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Featured Application

This study provides an underwater image enhancement method that effectively improves
the detection performance of crack recognition algorithms under complex flow field and
low-illumination underwater conditions and provides a new solution for concrete crack
detection algorithms applied to dam surfaces under deep-water conditions.

Abstract

Underwater crack detection in dam structures is of significant importance to ensure struc-
tural safety, assess operational conditions, and prevent potential disasters. Traditional crack
detection methods face various limitations when applied to underwater environments,
particularly in high dam underwater environments where image quality is influenced by
factors such as water flow disturbances, light diffraction effects, and low contrast, making it
difficult for conventional methods to accurately extract crack features. This study proposes
a dual-stage underwater crack detection method based on Cycle-GAN and YOLOv11 called
Edge-Enhanced Underwater CrackNet (E2UCN) to overcome the limitations of existing
image enhancement methods in retaining crack details and improving detection accuracy.
First, underwater concrete crack images were collected using an underwater remotely
operated vehicle (ROV), and various complex underwater environments were simulated
to construct a test dataset. Then, an improved Cycle-GAN image style transfer method
was used to enhance the underwater images. Unlike conventional GAN-based underwater
image enhancement methods that focus on global visual quality, our model specifically
constrains edge preservation and high-frequency crack textures, providing a novel solution
tailored for crack detection tasks. Subsequently, the YOLOv11 model was employed to
perform object detection on the enhanced underwater crack images, effectively extracting
crack features and achieving high-precision crack detection. The experimental results
show that the proposed method significantly outperforms traditional methods in terms
of crack detection accuracy, edge clarity, and adaptability to complex backgrounds, effec-
tively improving underwater crack detection accuracy (precision = 0.995, F1 = 0.99762,
mAP@0.5 = 0.995, and mAP@0.5:0.95 = 0.736) and providing a feasible technological solu-
tion for intelligent inspection of high dam underwater cracks.

Keywords: dam safety; small-object detection; underwater crack detection
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1. Introduction
Currently, China has the largest number of high dams, with 588 dams over 70 m,

233 dams over 100 m, and 23 dams over 200 m. Thus, high dam safety is a major challenge
for national water safety and public safety. Cracks are one of the most common structural
defects in such underwater engineering facilities during long-term operation. They can
lead to reduced structural strength, water leakage, and even catastrophic consequences,
posing a serious threat to safety. In some cases, the cracks exist underwater, which is
even more challenging, as mature methods for above-water detection cannot be directly
applied. Therefore, determining methods for early detection and precise evaluation of
cracks both above and below water is of critical importance for ensuring the stability of
these engineering structures.

Traditional crack detection methods mainly rely on draining reservoirs to clear inter-
ference factors combined with manual inspections to clearly observe underwater structural
defects [1,2], an approach that is both time-consuming and economically costly and requires
a considerable amount of human resources, potentially having a negative impact on the
ecological environment in certain cases. It is also not suitable for high dams and large
reservoirs. In contrast, modern detection methods primarily rely on divers or portable
detection equipment for underwater visual inspections, with saturation diving required for
high dams, which is both dangerous and costly. Moreover, divers often lack professional
knowledge of hydraulic engineering, lowering the reliability of their detection results. Most
recently, with the advancements in ROVs and underwater imaging technologies, the possi-
bility of intelligent inspection for underwater cracks has emerged. However, traditional
image-processing methods perform poorly in complex underwater environments, and their
detection accuracy and adaptability are severely limited [3]. Therefore, research on crack
defect detection models in complex underwater environments is of great significance.

One of the core challenges in underwater crack detection tasks is the low quality of
underwater images. Due to the influence of various disturbance fields in the underwater
environment (such as flow fields and hydrodynamic fields), underwater images often
exhibit significant motion blur and light diffraction effects. Additionally, the absorption
and scattering of light in water result in reduced image contrast, color distortion, and detail
blurring, which severely affects the performance of crack detection models [4]. Therefore,
underwater image enhancement techniques have become a fundamental research direc-
tion for improving the accuracy of underwater crack detection. Traditional underwater
image data enhancement algorithms, such as histogram equalization [5] and homomor-
phic filtering [6], are relatively simple, but have poor robustness, making them unsuitable
for image enhancement tasks in high dam underwater multi-field disturbance environ-
ments. In recent years, with the rapid development of machine learning [7] and deep
learning technologies [8], neural network-based image enhancement methods have made
significant progress in the field of image processing [9,10]. Recent unpaired enhancement
approaches (e.g., WaterGAN [11], Shallow-uwnet [12], UColor [13], PUIE-Net [14]) and
datasets show that paired data are not strictly required, but these methods focus mainly
on perceptual quality rather than preserving crack features for detection. Meanwhile,
modern detectors such as YOLOv8–v11 demonstrate strong robustness, though pipelines
that explicitly constrain edge/high-frequency cues for underwater cracks remain scarce.
For example, Wang Yue et al. [15] proposed a multi-scale attention and contrast learning-
based underwater image enhancement algorithm, which effectively extracts multi-level
image features by combining an encoder–decoder structure with multi-scale channel pixel
attention modules. The improvements achieved in PSNR and SSIM metrics were 4.4% and
2.8%, respectively, significantly improving image clarity. Additionally, Du Feiyu et al. [16]
proposed a domain-adaptive underwater image enhancement method combining convolu-
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tional neural networks with a multi-head attention mechanism and adversarial learning
to achieve image enhancement under unsupervised conditions. Although these methods
achieved good results in restoring visual quality, they focus more on enhancing the overall
visual effect of the image rather than preserving and enhancing crack details, such as crack
boundaries, which may lead to blurred crack edges or feature loss, thereby affecting subse-
quent crack detection accuracy. In other words, current underwater enhancement pipelines
rarely optimize for crack-salient edges and high-frequency cues, leaving a gap between
visually pleasing restoration and useful feature retention for detectors. Furthermore, exist-
ing underwater image enhancement models require paired images for training [17,18], but
paired underwater crack images are difficult to obtain as they require the use of ROVs for
image collection, making it challenging to create paired image datasets for model training.

In the field of underwater crack detection, traditional crack detection methods, such
as Markov random fields [19] and Sobel operators [20], rely on edge detection algorithms
in their image processing techniques. Although these methods perform well in simple
scenarios, they are highly sensitive to noise and easily affected by background interference
and optical artifacts in complex underwater environments, making it difficult to effectively
extract crack features. In recent years, with the continuous development of object detection
technologies, deep learning-based models have achieved significant progress in underwater
crack detection. For instance, Shi et al. proposed a method called CrackYOLO [21], based
on the YOLOv5 model, which introduces a feature fusion module, a Res2C3 feature extrac-
tion module, and a BCAtt attention mechanism, significantly improving crack detection
performance. It achieved 94.3% mAP and a detection speed of 151 FPS in underwater crack
detection tasks. Moreover, Mao Yingchi et al. [22] proposed a multi-task enhanced crack
image detection method (ME-Faster R-CNN) based on Faster R-CNN, which improves
the regional proposal network (RPN) and introduces the multi-source adaptive balancing
TrAdaBoost method, effectively improving the detection capability for multiple targets
and small target cracks. In experiments, it achieved an 82.52% average intersection over
union (IoU) and 80.02% average precision (mAP), an improvement of 1.06% and 1.56%, re-
spectively, compared to traditional Faster R-CNN methods. Additionally, Huang et al. [23]
tackled the inherent limitations of redundant architectural components and deficient multi-
scale feature extraction in the canonical YOLOv5 framework by introducing an enhanced
model that synergistically integrates attention mechanisms with the Complete-IoU (CIoU)
loss [24], thereby substantially elevating real-time detection accuracy. Concurrently, a
refined YOLOv8-derived architecture was developed, which exhibits markedly superior
robustness and detection fidelity when confronted with the severe visual degradations
characteristic of the underwater domain, thereby advancing the state of the art in marine
object detection [25]. These research outcomes show that deep learning-based object detec-
tion methods can effectively handle complex underwater crack detection tasks in various
fields and achieve a good balance between detection speed and accuracy. However, due to
the lack of underwater crack data, research on dam underwater crack detection based on
object detection algorithms is relatively limited [26].

To address the deficiencies in the existing research on underwater image enhancement
and crack detection, this paper proposes a dual-stage underwater crack detection method
based on Cycle-GAN [27] and YOLOv11 [28] called Edge-Enhanced Underwater CrackNet
(E2UCN) in order to pay sufficient attention to crack feature details in complex underwater
environments and achieve high-precision crack detection. First, during the underwater
crack image collection process, we used a P200 underwater remotely operated vehicle
(ROV) to capture artificial crack images in an underwater concrete tank, simulating various
complex underwater scenarios, including flow field disturbances, optical diffraction, and
low-contrast environments, to simulate the real environment of high dams. Next, in
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the image enhancement stage, we designed a Cycle-GAN-based underwater image style
transfer method named the CycleGAN-Based Underwater Image Enhancement (CGBUIE)
model to improve underwater image quality and highlight crack detail features. Although
hybrid GAN-based approaches such as attention-guided CycleGAN [29,30] and ESRGAN
variants [31,32] have achieved impressive results in natural image enhancement, they
primarily optimize for perceptual quality rather than structural crack feature preservation.
In contrast, our method explicitly constrains edge and frequency information, making it
more suitable for downstream crack detection tasks. Furthermore, the CGBUIE model
introduces Sobel operators [33] and high-frequency transformations [34,35] in the loss
function to constrain the edge information and high-frequency detail retention in the
generated image, preventing crack edges from becoming blurred or details from being
lost. The Sobel operator extracts prominent edge information from the image, while high-
frequency transformations enhance crack texture features, enabling the enhanced image to
achieve both visual style transfer to an above-water environment and crack boundary and
detail retention at the feature level [36–38]. Finally, in the crack detection stage, we first
trained the YOLOv11 model on an above-water concrete crack dataset so it could learn key
crack features and prominent edge features, then applied the trained model to the enhanced
underwater crack images generated by the CGBUIE model for accurate underwater crack
detection. During the detection process, YOLOv11, with its optimized network architecture
and multi-scale feature extraction capability, is able to better capture the subtle features
and irregular edges of cracks, particularly in cases where the cracks are small and complex
in shape [39]. Unlike existing underwater image enhancement approaches, which mostly
emphasize overall image clarity, our method explicitly integrates the Sobel operator and
high-frequency Fourier constraints into CycleGAN, ensuring the preservation of crack
edges and the fine textures critical for subsequent detection. The enhanced underwater
crack images not only significantly improved the visibility of cracks but also provided high-
quality input for the model, enabling fast and accurate crack localization and classification
in complex underwater environments. Experimental results showed that the proposed
method performs well in terms of crack edge clarity, object localization accuracy, and
adaptability to complex backgrounds.

The novelty of E2UCN lies in its dual-stage architecture: (i) an enhanced CycleGAN
that incorporates Sobel and Fourier constraints to explicitly preserve crack-specific features
during the style transfer process, and (ii) its integration with YOLOv11 for robust crack
detection. This was further substantiated by comprehensive ablation studies. The remain-
der of this paper is organized as follows: Section 2 describes the proposed E2UCN and its
edge-/texture-aware enhancement. Section 3 presents the datasets, annotation protocols,
and ablation design, discusses the results, uncertainties, and analysis. Section 4 concludes
with the study’s contributions and limitations.

2. Proposed Method
The E2UCN framework, the CGBUIE model, and the YOLOv11 model used in this

study will be described in detail in this section. Specifically, the E2UCN model is shown in
Figure 1.
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Figure 1. The architecture of the proposed model: (a) structural diagram of E2UCN; (b) structural
diagram of CGBUIE.

2.1. CycleGAN-Based Underwater Image Enhancement Model

Based on the style transfer functionality of CycleGAN, this study combines Sobel
operators and high-frequency filtering to perform style transfer between underwater crack
images and above-water crack images, aiming to enhance the images. The core idea of
CycleGAN is to map between different domains through unsupervised learning without
paired training data. This enables its widespread application in underwater crack detection,
particularly when large annotated datasets are unavailable. CycleGAN achieves this goal by
introducing two generators and two discriminators. Generators are used to generate images
similar to the target style, while discriminators judge the difference between the generated
image and the real image, thereby guiding the generator to optimize its generation effect.

In CycleGAN (https://github.com/junyanz/CycleGAN, accessed on 9 September
2025), generator Gx maps source domain images to target domain images. Meanwhile,
generator Gy maps target domain images back to the source domain. Discriminators Dx and
Dy are used to distinguish generated images from real images, thus guiding the generator
to optimize its style transfer effect. The aim is to minimize the difference between generated
and real images while ensuring that the generated image can restore the original image
after being mapped back. This process is achieved by introducing cyclic consistency loss
based on the adversarial loss of the original GAN.

Adversarial loss is used to train the generator to produce realistic images, forcing the
generated images to “fool” the discriminator. For generator Gx, the goal is to minimize the
following loss function:

LGAN
(
Gx, Dy, x, y

)
= E{y∼pdata(y)}

[
log Dy(y)

]
+E{x∼pdata(x)}

[
log

(
1 − Dy(Gx(x))

)]
, (1)

where x and y are real images from the source and target domains, Gx(x) is the image
generated by generator Gx, and Dy is the discriminator.

To ensure that the generated image can still restore the original image after being
mapped back, CycleGAN introduces cyclic consistency loss. For generators G_x and G_y,
their goals are defined as follows:

LCycle
(
Gx, Dy, x, y

)
= E{y∼pdata(x)}

[
Gy(Gx(x))− x1

]
+E{x∼pdata(y)}

[
Gx(Gy(y))− y1

]
, (2)

https://github.com/junyanz/CycleGAN
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This loss uses the L1 norm to measure the difference between the generated image
and the original image, forcing the generated image to maintain the structural features of
the source image. Therefore, the total loss function of the original CycleGAN is as follows:

LCycleGAN = LGAN
(
Gx, Dy, x, y

)
+ LGAN

(
Gy, Dx, y, x

)
+ λcycleLCycle

(
Gx, Dy, x, y

)
, (3)

where λcycle is the weight balancing adversarial loss and cyclic consistency loss.
However, experiments have shown that the style transfer images generated by the

original CycleGAN, focusing mainly on style transfer (e.g., color, contrast of the above-water
images), fail to retain the edge information and texture details of the image. To enhance the
edge details of the style-transferred images, this paper introduces the E2UCN model.

The Sobel operator extracts edge information from an image by computing the gra-
dients and is effective in retaining the image’s edge features. Here, based on the original
CycleGAN, the basic principle of the Sobel operator is applied and further improved to con-
struct Sobel loss. First, the Sobel operator is applied to compute the gradients of the input
image, obtaining the gradients in the horizontal (x) and vertical (y) directions. Specifically,
the Sobel operator used in this paper is as follows:

Sobelx =

−1 0 1
−2 0 2
−1 0 1

, Sobely =

−1 −2 −1
0 0 0
1 2 1

, (4)

where Sobelx and Sobely are the convolution kernels of the Sobel filter in the x and y
directions, respectively. The gradients calculated by the two operators can be represented
as follows:

∇x,y(i, j) =
2

∑
m=0

2

∑
n=0

I(i + m, j + n) · sobelx,y(m, n), (5)

where i and j represent the pixel positions in the image, and ∇x(·) and ∇y(·) represent the
gradients in the x and y directions, respectively. Then, the gradient magnitude of the image
is calculated to represent the edge information of the restored image. The specific formula
is as follows:

∇(i, j) =
√
∇x(i, j)2 +∇y(i, j)2 + ε, (6)

where ε is a small constant to avoid numerical instability when the gradient is zero.
The Sobel loss proposed in this paper measures the gradient magnitude difference

between the generated image and the real image using the L1 norm, comparing the edge
differences in both the x and y directions between the generated image and the original
image to simulate the edge enhancement effect of the Sobel operator. The specific formula
is as follows:

Lsobel = Ex∼Pdata(x)[∇Gx(x)−∇x1], (7)

where Gx(x) is the generated image, x is the real image, and ∇Gx(x) and ∇x are the
gradients of the generated image and the real image, respectively.

By constructing Sobel loss, CycleGAN is forced to preserve the edge information of
the real image during the image generation process, better retaining the crack edge features
in the image and improving the accuracy of subsequent object detection tasks. However,
while the generated image with Sobel loss retains the edge features of the cracks, there
is still a significant amount of blurring and loss of the internal texture information of the
cracks. Therefore, to further enhance the texture information in the image, and enable the
subsequent object detection model to recognize and extract cracks from the image, this
paper constructs a high-frequency loss function. Specifically, by using the Fourier transform
and other high-frequency transformations, the image can be converted from the spatial
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domain to the frequency domain, allowing for better extraction and retention of high-
frequency information such as textures and edges. Based on this, in the CGBUIE model, a
high-frequency loss function is used to compare the high-frequency information between
the real image and the generated image, preserving and enhancing the texture information.

In detail, the original image x and the generated image Gx are first transformed from
the spatial domain to the frequency domain using the fast Fourier transform. Assuming
the discrete image signal is Ω, the specific formula is as follows:

F (Ω(h, w)) =
N −1

∑
n=0

Ω[n]e
−i2π

hwn
N , (8)

where N is the signal length, n is the time index, and k is the frequency index. After apply-
ing the fast Fourier transform, the original image and the generated image are represented
as Freal(h, w) and F f ake(h, w), respectively. High-frequency components are extracted by
applying a high-frequency filter to remove low-frequency parts of the frequency domain
signal, and the absolute value is taken to retain the magnitude of the high-frequency
components, i.e., the texture details in the original image. The specific rule is as follows:

H(h, w) =

{
|F (Ω(h, w))|, i f h < cuto f f or w < cuto f f

0, otherwise
, (9)

where h and w represent the height and width in the frequency domain, i.e., the dimensions
of the frequency domain, and cuto f f is a manually set threshold for determining the high-
frequency filtering threshold. Finally, the L1 norm loss is calculated between the original
image and the generated image based on the magnitude of the high-frequency components
to further enhance the texture details of the generated image. The formula is as follows:

LHF = Ex∼Pdata(x)[H(Gx(x))− H(x)1]. (10)

Therefore, the overall loss function of the E2UCN model proposed in this paper, called
Sobel-Frequency Hybrid Loss (SFHLoss), can be expressed as follows:

SFHLoss = LGAN
(
Gx, Dy, x, y

)
+ LGAN

(
Gy, Dx, y, x

)
+ Lcycle

(
Gx, Dy, x, y

)
+ Lsobel + LHF (11)

By adding Sobel loss and high-frequency loss, the edge and texture details of the image
are effectively preserved, which helps the subsequent object detection model accurately
extract the crack locations.

2.2. YOLOv11 Model

After image enhancement, images with enhanced texture details are obtained. Subse-
quently, this study uses the YOLOv11 (https://github.com/ultralytics/ultralytics, accessed
on 9 September 2025), model for automatic underwater crack detection. YOLOv11, based
on the previous generations of the YOLO model, significantly improves detection accuracy
and speed through various innovations and optimizations, demonstrating excellent per-
formance, particularly in the detection of fine targets such as cracks. The specific model
architecture is shown in Figure 2.

The core structure of YOLOv11 includes the C3k2 module, the SPPF module, the
C2PSA module, and a lightweight design. These innovations enable YOLOv11 to efficiently
process the enhanced underwater crack images and achieve accurate crack localization
and classification.

https://github.com/ultralytics/ultralytics
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Figure 2. The architecture of YOLOv11.

First, the C3k2 module in YOLOv11 adopts an improved CSP (Cross-Stage Partial)
structure, which optimizes the feature extraction process by using smaller convolution
kernels (e.g., 3 × 3 kernels). The C3k2 module splits the input feature map into two parts,
performs convolution on each part, and then merges them. This design effectively reduces
the number of parameters while maintaining feature extraction capabilities. Next, the
SPPF (Spatial Pyramid Pooling—Fast) module, another key component of YOLOv11,
quickly merges feature maps of different scales through multi-scale pooling. This module
significantly enhances the network’s ability to detect targets of different sizes, which is
particularly relevant as scale differences are common in crack images. By aggregating global
features, the SPPF module improves the model’s detection accuracy. It generates multi-level
feature maps through pooling operations at different scales and ultimately merges these
feature maps into a global feature representation, thus enhancing the network’s sensitivity
to multi-scale information in crack images.

Furthermore, the Convolutional block with the Parallel Spatial Attention (C2PSA)
module introduced by YOLOv11 further optimizes the extraction of spatial features. The
C2PSA module uses parallel spatial attention mechanisms to focus on key areas in the image
(such as the edges of cracks or the cracks themselves), effectively improving the model’s
recognition ability against complex backgrounds. The C2PSA module combines both
channel attention and spatial attention mechanisms, and, through multi-head attention, it
further enhances the feature expression capabilities, allowing YOLOv11 to more accurately
localize cracks.

To enhance the model’s lightweight design, YOLOv11 introduces the MobileViT back-
bone network and depthwise separable convolutions (DWConv), significantly reducing
the computational load and the number of parameters while maintaining high accuracy.
MobileViT combines the advantages of convolutional neural networks (CNN) and Trans-
formers, enabling efficient information encoding and fusion to capture complex features
in crack images while maintaining a low computational overhead. This design makes
YOLOv11 suitable for resource-constrained devices such as embedded systems and drones,
meeting the demand for crack detection on edge devices.

The loss function of YOLOv11 consists of three main components: classification loss
(Lcls), bounding box regression loss (Lbox), and distribution focal loss (Ld f l). Lcls mainly
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optimizes the prediction of object categories, Lbox is used to optimize the prediction of
object locations, and Ld f l optimizes the confidence of the bounding boxes.

Through this multi-task loss function optimization strategy, YOLOv11 can effectively
balance accuracy and speed in crack detection tasks, particularly showing high accuracy
and robustness in detecting small cracks in complex backgrounds.

3. Experimental Analysis
In this section, the data collection process and experimental setup are introduced. A

series of experiments, including quantitative comparisons of image enhancement and crack
detection metrics, detection result images, and ablation studies, is used to validate the
effectiveness of the proposed E2UCN.

3.1. Data Collection and Experimental Setup

The underwater image dataset used in this study was collected from the physical
model pool at the Tangtu Experimental Base of the Nanjing Hydraulic Research Institute.
The test pool dimensions are 11.0 m× 5.9 m× 4.2 m (length × width × depth), with a depth
of 3.4 m below the ground surface and a surrounding wall height of 0.8 m, and the pool’s
sidewalls are reinforced with carbon-fiber fabric. The pool contains an underwater tunnel
and a dam test scenario with concrete of grade C30. The underwater tunnel dimensions are
6 m × 4 m × 3.3 m (length × width × height), with typical defects set inside. The tunnel
is 3.0 m wide and 2.08 m high, providing sufficient space for robotic operations, as shown
in Figure 3.

 

Figure 3. Schematic diagram of the construction layout of the test platform and the cracked wall.
Specially, R1–R6 represent six different types of cracks with varying orientations.

During the data collection process, the mini underwater P200 robot “Qianjiao” (Manu-
facturer: Qianxin Innovation Technology Co., Ltd.; City: Shenzhen; Country: China) was
used to capture underwater optical images. The original video data were processed into
eight typical images with a size of 256 × 256 pixels, simulating various lighting and visual
conditions, including normal light, low contrast, light scattering, and non-uniform lighting,
as shown in Figure 4a.

The dataset used for training YOLOv11 was the Roboflow crack dataset, which was
collected by researchers working on transportation and public safety. The dataset contains
4029 different static images of cracks divided into training, testing, and validation sets, each
with corresponding labels. For the CycleGAN training, 10 underwater crack images and
26 above-water crack images were collected, among which 8 typical underwater images
(with scattering, insufficient illumination, and blur) were selected for testing. In addition,
the dataset for validation contained 11 images, covering cracks with diverse widths, depths,
and orientations and several real underwater crack images. Although the number of self-
collected underwater images was limited, representative cases with scattering, blurring, and
color distortion were selected to ensure diversity in crack characteristics. The experiments
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were conducted on a high-performance personal computer equipped with an NVIDIA RTX
3080ti 12GB GPU and an AMD5800X CPU. All models were constructed and tested using
PyTorch version 1.10.0. During network training, the high-frequency filtering parameter
cuto f f was set to 10.

 

Figure 4. Image enhancement results, where (a) is the original image, (b) is the image generated
using the original CycleGAN model, (c) is the image generated after using SobelLoss, (d) is the
image obtained using high-frequency loss, and (e) is the image obtained using SobelLoss and high-
frequency loss.

3.2. Experimental Results and Analysis

To validate the effectiveness of the CGBUIE model, several ablation experiments
were designed [40–42]. First, the original CycleGAN was used for the style transfer of
underwater images. Then, Sobel operators and high-frequency loss were added, and
subjective evaluation of the resulting images compared to the designed CGBUIE model was
performed. The enhanced results from different models are shown in Figure 4. The images
were then input into the trained YOLOv11 model for detection. During the evaluation
process, precision, recall, mAP (mean average precision), F1-score, and other metrics were
recorded for each case to comprehensively evaluate the performance of YOLOv11 with
different input images. Visual comparisons were also made between the original and
enhanced images in terms of crack detection, analyzing the enhancement method’s effect
on detection accuracy and feature recognition. The specific methods and corresponding
experimental results are shown in the table below.

Table 1 shows the models used for target detection, where the checked boxes represent
the models used in this experiment, and the first row, with no checked boxes, represents
the use of the original underwater crack images. From the experimental results, it can be
seen that the image enhancement methods significantly affect the performance of YOLOv11
in underwater crack detection. Firstly, Sobel operators primarily enhance the edge in-
formation of the image, which helps YOLOv11 achieve better detection results in crack
edge localization. However, although Sobel operators improve edge clarity, they may lose
some texture and detail information when enhancing the edges, leading to relatively poor
performance in complex textured regions. Therefore, although the recall is very high, the
mAP50-95 shows a certain decline, reflecting the model’s performance in broader detection
areas, which may be affected, thus reducing overall detection performance.
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Table 1. Ablation experiment module design and evaluation metrics.

CycleGAN SobelLoss HFLoss
Detection Evaluation Indicators

Precision Recall F1-Score mAP50 mAP50-95

0.93 0.875 0.902 0.876 0.565√
0.994 1 0.930 0.982 0.624√ √
0.869 1 0.996 0.991 0.548√ √
0.993 1 0.997 0.993 0.72√ √ √
0.995 1 0.997 0.995 0.732

Secondly, high-frequency loss focuses on enhancing the details and high-frequency
information in the image, particularly the finer parts of cracks. Compared with Sobel
operators, the high-frequency loss image enhancement method is better at preserving the
fine texture information of cracks, thus improving detection precision and recall. However,
high-frequency enhanced images may also introduce some noise, particularly in more
complex backgrounds, leading to minor errors in the detection boxes. Nevertheless, the
improvements in the F1-score and mAP50 indicate that high-frequency loss has a significant
effect on detail restoration.

Overall, the goal of image enhancement is to improve detection performance by en-
hancing edge clarity and restoring details, and, when Sobel operators and high-frequency
loss are combined, their advantages complement each other toward achieving that goal. In
other words, Sobel operators effectively enhance edges but may lose details, while high-
frequency loss restores details but may introduce noise. Therefore, using both methods
together maximizes the retention of crack feature information in the enhanced underwater
images, effectively improving YOLOv11’s overall performance in crack detection, partic-
ularly for small cracks and complex backgrounds, with precision, recall, and F1-scores
reaching near-perfect levels.

The changes in the loss function and performance metrics during YOLOv11 training
are shown in Figure 5, with the ground truth illustrated in line (a). The detection results
after applying different enhancement models are shown in Figure 6.

Figure 5. Loss function curve and performance index variation curve after training YOLOv11 on the
Crack-Seg dataset.
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Figure 6. Target detection results, where (a) is the ground truth, (b) is the original image detection
results, (c) is the images generated by the original CycleGAN model detection results, (d) is the images
generated by SobelLoss detection results, (e) is the images generated by high-frequency loss detection
results, and (f) is the images generated by SobelLoss and high-frequency loss detection results.

It can be observed that YOLOv11 exhibits some deficiencies in the original images
(Figure 6b), particularly when the crack details are blurry or the background is complex. In
these cases, the detection confidence is generally lower, and crack localization accuracy is
affected. Specifically, the original image, due to its blurry details and low contrast, poses
challenges for YOLOv11 in accurately detecting cracks.

With the application of the original CycleGAN model for style transfer (Figure 6c),
the detection results of YOLOv11 showed significant improvement. CycleGAN enhanced
the overall image clarity, particularly improving the representation of edges and textures,
which effectively increased the model’s crack localization accuracy. The enhanced image’s
improved details and contrast allowed YOLOv11 to more accurately identify cracks, with
a significant increase in detection confidence, reflecting the positive impact of image
enhancement on detection results.

After further introducing SobelLoss (Figure 6d), YOLOv11’s crack detection perfor-
mance improved further. The Sobel operator enhanced the image’s edge details, signif-
icantly improving the clarity of the crack contours, and the model’s precision in crack
localization was improved. However, despite the positive effect of Sobel on edge enhance-
ment, its ability to preserve image texture information is relatively weak, which may lead
to the loss of details in small cracks, affecting detection accuracy. Some false positives
and missed detections were still observed, suggesting that, while edge enhancement is
beneficial, detail restoration remains a challenge for the model.

When high-frequency loss is applied for image enhancement (Figure 6e), focusing
on the high-frequency components of the image, the fine details and subtle features of
the cracks are more effectively restored, improving YOLOv11’s ability to recognize small
cracks. The enhanced image made crack detection more precise, and confidence increased,
particularly for low-contrast and complex backgrounds, where the model demonstrated
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stronger robustness. However, excessive high-frequency enhancement could introduce
background noise, causing instability in some areas of the detection results, highlighting
the sensitivity of the enhancement method to background interference.

Finally, the combination of SobelLoss and high-frequency loss (Figure 6f) demonstrated
the best crack detection performance. This combination not only strengthened the edge
details of the image but also effectively restored more texture information, making crack
localization more precise, and the image details richer. YOLOv11 performed at its best with
these enhanced images, with its overall detection precision and recall being significantly
improved. By integrating both edge enhancement and detail restoration, the model’s
adaptability to complex environments was significantly improved, and detection confidence
was generally higher, further validating the superiority of combining SobelLoss and high-
frequency loss for enhancing image detail restoration and model robustness.

In addition to YOLOv11, we conducted comparative experiments with YOLOv5 and
YOLOv8 to provide a broader reference for detection performance. As summarized in
Table 2 and Figure 7, all three models benefited from the proposed image enhancement
strategy. YOLOv5 achieved a precision of 0.91 and a recall of 1.0, resulting in an F1-score
of 0.953, with mAP@0.5 = 0.876 and mAP@0.5:0.95 = 0.752. YOLOv8 exhibited higher
overall precision and recall (1.0 and 0.995, respectively), yielding an F1-score of 0.997, and
the highest mAP@0.5 value of 0.995, although its performance at stricter IoU thresholds
(mAP@0.5:0.95 = 0.685) was comparatively lower. YOLOv11 attained balanced and robust
performance, with precision = 0.995, recall = 1.0, F1-score = 0.998, and mAP@0.5 = 0.995,
while maintaining a competitive mAP@0.5:0.95 of 0.732.

Table 2. Comparative experiments and corresponding evaluation metrics. The highest score of each
evaluation metric is highlighted in bold.

Model Name Detection Evaluation Indicators

Precision Recall F1-Score mAP50 mAP50-95

YOLOv5 0.91 1 0.953 0.876 0.752
YOLOv8 1 0.995 0.997 0.995 0.685

YOLOv11 0.995 1 0.998 0.995 0.732

Figure 7. Target detection results, where (a) is the ground truth, (b) is the YOLOv11 results, (c) is the
YOLOv5 results, and (d) is the YOLOv8 results.

These results show that, although YOLOv8 achieved the highest detection accuracy
under lenient IoU criteria, YOLOv11 demonstrated superior robustness in handling small
and irregular crack patterns, reflected in its higher F1-score and improved performance at
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more stringent IoU thresholds compared to YOLOv8. Therefore, YOLOv11 was selected as
the primary detection model in this study. More comprehensive comparisons with other
detectors, such as Faster R-CNN and Transformer-based architectures, will be explored in
future work to further validate the generality of the proposed approach.

4. Conclusions
This study combines the advantages of image style transfer, detail restoration, and

edge enhancement, fully leveraging the complementary effects of Sobel operators and
high-frequency filtering. A CycleGAN-based underwater image enhancement method (the
CGBUIE model) was proposed, which effectively improves the edge and detail information
of the generated images by introducing Sobel operators and high-frequency filtering as
loss functions. Specifically, by training on underwater crack images and above-water
crack images, the style transfer of underwater images to above-water image styles was
achieved, enhancing image visibility and detail expression while improving the robustness
of the crack detection model. On this basis, YOLOv11 was used to train the model on the
Crack-Seg dataset, constructing a detection model capable of effectively recognizing cracks.
The experimental results show that the enhanced underwater crack images significantly
improved YOLOv11’s detection performance, detection confidence, and accuracy with
complex backgrounds and in low-contrast conditions. Specifically, on a real underwater
validation set, E2UCN achieved precision = 0.995, F1 = 0.99762, mAP@0.5 = 0.995, and
mAP@0.5:0.95 = 0.736.

In summary, the primary contribution of this work lies in the integration of Sobel
operators and high-frequency Fourier constraints into the CycleGAN framework, which
ensures the preservation of critical crack-related details during the enhancement process.
Together with YOLOv11, this creates a powerful and reliable system for underwater crack
detection in challenging environments.

However, this study has certain limitations. The underwater dataset used is relatively
small, with only three real underwater images supplementing the dataset. This limited
dataset size restricts the diversity and robustness of the model, which may affect its
performance in more varied scenarios. Future research should focus on expanding this
dataset to increase its diversity and improve the model’s generalization capabilities.
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