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1. Introduction

Because of its advantages of light weight and large payload 

capacity, the steel structure trestle has been widely used in various

industrial parks, especially the mining industry. Being worked in 

a harsh environment, the steel structure trestle has also been in 

service under heavy load conditions for a long time. At the same 

time, since it is often used for long-distance load transmission, 

the excessively long structure length also makes it difficult to 

maintain the trestle structure, which brings a great burden to 

manual visual inspection. In summary, steel structure trestle is 

prone to cracks during long-term service, especially at the bolt 

joints and weld locations where the force is concentrated. These 

cracks adversely affect the safety and structural life of steel 

structure trestle. If these cracks cannot be discovered and dealt 

with in time when the cracks become worse, it will eventually 

cause great loss of lives and properties. Therefore, it is necessary 

to carry out SHM on steel structure trestle. In recent years, with 

the increase in the service life of civil engineering and construction 

and the improvement of people's safety awareness, SHM has 

attracted attention in a growing number. Through real-time 

monitoring of structure response and service status, the current 

status of the structure can be quantitatively evaluated. SHM can 

realize real-time continuous observation of the service status of 

the structure, thereby improving the safety and reliability of the 

service, and reducing the cost of maintenance and inspection of 

the structure (Li et al., 2016; Dizaji et al., 2021; Ngeljaratan et 

al., 2021).

At present, the crack damage identification of civil engineering 

buildings such as steel structures mainly relies on manual visual 

inspection. This detection method also requires the detection 

workers to have relevant knowledge. Moreover, it’s a subjective 

traditional method relying on the empiricism (Li et al., 2016). 

This method depends on manual visual inspection, when it is 
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difficult for construction workers to operate or they are reluctant 

to work on the structures, it will cause omission of detail cracks. 

This will make the test results incomplete and cause safety 

hazards. At the same time, this method poses hidden dangers to 

the life safety of workers and results in low efficiency and high 

cost (Samantaray et al., 2018).

As the computer technology and deep learning (DL) algorithms 

continuously develop in recent years, research on intelligent 

algorithms has once again become a hot issue. The development 

of computer hardware effectively supports the powerful computing

power required by the algorithm. At the same time, the algorithm 

is constantly updated and improved, gradually improving many 

of its own shortcomings. Computer vision (CV) technology has 

been recognized as a key method for improving and developing 

civil engineering structure detection and monitoring technology 

recently. To a certain extent, it can allow computers to replace the 

human to perform damage detection for structures. Image processing 

methods based on CV have begun to be used in the recognition 

of local damage in steel structures. A large number of scholars 

have done a lot of research on the application of CV technology 

to SHM, Je-Keun Oh a et al. proposed a robot vision system for 

checking the safety status of bridges, which can automatically 

photograph and monitor the safety of bridge deck structures 

through robots (Oh et al., 2009). Lim et al. proposed a crack 

detection system that used the Laplacian of Gaussian (LoG) 

algorithm to detect cracks, and obtained a global crack map 

through camera calibration and robot positioning (Lim et al., 

2014). Prasanna et al. proposed a novel automatic crack detection

algorithm STRUM (Spatially Adjusted Robust Multiple Features) 

classifier, and demonstrated the results of real bridge data using 

the latest robotic bridge scanning system (Prasanna et al., 2016). 

Prasanna et al. proposed a CV algorithm in terms of the damage 

characteristics of cracks and spalls (Jahanshahi et al., 2016). A 

Miyamoto proposed an automatic bridge SHM system that 

combined information and communication technology to manage 

the life cycle of existing short and medium span bridges (Miyamoto 

et al., 2019). Yang et al. proposed an explicit modeling and they 

used data structures to solve structural dynamics problems, on 

which real-time structural safety is monitored through video 

(Nagarajaiah and Yang, 2017). The above classic CV studies 

depend on images taken under ideal conditions, with less interference 

around the damage and better recognition of obvious cracks in 

the image, but their recognition effect is relatively limited under 

complex shooting environments. It is easy to be disturbed by the 

complicated background, so that the location of the crack cannot 

be accurately identified, or all pixel features of cracks cannot be 

extracted completely.

Thanks to the robust development of DL algorithms in recent 

years, many advanced algorithms based on DL have been proposed

in the field of CV. Convolutional neural network (CNN) and DL 

algorithm have been gradually applied by many scholars in the 

field of civil engineering SHM due to their wide applicability 

(Simonyan and Zisserman, 2014; Lecun et al., 2015; Wu et al., 

2017). For example, Hoskere et al. introduced a novel engineering 

application of SHM in a new type of civil infrastructure. The 

method set a new binomial loss function to improve the accuracy 

of the training network and used Monte Carlo to convey the 

uncertainty of the model (Spencer et al., 2019). Rafiei et al. 

collected environmental vibration response of the structure by 

the sensor to evaluate the global and local health status of the 

structure system (Rafiei and Adeli, 2018). The model combines 

synchronously compressed wavelet transform, fast Fourier transform 

and unsupervised deep Boltzmann machine. Bao et al. proposed a 

random decrement technique which allows estimation of modal 

parameters without directly measuring input, and applied this 

technique to structural modal analysis and SHM (Bao et al., 

2019). DF Karypidis et al. used a distributed optical fiber system 

to monitor the strain distribution along the steel bar, based on the 

analysis of the natural frequency of data obtained from the 

accelerometer (Karypidis et al., 2019). The preliminary results of 

the study show that the semi-supervised Deep Auto-encoder 

algorithm (DAE) can successfully quantify the failure of transverse 

cracks in reinforced concrete beams subjected to three-point 

loads. Nahata et al. proposed an autonomous damage detection 

model based on CNN. Under the application of the VGG16 

transfer learning model, the best results are obtained with a 

learning rate of 1e-5, and the final training accuracy reached 

97.85% and 89.38% (Nahata et al., 2019). Han et al. achieved 

good application results in cracks identification and location of a 

large steel structure by the images obtained by UAV simulated 

inspection, which provided a good reference for engineering 

applications (Han et al., 2022). Zhang et al. systematically 

summarizes the recent research and application of DL-based CV 

technology in the field of damage detection, and discusses the 

problems that need to be solved and future research directions 

(Zhang et al., 2022). In addition, many scholars applies CV 

technology to structural damage recognition in various directions, 

and achieves obvious application effects (Cha et al., 2018; Rubio 

et al., 2019; Sen et al., 2019; Yeum et al., 2019; Le et al., 2021).

However, the rapid development of many CV theories has not 

effectively promoted their practical engineering applications, and 

there is still a large gap between them. The surface cracks of the 

structure are difficult to detect in time by manual visual inspection. 

With the development of consumer-grade camera technology, 

the cost is low and the image quality is getting better and better. 

It can obtain images stably and clearly, and at the same time, the 

remote control rotation technology which means making the 

camera rotate horizontally by remote control, so that a single 

camera can monitor the structure of a large area. Camera monitoring

can carry out long-term and real-time SHM of civil engineering 

structures in a large area under the premise of a small number of 

cameras. It is especially suitable for the steel structure trestle 

whose structural length is often too long, which can effectively 

reduce the monitoring cost and improve the efficiency and 

accuracy.

Most of the current research is aimed at materials with relatively 

uniform color distribution, such as asphalt, concrete and other 

materials with large cracks (Bao et al., 2019; Jesus et al., 2019; 
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Hoskere et al., 2020; Shahbaznia et al., 2020; Sun et al., 2020; 

Han et al., 2021; Wan et al., 2022). Some progresses are made in 

crack damage identification of steel structure (Dorafshan et al., 

2018; Yang et al., 2018; Dung et al., 2019; Dong et al., 2021), 

however these researches rarely considered the practical application 

in civil engineering of steel trestle structure SHM on which is 

focused in this study. Therefore, this paper proposed a DL-based 

CV integration method to perform real-time long-term SHM on 

trestle structures. Steel structure trestle is mostly used in coal 

mining transportation, industrial raw material transportation and 

other industrial parks. The service scene where the trestle structure is 

located (mostly used in mountain mining areas or the trestle is 

built high) is not conducive to the arrangement of sensors. The 

no-fly zone of the industrial park cannot use drones for SHM, 

and the overly long structure is also not conducive to regular 

manual inspections. According to the characteristics of the trestle 

service environment, this paper proposed a trestle SHM method 

with low cost, simple operation and automatic performance. The 

integrated method can quickly and automatically perform long-

term and uninterrupted SHM on the surface cracks of the trestle 

structure in real time without relying on the arrangement of a 

large number of sensors. The DL-based CV ensemble method in 

this paper uses a consumer-grade camera system to perform 

long-term SHM for the entire life cycle of the trestle structure, 

avoiding inconvenient regular inspections and low cost. It can 

detect the surface cracks at the concentrated stress of the trestle 

structure in the early stage of damage to the greatest extent. The 

set of SHM systems considered how to identify the tiny cracks in 

the distance, as well as how to prevent interference of rust 

background to crack identification. The camera monitoring 

system proposed in this paper provided a technical reference for 

the application of intelligent SHM of steel trestle structure. The 

system first used the Canny edge detection algorithm to extract 

the structural boundary of the partial image obtained by the 

camera. The image within the boundary of the trestle structure 

was the only focus, the extracted structural image was divided 

into several small areas of appropriate size, and then the camera 

focused on the small areas one by one. 10 improved DeepLabv3+ 

models were trained by using two datasets, global and local 

datasets, and after training these models operate joint decision-

making. The model was built on the backbone of ResNet18, and 

a parallel channel attention mechanism was introduced, which 

effectively eliminated confounding factors such as rust and 

welds. The improved CV algorithm can perform pixel-level 

semantic segmentation of cracks more efficiently and accurately. 

Finally, SURF-based panoramic image stitching and path iterative 

scanning were used to locate cracks and the approximate 

location of cracks on the steel structure trestle. This set of SHM 

systems has been experimentally verified on a long-term service 

steel structure trestle. The flow chart of SHM of steel trestle 

structure by using the camera system is as follows.

2. Crack Identification Operation Process

2.1 Panorama Preprocessing
The edge of the trestle structure is extracted by using the Canny 

algorithm. The Canny edge detection algorithm is a multi-level 

edge detection algorithm. In general, the purpose of edge detection 

is to significantly reduce the data size of the image while 

preserving the original image properties. The Canny algorithm is 

a standard algorithm for edge detection and is still widely used in 

research. 

Firstly, Gaussian filtering was used to remove background 

interference with fast changing frequency, and then Canny 

algorithm was used to identify the trestle structure area. It can be 

seen from Fig. 2 that after the above operations, the Canny 

algorithm can identify the boundary of the trestle structure. After Fig. 1. Camera-Based SHM Process of Trestle Structure
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the panoramic edge of the trestle structure is extracted, only 

focusing on the image within the boundary of the target structure, it 

is divided into small images of suitable size, which is convenient 

for further processing by the CV algorithm. For the trestle structure 

in this paper, the area division method is shown in Fig. 2. The 

specific division method was based on the size of the monitored 

trestle structure, the distance between the camera and the 

connecting structure, and the pixel details of the obtained image. 

The structure division method will be different according to 

different scales. For example, super-pixel segmentation and other 

methods should be used for larger structures. However, the 

trestle structure in this study is not very large, and it is more 

efficient to directly divide the area for crack identification. 

Specifically, as shown in Fig. 2, each section of the trestle is 

divided into 3 major sections, and each section is subdivided into 

4 to 64 uniform areas (the specific division size is determined by 

the monitoring accuracy).

Compared with the overall structure of the trestle, the cracks 

may be very small. At present, in the application of crack 

identification and location engineering for large and complex 

structures, in order to identify cracks in distant images, some 

clustering analysis algorithms are often used to divide the 

panoramic image into several small areas, such as super-pixel 

segmentation. Object detection methods are then used on these 

small areas to identify small areas where cracks may exist. 

However, this operation will increase the complexity of identifying 

preprocessing of the cracks and increase the computational cost. 

In the engineering application of this manuscript, since the 

camera is far away from the crack during panoramic photography, 

the crack damage is small, and the tested object detection method 

cannot detect the possible crack area. At the same time, each 

section of the steel structure trestle is not very huge, and the 

number of small areas divided by the panorama is relatively 

small.

Therefore, this paper directly zooms in and focused on each 

area after dividing the panorama area, and used the improved 

DeepLab V3+ model below to perform pixel-level semantic 

segmentation for this area to identify cracks. After testing, this 

operation allowed the algorithm to reduce the complexity of 

image preprocessing when identifying cracks. Under the premise 

of meeting the accuracy required for crack identification, it saved 

the calculation cost, and improved the efficiency of the algorithm 

for crack identification of trestles.

2.2 Improved Image Semantic Segmentation Algorithm
In actual engineering applications, the dataset is not very large. 

Therefore, this paper introduced the transfer learning strategy 

(Bao et al., 2019), and used the parameters of the machine 

learning model that has been initially trained as the initialization 

parameters of this research. The DeepLab V3+ (Zhang et al., 

2021) model is built on the basis of the ResNet-18 (He et al., 

2016) model, and based on this, the pixel-level segmentation of 

the cracks in the stress concentration of the steel truss structure 

was carried out. Most of the crack pictures which used in this 

paper are actual shots of a steel trestle structure that has been in 

service for many years. It is of great practical significance to 

simulate the long-term monitoring environment of the camera. 

After long-term service of the trestle structure, a large amount of 

Fig. 2. Division of Trestle Panoramic Image: (a) Image Extraction within the Boundary of the Trestle Structure, (b) Image Area Division Method
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shallow rust appeared on the surface, which caused great interference 

in the identification of cracks. Therefore, it is necessary to 

effectively eliminate these interferences when identifying the 

cracks in the structure. At the same time, the total number of 

crack-like pixels is very low compared with the number of 

background pixels. How to effectively extract these pixels also 

remains as an important issue.

If the training target is a complex network, firstly it will cause 

too long training time, and the computing power of computer 

hardware in engineering applications will be difficult to meet the 

requirements of complex networks. Secondly, the project instance 

dataset is relatively small, and the complex network is likely to 

be difficult to converge. To sum up, in view of the structural 

characteristics of the long-term service steel trestle and the actual 

requirements of engineering applications, this paper introduced a 

set of two weak classifiers to carry out collaborative learning and 

training, and achieve joint decision-making. The two classifiers 

performed global and local image learning and training respectively, 

so that the semantic segmentation algorithm can more accurately 

identify the crack damage of the steel trestle in the image.

In order to further eliminate the influence of the shallow 

corrosion around the cracks of the steel trestle structure, an 

improved parallel channel attention mechanism was introduced. 

It is based on the channel attention mechanism SE module (Qi et 

al., 2021). Thanks to the above operation, the convolutional 

neural network can learn the feature relationship in the channel 

dimension and record the fuzzy features of the feature map. By 

learning the feature information of the channel dimension in the 

network, the performance of image segmentation in complex 

scenes was improved, and the problem of automatic semantic 

segmentation of complex images was solved.

2.2.1 ResNet Model
With continuous deep research on neural networks, breakthroughs 

have been made in performance of deep convolutional networks. 

An increasing number of scholars use deep convolutional networks 

to solve image classification tasks. The deep convolutional network 

further forms a multi-level image feature fusion with multi-layer 

end-to-end training and learning, and the number of features can 

also be strengthened by continuous superposition. The puzzle of 

image segmentation in related fields can be better solved by deep 

convolutional networks, which illustrates the importance of deep 

convolutional networks. However, too many network layers will 

reduce the training efficiency of the network, and an overly 

complex network structure will greatly increase the demand for 

computing power. In severe cases, the gradient will disappear, 

and the algorithm will eventually fail to converge, but part of the 

convergence problem can be solved by regularization. What's 

more, the deep convolutional network still has the problem of 

network degradation. As the number of network layers increases, 

which means the depth increases, the accuracy of network 

training and verification no longer improves or even decreases. 

This is because excessive network layers will continuously lead 

to increased training error of the network. If a deep convolutional 

network is built based on a shallow network, all the training error 

of the deep network should be equal to that of the shallow 

network in this case when all the later added layers will be the 

same as the previous added layer. Therefore, the degradation 

problem of deep convolutional networks can be addresses by 

optimizing the network construction. In 2015, in order to solve 

the problem of deep network optimization, Kaiming et al. proposed

the Deep residual networks (ResNet) (He et al., 2016). In the 

deep residual networks (ResNet) instead of letting the network 

directly fit the original mapping, it fit the residual mapping. After 

that, many scholars built networks such as ResNet50 and ResNet101 

to solve the puzzles in the fields of image detection and classification, 

and achieved great application effects (Ahmed et al., 2020; Zhang et 

al., 2022). A simple identity mapping was realized by jumping 

connection, that is, by optimizing F(x), such that F(x) → 0, so that x    

→ F(x) + x → x, and finally reaching an identity mapping    

relationship. The network structure of ResNet is shown in Fig. 3.

2.2.2 DeepLab V3+ Model Training
DeepLab (Lin et al., 2013) is a model proposed by Google that 

combines the advantages of deep convolutional networks (DCNNs) 

and traditional probabilistic graph models to obtain better 

classification processing results. DeepLab introduces atrous 

convolution and atrous spatial pyramid pooling (ASPP) structures.

This improvement can effectively solve the problems of too 

small perception fields and reducing the details of the picture by 

down sampling. Atrous convolution obtains different receptive 

fields through different dilation rate parameter settings, in another 

words, it obtains multi-scale information, which plays an important

role in visual tasks. Therefore, cavity convolution can expand the 

receptive field arbitrarily without introducing additional parameters. 

Nowadays many scholars have introduced cavity convolution 

into semantic segmentation research.

With continuous efforts, DeepLab semantic segmentation series

models have successively launched DeepLab V1, DeepLab V2, 

DeepLab V3. Among them, DeepLab V3+ belongs to its latest 

model structure. DeepLab V3+ retains the original atrous convolution 

and ASSP layer communication, in addition to implements 

image multi-scale information fusion by introducing an encoder 

and decoder (encoder-decoder) structure. Using the Xception 

model as its basic network ensures the computational efficiency 

and robustness in processing image semantic segmentation 

problems. Outstanding application results have been achieved in 

many research fields.

Fig. 3. Network Structure (He et al., 2016)
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2.2.3 Joint Decision-Making under Collaborative 
Learning

In practical engineering applications, because of being restricted 

by non-open engineering data, the data set cannot be too large, 

and the computer performance is also limited accordingly. Thus 

it is difficult to learn and train a relatively complex network. The 

above unfavorable factors can easily lead to the unsatisfactory 

training effect of the complex network, and the algorithm is 

prone to non-convergence. Therefore, this study formed a strong 

classifier by combining several weak classifiers into a cluster. 

Because of the complex structure of the neural network for 

image semantic segmentation, the numerous parameters and the 

complex training process, it has high requirements for hardware 

equipment. Therefore, serial training methods were used in the 

process of training weak classifiers, so that they can run better on 

computers with lower performance. The clusters of these serially 

trained weak classifiers were used to make joint decisions to 

reduce the need for computer hardware in practical engineering 

applications. At the same time, it can better solve practical 

engineering application problems, and perform precise semantic 

segmentation for cracks in the steel truss structure. What’s more, 

when training each individual weak classifier, it is noticed that 

many background pixels will be included in the pixels whose 

output labels are cracks, which will cause the poor recognition. 

Based on the above description, the specific operation of the 

weak classifier cluster constructed in this study is as follows.

Firstly, the Stacking collaborative learning framework was 

introduced to train a model for combining various weak classifiers. 

In other words, multiple models were trained, and the output 

obtained from the previous training of each model was used as 

the input again to train a new model, and finally an output is 

obtained. Secondly, a new image training set was constructed 

through different random sampling methods for an image data 

set, and then the different weak classifiers are obtained. This 

operation is similar to the uniform sampling strategy with 

replacement in the Bagging method. In order to reduce the 

volume of the algorithm and lightweight the algorithm, the 

weight calculation method of each classifier also adopted the 

weight calculation method in the Bagging method, that is, the 

weight of each weak classifier is equal. This is conducive to the 

learning and training of the classifier cluster and will not affect 

the final semantic segmentation effect too much. Finally, referring to 

the training process of the Boosting method, and each weak 

classifier is generated.

The dataset setting was improved based on the above ideas. 

Firstly, in order to enhance the global search capability, a Global 

Dataset was prepared. 150 crack images of the steel trestle structure 

taken on the spot (ie the initial dataset) were used to perform data 

enhancement operations, randomly crop, color jitter and they 

were rotated, finally the initial dataset was expanded to 4,500 

sheets. Fig. 4 shows a part of the Global Dataset. The floating 

range of the zoom factor is [0.8, 1.5], and the floating range of 

horizontal reflection and rotation is [-30, 30]. Secondly, in order 

to enhance the recognition accuracy of structural cracks and 

strengthen local search capabilities, Local Dataset was prepared. 

The floating rectangular window was used to pre-identify and 

cut out the crack concentrated areas in the image, and the 

floating rectangular window was used to pre-identify and cut out 

the crack concentrated areas in the image, and the data that 

adopted Global Dataset was used to enhance operation to expand 

the dataset to 4500 sheets. Fig. 5 shows part of the Local Dataset. 

The pixel sizes of the above two dataset images were uniformly 

divided into 960*720.

According to the above two improved datasets and network 

training methods, a total of 10 weak classifiers were trained. 

Among them, a total of 5 weak classifiers numbered Global 1 to 

Global 5 were trained using the Global Dataset, and they were 

combined into a weak classifier cluster, aiming to perform a 

global search on the image. The remaining 5 weak classifiers, 

numbered Local 1 to Local 5, were trained using Local Dataset, 

aiming to enhance the local search capability of images.

Semantic segmentation was performed on the damage image 

Fig. 4. Schematic Diagram of the Global Dataset: (a) Example 1 of Global Crack Image, (b) Example 2 oF Global Crack Image, (c) Example 3 of 
Global Crack Image, (d) Example 4 of Global Crack Image, (e) Example 5 of Global Crack Image, (f) Example 6 of Global Crack Image

Fig. 5. Schematic Diagram of Local Dataset: (a) Example 1 of Local Crack Image, (b) Example 2 of Local Crack Image, (c) Example 3 of Local Crack 
Image, (d) Example 4 of Local Crack Image, (e) Example 5 of Local Crack Image, (f) Example 6 of Local Crack Image
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of the steel structure trestle through the following two steps.

In the first step, Global 1 to Global 5 were designed to enhance 

the global search capability of the network. By taking the intersection 

of the results of Global 1 to Global 5, the crack concentrated 

areas in the image were divided and cropped.

The second step, Local 1 to Local 5 were used to perform 

pixel-level segmentation on the cropped image, identify and 

extract the pixel to which the crack belongs.

The location of the crack was extracted through two Global 

Datasets training, and then the crack pixel-level semantic 

segmentation of the Local Dataset was performed through the 

weak classifier to achieve the pixel identification and extraction 

of the crack. In this way, it can take both local and global search 

capabilities into account, so it better located and extracted cracks. 

Besides, it also improved the accuracy of semantic segmentation, 

and reduced training time. Moreover, computing efficiency was 

increased and hardware requirements were reduced.

2.2.4 Parallel Channel Attention Mechanism
After a certain period of service of the steel structure trestle, a 

certain area of shallow rust will appear on the surface of the 

structure. If the shallow rust appears around the crack, it will 

probably affect the automatic recognition of the crack by the 

semantic segmentation algorithm, and the shallow rust will also 

be misjudged as the crack area. In order to further improve the 

algorithm's recognition accuracy of cracks in a complex image 

environment, this paper further introduced the parallel channel 

attention mechanism on the basis of the above-mentioned 

improvement measures. It aims to further improve the accuracy 

of the algorithm in identifying cracks, and can effectively eliminate 

the adverse effects of shallow corrosion around the cracks.

The Squeeze-and-Excitation (SE) module specifically includes a 

two-step process of compression and excitation. The compression 

operation uses a global average pooling (GAP) operation to get 

the global features of the previous feature map in the channel 

dimension. The specific operation can be expressed by the following 

formula.

(1)

Among them, Z represents the output after the compression 

process, which means the real number matrix output after the 

channel dimension is globally averaged and pooled. Fsq represents 

the compression function used in the compression process, 

which means the GAP function. x represents a collection of two-

dimensional feature maps of spatial information dimensions. h

and w respectively represent the two spatial information dimensions 

of the height and width of the feature map.

After the compression process, the SE module learns the 

importance of global features in each channel after GAP through 

the excitation process. This process generally consists of a fully 

connected layer, a ReLU activation function, a fully connected 

layer and a Sigmoid activation function. Through the two-layer 

fully connected bottleneck structure, the weight of each channel 

in the feature map is obtained, and the weighted feature map is 

used as the input of the next layer of the network. The above 

process can be expressed by the following formula.

(2)

Among them, S is the output of the excitation process. The 

excitation function is denoted by Fex, and Z is the real number 

matrix combination output after the channel dimension is 

globally averaged and pooled. σ and δ represent the activation 

function Sigmoid and the activation function ReLU, respectively. 

W1 represents the first fully connected layer weight value set

with the dimension , W2 represents the second fully connected

layer weight value set with the dimension , and r represents

the dimensionality reduction coefficient. By introducing the 

dimensionality reduction coefficient, the number of parameters 

of the SE module can be effectively reduced, and the occurrence 

of over-fitting can also be prevented to a certain extent.

The last step is to re-calibrate the features. The input feature 

map is multiplied before the SE module with the output value 

after the excitation process, and then the output  after the SE 

module can be obtained. The process of feature re-calibration 

can be expressed by the following formula.

(3)

The process of re-calibrating the eigenvalues is actually to assign 

weighted values to multiple maps obtained in the convolutional

network. The feature re-calibration process will not make the 

performance of the convolutional network worse. The worst case 

of the process is to directly map the feature map of the previous 

layer to the next convolution kernel. Therefore, after introducing 

the channel attention mechanism, even if the semantic segmentation

performance of the convolutional network cannot be improved, it 

will not adversely affect the semantic segmentation performance of 

the network.

Based on the above process steps, the output obtained through 

the SE module can be expressed by the following formula.

(4)

As mentioned above, the SE module only considers the use of 

global average pooling in the process of compression, excitation 

and feature re-calibration to reduce the variance of the estimated 

value caused by the reduction of high-level features (Lin et al., 

2013). Therefore, the SE module is not ideal for the semantic 

segmentation of small objects and image textures. Aiming at the 

deficiencies of the SE module, in order to effectively identify the 

cracks of the steel structure trestle and reduce the impact of 

shallow corrosion on the segmentation effect, this paper introduced 

the Parallel Channel Attention Mechanism (PCAM) on the basis 

of the SE module. To put it simply, a global max pooling (GMP) 

compression operation is connected in parallel on the SE module,

which worked together with the global tie pooling compression 
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operation. Therefore, when extracting high-level features, the 

estimated value deviation caused by the convolutional network 

parameters can be reduced, so that the network can better perform

accurate semantic segmentation of small targets and image texture 

information.

One process of the parallel channel attention mechanism is 

the same as the SE module, that is, the output  is obtained 

through the process described above. It can be expressed by the 

following formula.

(5)

On this basis, another path is connected in parallel, and the 

second path compression operation uses the global maximum 

pooling to replace the global average pooling in the SE module, 

and the rest of the process is the same as the operation in the SE 

module. The real number matrix m output by the global maximum 

pooling can be expressed by the following formula.

(6)

W3 and W4 are the weight sets of the two fully connected 

layers in the global maximum pooling channel respectively, and 

the dimensions of the two fully connected layers are the same. 

The final output of the global maximum pooling operation of the 

PCAM can be expressed by the following formula.

(7)

In summary of the above steps, the output process of the PCAM

can be summarized as the following formula.

(8)

The output result of the PCAM is processed by the batch 

normalizing (BN), which effectively prevents the gradient from 

disappearing, speeds up the training and learning efficiency of 

the network, and to a certain extent also prevents unfavorable 

factors such as over-fitting (Liang et al., 2021). The schematic 

diagram of the parallel channel attention mechanism is shown in 

Fig. 6.

Based on the above improvement measures, the flow chart of 

the proposed improved semantic segmentation algorithm is 

shown in Fig. 7.

2.3 Crack Identification Results and Analysis

2.3.1 Dataset Establishment
The datasets used in the training of weak classifiers in this study 

are all shots of a steel trestle structure engineering site that has 

been in service for many years. The shooting environment simulates 

consumer-grade camera monitoring, and a total of 150 images of 
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Fig. 6. Schematic Diagram of Parallel Channel Attention Mechanism

Fig. 7. Improved Semantic Segmentation Algorithm Flow Chart
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cracks in the steel structure trestle were taken. The dataset is 

expanded to 4500 sheets by the data enhancement method described 

in above, which becomes a Global Dataset. Among them, 65% 

was used as the training dataset, 20% was used as the verification 

dataset, and the remaining 15% was used as the test dataset. And 

the cut out of the crack concentration was used to form a Local 

Dataset, and the Global Dataset and the Local Dataset were used 

to train the network. The image size of the above two datasets is 

set to 960*720.

2.3.2 Experimental Parameter Settings
This study is based on Matlab 2020a to train the DeepLab V3+ 

model. The computer hardware parameters used are as follows: 

CPU: Intel(R) Core(TM)i7-9750H CPU @ 2.70 GHz, RAM: 

64.0 GB, GPU: NVIDIA GeForce GTX 2080.

The enhanced data was used set to train the DeepLab V3+ 

network. The training parameter settings of a single weak classifier 

are shown in the following table.

2.3.3 Evaluation Index
The essence of semantic segmentation task is classification task. 

It's just that the object of the conventional classification task is 

the object in the image, and the object of the semantic segmentation 

is the pixel point in the image. Confusion matrix can be used to 

value the result of classification. True/False means the prediction 

is right or wrong, and Positive/Negative means the prediction 

result. For example, True Positive (TP) in this engineering application

indicates that the predicted result is a crack pixel point and is a 

correct prediction, that is, the crack pixel point is correctly 

detected. False Negative (FN) indicates that the predicted result 

is not a crack pixel, but this is a wrong prediction, that means the 

crack pixel is not detected correctly. Similarly, False Positive 

(FP) indicates that the prediction result is a crack pixel, but it's a 

wrong prediction, and True Negative (TN) indicates that the 

prediction result is not a crack pixel and is a correct prediction.

The evaluation indicators used in the experiment contain the 

accuracy and mean intersection over union (mIoU). The above 

indicators can relatively intuitively give the comprehensive 

performance of image segmentation. Specifically, it can be defined 

by the following formula.

(9)

The precision of the prediction results represents the proportion 

of all samples predicted to be cracks whose true value is also a 

crack.

(10)

Recall represents the correct rate of precision of all true crack 

samples.

(11)

Accuracy is the simplest metric used to mark the proportion 

of correct pixels to the total pixels.

(12)

Mean intersection over union (mIoU) is a recognized algorithm

evaluation standard. It calculates the ratio of intersection and 

union of two sets. In the field of semantic segmentation, the true 

value and the predicted value are the manifestations of the two 

sets, where k + 1 is the number of categories.

2.3.4 Analysis of Experimental Results
In order to verify the effectiveness of the image semantic 

segmentation algorithm of the improved DeepLab V3+ model, 

the accuracy and the mean intersection over union were used as 

the predictive evaluation indicators. And the results obtained by 

the improved DeepLab V3+ model's image semantic segmentation

algorithm was compared with the standard full convolutional 
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Table 1. Training Parameter Settings of a Single Weak Classifier

Parameter name Parameter value

Optimization algorithm Adam

Learn Rate Schedule Piecewise

Learn Rate Drop Period 10

Learn Rate Drop Factor 0.3

Initial Learn Rate 1e-3

L2 Regularization factor 0.005

Minibatch Size 8

Maxepochs 128

Shuffle' every-epoch

Validation Frequency 302

Validation Patience 4

Table 2. Comprehensive Comparison of Network Performance

Network model
Training set Testing set

Accuracy mIoU Accuracy mIoU

FCN 0.8885 0.4738 0.8289 0.3552

SE-FCN 0.9162 0.5068 0.8562 0.3871

Single DeepLab V3+ Net 0.8413 0.4783 0.8067 0.4458

Joint Decision DeepLab V3+ Nets 0.9437 0.5406 0.9285 0.5064

Improved  DeepLab V3+ Nets 0.9883 0.5825 0.9647 0.5369
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network, the fully convolutional network with the SE module 

and the single DeepLab V3+ model to verify the effectiveness of 

improved algorithm measures. The specific comparison results 

of each algorithm are shown in Table 2.

It can be seen from the information in Table 2 that after the 

introduction of weak classifier clusters for joint decision-making 

and parallel channel attention, the improved DeepLab V3+ 

model has a corresponding improvement in performance when 

dealing with crack recognition tasks in steel structure trestle 

images. Compared with the standard FCN, the accuracy of the 

training set and test set are increased by approximately 9.98% 

and 13.58% respectively, and mIoU has been increased by 

approximately 10.87 and 18.17%, respectively. Compared with 

the FCN with the introduction of the SE module, the accuracy of 

the training set and the test set are increased by about 7.21% and 

10.85%, and the mIoU has been increased by about 7.57% and 

14.98% respectively. Compared with a single DeepLab V3+ 

network, the accuracy of the training set and test set are increased 

by approximately 14.70% and 15.8%, respectively, and mIoU 

has increased by approximately 10.42% and 9.11%, respectively. 

Compared with the DeepLab V3+ network that only introduces a 

joint decision-making mechanism, the accuracy of the training 

set and test set are increased by approximately 4.46% and 

3.62%, respectively, and mIoU has increased by approximately 

4.19% and 3.05% respectively.

Although the use of a set of weak classifiers for joint decision-

making and the introduction of a parallel channel attention 

mechanism will increase the number of network parameters 

correspondingly and extend the training time. However, performance 

indicators such as the accuracy of image pixel segmentation and 

the average intersection ratio increased significantly after the 

introduction of improved measures. This improvement is particularly 

important in the pixel-level recognition task of cracks with 

complex image background information. In the experiment, the 

actual segmentation effect of each network for the crack image 

of the steel structure trestle is shown in Fig. 8. The cracks near 

the bolts are manually drilled through steel. Manual cracks 

simulate the characteristics of steel structure cracks, such as 

narrow, small and metallic luster. Cracks in welds are naturally 

formed.

It can be seen from Fig. 8 that when Single DeepLab V3+ Net 

is used to perform pixel segmentation on the crack image of the 

steel structure trestle, the effect is the worst, and the shallow rust 

around many cracks will also be judged as crack pixels, causing 

false alarms. When FCN is used to split the crack image semantics 

of this structure, the effect is not ideal, and it will also be 

interfered by certain background factors. At the same time, it can 

be seen from the second line of image segmentation effect that 

FCN still has incomplete segmentation of crack pixels. The FCN 

introduced with the SE module alone is better than FCN in the 

actual segmentation effect, but still has problems such as being 

affected by the image background and incomplete segmentation 

of cracked pixels. Although the segmentation accuracy has been 

improved, it still does not reach the ideal state. When the joint 

decision-making improvement mechanism of weak classifiers is 

introduced separately, the division effect is further improved, and 

the crack-like pixels can be almost completely segmented. 

However, the result is still affected by shallow corrosion, and 

some of the corrosion will be falsely reported as cracked pixels. 

Therefore, whether the SE module is introduced separately or the 

weak classifier cluster joint decision-making improvement 

mechanism is introduced separately, the actual segmentation 

effect of crack pixels is not ideal.

Finally, the comprehensively improved DeepLab V3+ Nets 

Fig. 8. The Actual Segmentation Effect of the Crack Image of the Steel Structure Trestle of Each Network



1160 C. Xiong et al.
can accurately segment the crack structure of the steel structure 

trestle at the pixel level, and can effectively avoid the interference of 

the background factors of the shallow cracks, and has a significant

improvement in the segmentation of the background. Improved 

DeepLab V3+ Nets can almost completely identify all crack 

pixels, so as to effectively judge the damage degree of the stress-

concentrated parts of the steel structure trestle. The actual crack 

pixel segmentation is ideal. This also proved the effectiveness of 

the measures of Improved DeepLab V3+ Nets. When faced with 

crack images of complex background information, it can completely

Fig. 9. Panoramic Image Stitching of Trestle: (a) Partial Picture 1, (b) Partial Picture 2, (c) Partial Picture 3, (d) Feature Points of Partial Picture 1, (e) Feature 
Points of Partial Picture 2, (f) Matching of Feature Points, (g) Panoramic Composite Image, (h) Panoramic Image Acquired by the Camera
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and accurately segment the cracks at the pixel level, and judge 

the damage degree of the steel structure trestle where the stress is 

concentrated.

3. Panoramic Image Stitching

In practical engineering applications, consumer-grade cameras 

can better locate damage and perform maintenance work if they 

use a larger perceived field of view to acquire images. However, 

at the same time, the proportion of pixels occupied by damaged 

cracks will be too small, resulting in a decrease in recognition 

accuracy. Therefore, the pixels damaged by cracks should occupy 

the main body, otherwise the performance of computer vision 

algorithms will be affected.

Aiming at one of the above contradictions, this paper introduced 

a feature-based panorama image stitching method. Feature detection 

and stitching have been widely used in computer vision fields, 

such as object matching and tracking. The principle of this 

concept is to select certain feature points from the image and 

analyze the image locally instead of observing the whole image. 

As long as there are enough detectable interest points in the 

image, and these interest points are distinct and stable, and thus 

they can be accurately localized.

Speeded Up Robust Features (SURF, accelerated robust 

features), is a robust local feature point detection and description 

algorithm. SURF is an improvement to the Sift algorithm, which 

improves the execution efficiency of the algorithm and provides 

the possibility for the algorithm to be applied in real-time computer 

vision systems. Like the Sift algorithm, the basic path of the 

SURF algorithm can be divided into three parts: the extraction of 

local feature points, the description of feature points, and the 

matching of feature points. The feature points are set according 

to the number of SURF algorithm parameters, and the algorithm 

will automatically select the feature points in the image according to 

the preset number of feature points. The trestle structure image in 

this study has obvious edge protrusions and some rust. These are 

all stably obtainable feature points. After many experiments, 

when the number of feature points is 300, the feature matching 

effect can be guaranteed while consuming less computing resources, 

and the matching effect is stable. The panoramic image and its 

composition are shown in Figs. 9(a) − 9(h).
Figures 9(a) − 9(c) are the partial images of one section of the 

trestle collected each time the camera rotates. Figs. 9(d) − 9(e) 
are the feature points of the first two local images of one trestle 

section obtained by SURF. Fig. 9(f) shows the process of SURF 

matching the first two local images of the trestle according to the 

feature points. Fig. 9(g) is the generated result of the trestle 

panorama based on SURF. Fig. 9(h) is the real panorama of the 

trestle, which is used to verify whether the effect of Fig. 9(g) 

meets the requirements of practical engineering applications.

4. Crack Localization

The example of this project is the belt conveyor trestle from the 

No. 2 transfer point of the coal conveying system in an industrial 

park to the buffer silo, which adopts the modular steel tube space 

truss structure. Since the end of the project is low from the 

ground, the pipe truss structure used in this project is a quadrilateral

pipe truss structure. Compared with other truss structures, the 

pipe truss has high bending and torsional rigidity, and the 

structure is relatively light in weight under the same constraint 

conditions, and the appearance is neat and tidy. The service life 

of the trestle structure is expected to be 50 years. The live load of 

the trestle floor is 3.0 kN/m2, and the standard value of the roof 

live load is 0.5 kN/m2. This trestle project is composed of 28 

sections of modular trestle, and the engineering volume is huge. 

In this paper, a certain section of the structure in this project is 

selected for structural damage identification and location verification. 

This kind of trestle has a long service life and a strong load 

capacity. Once the crack damage occurs in the concentrated 

force, it will cause great economic losses and even casualties. 

Therefore, long-term uninterrupted SHM is required for this type 

of structure.

According to the analysis of the above experimental results, 

the crack damage identification method proposed in this paper 

can effectively identify the cracks of the steel structure trestle. 

The matching and positioning of crack images is affected by the 

spatial resolution, so this study used a combination of feature-

based panorama stitching and subdivision iterative path methods 

to locate cracks. The space filling curve is an important approximate 

representation method. It divides the data space into grids of the 

same size, and then encodes these grids according to a certain 

method. Each grid is assigned a unique code and keeps proximity of 

the space to a certain extent. It means the labels of adjacent grids 

are also adjacent, and a spatial object consists of a group of grids. 

In this way, the multidimensional spatial data can be reduced to a 

one-dimensional space.

The camera cannot monitor the entire surface of the structure 

while meeting the monitoring accuracy, so it needs to scan the 

entire surface according to a certain route. After scanning, the 

related patches can be spliced according to the scanning path to 

obtain the overall image. The Peano curve can be iteratively 

subdivided according to the actual monitoring needs. Therefore, 

the Peano curve is used to stitch the trestle images to locate the 

cracks on the surface.

The Italian mathematician Peano G invented a curve that fills 

a square, called the Peano curve. Later, Hilbert made this curve, 

also known as the Hilbert curve (Jagadish, 1997). The Hilbert-

Peano curve is a fractal shape that can be drawn infinitely 

complex. In the process of iterative generation, it continuously 

refines small individuals. With the increase of the curve order, 

the existing two-dimensional image is divided into 4n parts of the 

same size. The line segments in the figure are actually the lines 

used to connect the parts. It is characterized by meandering and 

continuous drawing, which can pass through all points in a 

certain area on the plane. The Hilbert curve is a fantastic curve. 

As long as the function is properly selected, a continuous 

parametric curve is drawn. When the parameter t is within the 
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range of 0 and 1, the curve will traverse all the points in the unit 

square and get a full curve and get a space-filled curve.

As shown in the figure below, the scanning path of each part 

of the trestle structure is made of the Hilbet-Peano curve, and 

imaging is performed according to the path nodes. Finally, the 

region where the crack is located in detail by combining the 

above-mentioned panorama stitching method based on SURF 

matching. The panorama stitching process based on SURF 

matching is shown in Fig. 11.

It can be seen from the above synthesis that the stitching of 

the structural panorama is performed by using the Speeded Up 

Robust Features (SURF) and the iterative scanning path of the 

Hilbet-Peano space filling curve, which can determine the general 

orientation of the crack damage part on the overall structure of 

the steel trestle.

To verify its feasibility without destroying the structure, real 

existing cracks from other sources were detected and segmented 

using region division and improvement DeepLab V3+, as shown in 

Fig. 12. The camera system can save a lot of computing resources 

through region division and Canny edge detection algorithm. Then 

the improved DeepLab V3+ model was used to efficiently identify 

cracks on the trestle surface. Finally, the SURF algorithm and the 

Hilbet-Peano space filling curve were used to determine the 

approximate location of the crack region globally.

In this simulation, a Nikon D90 camera (the camera imaging 

resolution in this manuscript is 3216*2136 pixels) is used to 

simulate the work of a consumer-grade camera. The camera was 

arranged on a vertical line which is 5 meters away from the 

trestle, and is fixed on a 1.8-meter-high bracket to simulate the 

working state of the camera. In the simulation, a whole section of 

trestle is taken as an example (the actual project is made up of 28 

sections of this structure, the total span of the truss in this type of 

bid section is 20 meters, the height is 2.5 meters, and the 

transverse section size of the truss is 4.9 meters. The rods were 

made of Q345B hollow steel pipes). The camera rotates to take 

images sequentially from one end of the trestle to the other. For 

each acquired image, the curve as shown in Fig. 11 is used to 

scan, and each order curve represents a different scanning precision. 

A schematic diagram of the camera's shooting direction and 

Fig. 10. Hilbert Space Filling Curve when n = 1,2,3: (a) n = 1, (b) n = 2, 
(c) n = 3

Fig. 11. The Panorama Stitching Process Based on SURF Matching: (a) The
Diagram of the Path and Imaging Locations, (b) The Location 
Procedure of Patches

Fig. 12. The Detection-Segmentation for Local Crack Monitoring

Fig. 13. Schematic Diagram of Camera Shooting Direction and Layout
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arrangement is shown in Fig. 13. The simulation was choosing a 

position 8 meters away from the trestle on the vertical line of it. 

The data that identified the smallest crack on the surface of the 

trestle structure were about 3 mm wide and 6 to 7 cm long. In this 

recognition result, the camera resolution was set to 3216*2136 

pixels in order to simulate the imaging effect of a consumer-

grade camera, and the lighting condition is light haze during the 

day.

5. Discussion

It is worth noting that the method proposed in this paper is to 

meet the production and monitoring requirements of enterprises. 

This method is the SHM system used in conjunction with the 

new steel trestle in service at the same time. The SHM of the key 

stress parts of the steel trestle can be realized at a relatively low 

cost. Meanwhile, the SHM system has the monitoring characteristics 

of unmanned automation, full life cycle, and long-term uninterrupted. 

Therefore, the CV method for relatively inexpensive consumer-

grade camera systems was chosen. The DL-based CV method 

used in this study was designed to automatically and quickly 

identify cracks on the surface of steel trestles. Therefore, based 

on the method in this study, the cracks of the trestles can be 

detected more accurately by other measures (e.g., ultrasonic 

inspection). Ultrasonic inspection is also one of the most widely 

used crack damage identification methods. It has many advantages, 

for example, ultrasonic inspection can judge the damage degree 

of cracks, and can find cracks inside the structure. The DL-based 

CV method can make a quick judgement on whether the crack 

occurs, and its application is more flexible. Therefore, the 

combination of DL-based CV method and ultrasonic inspection 

can further improve the accuracy of crack identification on the 

trestle surface, which will be a very valuable research direction 

in the future. The characteristics of the DL-based CV method 

and the ultrasonic inspection in the task of identifying surface 

cracks on steel trestle are compared as shown in Table 3.

In general, traditional SHM methods, such as ultrasonic 

inspection, have better accuracy in structural damage detection, 

and can find possible damage inside the structure and judge the 

damage degree of the structure. However, due to the particularity 

of the trestle structure and service environment, the detection 

method of the traditional SHM method is often limited when 

dealing with the steel trestle in this study. It led to inconvenient 

inspections or the results of inspections were interrupted, which 

can affect the productivity of enterprises using trestles. The 

ensemble SHM method proposed in this study, according to the 

structure and service characteristics of the steel trestle, can 

automate the long-term uninterrupted SHM of the steel trestle at 

a lower cost. The deployment of this method is more flexible, 

and it can quickly and effectively determine whether there is a 

crack on the surface of the steel trestle and perform preliminary 

positioning, but the judgement of the degree of crack damage is 

currently not as accurate as the traditional SHM method. If the 

method in this study is combined with the traditional SHM 

method, the SHM of the steel trestle can be better performed. 

And the advantages are embodied in taking into account the 

speed, convenience and accuracy of monitoring tasks at the same 

time. This will have good research and application prospects in 

the future.

6. Conclusions

Aiming at various limitations of the service environment of steel 

structure trestle, a SHM system based on consumer-grade cameras 

can be used to effectively conduct long-term, stable and efficient 

SHM of steel trestle structure, which reduced monitoring costs. 

Small cracks on its surface can be identified autonomously and 

without contact, which improves the monitoring accuracy. At the 

same time, the approximate orientation of the crack on the whole 

structure was located, and the automatic SHM of the trestle 

structure was realized. The main conclusions are as follows:

1. By introducing the Canny boundary detection algorithm to 

Table 3. Comparison of Characteristics between DL-Based CV Method and Ultrasonic Inspection

DL-based CV crack detection Ultrasonic inspection-based crack detection

1 In order to prevent the observation blind spots, it is reason-

able to equip each section of the trestle with three cameras to 

monitor the key stress parts in real time (the coverage area of 

a single camera is about 25 m long and 3 m high).

The actual structure of the trestle is larger and more complicated. It is nec-

essary to arrange the appropriate number and position of ultrasonic 

inspection probes according to the actual situation.

2

The non-contact automatic preliminary identification of the 

surface cracks in the key stress parts of the trestle can quickly 

and easily determine whether there are cracks on the surface 

of the structure.

Contact inspection with an ultrasonic inspection probe enables precise and 

efficient identification of cracks inside the trestle.

3

It can perform non-contact automatic long-term uninterrupted 

SHM in the working state of the trestle.

When a crack occurs in the trestle, it is necessary to suspend the work of 

the conveyor belt in the trestle, eliminate the interference of vibration, and 

then accurately inspect and identify the cracked part.

4

The devices involved in the DL-based CV method are all low-

priced consumer-grade devices that can perform SHM on the tres-

tle at a low cost. At the same time, the system can also be used for 

multi-purpose applications (such as security monitoring).

More professional equipment is required, and the price of the equipment 

will vary greatly according to the detection range and accuracy of the 

probe. Appropriate ultrasonic inspection equipment should be selected 

according to the characteristics of the actual structure.



1164 C. Xiong et al.
extract the image of the steel structure trestle, it can 

effectively improve the efficiency of the subsequent algorithm

for image processing, and improve the accuracy of the 

subsequent algorithm recognition.

2. As to each section of the steel structure trestle image, it is 

divided into areas of suitable size, and each area was focused 

and zoomed by camera to perform crack pixel segmentation.

Distant regions can be identified for cracks without loss of 

pixel resolution. Compared with the traditional manual 

structural defect inspection method, the efficiency and 

accuracy of crack identification are significantly improved. 

At the same time, the size of each trestle structure is not 

very huge, and there are not many areas divided by the 

image. Therefore, the efficiency of crack identification by 

region-by-region magnification is higher than that of object 

detection algorithms.

3. An improved pixel-level semantic segmentation algorithm 

was proposed, which can effectively identify the surface 

cracks of steel structures. A global dataset and a local dataset 

were constructed by data augmentation, and a total of 10 

DeepLab V3+ networks built with ResNet18 as the backbone 

were trained using these two datasets. The 10 DeepLab 

V3+ networks were divided into two weak classifiers, so 

that the algorithm took into account both global and local 

search capabilities. The introduction improved the performance 

of the original network with a small increase in the amount of 

parameters and training time, so that the network model can 

better complete the task of crack pixel segmentation, and it can 

run well on consumer-grade computer equipment. At the same 

time, the difficulty of training a single complex model was 

avoided and time cost was reduced. 

4. During the service process of the trestle structure, the 

problem of shallow corrosion will inevitably occur, and 

the crack identification of the trestle will be affected by 

the shallow corrosion, which will cause interference. The 

parallel attention mechanism was introduced to effectively 

distinguish the shallow corrosion interference, so as to 

more accurately identify the more dangerous crack damage, 

and further improve the SHM accuracy of the trestle.

5. Using SURF matching and setting an iterative scan path for 

the stitching of the structural panorama. The location of 

crack damage can be roughly located on the overall steel 

trestle structure. It provided a practical reference method 

for continuous SHM by using consumer-grade cameras.
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