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Abstract: Vibration sensors are widely applied in the detection of faults and analysis of operational
states in engineering machinery and equipment. However, commercial vibration sensors with a
feature of high hardness hinder their usage in some practical applications where the measured
objects have irregular surfaces that are difficult to install. Moreover, as the operating environments of
machinery become increasingly complex, there is a growing demand for sensors capable of working
in wet and humid conditions. Here, we present a flexible, superhydrophobic vibration sensor with
parallel microcracks. The sensor is fabricated using a femtosecond laser direct writing ablation
strategy to create the parallel cracks on a PDMS film, followed by spray-coating with a conductive ink
composed of MWCNTs, CB, and PDMS. The results demonstrate that the developed flexible sensor
exhibits a high-frequency response of up to 2000 Hz, a high acceleration response of up to 100 m/s2,
a water contact angle as high as 159.61◦, and a linearity of 0.9812 between the voltage signal and
acceleration. The results indicate that the sensor can be employed for underwater vibration, sound
recognition, and vibration monitoring in fields such as shield cutters, holding significant potential for
mechanical equipment vibration monitoring and speech-based human–machine interaction.

Keywords: flexible; sensor; easy fabrication; superhydrophobic; vibration monitoring

1. Introduction

Currently, flexible sensors have garnered significant attention from researchers due
to their extensive applications in industrial production, agriculture, medicine, military,
and environmental fields [1–6]. The movement of objects or the operation of mechani-
cal equipment invariably generates vibrations. Vibration signals are one of the primary
channels through which humans and natural organisms acquire information from their
environment [7]. Consequently, vibration sensors are widely used in mechanical equip-
ment, transportation, building facilities, and biomedical electronic devices to capture the
vibration signals of the monitored objects, thereby enabling state monitoring and fault
analysis [8–13]. Vibration sensors can convert the mechanical vibration signals of the moni-
tored object into electrical signals. By analyzing the frequency, acceleration, and amplitude
characteristics of these electrical signals, we can monitor and evaluate the operating status
of mechanical equipment, human health conditions, and the status of building facilities and
bridges [14–19]. This enables us to diagnose faults or diseases, facilitating early prevention
and intervention.

Traditional vibration sensors are predominantly made from materials such as metals,
ceramics, silicones, and sapphires, and their fabrication involves complex and high-cost
techniques like photolithography, ion implantation, and electron beam evaporation [20–26].
Furthermore, rigid vibration sensors made from these materials have high installation
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requirements and cannot be stably mounted on the irregular surfaces of critical mechanical
equipment, severely limiting their application on irregular surface objects. There have
also been many studies using PDMS flexible polymers to fabricate flexible sensors, spray-
ing conductive materials on the surface of PDMS polymers, or using inverted molding
methods to create surface structures for enhanced sensing performance. However, these
reported studies are unable to respond to high-frequency vibrations and do not have the
superhydrophobic properties to work stably in wet or underwater environments [27–29].
The operational environments for mechanical and transportation equipment are often
complex, frequently requiring functionality in rainy or humid conditions. This presents a
significant challenge for the stable detection capabilities of vibration sensors. Therefore,
developing flexible, cost-effective vibration sensors that can reliably detect vibrations in
humid environments is of great importance for enhancing the monitoring accuracy of
mechanical equipment and expanding their range of applications [30–37].

With the rapid development of artificial intelligence (AI) and the Internet of Things (IoT),
many flexible sensors capable of detecting vibration stimuli have been developed [38–41].
For instance, Zou et al. created a flexible, adaptive triboelectric vibration sensor based on
conductive sponge-silicone, which exhibited excellent flexibility and could detect vibration
frequencies ranging from 10 Hz to 100 Hz [1]. Wang et al. developed a crack-based
flexible sensor inspired by scorpion sensory organs, capable of detecting vibrations up to
103 Hz [42]. While many flexible sensors are now capable of converting vibration stimuli
into electrical signals, most of them fail to respond to vibration stimuli with frequencies as
high as several hundred hertz due to the viscoelasticity of flexible materials. Additionally,
stable detection of vibration stimuli in wet environments poses a significant challenge
for flexible sensors. Therefore, there is an increasingly urgent need to design flexible
sensors that can detect a wide frequency response range and stably detect vibration stimuli
underwater [43–45].

In this study, we developed a highly sensitive superhydrophobic flexible vibration
sensor based on the strain effect. The sensor uses a flexible polymer material in the
conductive sensing layer and parallel penetrating slits in the polymer-sensitive membrane
designed and fabricated by femtosecond laser ablation, which improves the sensitivity
to weak vibrations and broadens the response frequency and acceleration ranges, as well
as the stability in humid environments. By using femtosecond laser ablation to fabricate
parallel penetrating slits on the polymer-sensitive membrane, we realized the conversion of
mechanical deformation to resistive signals, and thus output the corresponding electrical
signals under vibration. This approach not only improves the performance of the sensor
but also expands the application of polymer materials in flexible vibration sensing. The
main objective of this paper is to present the design, fabrication, and characterization of this
innovative flexible vibration sensor based on PDMS polymer. We emphasize its potential
applications in areas such as real-time monitoring, speech recognition, and vibration
detection in the complex environment of shield cutter boring operations. This study
emphasizes the importance of designing and fabricating structures on the sensing layer
of polymeric materials in improving the performance of the sensor and broadening its
applications in engineering and technology.

2. Materials and Methods
2.1. Materials

PDMS (Sylgard 184) was purchased from Dow Corning Corp. MWCNTs (average
diameter 10–20 nm, average length 10–30 µm) were purchased from Nanjing XFNANO
Materials Tech. Co., Ltd., Nanjing, China. Ethyl acetate was purchased from Shanghai
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. CBs (ECP-600JD) were purchased
from Tianjin Aiweixin Chemical Technology Co., Ltd., Tianjin, China.
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2.2. Preparation of Conductive Ink

Quantities of 3.3 g of PDMS (10:1 ratio of reagent A to reagent B), 50 g of ethyl acetate,
0.1 g of MWCNTs, and 0.5 g of CB were mixed, followed by magnetic stirring at 400 rpm
for 0.5 h at room temperature. Whereafter, an ultrasonic processing was needed and kept
for 10 min. Finally, the conductive ink was prepared.

2.3. Preparation of Vibration Sensor

First, we mixed the PDMS prepolymer and curing agent in a weight ratio of 10:1.
Then, we dried the mixture at 70 ◦C for 60 min to obtain fully cured PDMS film. Then, a
femtosecond laser (HR-Platform-0203, Wuhan Huaray Precision Laser Co., Ltd., Wuhan,
China) with a power percentage of 150 kHz, scanning speed of 500 mm/s, and repetition
rate of 50 was used to process parallel through-hole structures on the PDMS film surface,
totaling four lines. Finally, we cut the PDMS into a size of 30 mm × 10 mm. The processed
and cut PDMS was then cleaned with anhydrous ethanol in an ultrasonic bath for 10 min
to remove the dust generated by the femtosecond laser ablation. Subsequently, it was dried
at 70 ◦C for 10 min until the anhydrous ethanol completely evaporated. The prepared
conductive ink was uniformly sprayed onto the structured PDMS film surface using a spray
gun. After spraying, the samples were placed in a drying oven at 100 ◦C for 1 h to ensure
complete evaporation of the ethyl acetate in the conductive ink and complete curing of
the PDMS. The conductive silver paste was evenly coated at both ends of the conductive
layer, and copper foil was attached to the conductive silver paste to serve as electrodes. The
samples were then placed in an oven at 120 ◦C and heated for 30 min until the conductive
silver paste was fully sintered. Finally, the vibration sensor fabrication was completed.

2.4. Characterization

The vibration signals of varying frequencies, waveforms, and accelerations were
generated by the excitation system, comprising a vibration exciter (SA-JZ002, Wuxi Shiao
Tech. Ltd., Wuxi, China), power amplifier (SP-PA003, Wuxi Shiao Tech. Ltd., China), signal
generator (DG1022Z, RIGOL, Beijing, China), dynamic signal analyzer (SA1808A2, Shiao,
China), and commercial accelerometer (SACL001ZKE, Wuxi Shiao Tech. Ltd., China). The
contact angle of the strain sensor under different cycles and different liquids was measured
using an optical contact angle meter (Harke, Beijing, China). The resistance change signal
of the sensor’s tensile strain was collected by a digital multimeter (DAQ6510, KEITHLEY,
Cleveland, OH, USA).

3. Results and Discussion
3.1. Design of the Crack-Based Composite Flexible Sensor

Figure 1a illustrates the composition and preparation process of the conductive ink,
which comprised CNTs, CBs (carbon-based materials with excellent conductivity), and
PDMS. PDMS composed of two-component materials has a high viscosity and can be used
as an adhesion agent and serve as a substrate matrix to allow conductive materials to
be embedded. To form conductive ink, ethyl acetate was selected as the organic solvent
because it could not only reduce the high viscosity of PDMS but also disperse the carbon
nanotubes or nanoparticles. First, the PDMS base agent, CNTs, CB, and ethyl acetate were
mixed in a specific ratio, followed by a magnetic stirring and ultrasonic oscillating process,
respectively, to make sure the conductive materials were uniformly dispersed in the solvent.
Before spraying the conductive ink, the other component, the PDMS curing agent, was
added to the solution with a ratio of 1:10 to the base agent, then magnetic stirring was used
on the solution for a few minutes.
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Figure 1. Preparation of the conductive ink and flexible vibration sensor. (a) Fabrication process of the
conductive ink composed of PDMS, CNTs, CBs, and ethyl acetate. (b) Structural and conductive layer
fabrication of the vibration sensor. (c) Schematic diagram showing the architecture of the vibration
sensor. (d) Optical images of the vibration sensor under different mechanical loads, showing the
flexibility of the sensor.

Figure 1b illustrates the fabrication process of the sensitive membrane by femtosecond
laser and the conductive coating by a spray-coated method. First, a PDMS film was
prepared with a thickness of 0.4 mm, a length of 30 mm, and a width of 10 mm. Then, the
femtosecond laser was used to ablate the PDMS film to form parallel, through cracks. There
were four parallel, through cracks on the PDMS film with an interval of 4 mm, and the
length of each crack was set as 4 mm. The processed PDMS film after the femtosecond laser
was cleaned by using anhydrous ethanol to remove the remained materials after ablation
so that the spray-coated layer could achieve a better interfacial bonding with the PDMS
substrate. After the PDMS substrate was spray-coated with PDMS/CNTs/CBs/ethyl
acetate conductive ink, the sample was then heated in a drying oven at 100 ◦C for one hour,
to make the conductive ink form a stable layer. During the heating process, ethyl acetate
completely evaporated due to its boiling temperature being only 77.2 ◦C. Figure 1c presents
the architecture of the vibration sensor, composed of a conductive layer with parallel
through cracks, conductive silver paste layer, and copper electrodes. Figure 1d shows
the deformation of the vibration sensor under different external loads, demonstrating the
sensor’s flexibility in response to tension, bending, and torsion.

3.2. Working Mechanism of the Crack-Based Composite Flexible Sensor

Figure 2a shows the working principle of the sensor under vibrations. The flexible
sensor had great deformation when it suffered from a large vibration since the widths
of the cracks had obvious changes when compared with those of the sensor under a
small vibration. Changes in the vibration frequency or acceleration caused alterations in
the mechanical structure of the vibration sensor, consequently leading to corresponding
changes in the electrical signal output by the sensor. When the sensor received external
vibration stimuli, the conductive sensing layer underwent vertical oscillations accordingly.
When the sensor was at rest, the conductive sensing layer remained unchanged structurally,
maintaining its initial resistance value. However, during low-frequency or high-acceleration
external vibrations, the impact on the conductive sensing layer resulted in significant
mechanical deformation. This widened the through-slit structures, causing substantial
overall deformation in the conductive sensing layer and significant changes in resistance.
Conversely, during high-frequency or low-acceleration vibrations, the vertical oscillations of
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the conductive sensing layer were minimal, resulting in slight deformations and negligible
changes in resistance. Thanks to the sensor’s excellent flexibility, stretchability, and parallel
distribution of through cracks, it could effectively respond to even subtle vibration stimuli
with corresponding electrical signal outputs.
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performance. (a) Sensing mechanism of the sensor under vibrations. (b) Optical images of the
sensor’s surface obtained from an ultra-depth three-dimensional microscope. (c) Contact angles of
the sensor when different liquids (water, tea, milk, and cola) drop on the sensor’s surface. (d) Water
contact angles of the sensor after being subjected to different vibration cycles.

Figure 2b shows the surface geometry of the sensor characterized by an ultra-depth
three-dimensional microscope. Linear-shaped cracks can be clearly observed whose width
is relatively uniform at ~30 µm. After the conductive ink was spray-coated on the surface
of the PDMS substrate, irregular fine protrusions were formed on the conductive layer
due to a general atomization effect of the spray head. However, the undesired irregular
fine protrusions offered the sensor an unexpected superhydrophobic function. It is known
that PDMS is hydrophobic [46,47]. When carbon-based materials were added to the PDMS
matrix, irregular fine protrusions could be formed after the carbon/PDMS conductive ink
spray-coated on the sensor’s surface, changing the hydrophobic surface of the pure PDMS
surface into a superhydrophobic surface of hybrid conductive coating. Figure 2c shows
a water contact angle of 161.17◦ of the hybrid conductive coating surface, which is much
higher than the defined superhydrophobic angle of 150◦.

The superhydrophobicity of the sensor’s conductive sensing layer determined its
versatility in various working conditions, while most sensors whose surfaces use conductive
coatings as sensing layers lack the ability to work in wet or humid environments [48–53]. As
shown in Figure 2c, four common liquids (tea, milk, water, and cola) were selected to assess
the hydrophobic performance of the sensor. Results indicated that the contact angles of the
sensor surface towards different liquid droplets were all greater than 150◦, demonstrating
excellent applicability of the surface sensor in everyday humid environments. Figure 2d
demonstrates the water contact angle of the sensor under different cycles of vibration at
a frequency of 100 Hz and an acceleration of 10 g. Results indicated that the conductive
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sensing layer maintained its superhydrophobic properties even after 40,000 cycles, showing
features such as high reliability and mechanical stability.

3.3. Sensing Performance of the Crack-Based Composite Flexible Sensor

After conducting the basic characterization of the mechanical structure and sensing
mechanism of the vibration sensor, the sensor’s performance was tested and analyzed,
particularly its vibration frequency response. A testing system mainly consisting of a signal
generator, power amplifier, signal acquisition device, shaker, and power supply was used
to evaluate its fundamental vibration response performance. The sensor was connected in
series with a 1 kΩ resistor. A 5 V voltage powered the circuit so that the resistance change
of the sensor under applied vibration turned to voltage changes when we measured the
separate voltage of the sensor with high-frequency sampling (128 K Sa/s). The ability of a
vibration sensor to respond to high-frequency vibrations is a crucial metric for evaluating
its responsiveness, as it signifies the sensor’s finer sensing capability. To assess the sensor’s
response to high-frequency vibrations, the vibration frequency of the shaker was set to
2000 Hz. As depicted in Figure 3a, the sensor exhibited stable responses to vibrations with
frequencies as high as 2000 Hz, according to the fast Fourier transform analysis result of
the output signals whose main frequency was 2000 Hz, aligning perfectly with the input
vibration signal. Figure 3b displays a magnified view of the output signal ranging from 0.1 s
to 0.105 s, showing the sensor’s stable responses to periodic vibration stimuli. Figure 3c
depicts the signal after low-pass filtering to remove noise above 2100 Hz, which closely
matched the input vibration shock signal received by the sensor.
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under an applied periodic vibration with a frequency of 2000 Hz. Inset: FFT analysis of the original
signals, showing a dominant frequency of 2000 Hz. (b) Amplified view of the signal from 0.1 s to
0.105 s in (a). (c) Voltage change of the sensor over time after filtering noise from the original signal
in (a). (d) Original signals from the sensor under an applied periodic vibration with a frequency
of 100 Hz. Inset: FFT analysis of the original signals, showing a dominant frequency of 100 Hz.
(e) Amplified view of the signal from 0.40 s to 0.50 s in (d). (f) Voltage change of the sensor over time
after smoothing from the original signal in (d). (g) Real-time response of the sensor to vibrations
with different waveforms at a frequency of 100 Hz. (h) Signal output of the sensor under an applied
periodic vibration with a frequency of 500 Hz, recording the sensor’s responses of 15,000 cycles
within a duration of 30 s. Insets: partially magnified curves for different time stages.
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Following the same procedure as the high-frequency vibration response test, we set
the vibration frequency of the shaker to 100 Hz to assess the sensor’s low-frequency re-
sponse capability. Figure 3d shows the original electrical signal output from the sensor and
the inset in Figure 3d reveals a dominant frequency of 100 Hz which is highly consistent
with the input vibration frequency. Figure 3e provides a magnified view of time ranging
from 0.40 s to 0.50 s of the signal in Figure 3d, showing that the sensor has more regular
and stable waveform responses to vibrations with low frequencies when compared to the
responses to vibrations with high frequencies. Figure 3f depicts the plot after smoothing
the raw electrical signal; more stable and regular waveforms without signal burrs can
be observed in the inset. Therefore, the developed vibration sensor exhibited excellent
response capabilities to both low-frequency and high-frequency vibrations. Further inves-
tigation into the sensor’s low-frequency response performance involved outputting sine
waveform and square waveforms of vibrations separately at a frequency of 100 Hz. As
shown in Figure 3g, the response signal of the vibration sensor varied accordingly with
these two waveforms, indicating its capability to respond to different vibration signal types.
This finding holds significant practical application prospects in areas such as mechanical
fault detection and signal classification.

The lifespan of a vibration sensor is a significant factor limiting its application, as
excellent sensors must demonstrate the ability to operate over extended periods. To assess
this, we secured the sensor to the shaker and subjected it to continuous vibration shocks
at a frequency of 500 Hz for 30 s, totaling 15,000 shock cycles. As depicted in Figure 3h,
the sensor continued to stably output signals throughout this duration. This indicated
that the vibration sensor possessed outstanding longevity, enabling prolonged vibration
detection capabilities.

Due to the sensor’s flexibility and stretchability, the sensor could also be used as a
strain sensor. Figure 4a shows the relative resistance change of the sensor over applied
strains, demonstrating that the sensor had a gauge factor of 2.46 during the working
range of 0~22% strain, and a dependent coefficient of 0.996 (R2) could be obtained after
fitting, exhibiting higher linearity to strain when compared to other reported flexible strain
sensors [54–58]. Figure 4b displays the sensor’s response/recovery time to a tensile strain
of 10%, with a response time of ~100 ms and a recovery time of ~140 ms. We also tested
the sensor’s stability under tensile cycles. As shown in Figure 4c, when the sensor was
subjected to an applied tensile strain of 10%, the sensor’s responses behaved regularly and
stably without obvious resistance drift during 1000 cycles.

Since the sensor’s conductive sensing layer had a superhydrophobic property, further
testing was conducted to evaluate the sensor’s performance underwater. In addition, to
verify that the sensors had reliable reproducibility, three sensors manufactured in the same
process were selected to test vibration shocks at different frequencies and accelerations.
Different frequencies and accelerations of vibration shocks were selected for testing. The
sensor was placed in air and underwater, respectively, to test its responses under vibrations
with different frequencies and accelerations. As shown in Figure 4d, the sensor worked
normally in both air and underwater when vibration with a frequency of 100 Hz and an
acceleration of 5 m/s2 were applied to the sensor, and the vibration of the three sensors in
the same environment could output electrical signals with the same amplitude, indicating
that the sensors had a reliable reproducibility. Figure 4e,f show the resistance change
of the sensor when it worked in both air and underwater at different frequencies and
accelerations. In comparison, the sensor’s response in the air behaved more stably and
regularly than that underwater. Also, the maximum voltage amplitude of the sensor in
the air was slightly larger than the peaks generated underwater. It may be the resistance
of water that weakened the mechanical deformation so that the sensor’s resistance varied
less. However, the test results in the air or underwater demonstrated the sensor could
work in wet environmental conditions due to its great superhydrophobicity. Figure 4g
shows the sensor’s voltage responses to vibrations with different accelerations but a fixed
frequency of 100 Hz. When the applied acceleration ranged from 5 m/s2 to 40 m/s2 with an
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interval of 5 m/s2, the sensor exhibited significant distinguishability in response to different
accelerations. We counted the corresponding voltage peak of each acceleration and then
plotted it in Figure 4h; a correlation coefficient of 0.9812 (R2) was obtained, showing that
the sensor had a potential resolution to different accelerations.
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Figure 4. The response of the vibration sensor to tensile strain and underwater vibration. (a) Sensitiv-
ity and linearity of the sensor to tensile strain. (b) Response/recover time of the sensor at 10% strain.
(c) Signal output of the sensor for 1000 cycles to the tensile strain of 10%. (d) Electrical response of
the three sensors to vibration with a frequency of 100 Hz and an acceleration of 5 m/s2 in air and
underwater, respectively. (e) Electrical response of the three sensors to vibration with a frequency
of 300 Hz and an acceleration of 20 m/s2 in air and underwater, respectively. (f) Electrical response
of the three sensors to vibration with a frequency of 900 Hz and an acceleration of 100 m/s2 in air
and underwater, respectively. (g) Relative voltage changes of the sensor under vibrations at a fixed
frequency of 100 Hz but different accelerations at 5, 10, 15, 20, 25, 30, 35, and 40 m/s2, respectively.
(h) Relationship between the sensor’s voltage response and acceleration under vibrations at a fixed
frequency of 100 Hz.

3.4. Application of the Crack-Based Composite Flexible Sensor

Dynamic and continuous mechanical vibrations are widely present in everyday life.
However, detecting such subtle dynamic vibration shocks poses a significant challenge for
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flexible sensors. To characterize the developed sensor’s detection of dynamic mechanical
vibrations, we constructed an experimental setup, as shown in Figure 5a. The sensor
was horizontally placed on a speaker to enable real-time detection of vibrations on the
speaker’s surface. We used a computer to control the speaker to play the “The sensor
exhibits outstanding sensitivity to acoustic vibrations” sentence twice, the output results
of the vibration sensor are depicted in Figure 5b. They indicated a high degree of consis-
tency between the vibration waveforms generated before and after playing the sentence
twice, demonstrating the excellent speech recognition capability of the vibration sensor.
The voltage signal output by the vibration sensor was processed by a short-time Fourier
transform (STFT) to obtain the corresponding spectral diagram and reveal the voice print of
the captured signal. Obviously, the two output electrical signals showed good repeatability
in the time, frequency, and amplitude domains. Figure 5c presents the sensor’s responses
recorded when the speaker played the letters A, B, C, and D in turn, demonstrating the
vibration sensor’s outstanding detection and recognition capability of the instantaneous
sound wave vibrations. Interestingly, the vibration sensor also exhibited the ability to detect
and distinguish words with different syllables. The speaker cycled the monosyllabic word
“one”, the two-syllabic word “sensor”, and the multi-syllabic word “sensitivity” three times
each, and the vibration sensor and the commercial accelerometer sensor response output
results are shown in Figure 5d,e. The results show that the vibration sensor output electrical
signal waveforms that were consistent with the number of syllables in the word and had
excellent speech recognition capability, whereas, since the commercial accelerometer was
prepared from a rigid material, it could not be in conformal contact with the object under
test and therefore was unable to recognize multi-syllable words. Therefore, flexible vibra-
tion sensors with excellent flexibility and superior speech recognition ability are expected
to be widely used in human–computer interaction scenarios involving voice control.

Based on the previous experimental results, the developed flexible sensor not only
exhibited excellent detection capabilities for high-frequency vibrations but also showed
good detection capabilities for low-frequency vibrations. Apart from testing the sensor’s
performance to respond to sound, we also measured the sensor’s response to vibrations
with a low frequency that are typically generated during the operation of large machinery.
Shield machines are crucial mechanical equipment for transportation infrastructure con-
struction, and the vibration signals at the interface between the cutter head and the rock can
reflect its operational status and fault information. Therefore, detecting the vibration signals
during the operation of the shield machine cutter head can further elucidate the coupling
mechanism between the cutter head and the rock and evaluate its operational status.

As shown in Figure 6a, the shield machine cutter head rock-fracturing test platform
mainly consisted of the cutter base, disc cutter, rock, and hydraulic lifting device. The
developed sensor was stuck on the base where the disc cutter was installed, to monitor the
vibration signals generated during the rock fracturing process in real time. The vibration
sensor converted the mechanical vibration signals generated by the disc cutter’s cut rock
into electrical signals, which were then collected by a wireless transmission device and
transmitted to a computer instantaneously. The signals collected during a complete working
cycle of the cutter head are shown in Figure 6b, indicating that vibration sensors could
monitor the mechanical vibration signals of the shield machine cutter head in different
states. A further analysis of the collected vibration signals allowed us to identify four
operational conditions: the adjustment of the cutter head, the contact between the cutter
head and the rock, the fracturing of the rock, and cutter retraction. As shown in Figure 6c,
the cutter head was driven by the hydraulic lift to adjust the relative position of the cutter
head and the rock, so that the sensor output a relatively slow voltage signal. When the disc
cutter was in contact with the rock, a large shock vibration was generated, which made
the sensor output a sudden increased voltage signal. The vibration sensor could output
electrical signals in response to different degrees of rock breakage, as shown in Figure 6d.
During the process of rock crushing, the rock was cracked four times at different positions.
According to the amplitude of the sensor output voltage peak signal, the degree of rock
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crushing could be reflected. Obviously, the crack generated in the third rock crushing
was the largest, so the corresponding voltage peak value was the highest, reaching 25 mv.
Similar to the contact between the cutter head and the rock, when the cutter head left
the rock, it also produced an instantaneous shock vibration, but its vibration amplitude
was small, as shown in Figure 6e. Therefore, the developed vibration sensors possessed
excellent capabilities for detecting low-frequency vibrations generated during the process
of shield machine cutter head rock fracturing, enabling the identification of different
operational conditions.
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Figure 5. Vibration monitoring and speech recognition performance of the developed sensor. (a) Op-
tical image of the flexible sensor installed on the surface of a speaker. (b) Output response signals of
the sensor when the speaker played a sentence twice and the spectrogram analysis for the recorded
electric signals. (c) Voltage responses of the sensor to vibrations generated from the speaker which
played four letters in turn. (d) Voltage responses of the vibration sensor to three utterances, including
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(e) Voltage responses of the commercial accelerometers to three utterances, including the monosyllabic
word “one”, the disyllabic word “sensor”, and the polysyllabic word “sensitivity”.
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Figure 6. Vibration monitoring and analysis for the shield machine cutter head when fracturing a
rock. (a) Optical image of the shield machine cutter head’s testing platform and the installation of
the vibration monitoring system. (b) Real-time voltage signals output from the flexible vibration
sensor during the rock fracturing process. (c) An enlarged view from (b) at the stage when the disc
cutter contacts with the rock. (d) An enlarged view from (b) at the stage when the disc cutter begins
to fracture the rock. Each peak shows the positions where the rock is cracked thoroughly. (e) An
enlarged view from (b) at the stage when the disc cutter is retracted.

4. Conclusions

In this work, we developed a flexible vibration sensor utilizing spraying and femtosec-
ond laser technology that exhibited excellent capability in detecting strain and vibration,
as well as superhydrophobic properties. The innovative design of parallel penetrating
crack structures on the polymer sensing layer significantly improved its electromechanical
signal conversion efficiency. Experimental results showed that the sensor was capable of
detecting vibrations with frequencies of up to 2000 Hz, including those in underwater
environments, highlighting its robustness and versatility. In addition, the sensor’s ability
to accurately detect and recognize voice vibration, as well as monitor vibration in the cutter
plate of a shield tunneling machine, highlights its potential for practical application in
the assessment of machinery operating conditions. The simplicity and cost-effectiveness
of its fabrication process further add to its appeal, making it a promising candidate for
widespread use in machinery vibration monitoring and human–computer interaction. This
study not only introduced an advanced method of using polymer-based materials to im-
prove the performance of vibration sensors but also broadened the application of flexible
sensors in challenging environments. The results of the study indicate a great potential for
future developments in the fields of mechanical system monitoring and smart interface
technologies, where reliable and high-performance vibration sensors are essential.
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