and shipping and tourism, as
well as increases in anthropogenic pollution sources (including plastic and chemical pollu-
tants), have led to escalating levels of pollution. By 2030, the global population is expected
to reach 8.5 billion, with 40% of this figure residing within 100 km of the coastline, thereby
precipitating an increase in demand for marine resources and capacity [10]. Concurrently,
as terrestrial resources continue to diminish, it is becoming increasingly urgent to ensure
that oceans are protected by formulating measures for the utilization and conservation
of marine resources [1]. The core mission of marine conservation consists of observing,
monitoring, and understanding the marine environment, which has recently garnered
significant global attention in the field of marine science [11,12].

In order to achieve large-scale monitoring and data collection in marine environ-
ments at a reduced cost, there are currently two primary approaches: utilizing remote
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sensing technology and autonomous underwater vehicles. The collection of data through
remote sensing technology is associated with certain drawbacks, including limited tempo-
ral coverage, uncertainties in inversion models, and susceptibility to weather conditions.
Additionally, satellites have a notable limitation in their inability to acquire information
from the seafloor. The other platform is autonomous underwater vehicles (AUVs), which
exhibit higher maneuverability in the marine environment [1,13]. As such, they have seen
widespread use in marine monitoring and conservation tasks. The adaptability of under-
water robots for environmental monitoring allows them to quickly acquire high spatial
resolution data, enabling their real-time monitoring of fluctuations in specific oceanic pa-
rameters and risks. This has helped to supplement the shortcomings of other platforms [14].
Automatic path planning is a crucial functionality of underwater robots. However, the
complex and dynamic nature of marine environments poses challenges distinct from those
encountered in terrestrial settings [15,16]. Therefore, this paper places particular emphasis
on investigating path-planning algorithms specifically tailored for application in underwa-
ter domains.

Generally, the path planning for autonomous underwater vehicle navigation differs
from that of land and presents typical challenges in 3D space [17]. Numerous techniques
have been proposed for optimizing 3D paths, including statistical optimization-based
strategies, for example, the A-star algorithm [18], potential-based methods [19], ant colony
algorithms, and genetic algorithms. Despite their demonstrated capability, the majority
of these approaches suffer from intrinsic intractability due to their NP-hardness, posing
significant computational challenges for optimization [20].

To expedite the search process, an algorithm based on random sampling has been
developed, including probabilistic roadmaps (PRMs) [21] and rapidly exploring random
trees (RRTs). Sample-based methods efficiently optimize path solutions by eliminating
the explicit delineation of impediments [22]. PRMs represent a sparse configuration space
of vehicles using a graph model where waypoints serve as nodes, and graph edge reduc-
tion is utilized to optimize the path by minimizing the length of the connections between
nodes [23]. Conversely, the RRT algorithm is better suited for non-linear dynamic scenes,
but it does not guarantee the optimal path [24]. Multiple enhancements have been sug-
gested for the fundamental RRT framework, such as lazy-RRT, RRT-connect, and fixed-node
RRT (FN-RRT) [25]. Nonetheless, nearly all RRT-based approaches merely produce non-
optimal path solutions. To address this issue, the RRT* algorithm is a variant of the original
method, which updates neighboring node routes by adding new nodes to the tree. This
approach ensures asymptotic optimization results and is more likely to achieve optimal
outcomes [26]. Nevertheless, the RRT* approach exhibits high computational complexity
and low efficiency, making it challenging to apply in underwater environments. In recent
years, reinforcement learning and deep reinforcement learning methods have been grad-
ually applied to underwater vehicle path planning, but they require a certain amount of
computing power [27–29].

Due to the distinctive terrain undulations, relatively sparse obstacles, and the height-
ened likelihood of novel impediments inherent in marine environments, the aforemen-
tioned methods may prove unsuitable for underwater conditions. Path-planning method-
ologies for underwater environments should be swifter and more adaptive. In response to
this challenge, this paper proposes an enhanced RRT* algorithm tailored for underwater
path planning. This algorithm expedites the search process and bolsters the adaptability of
the algorithm to dynamics.

• This paper presents a novel approach to path planning, leveraging the principles
of bidirectional path planning and cached RRT* algorithm. To expedite the search
process, we employ a bidirectional search strategy using extended random trees,
facilitating the swift identification of both start and target points as well as efficient
path connectivity.

• In our proposed methodology, the path computed during the preceding step serves
as a cached representation of the optimal route. Subsequently, when novel obsta-
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cles emerge, we efficiently modify and sever the invalid portions of the cached path,
thereby minimizing computational efforts while simultaneously enhancing the dy-
namic adaptability of the algorithm.

• A certain amount of simulation experiments have been carried out. This reflects that
my proposed method is currently the best method, such as the fast exploration random
tree star algorithm, in several critical metrics including path node density, planning
time, and dynamic adaptability.

2. Related Works

As previously discussed, the optimal kinodynamic motion planning using incremental
sampling-based methods (RRT*) [30] algorithm has emerged as the leading approach for
path planning in robotics, owing to its superior performance and other state-of-the-art
methodologies. Consequently, recent research endeavors have focused on leveraging the
RRT* methodology to expedite the convergence and search processes. Our research is in
line with pertinent studies utilizing the RRT* and its derivatives. Figure 1 illustrates the
structure of the RRT* algorithm.

Figure 1. Schematic diagram of optimal kinodynamic motion planning using incremental sampling-
based methods (RRT*) [30] . The meaning of Xinit is initial position. The meaning of Xmin is the point
closest to the initial position. The meaning of Xnear is the point adjacent to the initial position. The
meaning of Xnew is the new location node explored according to the algorithm. The meaning of Xrand
is that there is a probability of the most new node.

In the pursuit of enhancing rapidly exploring random tree star (RRT*) performance,
two fundamental methods have been proposed. The first approach concentrates on refining
the sampling process, while the second involves path optimization strategies. Qureshi and
Ayaz proposed an artificial potential field approach using the potential function to guide
samples towards the local minima, which correspond to the optimal path [31]. The merits
of this method are that it efficiently reduces sample dispersion and accelerates convergence.
Kiesel et al. introduced an RRT* heuristic function that learns estimators online to guide mo-
tion tree expansion for path optimization [32]. This learning approach generates available
guidance, enabling efficient exploration of the optimum solution. Akgun et al. employed a
node-rejection criterion to enhance computational efficiency, where the number of iterations
for a single state is affected by the sampling domain [33]. Noreen and Khan conducted
collaborative research into keypoint suppression and bounded sampling techniques by ap-
plying the RRT*-adjustable boundary (RRT*-AB) method [34]. Graph clipping is a strategy
that reduces the model size by utilizing heuristic functions. It retains samples that optimize
existing solutions while eliminating others during the exploration process. Karaman and
Frazzoli present a computational and asymptotically optimal approach to the algorithm,
generating RRT* and PRM*, significantly improving sampling-based methods’ efficiency.
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However, these approaches might exaggerate the heuristic expenses and result in inac-
curacies when utilizing graph compression techniques, primarily occurring at the search
tree’s beginning [35]. By merging RRT-connect and RRT* approaches, Klemm et al. devised
a proficient randomized motion planning algorithm that attains a theoretical optimum
more rapidly than its RRT* counterpart [36]. Tahir et al. proposed a novel path-planning
algorithm consisting of potentially guided intelligent bidirectional RRT* (PIB-RRT*) and po-
tentially guided bidirectional RRT*PB-RRT* [37]. Shen et al. proposed a fast path-planning
method for underwater robots that improves RRT* by combining target and search al-
gorithms to realize quick path planning [38]. The aforementioned algorithm mentioned
above has achieved remarkable success in various domains. However, due to the sparse
visual spatial distribution of submerged impediments, the elevated likelihood of arbitrary
emergence of novel impediments, the fluctuating submerged topography, and other factors,
there is a requirement for more efficient path-planning algorithms that connect the initial
and objective points. Liu et al. [39] devised a virtual force method. The idea of the method
is to simulate the environment as an electrostatic field and a real-world fluid to specify
the effects of targets and obstacles on the robot, and then plan the channel, but it is easy
to fall into the local minima. Das et al. [40] devised the bug algorithm to make the robot
move in a straight line towards the goal when it does not encounter an obstacle; otherwise,
it goes around the boundary of the obstacle. Although the algorithm is computationally
simple, it can be extreme, i.e., if there are a large number of dynamic obstacles, the robot
will keep walking around the obstacles and will not even be able to reach the goal. Yang
et al. [41] proposed an N-step priority dual DQN (NPDDQN) path-planning algorithm,
which effectively achieves obstacle avoidance in complex environments, and designed a
filtering mechanism that improves the utilization of a priori knowledge, but still suffers
from the drawbacks of more complex computation and reliance on a priori knowledge.

The existing organizational structure of this investigation is outlined in the following
manner: Section 2 offers an evaluation of relevant literature, while contingent details
and mechanics of the proposed methodology are elucidated in Section 3. Subsequently,
experimental evaluation and consequential analysis are presented in Section 4. Section 5
provides a summary of this work along with a discourse on future research trajectories.

3. Bidirectional Cached Rapidly Exploring Random Tree Star

This section will provide a detailed exposition of the designed bidirectional path and
cached RRT* algorithm.

3.1. Random Tree Search Strategy of Bidirectionally Extended RRT* Algorithm

During path planning of autonomous underwater vehicles in the ocean, optimization
of the planning process can ameliorate both the efficiency and caliber of the resultant
path. However, because of the uniform sampling in the basic RRT* algorithm, numerous
redundant branches will be generated on the search tree, which are typically planned. Con-
sequently, the paths are suboptimal and comprise many noisy nodes, leading to insufficient
smoothness. To tackle this issue, redundant path nodes are smoothed by filtering. The
smoothing operation starts from the second node and checks backwardly to determine
whether the connection between the starting node and the current node interferes with
obstacles. If interference happens, the node is removed; otherwise, it is retained. Following
the anomaly detection process, the superfluous nodes along the path can be expeditiously
eliminated. Therefore, this study proposes an improved RRT*-based approach for complet-
ing underwater path planning. By introducing the Dijkstra algorithm for subsampling the
extended random tree and searching for the set matrix of nodes, the exploratory bidirec-
tional tree search methodology is employed to establish an initial pathway. If the cost of a
path exceeds a critical value, the pathway is refined and selected as the optimal solution,
leading to an update of the initial path to its optimized counterpart. This approach not
only improves the search efficiency but also guarantees the quality of the planned path.
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The comprehensive workflow of subaquatic trajectory planning utilizing the refined RRT*
algorithm is depicted in Figure 2.

Figure 2. Schematic diagram of two-way extended RRT* algorithm. Ti and Tg mean two random
trees. qi and qg represent the node of random sampling expansion.

This study aims to address the issue of underwater robot path planning by efficiently
connecting the start and target points through a short path. Unlike the basic RRT* algorithm,
which relies on random sampling from the initial node to expand search space, this paper
proposes the simultaneous growth of fast-expanding random trees from both the start
and target points to improve search efficiency and quickly find an initial cable planning
path. The parallel search enhances solution efficiency while maintaining a shorter initial
path through alternating attraction between the two trees. By employing the dual-aspect
enhanced random tree exploration methodology suggested in this study, prompt acquisition
of an initial trajectory linking the origin and destination is achievable, to which lies further
node-level fine-tuning for optimal path inference.

3.2. Path-Caching Strategy

In the intricate and dynamic milieu of the marine realm, dynamic or novel impedi-
ments may necessitate adept modifications to the random tree of the RRT* algorithm. A
possible strategy is to promptly re-plan and abandon the original path when encountering
previously unknown obstructions. The new route should evade current obstacles while
maintaining the continuity of the original trajectory. To realize this continuity bias, a route
cache must be established in the planning process. Path caching involves pre-saving nodes
on the static plan’s original path. In the novel path-planning process, these points have
the opportunity to guide the growth of newly generated nodes by serving as reference
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points. Subsequently, under consideration of the impact of gravitational offset on the
target position, the path cache functions as a directional tool guiding the growth of the
random tree. An improved growth function F(xnear) is proposed for generating new nodes
from xnear:

F(xnear) = R(xnear) + G(xnear) + P(xnear) (1)

where R(xnear) represents the stochastic sampling operation performed on the nodes,
G(xnear) stands for the intended directional tendency function, and P(xnear) signifies the
cached path bias function. Furthermore, the gravitational influence exerted by the target
vector xgoal on xnear can be mathematically formulated as:

G = kg ·
∥∥∥xgoal − xnear

∥∥∥ (2)

The vector xgoal denotes the target point’s position. The Euclidean norm of the difference

between xgoal and xnear, denoted by
∥∥∥xgoal − xnear

∥∥∥, indicates the distance from the node
to the target point. Furthermore, ρ signifies the search step length, while kp stands for
the gravitational coefficient. Consequently, the ensuing equation can be deduced as the
objective bias function:

G(xnear) = ρ · kg
xgoal − xnear∥∥∥xgoal − xnear

∥∥∥ (3)

Analogously, the offset function for path caching can be formulated as follows:

P(xnear) = ρ · kp
xpath,i − xnear∥∥∥xpath,i − xnear

∥∥∥ (4)

where kp denotes the coefficient for path cache offset, and xpath,i signifies the positional
vector of the i-th node within the pathway directory. Specify the Euclidean distance
value between two points (fixed point and node) is denoted by

∥∥∥xpath,i − xnear

∥∥∥ in the
equation. The format of the random expansion function in the fundamental RRT* algorithm
is represented as follows:

R(xnear) = ρ · xrand − xnear

∥xrand − xnear∥
(5)

By substituting Formulas (3)–(5) into Equation (1), a resultant expression is obtained:

F(xnear) = ρ · xrand − xnear

∥xrand − xnear∥
+ ρ · kg

xgoal − xnear∥∥∥xgoal − xnear

∥∥∥ + ρ · kp
xpath,i − xnear∥∥∥xpath,i − xnear

∥∥∥ (6)

The algorithmic expression for generating the novel entity is additionally derived
as follows:

xnew = xnear + ρ · xrand − xnear

∥xrand − xnear∥
+ ρ · kg

xgoal − xnear∥∥∥xgoal − xnear

∥∥∥ + ρ · kp
xpath,i − xnear∥∥∥xpath,i − xnear

∥∥∥ (7)

During implementation, three distinct probabilities are initially defined as pgoal , ppath, and
prand. pgoal represents the probability of selecting the target point (5), (6), or (7) as the new
node to guide the growth of the random tree towards the goal. On the other hand, ppath
corresponds to the probability of choosing a path cache point as a new node, while prand
denotes the probability of selecting a new node at random.

pgoal + ppath + prand = l (8)

The determination of pgoal and ppath represents a pivotal aspect among the three probabili-
ties, wherein comprehensive simulation experiments are imperative to ascertain based on
distinct contextual contingencies. In order to debug, pgoal = 0.3 and ppath = 0.6 serve as
the preliminary parameters.
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This section primarily concerns the enhancement of the node selection function utilized
in the RRT* algorithm for selecting the new node, which involves a stochastic process.
Specifically, the aforementioned operation entails the selection of an integer value obtained
from a pseudo-random number generator in the form of a uniform distribution i, with
p being uniformly distributed over the interval [0, 1], while i is uniformly selected from
the interval [1, N]. Here, N indicates the cardinality of the path cache set. If p < pgoal ,
an additional vertex is created as a result of the algorithmic process towards the desired
objective point. If pgoal < p < pgoal + ppath, a novel vertex is produced in the direction of
the i-th point on the stored trajectory; if not, in the absence of this condition a new node is
produced towards a randomly selected location. The corresponding sampling formula is
thus derived as follows:

xrand =


xgoal p < pgoal

xpath pgoal < p < pgoal + ppath
x f ree p > pgoal + ppath

(9)

Among them, xgoal denotes the positional values of the aimed destination, whereas xpath,i
denotes the coordinate of the i-th node in the stored trajectory. Additionally, x f ree denotes
the positional values of a point randomly selected from the sampled space. Upon ex-
amination of Equation (8), it is evident that the summation of the probabilities yields a
constant value. Hence, the probability of random sampling is affected by the target offset
probability and the path cache offset probability. The significant reduction of irrelevant
node exploration during tree traversal hinges on guiding its growth towards more effective
paths. This is achieved by incorporating directional cues such as pre-planned path nodes
and target points in random tree variations, ultimately diminishing random sampling
while eliminating unnecessary node computation. The algorithm proposed in this paper is
depicted in the overall flowchart illustrated in Figure 3.

Figure 3. Schematic diagram of two-way extended RRT* algorithm. Ti and Tg mean two random
trees. qi and qg represent the node of random sampling expansion. The bolded boxes highlight points
of divergence between the methodology proposed in this paper and other existing approaches.
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3.3. Algorithm

The preceding sections delineate the procedural schema of the refined algorithm. The
ensuing script depicts the pseudocode for devising a trajectory for a subaqueous vehicle
predicated on the BCRRT* algorithm (Algorithm 1):

Algorithm 1: Bidirectional Path Planning and Cache RRT* Algorithm
T ← initializeTree() for k = 1 to k do If p < pgoal

Xrand = Xgoal
else if pgoal < p < pgoal+ppath

Xrand = Xpath,i
else

Xrand = X f ree
Xnear ← Nearst_Neighbor(Xrand,T);
Xnew ← Steer(Xrand, Xnear)

u ← Select_Input(Xrand, Xnear);
Xnew ← New_State(Xnear, u, ∆t);
if obstacle free(Xnew) then
return Xnew;

Xnear_neighbor ← f ind_near_neighbor(T, Xnew, r);
if obstacle free(Xnew, T, r) then

T ← Choose_parent(Xnew, Xnear_neighbor, T);
for each Xnear_neighbor calculate(dist(Xnew, Xnear_neighbor) + cost (Xnear_neighbor,

Xinit))
Xnew_parent ← Xnear_neighbor, mincost;
return Xnew_parent;

T ← rewire(T, Xnew, Xnear_neighbor);
for each Xnear_neighbor calculate(dist(Xnear_neighbor, Xnew) + cost(Xnew, Xinit))
Xnew mincost ← min(dist(Xnear_neighbor, Xnew) + cost(Xnew, Xinit));
Xnear_neighbor, newparent ← Xxnewmincost;
return Xnear_neighbor, newparent;

end

4. Experiments

This section introduces the experimental platform and conducts an analysis of the
experimental results. Sections 4.1 and 4.2 provide a detailed exposition of these aspects. The
core algorithm code link designed in this article is https://github.com/Fngyang/BCRRT.
(accessed on accessed on 22 January 2024).

4.1. Implementation and Testbeds

During the experimental phase, a comparative study was conducted between the
rudimentary RRT* algorithm and the improved approach proposed in this manuscript.
To construct the simulated space with obstacles we refer to the work of Shen et al. [38].
The evaluation was performed using Python 3.7 and Matplotlib on an Intel Core i5-6500
processor with a clock speed of 3.20 GHz, a memory capacity of 4 GB, and the Windows
7 operating system. For this purpose, the search step was set to a fixed value of 5 cm,
while the loop was allowed to terminate after 4000 iterations. The testbed comprised a
three-dimensional map with dimensions of 100 × 100 × 100, where the starting and ending
points were (5,5,5) and (95,95,95), respectively. The display modules were responsible
for generating both the random tree and path information. The red lines denoted the
branches of the random tree, whereas the black lines represented the output path. To
ensure consistency in results, the same map was deployed for algorithmic validation in this
research work.

https://github.com/Fngyang/BCRRT


Appl. Sci. 2024, 14, 947 9 of 16

4.2. Experiment Analysis

Figure 4 portrays the path obtained through the basic RRT* algorithm. Owing to
the stochasticity of sampling, the trajectory generated may differ despite having identical
obstacle attributes and locations on the map. Notably, p has been assigned a fixed value
of 5 in this study. The ellipsoidal entity highlighted in a brownish-red hue represents an
obstacle, while the corresponding path is depicted in a highlighted brownish color. The
green depictions signify nodes, whereas the expansion of nodes leads to connections with
other pre-existing nodes within the field, as represented by thin red lines.

Figure 4. Experimental results of RRT* algorithm. The three-dimensional space depicted in the figure
represents a synthetically simulated underwater environment. The variably sized reddish-brown
spheres in the illustration simulate underwater obstacles. The thin red lines and green dots within
the figure denote the exploration and planning processes. The thicker reddish-brown lines in the
figure represent the ultimately planned optimal path.

The figure above demonstrates that the RRT* algorithm, which utilizes random uni-
form sampling, produces points uniformly distributed in the free space. While this ap-
proach explores the entirety of the spatial region, a majority of the randomly sampled
points are not helpful for final path computation. To address this issue, the RRT* algorithm
employs parent node optimization at every sampled point, causing more nodes within the
vicinity of the new node to undergo optimization as the random tree expands. This leads
to a considerably higher computational complexity and greater memory consumption.

As delineated in Figure 5, the crimson trace represents the preliminary planning
trajectory swiftly acquired via a bidirectional expansion of the random tree approach, while
the highlighted tawny contour corresponds to the supremum trajectory fine-tuned by
means of the Dijkstra algorithm. In comparison with the initial trajectory, the trajectory
generated by the Dijkstra algorithm manifests a reduced number of sampling nodes.

Table 1 displays the computational performance comparison of diverse techniques
within a Python-based simulation setting while maintaining an equal number and location
of obstacles, and consistent starting and ending points. Each procedure was implemented
in 50 repetitions, generating 50 unique datasets of trajectory length and time allocation
values that were subsequently combined using mean averaging. The table reveals that
the RRT algorithm is characterized by high computational overhead and low node utiliza-
tion. In contrast, the advanced RRT* algorithm proposed in this study, while mitigating
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planning time, also significantly improves the quality of planned paths, thus optimizing
search efficiency.

Figure 5. Two-way extended RTT* algorithm effect diagram. The three-dimensional space depicted in
the figure represents a synthetically simulated underwater environment. The variably sized reddish-
brown spheres in the illustration simulate underwater obstacles. The thin red lines and green dots
within the figure denote the exploration and planning processes. The thicker reddish-brown lines in
the figure represent the ultimately planned optimal path.

Table 1. An evaluation of various techniques was conducted by comparing the path length and
planning time produced by each method. RRT means rapidly exploring random trees. RRT* means
optimal kinodynamic motion planning using incremental sampling-based methods.

Method Planning Trajectory Length/cm Time Allocation/s

RRT 144.16 12.75
Basic RRT* 137.43 9.21

Dijkstra algorithm optimizes RRT* 101.20 4.07

Owing to the inherent nature of the RRT* algorithm, ensuring identical path planning
under the same constraint conditions remains a challenging task. To address this limitation,
We use the initial result as a path cache for subsequent iterations, thus reducing the ran-
domness associated with each planning cycle and mitigating the generation of superfluous
nodes. Furthermore, as the RRT* algorithm can determine the optimal path solution within
the current random tree configuration, coupling it with the path cache can substantially
enhance the quality of re-planned paths that are closer to achieving global optimality. In
order to evaluate the efficacy of the path cache, we conducted multiple computations on
the same map in an unvarying environment. Our results, presented in Figure 6 and Table 2,
demonstrate the effectiveness of using the path cache to obtain more efficient path-planning
outcomes while maintaining low node utilization.
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Figure 6. Two-way expansion and path cache optimization RTT* algorithm effect diagram. The
three-dimensional space depicted in the figure represents a synthetically simulated underwater envi-
ronment. The variably sized reddish-brown spheres in the illustration simulate underwater obstacles.
The thin red lines and green dots within the figure denote the exploration and planning processes.
The thicker reddish-brown lines in the figure represent the ultimately planned optimal path.

Table 2. Node usage of path planning with path cache.

Total Node Count
Employed

Total Path Node
Count Employed Node Utilization/%

Initial planning 1902 42 2.20
First 1530 36 2.28

Second 1430 31 2.09
Third 1007 28 2.87

Fourth 871 24 2.86
Fifth 634 21 3.26

Based on the analysis of Figure 6 and Table 2, it can be observed that utilizing path
cache in path planning results in a high level of consistency in generating effective paths.
Additionally, by reducing the randomness during sampling, fewer useless nodes are
explored. However, the number of nodes does not decrease with the number of replans;
this is dependent on the distance between the expansion step and start/end points. Under
equal conditions and a certain step length, the path’s length and nodes cannot be reduced
infinitely, but rather tend towards an optimal solution. Although the number of path
nodes has experienced fluctuations, the effectiveness of node utilization has increased
significantly attributable to the concomitant decrease in their application.

According to the two-way path planning and cached RRT* algorithm employed by
the underwater robot, the alterations of the coordinates pertaining to a specific addressing
pathway are visually depicted in Figure 7.

After a comprehensive understanding of the efficacy of the enhanced algorithms, we
conducted 100 simulation experiments under randomly generated obstacle environments
for both algorithms. Concurrently, we documented the usage of nodes to scrutinize their
stability and other parameters. The results, as depicted in Figure 8, illustrate line graphs
representing the runtime data derived from the aforementioned simulations. The two
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curves in Figure 8 reveal that, through numerous iterations of random obstacle experiments,
the algorithm devised in this paper consistently requires fewer nodes to re-plan new paths
when obstacles undergo changes.

Figure 7. Position change curve. Three curves represent the trajectory from the starting point to the
endpoint in the three-dimensional coordinates of X, Y, and Z.

Figure 8. The number of nodes in path planning before and after changes in obstacles. The figure
depicts 100 iterations of repeated experiments with randomly changing obstacles. The orange curve
represents the number of nodes in path planning before obstacles undergo changes, while the blue
curve represents the number of nodes in path planning after obstacle modifications.

The enhanced algorithm incorporates a path cache offset to mitigate the likelihood
of random sampling. This restriction on the number of nodes utilized curtails redundant
calculations and diminishes memory consumption. Fundamentally, the execution time is
predicated on the number of iterations, and therefore, a reduction in the quantity of nodes
employed corresponds to a proportional diminution in running time. The RRT* algorithm
introduces additional superfluous computations to attain improved outcomes. Neverthe-
less, the computational overhead incurred by this aspect has been partially mitigated via
the utilization of path buffer offset sampling. Subsequently, the average computational
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time under both environments registered a 58.79% and 61.99% decline correspondingly.
In general, the enhanced algorithm economizes around 60% of computation time, thereby
demonstrating the interrelationship between node count and computation time. Addition-
ally, since the quantum of calculations is directly proportional to the size of the random tree,
declining node numbers further alleviates the dimensions of the random tree, culminating
in a greater reduction in computation time relative to node count.

To substantiate the efficacy of the design methodology proposed in this paper, empiri-
cal investigations were conducted utilizing three sophisticated optimization algorithms:
the classical ant colony algorithm, the particle swarm algorithm, and the genetic algorithm.
Comparative analyses were performed in simulated scenarios, examining performance
metrics such as turning points and iteration counts. Figure 9 delineates the number of
operations executed by the four algorithms to ascertain the optimal path. Despite the
basic ant colony algorithm requiring 18 iterations for convergence, the particle swarm
algorithm requiring 13 iterations, and the genetic algorithm necessitating 14 iterations, the
optimization algorithm proposed in this study achieves convergence in only 8 iterations,
vividly showcasing its prowess in identifying the shortest path.

Figure 9. Minimum path length and number of iterations planned by different algorithms.

Table 3 presents a comparative analysis of simulation results for four algorithms. The
research findings indicate that the algorithm proposed in this paper exhibits rapid and
efficient capabilities in optimal path search. Diverging from ant colony algorithms, this
method outperforms the basic ant colony algorithm, particle swarm algorithm, and genetic
algorithm, reducing path lengths by 31% and 10%, respectively. Moreover, it achieves the
fastest convergence rate while enhancing global optimization capabilities. In summary,
the algorithm presented in this paper offers unique advantages in terms of minimum path
length, iteration count, and turning point count.
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Table 3. A comparative analysis was carried out to evaluate the findings obtained from the three
algorithms.

Evaluating
Indicator

Ant Colony
Algorithm

Particle Swarm
Algorithm

Genetic
Algorithm

Our algorithm
in this Article

Optimal path
length 32.97 30.38 30.86 30.38

Number of
iterations 18 13 14 8

Number of
inflection points 17 13 14 13

5. Conclusions

To enhance the efficacy of cable planning and layout search, as well as improve wiring
quality in digital design, this paper proposes an optimized RRT algorithm. The proposed
strategy utilizes a bidirectional extended random tree to achieve fast global search between
the start and target points. To further optimize the shortest distance calculation between
path nodes, a Dijkstra path is introduced, which eliminates redundant nodes in the initial
path. Additionally, the path buffer offset is implemented in order to correct inconsistencies
caused by random sampling, effectively obtaining the optimal path. Furthermore, a Python
static simulation experiment is conducted to validate the efficacy of two strategies; two-
way extended sampling and path caching. In comparison with alternative approaches,
the underwater robotic path-planning method proposed in this study exhibits superior
planning efficacy within simulated underwater environments. This accomplishment not
only establishes a benchmark for practical applications in underwater robotic path planning
but also underscores its potential value. It is noteworthy that while the distribution of
obstacles has been considered in this study, attributes such as material composition and
volume of objects in underwater path planning were not accounted for in the assessment
of planning effectiveness. In future endeavors, additional factors, including the motion
states of underwater devices and the presence of mobile obstacles, will be incorporated
into algorithmic design to enhance the comprehensiveness of the analysis.
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