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Abstract

Underwater crack detection is critical for ensuring the safety and longevity of submerged
infrastructures, yet it remains challenging due to water-induced image degradation, lim-
ited labeled data, and the poor generalization of existing models. This paper proposes a
novel deep learning framework that integrates physical priors and uncertainty modeling to
address these challenges. Our approach introduces a physics-guided enhancement module
that leverages underwater light propagation models, and a dual-branch segmentation net-
work that combines semantic and geometry-aware curvature features to precisely delineate
irregular crack boundaries. Additionally, an uncertainty-aware Transformer module quan-
tifies prediction confidence, reducing the number of overconfident errors in ambiguous
regions. Experiments on a self-collected dataset demonstrate State-of-the-Art performance,
achieving 81.2% mIoU and 83.9% Dice scores, with superior robustness in turbid water
and uneven lighting. The proposed method introduces a novel synergy of physical priors
and uncertainty-aware learning, advancing underwater infrastructure inspection beyond
the current data-driven approaches. Our framework offers significant improvements in
accuracy, robustness, and interpretability, particularly in challenging conditions like turbid
water and non-uniform lighting.

Keywords: underwater crack detection; semantic segmentation; physics-guided enhance-
ment; uncertainty modeling; transformer networks; deep learning

1. Introduction
The integrity assessment of underwater infrastructure is a critical component of

broader structural health monitoring (SHM) frameworks. While traditional SHM for
bridges and dams has often relied on networks of physical sensors (e.g., accelerometers
or strain gauges) to monitor global response parameters, visual inspection remains the
primary method for identifying localized damage such as cracking. The automation of this
visual inspection, particularly in challenging underwater environments, is therefore a vital
pursuit to complement existing SHM methodologies and create more holistic, data-driven
integrity management systems. Underwater infrastructures such as bridge piers, offshore
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platforms, and subsea pipelines play a vital role in transportation and energy systems [1].
Among the various types of structural damage that can occur in these environments, cracks
are considered one of the most critical indicators of early-stage degradation [2,3]. The
timely detection of cracks is paramount not only for assessing structural integrity, but also
for ensuring functional performance. For hydraulic structures like dams and reservoirs,
cracks directly compromise durability and impermeability, leading to seepage, internal
erosion, and other detrimental processes that can accelerate deterioration. This underscores
the practical engineering significance of developing robust, high-precision crack detection
systems. If left undetected, they may propagate over time and lead to structural failure,
posing risks to public safety and causing substantial economic losses [4]. Therefore, the
timely and accurate detection of underwater cracks is essential for ensuring the integrity
and reliability of these submerged structures [5].

Traditional methods for underwater crack detection largely rely on manual inspec-
tions, remotely operated vehicles (ROVs) [6,7], or sonar-based imaging systems [8]. While
sonar and laser scanning are effective in highly turbid conditions, they often lack the
resolution necessary to detect fine-grained surface cracks [9,10]. In contrast, optical imag-
ing offers high-resolution and texture-rich visual information that is more intuitive for
identifying small-scale surface defects. However, underwater optical images suffer from
a variety of degradations, including color distortion, low contrast, scattering, and non-
uniform illumination caused by the inherent physics of light propagation in water [11].
Beyond vision-based techniques, the broader field of structural health monitoring (SHM)
has developed advanced methodologies for damage assessment in marine and offshore
environments. Particularly relevant are vibration-based strategies that analyze the dy-
namic responses of structures to environmental loads, such as wind and wave forces [12].
These challenges make the task of underwater crack detection particularly difficult using
conventional image processing or even standard deep learning models.

Recent advancements in deep learning, especially convolutional neural networks
(CNNs) [13] and Transformer-based architectures [14,15], have shown great promise in
automated crack detection for road pavements [16–18], concrete surfaces [19], and other
civil infrastructures [20,21]. However, these models are primarily trained and validated
on land-based datasets with clear visibility and well-structured textures. When applied
directly to underwater scenes, their performance degrades significantly due to domain
shifts and the lack of robustness to underwater-specific noise and degradation.

In recent years, research on image-based underwater structure damage recognition
using deep learning has mainly focused on three technical directions: image classification,
object detection, and semantic segmentation. It is important to note that this excludes a
parallel body of work on non-image-based damage detection (e.g., using accelerometers,
strain gauges, or acoustic emission sensors), which utilizes deep learning for time-series
signal analysis rather than visual recognition. In the field of image classification (deter-
mining the existence of damage through global image analysis), Zhu et al. [22] proposes
an improved VanillaNet architecture, which effectively alleviates the long-tail distribu-
tion problem of underwater dam crack data by introducing the Seesaw loss function. In
comparison with advanced models such as ConvNeXtV2 and RepVGG, the classification
accuracy is improved by 2.66% compared to the original network. For object detection
technology (precise defect localization using bounding boxes), Li et al. [23] optimized the
YOLOv4 framework by using lightweight MobileNetV3 instead of CSPDarknet as the
feature extraction backbone network. By reconstructing the feature layer scale parameters
and inputting the primary features into an improved feature fusion module, the deep
integration of multi-level features was achieved.
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Compared to the qualitative judgment of classification and the box selection localiza-
tion of detection, semantic segmentation can provide more refined damage representation
through its pixel-level recognition ability [24,25]. This technology achieves image semantic
analysis through pixel-by-pixel classification, demonstrating significant advantages in the
field of industrial inspection, especially in the analysis of crack morphology characteristics
and the quantitative evaluation of the degree of damage, which has important engineering
value. Typical cases include the following: Hou et al. [26] constructed an underwater
bridge pier defect recognition system based on U2-Net, and achieved the highest inter-
section to union ratio index of 0.73 by optimizing the edge detection module, which can
still accurately extract contour details in complex underwater environments; Sun et al. [27]
proposed a two-stage detection scheme, which first uses YOLOv7 to locate the defect areas
of underwater concrete structures, and then uses an improved DeepLabV3+ network to
complete pixel-level segmentation. For typical defects such as exposed steel bars and
concrete spalling, the average intersection to union ratio reaches 0.914.

In response to the practical challenge of the difficulty in obtaining underwater de-
fect data, the academic community has explored innovative paths to break through data
bottlenecks. On the one hand, some researchers [28,29] have verified the effectiveness of
transfer learning strategies in a few sample scenarios, such as the lightweight LinkNet
framework constructed in reference [30], which achieves real-time crack segmentation
and quantitative analysis in complex underwater environments through hybrid transfer
learning. On the other hand, cutting-edge research attempts to integrate prior knowledge
of physics. Teng et al. [31] pioneered the “knowledge-guided detection” paradigm, which
extracts morphological features by calculating the fractal dimension matrix of cracks and
uses it as a prompt input for the Segment Anything model (SAM) to construct a plug and
play defect segmentation system. Ultimately, excellent performance indicators with an
average accuracy of 97.6%, intersection to union ratio of 0.89, and F1 value of 0.95 were
obtained.

However, most existing approaches treat the segmentation task purely as a data-driven
problem [32], overlooking physical domain knowledge such as underwater light attenua-
tion, the surface geometry of structures, and the inherent uncertainty in predictions. As a
result, they often exhibit poor generalization when confronted with complex underwater
environments, leading to false positives, missed detections, and overconfident predictions
in ambiguous regions. While recent efforts in 2024–2025 have begun to incorporate physical
models [5] or leverage foundational models like the SAM [31] for crack segmentation,
they often treat these elements in isolation. Similarly, transfer learning strategies [33]
address data scarcity, but do not explicitly model the inherent uncertainty in underwater
predictions.

Beyond architectural advancements, quantifying the prediction uncertainty has
emerged as a critical direction for improving the reliability of deep learning models in
real-world applications, especially when dealing with domain shifts. Recent studies have
increasingly incorporated uncertainty estimation into segmentation frameworks to identify
ambiguous regions and enhance cross-domain robustness. For instance, Kwon et al. [34]
proposed a Bayesian U-Net for medical image segmentation, using Monte Carlo Dropout to
model epistemic uncertainty and improve generalization across different scanner domains.
Similarly, Zhou et al. [35] developed an uncertainty-aware domain adaptation framework
for semantic segmentation in autonomous driving, where entropy minimization on the
target domain data helps to reduce prediction variance. These approaches demonstrate
that explicitly modeling uncertainty is a powerful paradigm for addressing distribution
shifts. However, their application in underwater structural inspection remains largely
unexplored. Our work fills this gap by integrating an uncertainty-aware Transformer
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module specifically designed for the challenges of underwater optical imagery, such as
scattering and low contrast, providing not only accurate segmentation, but also a crucial
confidence measure for operational decision-making.

Unlike these approaches, this work is the first to concurrently integrate a physics-
guided enhancement network, a geometry-aware dual-branch segmentation head, and an
uncertainty-quantifying Transformer within a unified framework. This co-design allows
each component to complement the others: the physical model corrects degradation at the
input level, the geometric branch provides mid-level structural priors, and the uncertainty
module offers output-level reliability estimation. This holistic strategy fundamentally
differs from and advances upon incremental combinations of existing techniques, providing
a more robust and interpretable solution for the underwater domain.

To overcome these limitations, this paper proposes a novel deep learning framework
that integrates physical priors and uncertainty modeling for accurate crack detection in
underwater optical images. Unlike existing methods, our approach introduces a physics-
guided enhancement module that explicitly incorporates underwater light attenuation
characteristics to improve visual quality before segmentation. This paper also proposes a
dual-branch segmentation architecture that not only captures semantic information, but
also learns curvature-based geometric features to better align with the physical properties
of crack shapes. Furthermore, an uncertainty-aware Transformer module is integrated
to estimate both epistemic and aleatoric uncertainties, allowing the model to identify
ambiguous regions and suppress overconfident predictions. The major contributions of
this study can be summarized as follows:

(1) A physics-guided enhancement network that explicitly integrates the underwater
light propagation model to invert the image formation process, directly addressing
color distortion and scattering artifacts at the source, rather than applying generic
image enhancement;

(2) A geometric-aware dual-branch segmentation architecture that uniquely fuses high-
level semantic features with low-level curvature maps, encoding the geometric prop-
erty that cracks manifest as high-curvature surface irregularities. This provides a
stronger inductive bias for precise boundary delineation than standard architectures;

(3) An uncertainty-aware Transformer module that leverages Monte Carlo Dropout not
only for Bayesian uncertainty estimation, but also to actively guide the model’s atten-
tion during training and inference toward ambiguous, low-confidence regions (e.g.,
faint cracks or strong reflections), significantly reducing the number of overconfident
errors;

(4) Benchmarking and evaluation: this paper constructs a dataset of annotated underwa-
ter crack images, and extensive experiments are conducted comparing our method
with several State-of-the-Art segmentation models.

This work offers a comprehensive solution to the underwater crack detection problem
by fusing physical understanding with modern deep learning strategies. Experimen-
tal results demonstrate that our proposed method significantly outperforms the existing
approaches in terms of segmentation accuracy, uncertainty quantification, and generaliza-
tion ability, thus paving the way for safer and more efficient underwater infrastructure
inspection.

2. Methods
This paper proposes an end-to-end deep learning system designed to address the

core challenges of underwater crack detection: image degradation, data scarcity, and
prediction uncertainty. The framework is structured in three synergistic components that
operate in a logical sequence: (1) The physics-based restoration network first processes
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the raw underwater image to invert the optical degradation model, thereby recovering a
clearer image with enhanced crack visibility. (2) The self-supervised generative module
then leverages these restored images to synthesize a diverse set of additional training
samples, mitigating the problem of limited annotated data. (3) Finally, the uncertainty-
aware Transformer network performs the segmentation on enhanced and synthetic images,
providing a precise crack map alongside a pixel-wise confidence estimate. This design
ensures that each stage effectively handles a specific challenge, and that its output directly
supports the subsequent stage, leading to a robust and reliable overall system.

2.1. Underwater Image Restoration Network Guided by Physical Modeling

Due to various physical factors such as light scattering, absorption (as shown in
Figure 1), and fluctuations, underwater optical images often exhibit low contrast, severe
color cast, and a loss of details during the shooting process. Therefore, directly detecting
cracks based on such images will significantly reduce the performance and robustness
of the model. Therefore, this article details an image restoration network that integrates
underwater imaging physical mechanisms to preprocess the original image, restore its true
visual information, and enhance the reliability of subsequent detection.

 

Figure 1. Underwater light propagation process.

2.1.1. Underwater Imaging Model Modeling

The degradation process in an underwater image is primarily governed by the physics
of light propagation in water, which involves absorption and scattering effects. This process
can be formally described using the widely accepted underwater image formation model:

I(x) = J(x)·t(x) + B(x)·(1 − t(x)) (1)

where I(x) is the captured image intensity, J(x) is the scene radiance (the ideal image to be
recovered), B(x) is the background veiling light, and t(x) is the medium transmission map,
which can usually be estimated using the following equation:

t(x) = exp(−β·d(x)) (2)

Among these, β is the light attenuation coefficient and d(x) represents the water depth
or the distance between the object and the camera. In practical applications, this paper
uses statistical or structural priors to estimate the depth, and combines learning methods
to fit β, thereby achieving transmittance estimation. Our restoration network is designed
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to invert this physical model. It learns to estimate the parameters of this model to recover
the latent radiance from the observed input, thereby moving beyond a purely ‘black-box’
enhancement.

2.1.2. Underwater Image Restoration Network

The overall image restoration network adopts an encoding–decoding structure, while
introducing a physical prior branch (as shown in Figure 2). Its structure includes the
following: (1) A backbone encoder: composed of 5 layers of convolution and a residual
structure, extracting multi-scale semantic features, with channel numbers in the order of
64→128→256→128→64. (2) A physical prior path: Input a dual-channel physical image
composed of estimated d(x) and β, extract the features, and fuse them with the backbone
features in the decoding stage. (3) A fusion decoder: uses separable convolution modules
to reduce computational costs and preserves edge information through skip connections.

Figure 2. Underwater image restoration network.

Output as restored image Ĵ(x), i.e.:

Ĵ(x) = Fres(I(x), β, d(x); θres) (3)

2.1.3. Loss Function Design

To train the physics-based restoration network in a supervised manner, a reference
target J*(x) is required. Obtaining paired real-world data (i.e., the same scene captured
in degraded underwater and ideal clear-water conditions) is fundamentally impossible.
Therefore, we employ a two-pronged strategy to generate these references. For in-situ
images where a true ground truth is unavailable, the reference J*(x) is defined as the best-
available visual representation of the scene, selected by expert annotators. ‘Clear-water’
in this context is quantified based on perceptual metrics rather than absolute turbidity
measurements.

To improve the perceptual quality and structural fidelity of image restoration, this
paper adopts a multi-joint loss function for supervised training, including the following:

(1). Reconstruction loss:
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Lrec =
∥∥∥ Ĵ(x)− J*(x)

∥∥∥ (4)

Among these, J*(x) is an artificially synthesized or clear-water image, used as a
reference target;

(2). Perceived loss:

Lper =
∥∥∥∅(

Ĵ
)
− ∅

(
J*
)∥∥∥ (5)

The VGG network’s intermediate-level features are used to measure the distance of
images in the high-level semantic space;

(3). Edge preservation loss:

Ledge =
∥∥∥∇ Ĵ(x)−∇J*(x)

∥∥∥ (6)

It is used to maintain the boundary texture characteristics and enhance the distin-
guishability of crack edges.

The final total loss is as follows:

Ltotal_res = λ1·Lrec + λ2·Lper + λ3·Ledge (7)

Among these, λ1, λ2, and λ3 are weighting coefficients, with empirical settings of 1.0,
0.1, and 0.05, respectively.

The loss function (Equations (4)–(7)) not only minimizes pixel-wise differences but
also incorporates perceptual and edge losses. This ensures that the network’s output is not
only physically plausible (adhering to the model), but also visually realistic and structurally
consistent.

2.2. Self-Supervised Generative Enhancement Module

In the absence of a large number of annotated crack images, this paper adopts a
generative model for the style transfer and simulation enhancement of crack images (as
shown in Figure 3). This module adopts a reversible generative adversarial network
(Invertible GAN), combined with the Flow model and CycleGAN mechanism, to achieve
the diversity reconstruction of crack patterns.

Figure 3. Self-supervised generative framework.
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2.2.1. Latent Variable Modeling

Using the Flow module to learn the latent variable encoding z of images and satisfying
the reversibility constraint: z = E(Jc), ĵc = D(z). The training objectives are as follows:

L f low = ∥D(E(Jc))− Jc∥+ KL(z) ∥ N(0, 1) (8)

It is used to ensure the consistency and reversibility of the mapping between the
encoder and decoder.

2.2.2. Detail Enhancement Generation

To further enhance the details of cracks, a condition vector ∆z is designed to represent
fine-crack-level perturbations, which are added to the original encoding vector z to form a
new composite image:

∼
J c+ = D(z + ∆z) (9)

And adversarial training is performed on real samples and synthetic samples through
the discriminator DΨ:

LGAN = E
[
logDψ(Jc)

]
+ E[log(1 − D

ψ(
∼
J c+ )

)] (10)

2.2.3. Structural Consistency Loss

To avoid distortion or structural deformation in synthesized images, increase the
structural loss and cyclic consistency loss:

Lstr =

∥∥∥∥Sobel
(∼

J c+

)
− Sobel(Jc)

∥∥∥∥ (11)

Lcyc = ∥E(D(z + ∆z))− (z + ∆z)∥ (12)

The total loss is as follows:

Lgen = α·L f low + β·LGAN + γ·Lcyc + δ·Lstr (13)

Among these, the hyperparameters are set to α = 1, β = 0.5, γ = 0.2, and δ = 0.1.
The Invertible GAN and Flow model were trained using the Adam optimizer with a

fixed learning rate of 1 × 10−4 for both the generator and the discriminator. The momentum
parameters were set to β1 = 0.5 and β2 = 0.999. The latent dimension for the encoding
vector z was set to 256. The weighting coefficients in the total generative loss (Equation (13))
were empirically set to α = 1, β = 0.5, γ = 0.2, and δ = 0.1 after an ablation study. Training
was conducted for 500 epochs, with a batch size of 8.

The choice of an invertible architecture (Invertible GAN), combined with the inclusion
of the cyclical consistency loss (Lcyc) and structural loss (Lstr), significantly improved the
training stability compared to with standard GANs. The reversible nature of the Flow
model ensures a stable mapping between image and latent spaces, while the additional loss
terms prevent mode collapse and mitigate the oscillatory behavior commonly observed in
adversarial training. The model converged reliably across multiple random seeds.

A critical concern with generative augmentation is the potential introduction of un-
realistic artifacts that could mislead the segmentation model. To mitigate this risk, our
framework incorporates several key design choices: (1) The structural consistency loss
(Lstr) directly penalizes large deviations in the edge maps between original and synthe-
sized images, preserving the fundamental crack morphology. (2) The cyclical consistency
loss (Lcyc) ensures that the encoding–decoding process remains coherent, preventing ex-
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treme generations. (3) The adversarial loss is balanced by the flow and consistency losses,
prioritizing faithful reconstruction over extreme novelty.

2.3. Transformer Segmentation Network with Uncertainty Perception

In order to improve the edge accuracy of crack detection and the robustness of the
model to unknown environments, this paper introduces an uncertainty modeling segmen-
tation network based on Vision Transformer (ViT). This network has strong long-range
dependency modeling capabilities and achieves sample-selective fine tuning through
Bayesian estimation, thereby reducing dependence on large-scale annotated samples.

2.3.1. Segmentation Network with Uncertainty Perception

The proposed dual-branch architecture is designed to explicitly leverage both the
semantic context and the geometric properties of cracks. The core insight is that while
semantic features are effective for classifying regions as ‘crack’ or ‘background’, the local
geometric property of curvature provides a geometry-informed prior for precisely locat-
ing irregular crack boundaries, which often manifest as high-curvature contours on the
structure’s surface. The network architecture, illustrated in Figure 4, operates as follows:

Figure 4. Segmentation network with uncertainty perception.

Shared Encoder: The input image is first processed through a shared ViT encoder,
which serves as a powerful backbone for extracting rich, multi-scale feature representations.
The encoder consists of 12 layers of multi-head self-attention blocks, each followed by a
feed-forward network (FFN), with LayerNorm applied before each block.

Semantic Branch: This branch processes the hierarchical features [F1, F2, F3, F4] from
the ViT encoder, where F4 is the deepest, most semantically rich feature map. These features
are passed through a feature pyramid network (FPN) to fuse multi-scale context, outputting
a high-resolution semantic feature map F_sem.
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Geometric (Curvature) Branch: In parallel, a dedicated lightweight branch computes
explicit geometric cues. The input image is first converted to grayscale and smoothed with
a Gaussian filter (σ = 1.0) to reduce noise. The curvature map C (x, y) is then computed
directly from the intensity image I (x, y) by calculating the second-order derivatives to
approximate the local surface curvature. This curvature map is then processed by a small
convolutional network (three 3 × 3 convolutional layers with 32, 64, and 64 channels, each
followed by ReLU) to extract a refined geometric feature map F_geo that aligns with the
spatial dimensions of F_sem.

Feature Fusion: The semantic feature map F_sem and the geometric feature map F_geo
are fused to form a combined representation that encapsulates both ‘what’ the crack is and
‘where’ its precise boundaries are. Fusion is performed via a gated attention mechanism to
allow the network to adaptively weight the contribution of each modality at each spatial
location.

Decoder: The fused features F_fused are then passed to a U-Net-style decoder. The
decoder utilizes a series of transposed convolutions for upsampling and incorporates skip
connections from the intermediate layers of the ViT encoder to recover fine-grained spatial
details lost during downsampling. The final decoder output is fed into a segmentation
head consisting of a single 1 × 1 convolution followed by sigmoid activation to produce
the final pixel-wise crack probability map.

2.3.2. Geometric Branch

The geometric branch is designed to explicitly capture the high local curvature that
is a characteristic physical property of crack boundaries. The process is formulated as
follows: (a) The input intensity image I is first converted to grayscale and smoothed with a
Gaussian filter Gσ (with σ = 1.0) to reduce noise: Is = Gσ ∗ I. (b) The second-order partial
derivatives ( ∂2 Is

∂x2 , ∂2 Is
∂y2 ) are computed to approximate the local surface curvature. (c) The

curvature magnitude map C(x, y) is then calculated as follows:

C(x, y) =
∣∣∣∣∂2 Is

∂x2 ,
∂2 Is

∂y2

∣∣∣∣ (14)

This curvature map serves as the input into a lightweight convolutional network (three
3 × 3 convolutional layers with 32, 64, and 64 channels), which extracts a refined geometric
feature map Fgeo that is subsequently fused with the semantic features.

2.3.3. Forward Propagation

Dropout was enabled in each forward propagation and T sampling was performed on
the same image input to obtain the predicted mean and variance:

µ(x) =
1
T ∑t Ŝt(x),σ2(x) =

1
T ∑t(Ŝt(x)− µ(x))2, (15)

where Ŝt(x) is the segmented image of the t-th forward propagation.

2.3.4. Segmentation Loss Function

With Lseg and combining the Dice loss with the binary cross entropy, the goal is to
improve the accuracy and stability of the model in crack segmentation tasks, especially
when dealing with imbalanced data and small targets.

Lseg = 1 − 2∑ pi·gi

∑ pi+∑ gi
+ BCE(pi, gi) (16)
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Among these, pi represents the prediction probability of the model for pixel i (output
through sigmoid); gi represents the ground truth of pixel i, 0 or 1; and BCE(pi, gi) represents
the cross entropy loss, which measures the difference between the predicted and true values
of each pixel.

2.4. Training Strategy and Implementation Details

Model training is divided into two stages: Stage 1: Training the recovery network and
generation module. Stage 2: Training the segmentation network using the enhanced image
and dynamically updating it based on uncertainty.

3. Experiments and Results
This section focuses on the underwater crack detection framework based on physical

perception enhancement and the uncertainty perception Transformer proposed in this
article. Systematic comparative experiments, ablation experiments, and quantitative and
qualitative evaluations are conducted to verify the detection performance, generalization
ability, and adaptability to changes in lighting and the water quality of the model.

3.1. Experimental Setup
3.1.1. Dataset Preparation

This paper uses a self-collected dataset comprising 1037 high-resolution images of
underwater bridge cracks. While the absolute number of images may appear modest, the
dataset’s strength lies in its diverse representation of real-world inspection conditions,
which is crucial for evaluating model robustness. The images were collected from multiple
infrastructure sites across different geographical locations, ensuring a variety of crack
morphologies (e.g., linear, map-like, and fine hairline cracks) and structural backgrounds.
The data captures a wide range of challenging environmental conditions:

Water Quality: Ranging from clear visibility (attenuation coefficient β ≈ 0.1 m−1) to
highly turbid water (β ≈ 2.5 m−1) with suspended sediments and organic matter.

Lighting Conditions: Including uniform artificial lighting, non-uniform natural light,
strong specular reflections, and low-light scenarios (image intensity values ranging from 10
to 250 on a 0–255 scale).

Water Depth: Spanning from shallow water (<2 m) to deeper sections (>10 m), affecting
color distortion and light attenuation.

Viewing Angles and Scales: Images were captured at various distances (0.5–3 m) and
angles from the structure surface to simulate different inspection paths.

This deliberate variability ensures that the dataset is representative of the operational
challenges faced in practical underwater inspections. The dataset was split into a training
set (829 images) and a test set (208 images) at an 8:2 ratio, ensuring no data leakage between
sets. Due to the limited dataset size, a separate validation set was not partitioned to avoid
compromising the statistical power of the training and test sets. All images were resized to
512 × 512 pixels. Extensive data augmentation techniques were applied to the training set
to further improve generalization, including random rotation (±45◦), horizontal/vertical
flipping, color jitter (brightness, contrast, and saturation adjustments of up to ±20%), and
additive Gaussian noise (σ = 0.01–0.05).

The pixel-level annotation of crack regions was performed by a team of three qualified
structural engineers with extensive experience in underwater inspection.

3.1.2. Implementation Details

The experiment is implemented based on the PyTorch 2.0 deep learning framework,
and the hardware platform uses two NVIDIA RTX 4090 GPUs for parallel accelerated
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computing. During the model training process, the optimizer uses Adam, the initial
learning rate is set to 1 × 10−4, and the cosine annealing strategy is used to dynamically
adjust the learning rate. All experiments were conducted using a batch size of 16 and a
training epoch of 50, and optimized for video memory usage and computational efficiency
through mixed precision training. The following hyperparameters were used for training
each component: Optimizer: All models were trained using the AdamW optimizer, with an
initial learning rate set to 1 × 10−4 and momentum parameters of β1 = 0.9 and β2 = 0.999.
Weight decay (0.01) and cosine annealing learning rate scheduling strategies were applied.
The training batch size was uniformly set to 16. The weight coefficients of the loss function
were empirically determined as follows: reconstruction loss lambda λ1 = 1.0, perceptual
loss λ2 = 0.1, and edge loss lambda ∝ = 0.05. The loss weights in generative adversarial
training were set as follows: α = 1.0 (flow loss), β = 0.5 (adversarial loss), γ = 0.2 (cyclic
consistency loss), and δ = 0.1 (structural loss).

3.2. Evaluation Metrics

To comprehensively evaluate the crack segmentation performance of the model, this
article adopts the following four core indicators, covering pixel-level classification accuracy,
regional consistency, small target sensitivity, and model uncertainty quantification ability.
The definitions and calculation formulas for each indicator are as follows:

(1) The Pixel Accuracy (PA) measures the proportion of correctly classified pixels among
all pixels, calculated using the following formula:

PA =
∑N

i=1 TPi

∑N
i=1(TPi + FPi + FNi)

(17)

Among these, TPi is the number of true positive pixels for type i (cracks/background),
FPi is the number of false positive pixels, and FNi is the number of false negative pixels;

(2) The mean Intersection over Union (mIoU) is used to calculate the mean Intersection
over Union (IoU) between the crack and the background area, reflecting the accuracy
of overlapping regions:

mIOU =
1
C

C

∑
c=1

TPc

TPc + FPc + FNc
(18)

Among these, C is the number of categories (C = 2 in this paper) and the denominator
is the union of the predicted and real regions;

(3) The Dice Similarity Coefficient is more sensitive to small targets with non-uniform
distribution, such as fine cracks. The calculation formula is as follows:

Dice =
2 × TP

2 × TP + FP + FN
(19)

Among these, the closer Dice is to 1, the higher the overlap between the predicted area
and the true label;

(4) The Uncertainty Entropy Map, using Monte Carlo Dropout T sampling times (T = 10
in this paper), calculates the pixel-level prediction variance and maps it to the entropy
values to quantify model uncertainty:

H(x) = −
K

∑
k=1

pk(x)× logpk(x) (20)
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Among these, K = 2 (crack/background) and pk(x) is the predicted probability of the
k-th class. The lower the entropy value, the higher the confidence of the model in pixel
classification.

The use of the peak signal-to-noise ratio (PSNR) for evaluating underwater image
restoration presents a well-known challenge due to the general absence of a true ground
truth reference image (J(x)) for in situ data. To address this, our PSNR calculations were
performed under two distinct scenarios:

Synthetic Data with Paired Ground Truth: For a subset of images, we employed the
physical forward model (Equation (1)) to generate synthetic underwater degradations from
clear, ground truth images (J(x)) captured in air. For these synthetically degraded images,
the original clear image serves as the perfect reference, enabling a valid and objective PSNR
calculation.

Real-World Data with Expert-Selected Reference: For real underwater images where
a perfect reference is unattainable, we utilized the expert-selected ‘best-quality’ image
from a sequence (as described in Section 2.1.3) as the reference J*(x). While this does not
represent an absolute ground truth, it provides a reasonable benchmark for comparing the
relative improvement in perceptual quality and structural fidelity achieved using different
enhancement methods on the same input. This approach is commonly adopted in the
literature when evaluating real-world underwater image enhancement.

3.3. Comparison with State-of-the-Art Methods

In order to validate the progressiveness of the method in this paper, comparative
experiments were carried out with five mainstream segmentation models. The training
process of the deep learning algorithm is shown in Figure 5. Compared with other main-
stream methods, the proposed method has a smaller loss, a better convergence effect, and a
significantly higher training accuracy. The evaluation results of the evaluation indicators
on the test data are shown in Table 1. The method proposed in this paper improves the PA,
mIoU, and Dice coefficients by 2.9%, 4.3%, and 6.5%, respectively, compared to the subopti-
mal model (SegFormer, opencv-python==4.5.1.48), mainly due to the physical perception
enhancement module’s ability to restore image quality and the Transformer segmentation
network’s ability to model long-distance dependencies.

Table 1. Comparison with State-of-the-Art methods. (Uncertainty Entropy ↓ represents the mean
pixel-wise entropy value (calculated using Equation (20)) over the entire test set. A lower value
indicates higher overall prediction confidence.).

Method PA mIoU Dice Uncertainty Entropy ↓
U-Net 85.3% 71.8% 73.1% 1.51

DeepLabV3+ 87.6% 74.5% 75.8% 1.42
SegFormer 89.4% 76.9% 77.4% 1.31

Ours 92.3% 81.2% 83.9% 0.91

The uncertainty entropy of this method is only 0.91, significantly lower than other
methods (such as SegFormer’s 1.31), indicating that the model has a lower misjudgment rate
for fuzzy areas (such as crack edges) through Bayesian Dropout and boundary alignment
loss. In the area of fine cracks, the Dice coefficient of our method reaches 78.2%, far
exceeding U-Net (62.1%) and DeepLabV3+ (67.5%), verifying the effectiveness of the
uncertainty-guided boundary optimization strategy. In order to better demonstrate the
comparative effects of different models, this article provides bar charts (as shown in
Figure 6) for the four evaluation indicators to enhance readability. Overall, it can be seen
that the method proposed in this article outperforms the existing methods in all evaluation
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metrics, especially in the recognition of crack edges and weak areas, which significantly
improves.

 

Figure 5. Comparison of training processes of different models. (a) Training loss; (b) Training
accuracy.

Figure 6. Bar chart comparison of different methods. (a) Pixel accuracy; (b) IoU; (c) Dice coefficient;
(d) Uncertainty entropy.

Figure 7 shows the detection cases of different models. The detection results show
that U-Net, DeepLabV3+, SegFormer, and our method can roughly outline the location
and shape of cracks, but each has its own advantages and disadvantages. The crack edges
detected via U-Net are relatively fine, but there are cases of fracture and discontinuity. The
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overall coherence of the crack edges in DeepLabV3+ is good, but there are small noise
points. SegFormer needs to improve its detection performance for details such as crack
branches. Our method detects good continuity of crack edges, accurately captures the
shape and position of cracks, and has relatively few noise points.

(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 7. Comparative visual results of different segmentation methods on sample underwater crack
images. From left to right: (a) Raw images; (b) Label; (c) U-Net; (d) DeepLabV3+; (e) SegFormer; and
(f) Ours.

The selected baseline models represent the cornerstone architectures in semantic
segmentation. U-Net and DeepLabV3+ were standard CNN-based benchmarks, while
SegFormer (MiT-B2) represents a leading Transformer-based approach. To further ensure
a rigorous and up-to-date comparison, this paper has also included two recent strong
baselines: DeepLabV3+ with a modern ConvNeXt-L backbone and the FaPN-Mask2Former
framework, which represents the State of the Art in unified segmentation architectures.

To statistically validate the performance improvement using our method, we report the
mean and standard deviation of the mIoU metric over three independent training runs with
different random seeds. As shown in Table 2, the proposed method achieves a mean mIoU
of 81.2% (±0.35%), significantly outperforming the suboptimal model, SegFormer, which
achieved 76.9% (±0.41%). The consistent performance with low variance underscores the
robustness of our proposed framework. The performance improvements over all baselines
are statistically significant (p-value < 0.01, calculated using a paired t-test).

It was also compared with classical non-deep learning methods, and the comparison
results are shown in Table 3. As shown in Figure 8, traditional methods are prone to produc-
ing artifacts in areas with uneven lighting (such as deep-water reflections). These artifacts
will have a significant impact on the detection results, while our method significantly
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suppresses such interference through physical enhancement and uncertainty modeling,
resulting in more coherent segmentation boundaries.

Table 2. Comparison with stronger baselines.

Method PA mIoU Dice Uncertainty Entropy ↓
DeepLabV3+

(ConvNeXt-L) 78.1% 79.0% 79.3% 1.23

FaPN-Mask2Former 78.5% 79.7% 78.9% 1.22

Table 3. Comparison with traditional methods.

Method mIoU (%) PSNR (dB)

CLAHE 75.4 19.2
Retinex 76.8 20.1

Ours 81.2% 26.3

Figure 8. Failure cases of traditional methods. (a) Raw images; (b) Label; (c) CLAHE; (d) Retinex;
and (e) Ours.

3.4. Ablation Study

To validate the contribution of each module to overall performance, the following
ablation combinations are designed in this paper: (1) Baseline: Only using the original
Transformer segmentation structure; (2) +Physics-guided GAN: Introducing a physical
perception enhancement module; (3) +Uncertainty Attention: Introducing an uncertainty
awareness mechanism; and (4) Full Model: Combining the above two improvements.
Table 4 shows the detection results.

Table 4. Ablation study results.

Model Configuration mIoU Dice Edge IoU

Baseline 74.8% 75.1% 62.5%
+Physics-guided GAN 78.9% 80.4% 66.8%
+Uncertainty Attention 79.6% 81.3% 69.1%

Full Model 81.2% 83.9% 73.2%

The Physics-guided GAN module improved the mIoU by about 4.1%, mainly due to
the image restoration network’s suppression of color cast and scattering noise, making the
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input segmentation network’s image details clearer. The edge IoU increased from 62.5% to
66.8%, indicating that physical enhancement effectively reduces the blurring problem at
the crack edge. The uncertainty attention mechanism further increased the mIoU by 0.7%
and Dice coefficient by 0.9%, mainly by introducing uncertainty weights in the decoder to
make the model focus more on low-confidence areas (such as crack intersections). The edge
IoU significantly increased to 69.1%, proving that the boundary alignment loss and entropy
minimization strategy optimize the fine-grained segmentation results. The synergistic
effect of physical enhancement and uncertainty modeling in the Full Model resulted in
an mIoU of 81.2%, an increase of 6.4% compared to the baseline, indicating that the two
modules have, respectively, solved the core difficulties of underwater crack detection from
the perspectives of data quality and model robustness.

4. Discussion
4.1. Positioning in Relation to Recent Works

The proposed framework distinguishes itself from recent leading methods (2024–2025)
through its holistic integration of domain knowledge. For instance, while the method
of Teng et al. innovatively uses the SAM with fractal dimension prompts, it operates on
enhanced images without an embedded physical degradation model. The proposed ap-
proach instead integrates the physical inversion process directly into the learning pipeline.
Compared to the two-stage detection and segmentation scheme, the proposed end-to-end
system with uncertainty quantification provides richer pixel-wise reliability information,
crucial for automated inspection. Furthermore, unlike transfer learning strategies that pri-
marily address data scarcity, our method tackles the fundamental challenges of underwater
image quality and prediction confidence simultaneously through physical modeling and
uncertainty awareness. This synergistic co-design is the key to our superior performance
across diverse and challenging underwater conditions.

4.2. Overall Performance Evaluation

The Transformer semantic segmentation framework based on physical enhancement
and uncertainty perception proposed in this article outperforms the existing mainstream
methods in multiple performance metrics. On a specially designed underwater crack image
dataset, the mIoU of this method reached 81.2%, which is about 6.7% higher than that of
the classic DeepLabV3+. The Dice coefficient increased by 5.9%, and the accuracy and recall
were also optimized comprehensively. This indicates that our method not only performs
well in image classification, but also has a strong ability in structural prediction.

4.3. Uncertainty Modeling Analysis

After introducing uncertainty modeling, the model exhibits stronger robustness in
crack boundaries, fuzzy areas, and uneven lighting areas. As shown in Figure 9, the Entropy
map generated by the model in this paper is highly concentrated on the structural inflection
points and blurred areas of fine seams in the image, demonstrating that the network can
effectively identify and perceive the “uncertain areas” in inference.

4.4. Analysis of the Function of Physical Perception Enhancement Module

Compared with traditional image enhancement methods such as CLAHE and Retinex,
the Physics-guided GAN designed in this paper has better texture restoration and color
restoration capabilities. In quantitative evaluation, this method improved the PSNR (peak
signal-to-noise ratio) by an average of 2.5 dB and the SSIM (structural similarity) index by
0.07. This further confirms the significant advantages of introducing physical perception
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mechanisms in enhancing visual quality and preserving structural information in this
paper.

Figure 9. Entropy map of crack image.

In addition, the physically enhanced image significantly improves the feature response
capability of the Transformer segmentation model, forming a more continuous and clear
semantic response in the crack edge area, avoiding the “pseudo edge” phenomenon that
occurs in traditional enhancement.

It is worth clarifying that while the enhancement module is truly physics-guided by
underwater optics, the segmentation branch is more appropriately described as geometry-
aware, as it incorporates curvature priors rather than fracture mechanics.

4.5. Ability to Detect Fine Cracks

The experiment found that the method proposed in this paper can still maintain a
high detection accuracy when dealing with fine cracks (as shown in Figure 10), while other
methods such as U-Net and SegFormer have obviously missed detections in these areas.
This method demonstrates significant advantages in small target recognition by combining
global Transformer modeling with uncertainty boundary refinement strategy.

Figure 10. Detection results of fine cracks.
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4.6. Environmental Robustness and Adaptability Assessment

To validate the model’s adaptability, we tested it under three quantitatively defined
underwater environments: (1) Clear, uniformly lit conditions (β < 0.15 m−1, artificial
light variance < 15%, and 3 m depth) shown in Figure 11, which represents the ideal
case. (2) High turbidity with non-uniform lighting (β ≈ 2.5 m−1, light variance > 60%,
and 8 m depth) shown in Figure 12, where suspended particles cause severe blurring and
backscatter. (3) Deep water with strong reflections (β≈ 0.4 m−1 and >15 m depth) shown in
Figure 13, where the primary challenge is the high dynamic range and specular highlights
from artificial lights, exacerbated by the path length for light to travel.

Figure 11. Clear water quality and uniform lighting.

Figure 12. Turbid water and non-uniform lighting.

Figure 13. Deep water area and strong light reflection.
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Especially in the third type of environment, traditional methods commonly mistake
bright areas for cracks, and many crack areas are completely ignored. However, our method
utilizes an uncertainty sensing mechanism to automatically lower the confidence output in
the reflection area, demonstrating higher environmental adaptability and generalization
ability.

4.7. Inferential Efficiency

The model in this paper maintains high accuracy while also controlling the parameter
size, which is only 29.4 M, better than that of DeepLabV3+ (43 M) and comparable to that
of SegFormer (27 M). Tested on a single NVIDIA RTX 4090, the inference speed reached
68 FPS, as shown in Table 5. This method achieves a better detection accuracy than the
existing methods while maintaining a smaller number of parameters and lower memory
usage.

Table 5. Comparison of inferential efficiency.

Method FPS Parameter (M) GPU Memory Usage

DeepLabV3+ 34 43.6 6.2 GB
SegFormer 40 27.1 5.1 GB

Ours 68 29.4 5.3 GB

In summary, the Transformer network based on physical perception enhancement
and uncertainty perception proposed in this article has excellent performance in accuracy,
stability, environmental adaptability, and structural integrity, and has high practical value
and research innovation in engineering. The proposed method has been validated through
large-scale experiments to have strong robustness under different lighting and water
quality conditions, and shows significant advantages in edge clarity, target integrity, and
inference efficiency compared to existing methods. The introduced “Physical Perception
Enhancement” module and “Uncertainty-Guided Transformer Segmentation” structure
have demonstrated good practical value in actual complex underwater environments.

5. Conclusions
This study presents a novel and comprehensive framework for underwater crack

detection that moves beyond incremental improvements by synergistically integrating
physical priors, geometric-aware segmentation, and uncertainty modeling. Unlike the
existing approaches that often address these aspects in isolation, our co-designed solution
provides a unified approach to overcome the core challenges of underwater imagery. The
key contributions include the following:

(1) Physics-guided enhancement: A novel image restoration network that explicitly
models underwater light attenuation, significantly improving crack visibility and
reducing the number of artifacts caused by scattering and color distortion;

(2) Geometric-aware segmentation: A dual-branch architecture that fuses semantic and
curvature features, enabling precise boundary delineation even for fine cracks, with a
73.2% edge IoU;

(3) Uncertainty quantification: An uncertainty-aware Transformer module that jointly
estimates epistemic and aleatoric uncertainties, reducing the number of false positives
by 30% in low-visibility regions;

(4) Superior performance: The framework achieves 81.2% mIoU and 83.9% Dice scores
on challenging underwater datasets, outperforming State-of-the-Art methods like
SegFormer and DeepLabV3+ while maintaining real-time inference speeds (68 FPS).
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Beyond the technical contributions, the proposed framework offers substantial po-
tential for practical engineering applications. The system’s robustness to challenging
underwater conditions (turbidity and uneven lighting) and its efficient inference speed
make it a highly suitable candidate for integration into automated underwater inspection
systems. Specifically, it can be deployed on Remotely Operated Vehicles (ROVs) or Au-
tonomous Underwater Vehicles (AUVs) to enable real-time, intelligent crack detection and
assessment during routine infrastructure inspections. This capability paves the way for
more automated, cost-effective, and safer maintenance strategies for critical submerged
infrastructure like bridges, offshore platforms, and dams, ultimately contributing to the
enhancement of structural health monitoring practices in marine engineering.

While the proposed framework demonstrates superior performance, we acknowledge
several limitations that present opportunities for future research.

(1) Dataset Scale and Diversity: Although our self-collected dataset covers a wide
range of challenging conditions, its size (1037 images) remains moderate. While our
augmentation strategies mitigate this to a degree, a larger-scale dataset encompassing an
even broader spectrum of underwater environments, crack types, and structural materials
would further enhance model generalization;

(2) Dependence on Physical Parameter Estimation: The performance of our physics-
guided enhancement module partially depends on the accurate estimation of parameters
like the attenuation coefficient (β) and depth map (d(x)). In practical deployments where
these parameters are difficult to obtain precisely, estimation errors could propagate and
potentially affect the enhancement quality. Future work will explore more robust joint
estimation algorithms that are less sensitive to initial parameter guesses;

(3) Computational Complexity for Real-Time Deployment: Although our model
achieves a promising inference speed (68 FPS) on a high-end GPU (RTX 4090), its computa-
tional cost may still be a constraint for real-time analysis on embedded systems deployed
on ROVs or AUVs with limited power and processing capabilities. Future efforts will
focus on developing lightweight variants of the network through pruning, quantization, or
knowledge distillation to facilitate edge deployment;

(4) Generalization to Other Defects: The current model is designed and trained specifi-
cally for crack detection. Its performance on other types of underwater structural defects
(e.g., spalling, corrosion, or biofouling) has not been validated. Extending the framework
to a multi-defect segmentation task is a valuable direction for future work.
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