
KSII The 12th International Conference on Internet (ICONI) 2020.  

Copyright ⓒ 2020 KSII                                                                                                                                                                                    40 

 

 

This research was supported by a UTM Encouragement Research Grant Q.J130000.3851.19J08 

A Review of Machine Learning Path 

Planning Algorithms for Autonomous 

Underwater Vehicles (AUV) in Internet of 

Underwater Things (IoUT) 
 

Chinonso Okereke*, Nur Haliza Abdul Wahab and Mohd Murtadha 

School of Computing, Faculty of Engineering,  

 Universiti Teknologi Malaysia, Skudai, Johor, 81310, Malaysia  

[e-mail: okereke@graduate.utm.my, nur.haliza@utm.my, murtadha@utm.my] 

*Corresponding author: Chinonso Okereke 

 

 

Abstract 
 

The introduction of the Underwater Internet of Things (UIoT), an extension of the Internet of Things 

(IoT) underwater has become powerful technology necessary to develop the Smart Oceans. 

Autonomous Underwater Vehicles (AUVs) play a crucial role in Internet of IoUT technology largely 

because of their mobility and longer energy storage. However, AUV technologies face major challenges 

such as path planning problems due to the hostile and dynamic nature of the underwater environment. 

The path planning problem is about finding an optimal path from the start to the endpoint of the AUV. 

Machine learning is an approach to tackling this problem. While there are numerous ways to address 

this challenge, machine learning algorithms are few. This paper provides an overview of the path 

planning problem and review machine learning path planning algorithms for both single and multiple 

AUVs and gives directions for future research.  
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1. Introduction 
 

Internet of Underwater Things (IoUT) is a novel 

class of the Internet of Things (IoT) that enables 

Smart interconnected underwater objects. This 

IoUT allows monitoring and tracking on vast 

unexplored water areas. Location or object 

tracking and monitoring in IoT areas such as [1] 

cannot be applied in underwater things on IoUT. 

As for that, different methods, approaches need 

to be explored in IoUT to guarantee fully internet 

system cover underwater. As about 71% of this 

earth is covered by the ocean, it is very important 

to have system support cover in IoUT. 

Several technologies developed to fulfill the 

needs in IoUT such as Autonomous Underwater 

Vehicle (AUV). AUV plays an increasingly 

important role in ocean exploration specifically 

like monitoring, tracking and routing. System 

applied by the internet specifically in Routing 

Optimization is also an important role model like 

in [2] but to handle it underwater it is also such a 

big challenge. Others like AUV Unmanned 

Underwater Vehicles (UUV) that are self-

propelled and independently operating in six 

degrees of freedom and can conduct planned 

missions independently also can be considered 

great technology applied in IoUT. The other class 

of UUVs is remotely operated vehicles (ROV) 
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which are powered and operated from a station 

with a cord or remotely [3].  

While AUVs have different designs and types 

such as gliders, hovering and intervention AUVs, 

the conventional AUV design is usually in 

torpedo-like shapes because of its advantages 

such as flexibility, better acceleration abilities, 

ease of launch and recovery [4]. AUVs are used 

in ocean exploration as well as mine counter-

measures, deep-sea inspections, marine science, 

security patrols, pipe maintenance, search and 

rescue in hazardous environments [5].  

Due to the importance of AUV technologies, 

researchers have sought to improve its 

effectiveness, part of which involves efficiently 

solving the path planning control problem which 

is crucial for many applications including data 

collection, ocean predictions, and monitoring. 

According to [6], the path planning problem is 

defined as calculating a route to a targeted 

destination which optimizes stated objective 

functions with the current state of a single AUV 

or multiple AUVs and ocean environment 

details. While solving the path planning problem, 

the characteristics of the vehicle(s) must be 

maintained.  

 

Fig. 1.  A typical path planning path for AUV 

 

 The objective function to be optimized may be 

time, energy, or safety depending on the 

application requirements. Path planning for 

AUVs has generally been tied to safety 

conditions. Fig. 1 shows a typical path planning 

path for AUV. 

1.1 Safety 

Safe conditions involve taking a path devoid of 

obstacles or dangerous areas. A typical vehicle 

may not have information about the locations of 

an obstacle. However, as the AUV transverses, 

through the area, the AUV must have the ability 

to sense or change their location with time. Other 

AUVs can also be seen as obstacles in the case of 

multiple AUVs. The AUV is required to be able 

to calculate and change its route in real-time. 

How this is done fulfills the safety objective 

function [7]. 

1.2 Energy Consumption 

Since AUVs have relatively small battery life, 

the objective is to keep energy consumption 

minimal. This can be done by simplifying 

computational complexities, avoiding obstacles 

and hazardous areas that can cause unwanted 

errors, finding the shorter path to destinations, or 

in some cases reduces the speed of AUV. 

1.3 Time Travelled 
Time is another objective to be optimized. 

Increasing the speed of AUV at the expense of 

energy consumption, avoiding obstacles that 

cause unnecessary details, and finding short 

paths of travel are some notable ways of 

minimizing time spent. It is noted that achieving 

path objective optimization can be 

interdependent on one another in more cases.  

The prediction of paths along with these 

specified criteria (e.g., time, energy, data 

collected, and/or safety) optimized as a whole is 

therefore labeled path planning [8]. 

Over the last decade, there has been a lot of 

research and improvement on path planning in 

both single and multiple AUV applications. 

However, most of the development path planning 

algorithms incorporate little machine learning 

approaches.  

This paper reviews the path planning algorithms 

with machine learning and seeking to establish 

the trend and find gaps and areas of possible 

improvements.   

 

2. Machine Learning  
 

Machine Learning algorithms are generally 

regarded as computer algorithms that can 

automatically learn and improve from experience 

without being explicitly programmed. The three 

main classes of machine learning algorithms are 

supervised learning, unsupervised learning, and 

reinforcement learning.  
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Supervised learning algorithms train a system, 

based on examples of each category, to 

differentiate between different categories or 

classes of input. Common examples of 

supervised learning include neural networks, 

supervised regression support vector machines, 

adaptive boosting among others. In unsupervised 

learning, a model is developed by grouping 

similar unlabelled data. A common type is 

clustering. 

In the case of reinforcement learning, data 

classification is not needed, rather, the agent 

learns through trial and error and with the 

concept of reward and punishment in an 

environment described by the Markov Decision 

Process. The most common type of 

reinforcement learning is Q-learning.  The 

process of reinforcement learning was shown in 

Fig. 2. 

 

Fig. 2.  Reinforcement learning process 

2.1 Machine Learning in Path Planning 

Algorithm 

Even though machine learning can assist path 

planning in other non- planning components of 

the system like the use of convolutional neural 

networks (CNN) to automatically segment side-

scan sonar (SSS) images in [9] and k-clustering 

of images for easier computation as shown in 

[10], the focus this paper is to review the recent 

path planning algorithms made up of machine 

learning. The two broad categories of machine 

learning algorithms used in path planning are 

neural networks and reinforcement learning.  

2.2 Neutral Networks Algorithms 

A neural network is a model of a computational 

network inspired by the structure of an animal 

brain of biological neurons. It is possible to view 

the network as a graph of nodes linked by edges. 

The edges relay activation information from one 

node to another, analogous to how electrical 

signals are passed through biological neurons 

[11]. 

Table 1 shows the reviewed neural network 

algorithms in terms of their deployed 

environment, method, path cost, objective 

function, availability of obstacle avoidance, and 

the number of AUVs present

 

Table 1. Comparison of Supervised learning path planning algorithms  

 
Authors Type Of 

Environment 

Method Type Of Path 

Generated 

Obstacle 

Avoidance 

Path Cost Single/

Multi 

[12] Unpredictable BINM Neural 

Network  

Optimal Achieved Moderate Single 

[13] Unpredictable BINN +Velocity 

Synthesis 

Time &Energy 

Optimal 

Achieved Low Multi 

[14] Unpredictable Dynamic BINN 

(DBINN) 

Energy And 

Time-Optimal 

Achieved Low Single 

[16] Predictable Extreme Learning 

Machine 

Time & Energy 

Optimal 

Achieved Low Single 

[15] Unpredictable Glasius BINN Time And Energy Achieved Low Single 

[17] Unpredictable 

And Predictable 

ANN +Evolutionary 

Algorithm 

Time And Energy 

Optimal 

Achieved Low Single 

 In [12]  a topologically organized bio-inspired 

neurodynamic model based on a sonar map is 

constructed to represent the dynamic 

environment and inspire a collision-free path 

without any prior knowledge of the environment. 

[13] used an algorithm that combines the 

Biological Inspired Neurodynamic Model 

(BINM) and Velocity Synthesis (VS) to produce 

shorter search paths and thus reduce energy 

consumption for multiple AUVs compared to the 

traditional BINM.  [14]  deals with the 

shortcomings of BINN such as high 

computational complexity and long paths for 

larger environments and bigger obstacles, using 
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a dynamic BINM.  

[15] solves the BINN challenges using a Glasius 

BINN. In [16] an  Extreme learning machine 

(ELM)s is used to generate an obstacle-free path 

at a fast speed. [17]  combines evolutionary 

algorithm and artificial neural network to solve 

multi-objective and multi-stage path planning 

search operations. 

2.3 Reinforcement Learning Algorithms 

Reinforcement learning algorithms assume the 

world is a Markov decision process. An 

algorithm may try to infer some or all of the MDP 

by observing the effects of the actions it executes. 

The resulting estimation of the MDP can then be 

used to create a policy for future decisions. These 

types of algorithms are known as model-based 

methods. In contrast, model-free methods create 

policies that attempt to maximize reward without 

modeling the underlying dynamics of the MDP.  

2.4 Analysis of Reinforcement 
Algorithms 

Table 2 shows the reviewed reinforcement 

algorithms in terms of their deployed 

environment, method, path cost, objective 

function, availability of obstacle avoidance, and 

the number of AUVs present. 

Han et al [18] use reinforcement learning for the 

path planning of multiple AUVs alongside an 

underwater acoustic sensor network for effective 

monitoring.  

In [19], [20], a reinforcement learning algorithm 

is compared to evolutionary algorithms for path 

planning. The researchers show that 

reinforcement learning performs better than the 

biologically inspired algorithms in higher 

computational complexity.  

 

     
 

Table 2. Comparison of reinforcement learning path planning algorithms 

 
Authors Type Of 

Environment 

Method Type Of Path 

Generated 

Obstacle 

Avoidance 

Path Cost Single/

Multi 

[18] Predictable Reinforcement 

Learning 

Time And Energy 

Optimal 

Achieved Moderate Multi 

[21] Predictable Reinforcement 

Learning +Artificial 

Potential Field 

Time-Optimal Achieved High Single 

[23] Unpredictable Adaptative Dynamic 

Programming 

Optimal Achieved High Single 

[22] Unpredictable Q-Learning +Path 

Smoothing Algorithm 

Time-Optimal Achieved Moderate Single 

[19] 

[20] 

Predictable Q-Learning And 

Evolutionary 

Algorithm) 

Optimal Achieved Moderate Single 

In [21], reinforcement learning is used for the 

path planning of intervention AUVs for catching 

sea urchins in the deep seabed while in 

[22]  reinforcement learning is used in path 

optimization for a marine vehicle in ocean 

currents. In [23], the researcher uses a more 

advanced form of reinforcement learning called 

adaptive dynamic programming to solve the 

complex calculations achieving optimal motion 

control coupled with the least square method. 

 

 

3. Results Analysis and 

Recommendations 

Based on the reviewed literature from Table 1, it 

is seen there has been more focus on the 

application of neural networks in single AUVs 

(83%) than in multiple AUV systems (17%) and 

the type of environment for the application of 

neural networks are mainly unpredictable (83%). 

While all reviewed literature achieved obstacle 

avoidance, most of them were also both time and 
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energy optimal (83%) in the path generated with 

every low path cost. Also  

  

For Table 2, it is seen also that more focus has 

been given to single AUV applications (80%) 

than multiple AUV applications (20%). Just like 

other machine learning algorithms, obstacle 

avoidance is achieved, however, few 

reinforcement learning algorithms (20%) achieve 

target energy optimization and the path cost of 

the reinforcement algorithms ranges from 

moderate to high. It is also noted that the type of 

environment that applies reinforcement 

algorithms are 60 %predictable and 40% 

unpredictable based on the reviewed literature. 

With this analysis, the following 

recommendation is given for future study: 

There is a need for more research into the use of 

machine learning in the path planning of multiple 

autonomous underwater vehicles (cooperative 

path planning).  

Also, from the reviewed literature it shows that 

reinforcement learning is more energy-intensive 

than neural network and other machine learning 

approaches in path planning. There is therefore 

needed to research more energy-efficient 

methods of path planning with reinforcement 

learning. 

4. Conclusions 

This paper reviews machine learning approaches 

to path planning. The main machine learning 

algorithms used in path planning include neural 

networks and reinforcement learning. While 

there has been a good amount of research into 

machine learning approaches in path planning, 

there are still several milestones to be achieved 

like energy efficiency with reinforcement 

learning and effective machine learning 

approaches in cooperative path planning.  
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