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Abstract

The introduction of the Underwater Internet of Things (UloT), an extension of the Internet of Things
(1oT) underwater has become powerful technology necessary to develop the Smart Oceans.
Autonomous Underwater Vehicles (AUVSs) play a crucial role in Internet of 1oUT technology largely
because of their mobility and longer energy storage. However, AUV technologies face major challenges
such as path planning problems due to the hostile and dynamic nature of the underwater environment.
The path planning problem is about finding an optimal path from the start to the endpoint of the AUV.
Machine learning is an approach to tackling this problem. While there are numerous ways to address
this challenge, machine learning algorithms are few. This paper provides an overview of the path
planning problem and review machine learning path planning algorithms for both single and multiple
AUVs and gives directions for future research.
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1. Introduction Several technologies developed to fulfill the
needs in IoUT such as Autonomous Underwater

Internet of Underwater Things (IoUT) is anovel ~ Vehicle (AUV). AUV plays an increasingly

class of the Internet of Things (IoT) that enables important role in ocean exploration specifically
Smart interconnected underwater objects. This like monitoring, tracking and routing. System
IoUT allows monitoring and tracking on vast applied by the internet specifically in Routing
unexplored water areas. Location or object Optimization is also an important role model like
tracking and monitoring in IoT areas such as [1] in [2] but to handle it underwater it is also such a

cannot be applied in underwater things on IoUT. big challenge. chers like AUV Unmanned
As for that, different methods, approaches need Underwater Vehicles (UUV) that are self-

to be explored in [oUT to guarantee fully internet propelled and independently operating in six
system cover underwater. As about 71% of this degrees of freedom and can conduct planned
carth is covered by the ocean, it is very important missions independently also can be considered
to have system support cover in IoUT. great technology applied in IoUT. The other class

of UUVs is remotely operated vehicles (ROV)
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which are powered and operated from a station
with a cord or remotely [3].

While AUVs have different designs and types
such as gliders, hovering and intervention AU Vs,
the conventional AUV design is usually in
torpedo-like shapes because of its advantages
such as flexibility, better acceleration abilities,
ease of launch and recovery [4]. AUVs are used
in ocean exploration as well as mine counter-
measures, deep-sea inspections, marine science,
security patrols, pipe maintenance, search and
rescue in hazardous environments [5].

Due to the importance of AUV technologies,
researchers have sought to improve its
effectiveness, part of which involves efficiently
solving the path planning control problem which
is crucial for many applications including data
collection, ocean predictions, and monitoring.

According to [6], the path planning problem is
defined as calculating a route to a targeted
destination which optimizes stated objective
functions with the current state of a single AUV
or multiple AUVs and ocean environment
details. While solving the path planning problem,
the characteristics of the vehicle(s) must be
maintained.
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Fig. 1. A typical path planning path for AUV

The objective function to be optimized may be
time, energy, or safety depending on the
application requirements. Path planning for
AUVs has generally been tied to safety
conditions. Fig. 1 shows a typical path planning
path for AUV.

1.1 Safety

Safe conditions involve taking a path devoid of
obstacles or dangerous areas. A typical vehicle
may not have information about the locations of
an obstacle. However, as the AUV transverses,

through the area, the AUV must have the ability
to sense or change their location with time. Other
AUVs can also be seen as obstacles in the case of
multiple AUVs. The AUV is required to be able
to calculate and change its route in real-time.
How this is done fulfills the safety objective
function [7].

1.2 Energy Consumption

Since AUVs have relatively small battery life,
the objective is to keep energy consumption
minimal. This can be done by simplifying
computational complexities, avoiding obstacles
and hazardous areas that can cause unwanted
errors, finding the shorter path to destinations, or
in some cases reduces the speed of AUV.

1.3 Time Travelled

Time is another objective to be optimized.
Increasing the speed of AUV at the expense of
energy consumption, avoiding obstacles that
cause unnecessary details, and finding short
paths of travel are some notable ways of
minimizing time spent. It is noted that achieving
path  objective  optimization can  be
interdependent on one another in more cases.

The prediction of paths along with these
specified criteria (e.g., time, energy, data
collected, and/or safety) optimized as a whole is
therefore labeled path planning [8].

Over the last decade, there has been a lot of
research and improvement on path planning in
both single and multiple AUV applications.
However, most of the development path planning
algorithms incorporate little machine learning
approaches.

This paper reviews the path planning algorithms
with machine learning and seeking to establish
the trend and find gaps and areas of possible
improvements.

2. Machine Learning

Machine Learning algorithms are generally
regarded as computer algorithms that can
automatically learn and improve from experience
without being explicitly programmed. The three
main classes of machine learning algorithms are
supervised learning, unsupervised learning, and
reinforcement learning.
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Supervised learning algorithms train a system,
based on examples of each category, to
differentiate between different categories or
classes of input. Common examples of
supervised learning include neural networks,
supervised regression support vector machines,
adaptive boosting among others. In unsupervised
learning, a model is developed by grouping
similar unlabelled data. A common type is
clustering.

In the case of reinforcement learning, data
classification is not needed, rather, the agent
learns through trial and error and with the
concept of reward and punishment in an
environment described by the Markov Decision
Process. The most common type of
reinforcement learning is Q-learning.  The
process of reinforcement learning was shown in
Fig. 2.
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Fig. 2. Reinforcement learning process
2.1 Machine Learning in Path Planning

Algorithm

Even though machine learning can assist path
planning in other non- planning components of
the system like the use of convolutional neural
networks (CNN) to automatically segment side-
scan sonar (SSS) images in [9] and k-clustering
of images for easier computation as shown in
[10], the focus this paper is to review the recent
path planning algorithms made up of machine
learning. The two broad categories of machine
learning algorithms used in path planning are
neural networks and reinforcement learning.

2.2 Neutral Networks Algorithms

A neural network is a model of a computational
network inspired by the structure of an animal
brain of biological neurons. It is possible to view
the network as a graph of nodes linked by edges.
The edges relay activation information from one
node to another, analogous to how electrical
signals are passed through biological neurons
[11].

Table 1 shows the reviewed neural network
algorithms in  terms of their deployed
environment, method, path cost, objective
function, availability of obstacle avoidance, and
the number of AUVSs present

Table 1. Comparison of Supervised learning path planning algorithms

Authors | Type Of | Method Type Of Path | Obstacle Path Cost | Single/
Environment Generated Avoidance Multi
[12] Unpredictable BINM Neural | Optimal Achieved Moderate | Single
Network
[13] Unpredictable BINN +Velocity | Time &Energy | Achieved Low Multi
Synthesis Optimal
[14] Unpredictable Dynamic BINN | Energy And | Achieved Low Single
(DBINN) Time-Optimal
[16] Predictable Extreme  Learning | Time & Energy | Achieved Low Single
Machine Optimal
[15] Unpredictable Glasius BINN Time And Energy | Achieved Low Single
[17] Unpredictable ANN +Evolutionary | Time And Energy | Achieved Low Single
And Predictable | Algorithm Optimal

In [12] a topologically organized bio-inspired
neurodynamic model based on a sonar map is
constructed to represent the dynamic
environment and inspire a collision-free path
without any prior knowledge of the environment.
[13] used an algorithm that combines the
Biological Inspired Neurodynamic Model

(BINM) and Velocity Synthesis (VS) to produce
shorter search paths and thus reduce energy
consumption for multiple AUVs compared to the
traditional BINM.  [14]  deals with the
shortcomings of BINN such as high
computational complexity and long paths for
larger environments and bigger obstacles, using
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a dynamic BINM.

[15] solves the BINN challenges using a Glasius
BINN. In [16] an Extreme learning machine
(ELM)s is used to generate an obstacle-free path
at a fast speed. [17] combines evolutionary
algorithm and artificial neural network to solve
multi-objective and multi-stage path planning
search operations.

2.3 Reinforcement Learning Algorithms

Reinforcement learning algorithms assume the
world is a Markov decision process. An
algorithm may try to infer some or all of the MDP
by observing the effects of the actions it executes.
The resulting estimation of the MDP can then be
used to create a policy for future decisions. These

24 Analysis of Reinforcement

Algorithms

Table 2 shows the reviewed reinforcement
algorithms in terms of their deployed
environment, method, path cost, objective

function, availability of obstacle avoidance, and
the number of AUVs present.

Han et al [18] use reinforcement learning for the
path planning of multiple AUVs alongside an
underwater acoustic sensor network for effective
monitoring.

In [19], [20], a reinforcement learning algorithm
is compared to evolutionary algorithms for path
planning.  The researchers show that
reinforcement learning performs better than the

types of algorithms are known as model-based biologically inspired algorithms in higher
methods. In contrast, model-free methods create computational complexity.
policies that attempt to maximize reward without
modeling the underlying dynamics of the MDP.
Table 2. Comparison of reinforcement learning path planning algorithms
Authors | Type Of | Method Type Of Path | Obstacle Path Cost | Single/
Environment Generated Avoidance Multi
[18] Predictable Reinforcement Time And Energy | Achieved Moderate | Multi
Learning Optimal
[21] Predictable Reinforcement Time-Optimal Achieved High Single
Learning +Artificial
Potential Field
[23] Unpredictable | Adaptative Dynamic | Optimal Achieved High Single
Programming
[22] Unpredictable | Q-Learning +Path | Time-Optimal Achieved Moderate | Single
Smoothing Algorithm
[19] Predictable Q-Learning And | Optimal Achieved Moderate | Single
[20] Evolutionary
Algorithm)

In [21], reinforcement learning is used for the
path planning of intervention AUVs for catching
sea urchins in the deep seabed while in
[22] reinforcement learning is used in path
optimization for a marine vehicle in ocean
currents. In [23], the researcher uses a more
advanced form of reinforcement learning called
adaptive dynamic programming to solve the
complex calculations achieving optimal motion
control coupled with the least square method.

3. Results Analysis and
Recommendations

Based on the reviewed literature from Table 1, it
is seen there has been more focus on the
application of neural networks in single AUVs
(83%) than in multiple AUV systems (17%) and
the type of environment for the application of
neural networks are mainly unpredictable (83%).
While all reviewed literature achieved obstacle
avoidance, most of them were also both time and
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energy optimal (83%) in the path generated with
every low path cost. Also

For Table 2, it is seen also that more focus has
been given to single AUV applications (80%)
than multiple AUV applications (20%). Just like
other machine learning algorithms, obstacle
avoidance is achieved, however, few
reinforcement learning algorithms (20%) achieve
target energy optimization and the path cost of
the reinforcement algorithms ranges from
moderate to high. It is also noted that the type of
environment that applies reinforcement
algorithms are 60 %predictable and 40%
unpredictable based on the reviewed literature.
With this analysis, the following
recommendation is given for future study:

There is a need for more research into the use of
machine learning in the path planning of multiple
autonomous underwater vehicles (cooperative
path planning).

Also, from the reviewed literature it shows that
reinforcement learning is more energy-intensive
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