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Abstract

Marine concrete structures are continuously exposed to harsh marine environments—salt,
waves, and biological fouling—that accelerate corrosion and cracking, increasing mainte-
nance costs. Traditional Non-Destructive Testing (NDT) techniques often fail to detect early
damage due to signal attenuation and noise in underwater conditions. This study critically
reviews recent advances in Artificial Intelligence-integrated NDT (AI-NDT) technologies
for marine concrete, focusing on their quantitative performance improvements and practi-
cal applicability. To be specific, a systematic comparison of vision-based and signal-based
AI-NDT techniques was carried out across reported field cases. It was confirmed that the
integration of Al improved detection accuracy by 17-25%, on average, compared with
traditional methods. Vision-based AI models such as YOLOX-DG, Cycle GAN, and MSDA
increased mean mAP 0.5 by 4%, while signal-based methods using CNN, LSTM, and
Random Forest enhanced prediction accuracy by 15-20% in GPR, AE, and ultrasonic data.
These results confirm that Al effectively compensates for environmental distortions, cor-
rects noise, and standardizes data interpretation across variable marine conditions. Lastly,
the study highlights that Al-enabled NDT not only automates data interpretation but also
establishes the foundation for predictive and preventive maintenance frameworks. By
linking data acquisition, digital twin-based prediction, and lifecycle monitoring, AI-NDT
can transform current reactive maintenance strategies into sustainable, intelligence-driven
management for marine infrastructure.

Keywords: non-destructive testing; artificial intelligence; marine concrete structures; sus-
tainable infrastructure

1. Introduction

Around the world, marine infrastructure such as ports, bridges, seawalls, and offshore
wind farms is a key for global logistics and energy and marine industries. However, these
structures are directly exposed to harsh environmental conditions—such as seawater, re-
peated tidal actions, and climatic variations—over extended periods of time, resulting in
material degradation and structural defects. Reinforced concrete structures cause corrosion,
cracking, and peeling due to chloride penetration, reducing structural strength and dura-
bility and increasing long-term maintenance costs [1,2]. Such damage is initially difficult
to identify with the naked eye, increasing the need for early diagnosis and systematic
monitoring [3].

To date, marine concrete structure inspections have been mainly approached by divers
or maintenance personnel, relying on visual inspections or intermittent coring. However,

J. Mar. Sci. Eng. 2025, 13, 2062

https://doi.org/10.3390 /jmse13112062


https://doi.org/10.3390/jmse13112062
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0008-7860-9103
https://orcid.org/0000-0002-9506-1505
https://doi.org/10.3390/jmse13112062
https://www.mdpi.com/article/10.3390/jmse13112062?type=check_update&version=1

J. Mar. Sci. Eng. 2025, 13, 2062

2 of 24

this approach is less reliable due to subjectivity and environmental constraints, and precise
inspection of large-scale structures or underwater and near-surface members is nearly
impossible [4]. It is also time-consuming and expensive and comes with safety issues. As a
result, Non-Destructive Testing (NDT) has emerged as a key tool in the maintenance and
safety diagnosis of marine infrastructure [5].

NDT can detect internal and surface defects without damaging structures, which
has contributed to reduced maintenance costs and extended structural life. Ultrasound,
Acoustic Emission (AE), Ground-Penetrating Radar (GPR), Infrared Thermal imaging (IRT),
and optical imaging techniques are applied not only to terrestrial structures but also to
marine structures. However, ocean turbidity, waves, water temperature, salinity changes,
bio-attachment, etc., cause attenuation and scattering of NDT sensor signals, degrading the
accuracy of data interpretation [4,5]. For example, ultrasound technology is advantageous
for deep concrete detection, but defect identification is difficult because of scattering caused
by seawater, whereas GPR is effective for surface defects, but the high conductivity of
seawater constrains deep detection [6,7]. As such, existing NDT technology has limitations
in early diagnosis and real-time monitoring due to lack of measurement reliability and
precision under extreme conditions of marine structures.

Recently, to overcome these limitations, research on the incorporation of Artificial
Intelligence (AI) into NDT data analysis has been active. Al learns large-scale image and
signal data to suppress noise, automatically identify defect-specific patterns, and correct
data deviations between sensors and equipment [8,9]. Furthermore, time-series analysis
of long-term monitoring data has been applied to estimate damage progress and residual
life, enabling the transition from conventional reactive maintenance to predictive mainte-
nance [10-13]. This approach is particularly effective for subjects with complex conditions
and long inspection cycles, such as marine structures. Al improves data interpretation
accuracy and optimizes sensor placement and inspection routes, increasing efficiency and
reducing dependence on skilled operators through high-resolution imaging and automated
classification [4,14,15].

This paper provides a comprehensive and critical review of recent developments in
Al-based non-destructive testing for marine concrete structures. It aims to synthesize state-
of-the-art knowledge, evaluate the performance of Al-based non-destructive testing in real
marine environments, and understand the effects and limitations of current approaches.

2. Current NDT Techniques for Marine Applications

Marine concrete structures such as port inner walls, breakwaters, maritime bridges,
and offshore wind power foundations are exposed to continuous waves, currents, and
tidal waves. In this exposed environment, chloride slowly penetrates and corrodes the
rebar, and the tensile stress caused by corrosion expansion causes microcracks, leading
to surface scaling and spalling [16,17]. Accordingly, NDT, which detects and monitors
internal defects without damaging the structure to extend the life of the structure, becomes
the core of maintenance [18,19]. Currently, several types of NDT are applied to marine
structures for marine structure inspection. There are various types of tests present in NDT.
Among them, the technique of collecting images using the optical principle of a measuring
instrument and conducting inspection with the collected images is called optical image-
based inspection, as shown in Figure 1. Figure 1 shows the interconnected flow of optical
NDT, in which various types of observation devices use optical principles and analyze the
observed data through IRT, visual observation, etc. Optical image-based examination is
the most intuitive method among NDT techniques and is a method of diagnosing surface
degradation based on visual information. Traditionally, it was conducted through visual
inspection, but recently, it has been digitized, enabling inspections in a manner suitable
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for the underwater environment and tidal table using Unmanned Aerial Vehicles (UAVs),
Remotely Operated Vehicles (ROVs), and diver cameras. UAVs can photograph the outer
walls and upper structures of the water surface with high-resolution RGB and thermal
images to identify cracks, spalling, and rebar exposure. ROVs photograph the outer walls,
foundation, and caisson joints of the water and ae equipped with auxiliary light sources to
reduce the effects of turbidity or algae [4,14].

Optical-based NDT

Analysis of data observed with
observation equipment

Various types of observation instruments

Observation

Drone(UAV) Q\
/ Underwater

[ Observation
Robot(ROV)

Marine Concrete
Structures

Figure 1. NDT employing optical observation equipment in marine environments.

IRT is effective in quickly detecting cracks in thermal images in areas where internal
bonding defects or spalling are suspected by measuring the temperature distribution of
the surface [20,21]. Through thermal images of a concrete bridge deck specimen and a
bridge in Ontario, Canada, the spalling of a bridge deck and port block in Lavrio, Greece,
was detected, and research is being conducted to accurately determine the crack size and
apply it to the actual operating infrastructure by combining optical image-based inspection
with Impact Echo (IE) or ultrasonic inspection, which are types of signal NDT [14,20,22].
In addition to optical image NDT, a signal-type system between the instrument and the
data logger can be implemented as a technique that collects data using an instrument for
NDT and analyzes the collected data through a data logger [23]. These signal-type systems
are transmitted and received based on waves, and the technique varies depending on the
wave transmitted and received, which is shown in Figure 2.
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Figure 2. NDT employing wave-based observation equipment in marine environments.
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Wave-based NDT is a method of measuring sound waves and ultrasonic waves,
with the method divided according to wave activity and passivity in wave measurement.
There are Ultrasonic Tests (UTs) that measure transmitted waves by injecting signals
in a way that actively transmits waves, in addition to Impact Echo (IE) and Acoustic
Emission (AE), which passively detect natural acoustic waves that crack or emit inside the
structure [24]. UT measures the Ultrasonic Pulse Velocity (UPV) by injecting ultrasonic
waves into concrete structures to determine internal defects in marine structures. The
measured UPV is analyzed and judged by quantifying the homogeneity and crack degree
of concrete. In addition, Phased Array UT (PAUT) is an internal tomography image in
which sound waves from various directions are arranged in a pattern using a phased array
transducer, and IE estimates the spalling depth or thickness using reflection frequency
components [24,25]. These active techniques are effective in determining internal conditions
by injecting signals from the outside and measuring reflection and scattering. AE manually
detects natural acoustic waves inside the structure, placing multiple sensors to capture
the signal and analyze the time difference to estimate the location of the damage. AE is
effective in checking the condition of structures after typhoons, earthquakes, and ship
collisions because it can monitor the crack activity of structures in real time [24,26]. A
radiation test transmits X-rays or gamma rays to image internal pore, discontinuity, and
weld defects [24,26]. Due to radiation handling regulations, safety concerns, and shielding
requirements, its application is extremely limited in marine structure sites. Some steel
welds have been limitedly used, but they do not apply to large concrete structures [27].
Therefore, the use of RTs is evaluated as a technique that is theoretically possible for marine
structures but has low practical utility. Eddy current tests, GPR, etc., can be used in such a
way as to detect cracks in structures by measuring transmitted or reflected electromagnetic
waves by irradiating electromagnetic waves. GPR diagnoses spalling and cracking by
emitting high-frequency electromagnetic waves into the structure to analyze the reflected
signal. In addition, the dielectric constant change of the signal is analyzed to evaluate
the relative moisture distribution and salt penetration tendency [28]. However, marine
concrete has high moisture and salt contents, so electromagnetic attenuation is severe, and
the depth of detection is limited due to the large change in dielectric constant of the surface
salt membrane. Therefore, GPR has strength in evaluating rebar position and cladding
thickness, but there is a limit to long-term moisture and salinity tracking [29].

Reinforced corrosion is one of the most important mechanisms of marine structure
degradation. Various electrochemical techniques have been introduced to evaluate this.
The Half-Cell Potential (HCP) electrically connects the reinforcement and measures the
potential through the external reference electrode to measure the corrosion position of the
reinforcement in a simple way. It is easy to investigate potential in places such as large
bridge decks and sidewalls [30]. Electrical Resistance (ER) measures corrosion risk through
ion mobility and measures electrical resistivity through the two electrode methods—namely,
the Wenner probe method (WPM) and the electrode disk test method, which is effective in
evaluating chloride-induced deterioration conditions [31].

Auxiliary techniques include sonar series, Fiber Optic Sensors/Distributed Fiber
Optics Sensors (FOSs/DFOSs), and Wireless Sensor Networks (WSNs). To prevent collapse
caused by the foundation erosion of Irish viaducts, the type of Sona (multibeam or side-
scan) evaluates changes in cave, erosion, and protrusion by generating the outer shape
of the structure as a point group when visibility is not secured underwater [32]. WSNs
represent a method of monitoring by detecting physical variables and transmitting data
through multiple sensors. Through this monitoring, water temperature, pressure, wind
direction, salinity, pH, etc., can be measured and diagnosed [33]. Compared to monitoring
that needs to be carried out by attaching many sensors, FOSs, which have relatively small
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and low power loss, are attached to marine infrastructure facilities and large structures and
are used for real-time structural health monitoring. However, FOSs, which can monitor salt
and crack growth by tracking strain, temperature, and humidity over a long period of time,
are subject to many disturbances in deep sea environments, so continuous development of
fiber optic technology is required [34].

3. Limitations of Conventional NDT and the Need for AI Integration

Unlike inland structures, marine concrete structures are continuously exposed to tidal
zones and salt-saturated environments, and complex and quantifiable damage mechanisms
exist not only on the surface but also within the concrete [35]. A study on concrete columns
exposed to tidal environments showed that the chloride-dominated convection layer was
22-24 mm in the presence of cracks and 6-7 mm in the absence of cracks, confirming that
corrosion progression tended to be concentrated in the surface layer [16]. Furthermore,
in the early stages of cladding delamination, crack opening (COD) occurs along with
deformation that causes the cladding to gradually lift off due to internal reinforcement
corrosion. This cladding lift and COD have been measured through accelerated corrosion
experiments [1]. Because such damage is not clearly visible externally, detection is limited
to visual inspection or a single NDT. This confirms the limitations of existing nondestructive
testing techniques for exposed marine structures.

In a study on structural delamination detection using infrared thermal imaging (IRT),
the detection accuracy under field conditions was reported to be 68-79%, with an average
of approximately 69%, indicating that heat distribution-based methods, which are sensitive
to changes in wind, moisture, and solar radiation, face the risk of data loss and false
positives detections in marine environments [20-22,36]. In the case of the ultrasonic wave
(UPV) method, a study showed that the P-wave velocity decreased by approximately
2—4% when the temperature increased from 20 to 40 °C, which is far higher than the
typical sensor/contact error (0.1-0.5%). Therefore, systematic bias may occur in intensity
conversion in environments such as marine structures where water temperature, contact
conditions, and saturation fluctuate [37]. In addition, in GPR exploration experiments
on wet concrete, signal penetration was significantly reduced as moisture and salinity
increased, which may reduce the reliability of delamination identification [6].

These inaccurate non-destructive testing results not only limit technical applications
but also cause direct economic losses. During the maintenance phase of marine infrastruc-
ture, the rate of unnecessary repairs and reinforcements due to misdiagnosis is approxi-
mately 17-23% of the total maintenance. If repeated repairs occur due to underestimation of
defects, the total maintenance cost increases by 1.6-2.2 times over the life cycle [5,38]. Life
cycle cost (LCC) analyses of port and bridge structures have also shown that shortening
the maintenance cycle due to inaccurate diagnosis increases the overall LCC by approx-
imately 10-20% of the initial construction cost and by up to 24% in some aging marine
structures [5,38]. Furthermore, misdiagnoses from inaccurate non-destructive testing result
in indirect losses due to port operations interrupted for maintenance, amounting to USD
1200-4800 per hour and USD 3000-5000 per hour for bridges and large port facilities [38,39].
NDT, which has low reliability for application in marine environments, is a major cause
of economic inefficiency that goes beyond simple diagnostic errors and leads to increased
maintenance costs and operational downtime losses.

Ultimately, when applying NDT to marine environments, errors occur in each NDT
type due to marine vulnerabilities, and these errors accumulate uncertainty during data pro-
cessing and monitoring. This process is schematically illustrated in Figure 3. By introducing
Al that can learn data patterns and correct uncertainty at the point of error occurrence,
as classified in Figure 3, we aim to enhance the reliability of NDT applications in marine
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environments. Therefore, we want to increase the reliability of NDT applications in marine
environments by introducing Al that can learn data patterns and correct uncertainties in
the error occurrence stage. For example, as shown in Table 1, AE signals are vulnerable to
wave and vibration noise, but LSTM and CNNS5s can effectively distinguish between noise
and defect signals and estimate the location of crack propagation.

[ Areas that need to be strengthened by applying AI ]
]

Color Information
Distortion

Poor Diagnostic
Performance.

Wave Velocity Attenuation Data Uncertainty

v v v
[ Vulnerabilities in the Marine Environment ] _{ Data Processing ]_ o _[ Monitoring ]_
i i
| I I
£ ¥ | | _
——| Vision-based NDT |-- --| Signal-based NDT |-- : Low Recall due to : Massive Amounts of
| . | Data

| Changes in Measurement |

Low Image Contrast Noise : Environment : Time, Financial Losses
l I
I I
I I
I I
I I

Blurring and Distortion
due to Shaking

Seawater Conductivity

I
I
I
I
I
|
Reflected Wave Scattering !
!
I
I
I
I
I

B ‘Weak Sensor Adhesion
Low Image Quality
Error
L 1 _________ L 1 _________
[ Error ] [ AT Application ] [ Al Application ]
! ! R VT T T T e i
| Bayesian Neural Networks : | LSTM |
[ Al Application ] [ AI Application ] : Ensemble Models o Transformer I
7 ————————— | mm——————— m———————— | | Transfer Learning : L Transfer Learning :
| GAN Il CNN | I ANN/CNN || ML | b I ________ S TTTTTTTTTTyy T -
| Transformer || ~ U-Net || DNN/GAN || XGBoost |
L YOLOV9 || SegNet | L LSTM/RF |1 Autoencoder | ‘ Real-time Data Correction | ‘ High Accuracy and Reliability
___1____]I____1____l ___1____l|____1____l
Image Detect and Defect Synthetic Data
Distortion Quantify Prediction and | | Generation for
Correction Defects Diagnosis Training

Figure 3. Schematic diagram of areas where Al should be applied to NDT used in marine environments.

Even in IRT, CNNs and Transformers automatically detect fine damage and predict
deterioration progress. In addition, in the case of GPR, reflective wave distortion depending
on environmental conditions can be corrected with DNNs and GAN-based learning, and
drone image-based exploration has already shown the ability of Al to improve reliability at
each NDT stage, such as YOLO identifying cracks and corrosion in real time. Therefore, as
shown in Figure 3, to effectively compensate for errors occurring in marine vulnerability,
data processing, and monitoring, a strategy that selectively introduces Al techniques
suitable for the characteristics of each stage is needed. Chapter 3 discusses the necessity
and specific role of applying Al in each of these error stages in more depth.

3.1. Marine Vulnerabilities and AI Enhancement of Visually Based NDT

Optically based imaging and thermal imaging tests have been used as a method of
directly identifying and diagnosing surface damage. Cracks, spalling, and rebar exposure
can be observed relatively easily with camera images or thermal images. However, in
marine structures, the results of optical imaging are different from those on land. In the
underwater environment, the absorption and scattering of light drastically lowers the
image contrast; in particular, red light is quickly lost, distorting the color information. On
the surface of the water, the image is blurred or geometric distortion occurs due to the
shaking of the wave and the measuring instrument, and illuminance changes and water
surface reflection produce different images depending on the time and conditions, even for
the same object [40—42]. Moreover, marine life and floaters cover surfaces or block vision,
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making defect detection more difficult. Diagnosis and prediction results based on these
images lead to errors, which degrade the reliability of NDT. To solve existing problems
simply by using high-resolution cameras or enhancing lighting, the specificity of marine
structures should be considered further [43].

Al complements the optical limitations in these underwater environments. Although
the measuring instrument is the same, the use of GANs, YOLOv9-OREPA, or Transformer-
based image restoration models in the preprocessing stage of data can correct color distor-
tion and contrast degradation of underwater photographed images to minimize optical
distortion [40,42,44,45]. Furthermore, defects such as cracks and spalling are learned to be
more exposed during the calibration process, and deep learning models such as CNNSs,
U-Net, and SegNet can automatically analyze thousands of images to detect defects and
quantify their size and area [40—46]. Unlike conventional methods that rely on qualitative
judgment, this process provides objective and repeatable results.

Table 1. Results of applying Al to NDT (AE, IRT, GPR, UAVs, ROVs, and UT).

NDT Type Al Type Expected Effect Ref.
Effectively distinguish between noise and
AE LSTM defective signals [10]
CNN Estimate crack propagation trends and locations
Automatic recognition of unique damage patterns
CNN Automatic detection of micro-damage areas
IRT . . . [40-46]
Transformer Precisely predict damage progression trends
Automatic detection of internal voids or
CNN rebar placement
GPR giﬁ Generate virtual reflected wave data to provide [37,47,48]
reinforcement material for learning
Drone(UAV) and CNN Detect cracks, delamination, and corrosion
Robot-based video YOLO Detect cracks in real time [49-51]
inspection SegNet Quantify the area of damage
UT YOLO Predict compressive strength [52]
Random Forest Reliable fault detection, even in noisy signals

3.2. Marine Vulnerability and Al Enhancement of Signal-Based NDT

NDT, which utilizes signal-based techniques such as frequency-modulated continuous
wave, acoustic emission, and eddy current techniques, can observe linear defects up to
0.5 mm deep and 5 mm long and detect discontinuous internal concrete defects of 1 to
5 mm in size [53]. These non-contact, signal-based NDTs detect various defects through
various sensors. However, signal distortion and noise problems are serious in the marine
environment. Ultrasound waves have a different propagation speed due to changes in
moisture saturation and salt concentration, and the results vary greatly depending on the
time point and conditions, even in the same structure [24-26]. In the impact echo, reflective
waves are abnormally scattered due to microcracks and surface wetting, and in the AE
technique, noise caused by external factors such as waves, mechanical vibration, and ship
noise is difficult to distinguish from noise caused by defects [24,26]. GPR is limited to a
depth of penetration within a few tens of centimeters due to its seawater conductivity, and
clutter occurs significantly when reinforcement arrangements and voids overlap [28,29].
In addition, signal-based NDTs are often measured by attaching sensors, and in marine
structures, the combination of sensors and surfaces is a problem. It is difficult to inspect
NDT in marine structures due to problems such as surface roughness and bio-attachment,
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and water film destabilizes the bond and disturbance of the signal as a result of turbulence
and pressure changes [54].

However, Al can correct and minimize factors that affect signal-type techniques in
the marine environment. The use of ultrasound data enhances the reliability of strength
estimation by integrating measurements of wave velocity, density, and moisture content,
and combining information from multivariate models such as ANNs and random forests,
which are subsequently cross-validated with the original data [8]. CNN-based approaches
analyze ultrasound signals by converting them into spectrograms to capture missing fault
patterns in simple domain interpretation [9]. AE data show that CNNs classify noise and
defect signals, while LSTM learns time-series patterns to predict the trend of cracks [10]. On
offshore wind blades, the AE-LSTM fusion model succeeded in optimizing maintenance
strategies by capturing microcrack growth patterns early [55]. GPR utilizes CNNs and
DNN s to automatically detect rebars and voids and complements the data scarcity problem
with synthetic data generation using GANs [47,48]. Recently, research on the quantification
of the reliability of prediction results by combining uncertainty estimates has also been
active [37].

Reinforced corrosion is one of the biggest factors shortening the lifespan of marine
structures. HCP, Electrical Resistance (ER), Electrochemical Impedance Spectroscopy (EIS),
etc., are used to evaluate this. However, these techniques are difficult to apply to marine
environments. However, the measurement method involves measuring the value by
touching an electrode to a surface or structure, and electrode contact is unstable underwater,
making it difficult to collect data, and the water temperature and salt concentration cause
considerable fluctuations in the potential and resistance values. In long-term monitoring,
electrode polarization accumulates, resulting in poor reliability of measurements. EIS
requires the fitting of complex impedance curves into equivalent circuits, a process that is
inefficient for large-scale structure evaluation [11-13,18,56-58].

Data stabilization is maximized by fusing Al with electrochemical NDT techniques
with these limitations. Machine learning regression models learn potential resistance data,
along with environmental variables, enabling much more precise corrosion likelihood as-
sessments than simple thresholds [59]. XGBoost or autoencoders transform the impedance
spectrum into a feature space, which automatically extracts equivalent circuit parameters
and interprets large-scale data in real time [60-62]. This Al-integrated electrochemical
NDT technique accumulates learning data based on environmental variables rather than
calculating real-time analysis and simple measurement values to minimize the data loss of
electrochemical techniques.

3.3. Al Enhancement in Data Processing and Monitoring

Marine structures have different locations, designs, construction methods, and envi-
ronmental conditions, and even in the same marine structure, the expression of images
and signals varies depending on the angle and illuminance of the measuring instrument;
even cracks in the same structure have different water temperatures and salinity depend-
ing on the location of the cracks [40—42]. Therefore, if the data reference model of the
measuring instrument is overfit to a specific condition, a problem arises such that the
performance of a new structure or other locations in the same structure rapidly deteriorates.
In particular, the data collected by NDT using UAVs and ROVs is inconsistent [49,50]. To
solve this problem, Al intermediate transfer learning and domain adaptation are utilized.
Transfer learning maintains performance by rapidly calibrating large pre learning models
with small amounts of field data and calibrating measurements in real time [50]. Domain
adaptation learns invariant features by reducing differences in data distribution between
different environments and increases the reliability of continuous measurements based
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on these values [51]. The Al virtually corrects the difference in photographing conditions,
thereby enhancing the adaptability of NDT in the marine environment [63]. Furthermore,
by quantifying uncertainty and using Bayesian neural networks or ensemble models to
provide confidence intervals to predictions, maintenance managers are being studied to
make decisions considering the reliability of Al results [37,64]. This is the development of
Al from a simple analysis tool to an auxiliary means of an actual management system [65].

Traditional NDT is a method of identifying short-term defects through periodic in-
spections. However, in marine structures, it is difficult to properly grasp the deterioration
process without long-term monitoring because the damage is continuously caused by accu-
mulated blue algae and repetitive loads [39]. Optical fiber sensors, long-term AE devices,
strain meters, vibration sensors, etc., can provide real-time data, but the vast amount of data
and complex patterns result in time-consuming processes and economic loss associated
with the data interpretation [36,65].

Al processes such monitoring data in real time to create a pre-emptive management
system. LSTM and Transformer models learn long-term time-series data to distinguish nor-
mal fluctuations from abnormal patterns and detect signs of damage early amid microscopic
changes. This contributes to the establishment of maintenance strategies by quantifying the
crack growth rate, deterioration trend, and remaining life span [66-68]. With multi-sensor
fusion, the combination of AE and fiber optic sensors can track crack position and stress
distribution simultaneously, and the combination of ROV images and electrochemical data
can evaluate both surface defects and internal corrosion [69,70]. In real-world cases, multi-
modal Al models integrated with drone images, AE, and GPR data have shown significantly
higher accuracy and reliability compared to single techniques [68-70]. As such, Al-based
monitoring can go beyond simple diagnosis and lead to a long-term maintenance system
that considers the life cycle of the structure [71]. By converting Al it is possible to shift the
paradigm from post response-oriented management to pre-emptive prevention-oriented
management and secure the safety and economic feasibility of the structure.

4. Performance Evaluation of Al-Integrated NDT for Marine
Concrete Structures

As discussed in Section 3 above, it was confirmed that AI must be introduced to
increase the reliability of NDT in the marine environment and that Al can play an impor-
tant role in the design process, especially in areas with a high probability of error and
reinforcement points. Section 4 examines how this need is being implemented in the actual
field. It is divided into a visually based NDT technique and a signal-type NDT technique to
examine how each technique has been combined with Al in the inspection and monitoring
of marine concrete structures and what performance improvements have been achieved
compared to the existing method through the use of examples. Across all reviewed case
studies, Al integration improved detection accuracy by an average of 17-25% compared to
conventional NDT methods. The mean increase in mAP for vision-based NDT was 4.0%,
and the average rise in signal-based NDT accuracy (GPR, AE, and UT) was 15-20%. These
quantitative improvements demonstrate the clear benefit of Al convergence in enhancing
reliability and precision under marine environmental variability [15,63,72,73].

4.1. Visualy Based NDT
4.1.1. Port Application of Gouqi Island in the East China Sea

Concrete at the port located on Gougi Island, East China Sea, is in underwater condi-
tions, and it is difficult to detect cracks and determine internal defects due to continuous
waves. As a method of monitoring structural damage to these underwater structures,
we used an optically based NDT that photographs port concrete using an underwater
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robot from the Mantaray model and monitors structural damage [73]. However, in this
process, underwater visibility conditions are affected by depth and turbidity, resulting
in poor quality in data processing due to distorted color and illuminance-induced image
data [4,14]. Therefore, the YOLOX-DG algorithm was integrated with a robot to construct
data on concrete targets, and the damage was diagnosed by dividing the data into cracks,
spalling, exposed rebar, and corrosion with a multi attribute determination algorithm. In
this process, photometric distortion, geometric distortion, and mixed mosaic techniques
are utilized for data augmentation; IoU loss is changed to GloU loss; and performance is
improved from mAP 0.5 to 2.6% and mAP 0.5:0.95 to 4.5%, an algorithmic performance
indicator of detection performance for cracks [73].

In addition, image processing-based NDT determines the reliability of the data based
on the angle and accuracy of the image, and in the case of underwater environments,
operation control is poor, resulting in a problem of poor image reliability. However, with
the Transient Driving Method (TDM), the underwater robot can be teleoperated within
0.1 s, allowing for fast obstacle avoidance and quick response start [73]. For this reason,
structural damage monitoring using ROVs for marine concrete structures can be applied
as an optically based NDT method. Figure 4 visually shows the robot-based damage
detection technique and the application process of the YOLOX-DG algorithm. In (i) and (ii)
of Figure 4A, the driving principle of the Mantaray model robot is shown, and in (B), the
learning procedure of the detection algorithm using light intensity, geometric distortion
correction, mixed mosaic-based data augmentation, and GioU loss can be clearly identified.
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Figure 4. NDT case study: Application of the YOLOX-DG algorithm to a port on Gougi Island, East
China Sea: (A) Robotics and Intelligent Recognition System; (i) The robot mimics a manta ray in
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appearance; (ii) The ejection system enables the robot to rapidly avoid obstacles and start up; (B)
YOLOX-DG Algorithm (Detection system, including four steps: Input, Data Augmentation, Iteration
Process, and GIoU Loss) [73].
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4.1.2. Example of Underwater Image Correction for Visually Based Autonomous
Underwater Vehicle (AUV) Photography

Autonomous Underwater Vehicles (AUVs) are equipment capable of applying opti-
cally based NDT, like ROVs and UAVs, and are widely used for the monitoring of damage
such as cracking, spalling, and corrosion of concrete structures in underwater environ-
ments [74]. However, in the underwater photographed image, serious color distortion and
contrast deterioration occur due to suspended particles, light scattering, and absorption. It
is difficult to accurately grasp the state of the original structure due to the rapid attenuation
of red light in the long-wavelength region; furthermore, the image is skewed to cyan, and
noise and blurring phenomena are added [75].

To solve this problem, a physical model-based color correction technique was initially
applied, but there was a limit to the correction performance because it did not reflect vari-
ous underwater conditions. Recently, CNN-based Al models have been used to perform
noise suppression and image contrast improvement through large-scale data learning.
However, CNN methods require vast amounts of test data and suffer from poor general-
ization performance for new environments. To compensate for this, the convergence of
conditional Generative Adversarial Networks (cGANs) enables learning optimized for a
specific domain with only a limited number of test data [72].

Figure 5 presents the results of various correction techniques, comparing these prob-
lems with the results of the original image and physically based models (EUF, UVE, MBIE,
WCID), CNN-based models (UWCNN) and GAN-based models (UGAN, CycleGAN, Wa-
terGAN, and IPMGAN) models. Physical models and single CNN-based techniques still
suffer from cyan color distortion, contrast degradation, and detailed texture loss, while
IPMGAN integrates physical model information into the network, showing the best results
in terms of color restoration, contrast enhancement, and noise suppression. This represents
the qualitative quality closest to the Ground Truth (GT).

Figure 6 also compares the results of underwater image correction according to differ-
ent Al techniques, presented side by side: (a) original images; (b) Cycle GAN; (c) MSDA,;
(d) MAFA; (e) LPIPS; (f) MSDA+LPIPS; (g) ours; (h) ground truth are [63]. Comparison
shows that CycleGAN and single feature-based techniques still exhibit color distortion,
contrast degradation, and detailed structure loss, while the proposed technique combin-
ing Multi-Scale Adaptive Fusion (MSAF) and Learned Perceptual Image Patch Similarity
(LPIPS) achieves natural color restoration and sharp boundary preservation, represent-
ing the closest visual quality to GT. This hybrid approach has contributed to improved
image processing speed, color balance, and sharpness, even under complex underwa-
ter conditions, increasing the visual reliability required for real-world structural damage
detection [63,72].

Therefore, this case shows that AUV-based underwater imaging, when combined
with Al can achieve significantly higher precision and efficiency than conventional simple
correction techniques, representing important applicability for long-term monitoring and
early damage detection for marine infrastructure.

4.1.3. Case of Application of the Interior Wall of Osaka Port in Japan

The inner wall of Osaka Port in Japan is continuously exposed to seawater, and precise
inspection is difficult due to altitude changes, slopes, and the absence of scaffolding. Small
general-purpose drones have been used because they are difficult for humans to access
directly in such an environment. However, small drones have low resolution because they
are equipped with low-cost cameras, making it difficult to detect microscopic cracks in the
millimeter range [15]. According to Japan’s Ministry of Land, Infrastructure, and Trans-
port’s existing system for port facility inspection and diagnosis, the inspection threshold of
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crack width could be evaluated based on 3 mm, but early maintenance requires the ability
to identify cracks at the 1 mm level [76]. To solve this problem, superimposed image tiling
and pseudo level slicing techniques were applied in the image preprocessing process. Over-
lapping tiling reduced missed detections at the image boundary, and pseudo degree slicing
improved the generalization performance of the detection model by virtually adjusting the
drone’s shooting altitude to reproduce the crack size at various scales. Through the data
preprocessing process, the reproduction rate improved by 24% due to the high efficiency of
the YOLOR object detection algorithm. This enables early detection of deterioration and
preventive maintenance by enabling stable identification of microcracks that were difficult
to detect only with existing small drones.

Figure 5. Differences in photo correction depending on Al type [72].

Furthermore, the detected crack information was mapped with geographic coordinates
on orthogonal photographs, allowing for the quantitative tracking of damage changes over
time [15]. The Osaka Port case is a prime example of how Al and NDT convergence tech-
nologies can significantly improve cost efficiency while securing performance equivalent
to that of commercial systems in actual marine infrastructure maintenance scenario.

Figure 7 visually shows the NDT application case of the Osaka Port inner wall pre-
sented in this study. (a) and (c) present the original orthogonal photo, (b) shows an image
of the crack detection result applied with the YOLOR object detection algorithm on the
orthogonal photo, and (d) presents the result of supplementing crack detection with the
application of pseudo altitude slicing (5 m + 10 m) [15]. This figure shows the process of im-
proving crack detection performance through preprocessing and slicing procedures on the
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original image acquired by the drone and visually demonstrates the practical effectiveness
of the proposed technique.

(a)Original  (b)Cycle (c)MSDA (d)MAFA (e)LPIPS (fMSDA  (g)Ours (h)Ground
images GAN +LPIPS Truth

Figure 6. Differences in photo retouching depending on the type of Al (a) original images; (b) Cycle
GAN; (c) MSDA; (d) MAFA; (e) LPIPS; (f) MSDA+LPIPS; (g) Ours; (h) Ground Truth [63].

4.2. Signal-Based NDT
4.2.1. RC Slabs at Ferry Terminal (HKM) in Macao, Hong Kong and RC Pillars at Vehicle
Quay (NP) in North Point

The RC slab of Macau Perry Terminal in Hong Kong and the RC pillar of the North
Point vehicle pier are structures located in the ocean, and it can be confirmed that rebar cor-
rosion occurred due to spalling through GPR. Surface cracks occurred, along with spalling
in the RC pillar of the NP, identifying 15 coring locations by GPR for each spalling [77].
Using this value as a verification value, the experimental design of the field conditions
and the time-course method were the same, and the concrete slab and concrete column
were evaluated equally by GPR. As a result, there are differences between the experimental
and verification values. Defects in the actual marine environment are peeled off, the rebar
in the concrete corrodes, and the induced scattering increases, increasing the amplitude,
and the presence of rust and cracks on the surface increases the amplitude. This can be
confirmed through Figure 8, which shows how the amplitude of the RC column of NP is
formed. Relatively low amplitudes (—45 to —35 dB) are observed near the lower center,
starting from the red point (the observation point), while relatively high amplitudes (—30 to
—20 dB) are observed in some areas near the edges and in upper regions. These amplitude
differences reflect the effects of the location, density, and internal concrete defects of the
rebar and show that reflection and attenuation occur in the structural discontinuities as the
NP signal propagates along the column [77].
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(¢) Original orthophoto (d) Detection results using pseudo-altitude
slicing (pseudo 5Sm + 10m)

Figure 7. NDT Case Study: Application of the YOLOR object detection algorithm to the quay walls
of Osaka Port, Japan: (a,c) original orthophoto; (b) detection results displayed on the orthophoto;
(d) detection results using pseudo altitude slicing (pseudo 5 m + 10 m) [15].
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Figure 8. NDT Case Study: RC columns at North Point Vehicle Terminal (NP), Hong Kong [77].

Experimental values also tend to be similar, but they do not have the same results, so
this gap must be corrected for application to actual marine environments. As a method of
correcting marine environment exposure data collected by GPR, not only must the absolute
value of the reinforcement reflection intensity be considered; the verification value and
the experimental value can be matched similarly through deep learning and machine
learning algorithms after preprocessing the data with Short-Time Fourier Transform (STFT),
including time- and time—frequency-domain analysis [78]. The accuracy of rebar detection
in concrete was 0.94, and the reproduction rate was 0.93, while the accuracy of corrosion
detection due to corrosion was 0.84, securing a high accuracy and reproduction rate of
GPR based on deep learning and machine learning [78]. By combining Al in this way, it is
possible to increase the consistency of GPR, thereby increasing its applicability to marine
concrete structures.

4.2.2. Case of RC Pile Application in Simulated Marine Environment

The performance of columns or RC stakes in elevated docks exposed to the marine en-
vironment for a long period of time may deteriorate due to corrosion and rebar damage [79].
Therefore, the corrosion evaluation of RC structures is essential. Figure 9 shows the moni-
toring process using the AE technique during NDT to determine whether corrosion damage
has progressed, involving a pillar test that simulates an elevated pier pillar exposed to
the marine environment for a long time. However, quantitative data on AE monitoring
in marine environments are limited [80]. The AE technique measures acoustic waves
generated by cracks in structures; however, it is difficult to apply in marine environment
because noise and signal attenuation occur during the measurement process [81].

Therefore, a multi-layered perceptron-based intelligent model that connects AE mea-
surements with crack detection was applied to the AE technique to quantify damage to
RC piles in the simulated marine environment and diagnose the degree of corrosion. To-
gether with the AE signal, the geometric Fractal Dimension (FD) parameter is analyzed to
determine the coupling in a complex manner, and the AE measurement value pretreated
with an Amplitude Duration Peak Frequency (ADPF) filter is predicted and monitored by
machine learning [80]. This method is a reinforcement method using Al that increases the
applicability of AE in marine environments.
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Figure 9. NDT Case Study: AE monitoring of RC piles along a high-rise pier exposed to long-term
marine environments [80].

4.2.3. Case Study on the Top of the NASA Causeway Bridge

Since the signal-type NDT using ultrasonic waves measures ultrasonic waves, even
thick concrete structures can be measured with minimal measuring instruments [7]. This
simple measurement method is advantageous for measuring of large-scale concrete struc-
tures or for use under harsh conditions [82,83]. However, there is a limit to the scattering
effect and complex defect detection in the marine environment, so 2D and 3D tomography
are introduced to determine the spatial location and severity of defects, although it is
difficult to remove noise and discriminate defects in the process, so Al application in this
area is necessary [52].

Based on the data collected by ultrasonic tomography of the top of the NASA Cause-
way bridge through deep learning, the analysis error that occurs because the color scale
varies between instruments was first corrected. The YOLOv8n algorithm was then applied
to learn to automatically identify various defects such as peeling, voids, and buried rebar
and ducts. By converting the data from the training set to a consistent color scale, the noise
was learned less sensitively, thereby improving the accuracy.

Figure 10 is a visual representation of this ultrasonically based Al detection process,
and the color-scale correction of the data, defect identification through the use of the
YOLOv8n model, and major detection performance indicators are presented together
to facilitate understanding of the procedure and the performance of ultrasonic image
analysis at a glance. As a result, mAP@0.5 = 0.73, mAP@0.5-0.95 = 0.62, and average IoU
= 0.80, confirming that the ultrasonic techniques applied with Al are effective. Through
this verification, the practical applicability of the investigated method in real marine
environments was demonstrated [52].
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Figure 10. NDT Case Study: Application of the YOLOXv8n algorithm to the deck of the NASA
Causeway Bridge [52].

5. Limitations of Al-Integrated NDT Techniques and Future Works

The convergence of Al and NDT is effective in early diagnosis of cracks, spalling,
and corrosion of marine concrete structures and increasing maintenance efficiency [15,39].
Performance was evaluated through practical application cases in Section 4. However,
there are still several limitations that prevent these technologies from achieving stability
and long-term applicability in real field conditions. These include issues related to data
quality and standardization, difficulties in operating under extreme conditions such as
marine environments, challenges concerning economic performance and operating costs,
and problems with regulatory frameworks.

The biggest limitations are the lack of data quality and standardization. In the marine
environment, various variables are encountered, such as water temperature, salt, turbidity,
and bio-attachment, so the signals collected by sensors vary considerably in time and
space [6,39]. For this reason, there are many cases where Al models developed in one
area do not perform the same in another area or under different conditions. In addition,
integrated analysis is not easy because monitoring data accumulated over a long time are
insufficient and the data format and preprocessing method differ depending on the sensor.
To improve this, it is necessary to standardize data acquisition and processing methods for
large-scale data accumulation reflecting various marine conditions [24,39,64].

The specificity of the marine environment also makes it difficult to apply in the field.
Tidal fluctuations, high waves, floats, and bio-attachment hinder the stable operation of
sensors and robot platforms and reduce data quality and collection frequency. Drones and
autonomous underwater vehicles have been used, but measurements are limited, and data
non-uniformity occurs due to rough weather conditions and currents. Even if Al is fused
and corrected in the data acquisition process, the marine environment makes it difficult
to apply in the field for measurement. To solve this problem, it is necessary to develop a
hardware platform that integrates Al technologies [4,14,69].
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For example, deep learning-based object and defect recognition models such as YOLO,
CNNs, and U-Net require tens of thousands of annotated images for training. However, in
the case of marine structures, external conditions such as currents, turbidity, lighting, and
viewing angles vary significantly, resulting in significant differences in image characteristics,
even for the same defect. This makes dataset generalization difficult and necessitates model
retraining or the construction of separate datasets for each environment. In fact, in image-
based defect detection research, approximately 60-70% of the total development time is
spent on data labeling and preprocessing, which reduces the efficiency of AI-NDT systems
and delays real-time analysis and deployment in the field. To overcome these limitations,
additional research is needed, including research on transfer learning, small-scale data
learning, and synthetic data generation [44,50].

Economic feasibility and operational cost issues are also important challenges in the
practical application of Al-based NDT. Al models require large-scale training data and
considerable computational resources, and model construction and periodic relearning
take a considerable amount of time. These long processing times and high computational
costs lead to operational burdens when real-time defect detection and monitoring are
implemented in large sensor networks. Therefore, to spread Al-based NDT practically,
efforts to shorten computation time and secure economic feasibility through the use of
a lightweight model with improved data processing efficiency, a high-speed learning
algorithm, and a distributed processing system using cloud and edge computing are
required [10,70].

International standards are required for NDT technology combined with Al to be
used in earnest for the maintenance and diagnosis of marine structures. Currently, it is
difficult to objectively evaluate the performance and safety of the technology because
specific regulations and standards for the use of Al for NDT are insulfficient. In addition, to
standardize Al's application through the use of data learning, it is necessary to repeatedly
verify its performance under various marine conditions and standardize data formats,
processing methods, and evaluation indicators accordingly to ensure a reliable recall
rate [26,39,56,76].

Future research needs to overcome these limitations and move beyond the fragmentary
use of single NDT technologies to an Al-based NDT framework that connects data collection
to tracking in one flow. In the field, various Al-based NDT technologies effectively collect
surface and internal-defect signals and secure data, even in hard-to-reach areas using
drones or underwater robots. By automatically preprocessing the vast amounts of signals
and video data collected in this way, noise is removed, and different signals are integrated
for each sensor, allowing the Al model to quantitatively determine the location, shape, and
severity of the defect. The identified data is accumulated in a digital-twin model reflecting
the actual state of the structure and utilized to predict damage and residual life over time
to form a single circulation system. Furthermore, unlike conventional methods centered
on single-shot or follow-up inspections, it is necessary to move toward a systematic Al-
based framework centered on prediction and prevention [39,65,66,70]. This integrated
Al framework can greatly increase the long-term safety and management efficiency of
structures, even in extreme marine environments.

6. Discussion

This study critically reviewed the development and practical application cases of
NDT technology fused with Al for maintenance and damage diagnosis of marine concrete
structures. The marine environment distorts NDT signals and reduces the reliability of data
due to complex factors such as the presence of algae and bio-attachment, so there is limit
to early defect detection and predictive maintenance with existing techniques alone. The
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introduction of Al in response to this limitation greatly improved detection accuracy and
reproducibility by removing noise from image and signal data, automatically identifying
defect-specific patterns, and integrating and analyzing data collected from various sensors
and instruments.

A comparison of vision-based NDT and signal-based NDT revealed that the effec-
tiveness of Al varied depending on the data type. In vision-based NDT, deep learning
models such as YOLO, Cycle GAN, and MSDA were applied to resolve color distortion and
contrast degradation in underwater images, enabling quantitative tracking of cracks and
delamination areas. On the other hand, signal-based NDT was used to analyze abnormal
signals in ultrasonic, AE, and GPR data using LSTM, CNN, and Random Forest models to
suppress noise and distinguish defect signals, thereby improving prediction accuracy. The
AE-LSTM fusion model learned crack propagation trends in real time, securing detection
accuracy approximately 20-30% higher than conventional models.

These results imply that Al goes beyond simply automating data interpretation and
plays a role in compensating for the physical uncertainties inherent in the marine envi-
ronment. While changes in illumination, humidity, and salinity directly lead to signal
distortion in conventional NDT, Al can independently derive correction factors by learning
these environmental variables. This is considered a key factor in enhancing the reliability
of periodic monitoring and digital twin-based lifespan prediction models.

Case studies show these effects in detail. In visually based NDT, the problem of
color distortion and contrast deterioration in the underwater environment was solved by
Al-based correction techniques and object detection models, enabling quantitative tracking
of microcracks and surface damage. In signal-based NDT, the analytical accuracy and
predictive power were improved by incorporating Al into ultrasound, GPR, and AE data
processing. This integration enables the early detection of fine defects, improves overall
detection performance compared to conventional methods, and facilitates preemptive
maintenance responses.

In this way, Al has demonstrated the potential to quantitatively compensate for the
attenuation, noise, and environmental dependency issues inherent in conventional NDT.
However, poor data quality, insufficient standardization, high costs, and considerable
computational requirements remain obstacles to practical application. The diversity of
marine environments makes data generalization difficult, and differences in data formats
and preprocessing methods across equipment create inefficiencies in integrated analysis.
Furthermore, Al model training requires large-scale labeled data and high-performance
GPUs, making cost-effectiveness and real-time performance critical challenges.

In the future, it will be important to develop these technologies into an integrated
framework that connects data acquisition, preprocessing, analysis, monitoring, prediction,
and post response, not just individual defect diagnosis. It is necessary to establish a
predictive maintenance system that supports the entire life cycle of marine infrastructure
by linking sensors such as drones, ROVs, FOSs, and AE and GPR instruments and by
combining digital twins and simulation-based virtual data generation to predict long-term
deterioration processes.

In addition, along with technological advances, progress in standardization, reliability
and cost-effectiveness is required. At present, the absence of internationally unified evalu-
ation criteria for AI-NDT applications in the marine environment—along with high costs,
substantial computational requirements, the need for high-performance equipment, and
frequent model retraining—continue to hinder practical application. These problems can be
solved by empirical tests and data sharing under various marine conditions, as well as by
preparing standardized performance indicators and operating guidelines.
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Al convergence NDT technology has the potential to break through the limitations
of existing inspection methods and to innovatively improve the long-term safety and
maintenance efficiency of marine concrete structures. Sustainable management of marine
infrastructure will be possible if the data processing process, algorithms, and hardware are
continuously improved, in addition to establishing an institutional foundation.

7. Conclusions

This study comprehensively examined the effectiveness and applicability of Al-
integrated non-destructive testing (NDT) in improving the maintenance efficiency of marine
concrete structures. The introduction of Al quantitatively compensates for signal distor-
tions unique to the marine environment, such as salinity, waves, currents, and biological
fouling. It also overcomes the limitations of conventional NDT by removing noise and
recognizing patterns in image and signal data.

Vision-based NDT enables color distortion correction and quantitative detection of
microcracks, while signal-based NDT improves data analysis accuracy and predictive
power in ultrasound, ground-based photo recognition (GPR), and AE applications. These
achievements demonstrate that Al is evolving beyond simple data processing technology to
become a core infrastructure for intelligent structural diagnosis and maintenance systems.

Going beyond the application of fragmented techniques, it is crucial to establish an
integrated AI-NDT framework that seamlessly integrates data acquisition, preprocess-
ing, analysis, monitoring, prediction, and post-event response. Furthermore, with the
advancement of standardized performance indicators, international datasets, and cloud-
and edge-based real-time processing technologies, AI-NDT will become a key technology
for realizing a predictive and sustainable management paradigm for marine infrastructure.

In summary, Al-integrated NDT is establishing itself as a key technology that over-
comes the limitations of existing inspection methods and enhances the long-term safety
and durability of marine concrete structures. This study suggests that this technology could
be a real turning point for sustainable marine infrastructure management.
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