KSCE Journal of Civil Engineering (2023) 27(3):1150-1165

DOI 10.1007/512205-023-0522-1

pISSN 1226-7988, elSSN 1976-3808
www.springer.com/12205

Structural Engineering )

Check for
updates

Detection and Location of Steel Structure Trestle Surface Cracks Based on
Consumer-grade Camera System

Chunbao Xiong’, Sida Lian“'?, and Wen Chen" *"

2School of Civil Engineering, Tianjin University, Tianjin 300072, China
®College of Science and Technology, Agriculture University of Hebei, Baoding 071001, China

ARTICLE HISTORY

ABSTRACT

Received 31 March 2022

Revised 27 June 2022

Accepted 7 December 2022
Published Online 21 January 2023

KEYWORDS

Structural damage identification
Semantic segmentation

Crack localization

Computer vision

Steel structure trestle

Because the steel structure trestle has been in service under heavy load for a long time, the
steel structure trestle is prone to cracks around the welds or bolt holes, which can lead to
structural collapse in severe cases. Aiming at the characteristics of stable and high-quality
images obtained by the unmanned consumer-grade camera monitoring system, this paper
proposed structure health monitoring (SHM) system which is based on consumer-grade
camera. The SHM system can identify crack damage and locate steadily in long term, which
provides the technical support of practical application in intelligent SHM system. The method
first performed edge detection on the trestle structure, followed by pixel-level semantic
segmentation and crack localization. Canny edge detection algorithm was used to identify
trestle structures in the camera image. The panorama trestle structure was divided into areas
of suitable size, and the camera focused on each divided area one by one. Then the improved
Deeplab V3+ model was trained by constructing global and local datasets. Then the
improved Deeplab V3+ model was used to perform pixel-level semantic segmentation on
the trestle images of the divided regions. Finally, based on the Speeded Up Robust Features
and combined with the image, a panorama crack location output method was proposed. The
system was used to test a section of a trestle in a coal mining industrial park, and the system
showed that the method could efficiently and accurately identify and locate the crack
damage.

1. Introduction

to carry out SHM on steel structure trestle. In recent years, with
the increase in the service life of civil engineering and construction

Because of its advantages of light weight and large payload
capacity, the steel structure trestle has been widely used in various
industrial parks, especially the mining industry. Being worked in
a harsh environment, the steel structure trestle has also been in
service under heavy load conditions for a long time. At the same
time, since it is often used for long-distance load transmission,
the excessively long structure length also makes it difficult to
maintain the trestle structure, which brings a great burden to
manual visual inspection. In summary, steel structure trestle is
prone to cracks during long-term service, especially at the bolt
joints and weld locations where the force is concentrated. These
cracks adversely affect the safety and structural life of steel
structure trestle. If these cracks cannot be discovered and dealt
with in time when the cracks become worse, it will eventually
cause great loss of lives and properties. Therefore, it is necessary

and the improvement of people's safety awareness, SHM has
attracted attention in a growing number. Through real-time
monitoring of structure response and service status, the current
status of the structure can be quantitatively evaluated. SHM can
realize real-time continuous observation of the service status of
the structure, thereby improving the safety and reliability of the
service, and reducing the cost of maintenance and inspection of
the structure (Li et al., 2016; Dizaji et al., 2021; Ngeljaratan et
al., 2021).

At present, the crack damage identification of civil engineering
buildings such as steel structures mainly relies on manual visual
inspection. This detection method also requires the detection
workers to have relevant knowledge. Moreover, it’s a subjective
traditional method relying on the empiricism (Li et al., 2016).
This method depends on manual visual inspection, when it is
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difficult for construction workers to operate or they are reluctant
to work on the structures, it will cause omission of detail cracks.
This will make the test results incomplete and cause safety
hazards. At the same time, this method poses hidden dangers to
the life safety of workers and results in low efficiency and high
cost (Samantaray et al., 2018).

As the computer technology and deep learning (DL) algorithms
continuously develop in recent years, research on intelligent
algorithms has once again become a hot issue. The development
of computer hardware effectively supports the powerful computing
power required by the algorithm. At the same time, the algorithm
is constantly updated and improved, gradually improving many
of its own shortcomings. Computer vision (CV) technology has
been recognized as a key method for improving and developing
civil engineering structure detection and monitoring technology
recently. To a certain extent, it can allow computers to replace the
human to perform damage detection for structures. Image processing
methods based on CV have begun to be used in the recognition
of local damage in steel structures. A large number of scholars
have done a lot of research on the application of CV technology
to SHM, Je-Keun Oh a et al. proposed a robot vision system for
checking the safety status of bridges, which can automatically
photograph and monitor the safety of bridge deck structures
through robots (Oh et al., 2009). Lim et al. proposed a crack
detection system that used the Laplacian of Gaussian (LoG)
algorithm to detect cracks, and obtained a global crack map
through camera calibration and robot positioning (Lim et al.,
2014). Prasanna et al. proposed a novel automatic crack detection
algorithm STRUM (Spatially Adjusted Robust Multiple Features)
classifier, and demonstrated the results of real bridge data using
the latest robotic bridge scanning system (Prasanna et al., 2016).
Prasanna et al. proposed a CV algorithm in terms of the damage
characteristics of cracks and spalls (Jahanshahi et al., 2016). A
Miyamoto proposed an automatic bridge SHM system that
combined information and communication technology to manage
the life cycle of existing short and medium span bridges (Miyamoto
et al., 2019). Yang et al. proposed an explicit modeling and they
used data structures to solve structural dynamics problems, on
which real-time structural safety is monitored through video
(Nagarajaiah and Yang, 2017). The above classic CV studies
depend on images taken under ideal conditions, with less interference
around the damage and better recognition of obvious cracks in
the image, but their recognition effect is relatively limited under
complex shooting environments. It is easy to be disturbed by the
complicated background, so that the location of the crack cannot
be accurately identified, or all pixel features of cracks cannot be
extracted completely.

Thanks to the robust development of DL algorithms in recent
years, many advanced algorithms based on DL have been proposed
in the field of CV. Convolutional neural network (CNN) and DL
algorithm have been gradually applied by many scholars in the
field of civil engineering SHM due to their wide applicability
(Simonyan and Zisserman, 2014; Lecun et al., 2015; Wu et al.,
2017). For example, Hoskere et al. introduced a novel engineering

application of SHM in a new type of civil infrastructure. The
method set a new binomial loss function to improve the accuracy
of the training network and used Monte Carlo to convey the
uncertainty of the model (Spencer et al., 2019). Rafiei et al.
collected environmental vibration response of the structure by
the sensor to evaluate the global and local health status of the
structure system (Rafiei and Adeli, 2018). The model combines
synchronously compressed wavelet transform, fast Fourier transform
and unsupervised deep Boltzmann machine. Bao et al. proposed a
random decrement technique which allows estimation of modal
parameters without directly measuring input, and applied this
technique to structural modal analysis and SHM (Bao et al.,
2019). DF Karypidis et al. used a distributed optical fiber system
to monitor the strain distribution along the steel bar, based on the
analysis of the natural frequency of data obtained from the
accelerometer (Karypidis et al., 2019). The preliminary results of
the study show that the semi-supervised Deep Auto-encoder
algorithm (DAE) can successfully quantify the failure of transverse
cracks in reinforced concrete beams subjected to three-point
loads. Nahata et al. proposed an autonomous damage detection
model based on CNN. Under the application of the VGG16
transfer learning model, the best results are obtained with a
learning rate of le-5, and the final training accuracy reached
97.85% and 89.38% (Nahata et al., 2019). Han et al. achieved
good application results in cracks identification and location of a
large steel structure by the images obtained by UAV simulated
inspection, which provided a good reference for engineering
applications (Han et al., 2022). Zhang et al. systematically
summarizes the recent research and application of DL-based CV
technology in the field of damage detection, and discusses the
problems that need to be solved and future research directions
(Zhang et al., 2022). In addition, many scholars applies CV
technology to structural damage recognition in various directions,
and achieves obvious application effects (Cha et al., 2018; Rubio
etal., 2019; Sen et al., 2019; Yeum et al., 2019; Le et al., 2021).

However, the rapid development of many CV theories has not
effectively promoted their practical engineering applications, and
there is still a large gap between them. The surface cracks of the
structure are difficult to detect in time by manual visual inspection.
With the development of consumer-grade camera technology,
the cost is low and the image quality is getting better and better.
It can obtain images stably and clearly, and at the same time, the
remote control rotation technology which means making the
camera rotate horizontally by remote control, so that a single
camera can monitor the structure of a large area. Camera monitoring
can carry out long-term and real-time SHM of civil engineering
structures in a large area under the premise of a small number of
cameras. It is especially suitable for the steel structure trestle
whose structural length is often too long, which can effectively
reduce the monitoring cost and improve the efficiency and
accuracy.

Most of the current research is aimed at materials with relatively
uniform color distribution, such as asphalt, concrete and other
materials with large cracks (Bao et al., 2019; Jesus et al., 2019;
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Hoskere et al., 2020; Shahbaznia et al., 2020; Sun et al., 2020;
Han et al., 2021; Wan et al., 2022). Some progresses are made in
crack damage identification of steel structure (Dorafshan et al.,
2018; Yang et al., 2018; Dung et al., 2019; Dong et al., 2021),
however these researches rarely considered the practical application
in civil engineering of steel trestle structure SHM on which is
focused in this study. Therefore, this paper proposed a DL-based
CV integration method to perform real-time long-term SHM on
trestle structures. Steel structure trestle is mostly used in coal
mining transportation, industrial raw material transportation and
other industrial parks. The service scene where the trestle structure is
located (mostly used in mountain mining areas or the trestle is
built high) is not conducive to the arrangement of sensors. The
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Fig. 1. Camera-Based SHM Process of Trestle Structure

no-fly zone of the industrial park cannot use drones for SHM,
and the overly long structure is also not conducive to regular
manual inspections. According to the characteristics of the trestle
service environment, this paper proposed a trestle SHM method
with low cost, simple operation and automatic performance. The
integrated method can quickly and automatically perform long-
term and uninterrupted SHM on the surface cracks of the trestle
structure in real time without relying on the arrangement of a
large number of sensors. The DL-based CV ensemble method in
this paper uses a consumer-grade camera system to perform
long-term SHM for the entire life cycle of the trestle structure,
avoiding inconvenient regular inspections and low cost. It can
detect the surface cracks at the concentrated stress of the trestle
structure in the early stage of damage to the greatest extent. The
set of SHM systems considered how to identify the tiny cracks in
the distance, as well as how to prevent interference of rust
background to crack identification. The camera monitoring
system proposed in this paper provided a technical reference for
the application of intelligent SHM of steel trestle structure. The
system first used the Canny edge detection algorithm to extract
the structural boundary of the partial image obtained by the
camera. The image within the boundary of the trestle structure
was the only focus, the extracted structural image was divided
into several small areas of appropriate size, and then the camera
focused on the small areas one by one. 10 improved DeepLabv3+
models were trained by using two datasets, global and local
datasets, and after training these models operate joint decision-
making. The model was built on the backbone of ResNet18, and
a parallel channel attention mechanism was introduced, which
effectively eliminated confounding factors such as rust and
welds. The improved CV algorithm can perform pixel-level
semantic segmentation of cracks more efficiently and accurately.
Finally, SURF-based panoramic image stitching and path iterative
scanning were used to locate cracks and the approximate
location of cracks on the steel structure trestle. This set of SHM
systems has been experimentally verified on a long-term service
steel structure trestle. The flow chart of SHM of steel trestle
structure by using the camera system is as follows.

2. Crack Identification Operation Process

2.1 Panorama Preprocessing

The edge of the trestle structure is extracted by using the Canny
algorithm. The Canny edge detection algorithm is a multi-level
edge detection algorithm. In general, the purpose of edge detection
is to significantly reduce the data size of the image while
preserving the original image properties. The Canny algorithm is
a standard algorithm for edge detection and is still widely used in
research.

Firstly, Gaussian filtering was used to remove background
interference with fast changing frequency, and then Canny
algorithm was used to identify the trestle structure area. It can be
seen from Fig. 2 that after the above operations, the Canny
algorithm can identify the boundary of the trestle structure. After
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(b)

Fig. 2. Division of Trestle Panoramic Image: (a) Image Extraction within the Boundary of the Trestle Structure, (b) Image Area Division Method

the panoramic edge of the trestle structure is extracted, only
focusing on the image within the boundary of the target structure, it
is divided into small images of suitable size, which is convenient
for further processing by the CV algorithm. For the trestle structure
in this paper, the area division method is shown in Fig. 2. The
specific division method was based on the size of the monitored
trestle structure, the distance between the camera and the
connecting structure, and the pixel details of the obtained image.
The structure division method will be different according to
different scales. For example, super-pixel segmentation and other
methods should be used for larger structures. However, the
trestle structure in this study is not very large, and it is more
efficient to directly divide the area for crack identification.
Specifically, as shown in Fig. 2, each section of the trestle is
divided into 3 major sections, and each section is subdivided into
4 to 64 uniform areas (the specific division size is determined by
the monitoring accuracy).

Compared with the overall structure of the trestle, the cracks
may be very small. At present, in the application of crack
identification and location engineering for large and complex
structures, in order to identify cracks in distant images, some
clustering analysis algorithms are often used to divide the
panoramic image into several small areas, such as super-pixel
segmentation. Object detection methods are then used on these
small areas to identify small areas where cracks may exist.
However, this operation will increase the complexity of identifying
preprocessing of the cracks and increase the computational cost.
In the engineering application of this manuscript, since the
camera is far away from the crack during panoramic photography,

the crack damage is small, and the tested object detection method
cannot detect the possible crack area. At the same time, each
section of the steel structure trestle is not very huge, and the
number of small areas divided by the panorama is relatively
small.

Therefore, this paper directly zooms in and focused on each
area after dividing the panorama area, and used the improved
DeepLab V3+ model below to perform pixel-level semantic
segmentation for this area to identify cracks. After testing, this
operation allowed the algorithm to reduce the complexity of
image preprocessing when identifying cracks. Under the premise
of meeting the accuracy required for crack identification, it saved
the calculation cost, and improved the efficiency of the algorithm
for crack identification of trestles.

2.2 Improved Image Semantic Segmentation Algorithm

In actual engineering applications, the dataset is not very large.
Therefore, this paper introduced the transfer learning strategy
(Bao et al., 2019), and used the parameters of the machine
learning model that has been initially trained as the initialization
parameters of this research. The DeepLab V3+ (Zhang et al.,
2021) model is built on the basis of the ResNet-18 (He et al.,
2016) model, and based on this, the pixel-level segmentation of
the cracks in the stress concentration of the steel truss structure
was carried out. Most of the crack pictures which used in this
paper are actual shots of a steel trestle structure that has been in
service for many years. It is of great practical significance to
simulate the long-term monitoring environment of the camera.
After long-term service of the trestle structure, a large amount of
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shallow rust appeared on the surface, which caused great interference
in the identification of cracks. Therefore, it is necessary to
effectively eliminate these interferences when identifying the
cracks in the structure. At the same time, the total number of
crack-like pixels is very low compared with the number of
background pixels. How to effectively extract these pixels also
remains as an important issue.

If the training target is a complex network, firstly it will cause
too long training time, and the computing power of computer
hardware in engineering applications will be difficult to meet the
requirements of complex networks. Secondly, the project instance
dataset is relatively small, and the complex network is likely to
be difficult to converge. To sum up, in view of the structural
characteristics of the long-term service steel trestle and the actual
requirements of engineering applications, this paper introduced a
set of two weak classifiers to carry out collaborative learning and
training, and achieve joint decision-making. The two classifiers
performed global and local image learning and training respectively,
so that the semantic segmentation algorithm can more accurately
identify the crack damage of the steel trestle in the image.

In order to further eliminate the influence of the shallow
corrosion around the cracks of the steel trestle structure, an
improved parallel channel attention mechanism was introduced.
It is based on the channel attention mechanism SE module (Qi et
al., 2021). Thanks to the above operation, the convolutional
neural network can learn the feature relationship in the channel
dimension and record the fuzzy features of the feature map. By
learning the feature information of the channel dimension in the
network, the performance of image segmentation in complex
scenes was improved, and the problem of automatic semantic
segmentation of complex images was solved.

2.2.1 ResNet Model

With continuous deep research on neural networks, breakthroughs
have been made in performance of deep convolutional networks.
An increasing number of scholars use deep convolutional networks
to solve image classification tasks. The deep convolutional network
further forms a multi-level image feature fusion with multi-layer
end-to-end training and learning, and the number of features can
also be strengthened by continuous superposition. The puzzle of
image segmentation in related fields can be better solved by deep
convolutional networks, which illustrates the importance of deep
convolutional networks. However, too many network layers will
reduce the training efficiency of the network, and an overly
complex network structure will greatly increase the demand for
computing power. In severe cases, the gradient will disappear,
and the algorithm will eventually fail to converge, but part of the
convergence problem can be solved by regularization. What's
more, the deep convolutional network still has the problem of
network degradation. As the number of network layers increases,
which means the depth increases, the accuracy of network
training and verification no longer improves or even decreases.
This is because excessive network layers will continuously lead
to increased training error of the network. If a deep convolutional

identity

Fig. 3. Network Structure (He et al., 2016)

network is built based on a shallow network, all the training error
of the deep network should be equal to that of the shallow
network in this case when all the later added layers will be the
same as the previous added layer. Therefore, the degradation
problem of deep convolutional networks can be addresses by
optimizing the network construction. In 2015, in order to solve
the problem of deep network optimization, Kaiming et al. proposed
the Deep residual networks (ResNet) (He et al., 2016). In the
deep residual networks (ResNet) instead of letting the network
directly fit the original mapping, it fit the residual mapping. After
that, many scholars built networks such as ResNet50 and ResNet101
to solve the puzzles in the fields of image detection and classification,
and achieved great application effects (Ahmed et al., 2020; Zhang et
al., 2022). A simple identity mapping was realized by jumping
connection, that is, by optimizing F(x), such that F(x) — 0, so that x
— F(x) + x — x, and finally reaching an identity mapping
relationship. The network structure of ResNet is shown in Fig. 3.

2.2.2 Deeplab V3+ Model Training

DeepLab (Lin et al., 2013) is a model proposed by Google that
combines the advantages of deep convolutional networks (DCNNs)
and traditional probabilistic graph models to obtain better
classification processing results. DeepLab introduces atrous
convolution and atrous spatial pyramid pooling (ASPP) structures.
This improvement can effectively solve the problems of too
small perception fields and reducing the details of the picture by
down sampling. Atrous convolution obtains different receptive
fields through different dilation rate parameter settings, in another
words, it obtains multi-scale information, which plays an important
role in visual tasks. Therefore, cavity convolution can expand the
receptive field arbitrarily without introducing additional parameters.
Nowadays many scholars have introduced cavity convolution
into semantic segmentation research.

With continuous efforts, DeepLab semantic segmentation series
models have successively launched DeepLab V1, DeepLab V2,
DeepLab V3. Among them, DeepLab V3+ belongs to its latest
model structure. DeepLab V3+ retains the original atrous convolution
and ASSP layer communication, in addition to implements
image multi-scale information fusion by introducing an encoder
and decoder (encoder-decoder) structure. Using the Xception
model as its basic network ensures the computational efficiency
and robustness in processing image semantic segmentation
problems. Outstanding application results have been achieved in
many research fields.
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2.2.3 Joint Decision-Making under Collaborative
Learning
In practical engineering applications, because of being restricted
by non-open engineering data, the data set cannot be too large,
and the computer performance is also limited accordingly. Thus
it is difficult to learn and train a relatively complex network. The
above unfavorable factors can easily lead to the unsatisfactory
training effect of the complex network, and the algorithm is
prone to non-convergence. Therefore, this study formed a strong
classifier by combining several weak classifiers into a cluster.
Because of the complex structure of the neural network for
image semantic segmentation, the numerous parameters and the
complex training process, it has high requirements for hardware
equipment. Therefore, serial training methods were used in the
process of training weak classifiers, so that they can run better on
computers with lower performance. The clusters of these serially
trained weak classifiers were used to make joint decisions to
reduce the need for computer hardware in practical engineering
applications. At the same time, it can better solve practical
engineering application problems, and perform precise semantic
segmentation for cracks in the steel truss structure. What’s more,
when training each individual weak classifier, it is noticed that
many background pixels will be included in the pixels whose
output labels are cracks, which will cause the poor recognition.
Based on the above description, the specific operation of the
weak classifier cluster constructed in this study is as follows.
Firstly, the Stacking collaborative learning framework was
introduced to train a model for combining various weak classifiers.
In other words, multiple models were trained, and the output
obtained from the previous training of each model was used as
the input again to train a new model, and finally an output is
obtained. Secondly, a new image training set was constructed
through different random sampling methods for an image data
set, and then the different weak classifiers are obtained. This
operation is similar to the uniform sampling strategy with
replacement in the Bagging method. In order to reduce the

(a) (b)

©

volume of the algorithm and lightweight the algorithm, the
weight calculation method of each classifier also adopted the
weight calculation method in the Bagging method, that is, the
weight of each weak classifier is equal. This is conducive to the
learning and training of the classifier cluster and will not affect
the final semantic segmentation effect too much. Finally, referring to
the training process of the Boosting method, and each weak
classifier is generated.

The dataset setting was improved based on the above ideas.
Firstly, in order to enhance the global search capability, a Global
Dataset was prepared. 150 crack images of the steel trestle structure
taken on the spot (ie the initial dataset) were used to perform data
enhancement operations, randomly crop, color jitter and they
were rotated, finally the initial dataset was expanded to 4,500
sheets. Fig. 4 shows a part of the Global Dataset. The floating
range of the zoom factor is [0.8, 1.5], and the floating range of
horizontal reflection and rotation is [-30, 30]. Secondly, in order
to enhance the recognition accuracy of structural cracks and
strengthen local search capabilities, Local Dataset was prepared.
The floating rectangular window was used to pre-identify and
cut out the crack concentrated areas in the image, and the
floating rectangular window was used to pre-identify and cut out
the crack concentrated areas in the image, and the data that
adopted Global Dataset was used to enhance operation to expand
the dataset to 4500 sheets. Fig. 5 shows part of the Local Dataset.
The pixel sizes of the above two dataset images were uniformly
divided into 960*720.

According to the above two improved datasets and network
training methods, a total of 10 weak classifiers were trained.
Among them, a total of 5 weak classifiers numbered Global 1 to
Global 5 were trained using the Global Dataset, and they were
combined into a weak classifier cluster, aiming to perform a
global search on the image. The remaining 5 weak classifiers,
numbered Local 1 to Local 5, were trained using Local Dataset,
aiming to enhance the local search capability of images.

Semantic segmentation was performed on the damage image

ro~
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Fig. 4. Schematic Diagram of the Global Dataset: (a) Example 1 of Global Crack Image, (b) Example 2 oF Global Crack Image, (c) Example 3 of
Global Crack Image, (d) Example 4 of Global Crack Image, (e) Example 5 of Global Crack Image, (f) Example 6 of Global Crack Image
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Fig. 5. Schematic Diagram of Local Dataset: (a) Example 1 of Local Crack Image, (b) Example 2 of Local Crack Image, (c) Example 3 of Local Crack
Image, (d) Example 4 of Local Crack Image, (e) Example 5 of Local Crack Image, (f) Example 6 of Local Crack Image
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of the steel structure trestle through the following two steps.

In the first step, Global 1 to Global 5 were designed to enhance
the global search capability of the network. By taking the intersection
of the results of Global 1 to Global 5, the crack concentrated
areas in the image were divided and cropped.

The second step, Local 1 to Local 5 were used to perform
pixel-level segmentation on the cropped image, identify and
extract the pixel to which the crack belongs.

The location of the crack was extracted through two Global
Datasets training, and then the crack pixel-level semantic
segmentation of the Local Dataset was performed through the
weak classifier to achieve the pixel identification and extraction
of the crack. In this way, it can take both local and global search
capabilities into account, so it better located and extracted cracks.
Besides, it also improved the accuracy of semantic segmentation,
and reduced training time. Moreover, computing efficiency was
increased and hardware requirements were reduced.

2.2.4 Parallel Channel Attention Mechanism

After a certain period of service of the steel structure trestle, a
certain area of shallow rust will appear on the surface of the
structure. If the shallow rust appears around the crack, it will
probably affect the automatic recognition of the crack by the
semantic segmentation algorithm, and the shallow rust will also
be misjudged as the crack area. In order to further improve the
algorithm's recognition accuracy of cracks in a complex image
environment, this paper further introduced the parallel channel
attention mechanism on the basis of the above-mentioned
improvement measures. It aims to further improve the accuracy
of the algorithm in identifying cracks, and can effectively eliminate
the adverse effects of shallow corrosion around the cracks.

The Squeeze-and-Excitation (SE) module specifically includes a
two-step process of compression and excitation. The compression
operation uses a global average pooling (GAP) operation to get
the global features of the previous feature map in the channel
dimension. The specific operation can be expressed by the following
formula.

Z=F,(x)= ﬁz LS x (i) )

Among them, Z represents the output after the compression
process, which means the real number matrix output after the
channel dimension is globally averaged and pooled. F, represents
the compression function used in the compression process,
which means the GAP function. x represents a collection of two-
dimensional feature maps of spatial information dimensions. 4
and w respectively represent the two spatial information dimensions
of the height and width of the feature map.

After the compression process, the SE module learns the
importance of global features in each channel after GAP through
the excitation process. This process generally consists of a fully
connected layer, a ReLU activation function, a fully connected
layer and a Sigmoid activation function. Through the two-layer
fully connected bottleneck structure, the weight of each channel

in the feature map is obtained, and the weighted feature map is
used as the input of the next layer of the network. The above
process can be expressed by the following formula.

S=F.(Z,W) = o(W,8(W,Z)) @

Among them, S is the output of the excitation process. The
excitation function is denoted by F,,, and Z is the real number
matrix combination output after the channel dimension is
globally averaged and pooled. ¢ and ¢ represent the activation
function Sigmoid and the activation function ReLLU, respectively.
W, represents the first fully connected layer weight value set

with the dimension € x ¢ , W, represents the second fully connected
r
layer weight value set with the dimension ¢ x < , and 7 represents
r

the dimensionality reduction coefficient. By introducing the
dimensionality reduction coefficient, the number of parameters
of the SE module can be effectively reduced, and the occurrence
of over-fitting can also be prevented to a certain extent.

The last step is to re-calibrate the features. The input feature
map is multiplied before the SE module with the output value
after the excitation process, and then the output x after the SE
module can be obtained. The process of feature re-calibration
can be expressed by the following formula.

X=5-X 3)

The process of re-calibrating the eigenvalues is actually to assign
weighted values to multiple maps obtained in the convolutional
network. The feature re-calibration process will not make the
performance of the convolutional network worse. The worst case
of the process is to directly map the feature map of the previous
layer to the next convolution kernel. Therefore, after introducing
the channel attention mechanism, even if the semantic segmentation
performance of the convolutional network cannot be improved, it
will not adversely affect the semantic segmentation performance of
the network.

Based on the above process steps, the output obtained through
the SE module can be expressed by the following formula.

Xop = G{Wzé‘linﬁZ?12‘,‘»1'1)6(1',]"):]})6 )

As mentioned above, the SE module only considers the use of
global average pooling in the process of compression, excitation
and feature re-calibration to reduce the variance of the estimated
value caused by the reduction of high-level features (Lin et al.,
2013). Therefore, the SE module is not ideal for the semantic
segmentation of small objects and image textures. Aiming at the
deficiencies of the SE module, in order to effectively identify the
cracks of the steel structure trestle and reduce the impact of
shallow corrosion on the segmentation effect, this paper introduced
the Parallel Channel Attention Mechanism (PCAM) on the basis
of the SE module. To put it simply, a global max pooling (GMP)
compression operation is connected in parallel on the SE module,
which worked together with the global tie pooling compression
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operation. Therefore, when extracting high-level features, the
estimated value deviation caused by the convolutional network
parameters can be reduced, so that the network can better perform
accurate semantic segmentation of small targets and image texture
information.

One process of the parallel channel attention mechanism is
the same as the SE module, that is, the output x; is obtained
through the process described above. It can be expressed by the
following formula.

-;CPCAMl = ;CSE Q)

On this basis, another path is connected in parallel, and the
second path compression operation uses the global maximum
pooling to replace the global average pooling in the SE module,
and the rest of the process is the same as the operation in the SE
module. The real number matrix m output by the global maximum
pooling can be expressed by the following formula.

m = max{x(i,j)} (6)

W; and W, are the weight sets of the two fully connected
layers in the global maximum pooling channel respectively, and
the dimensions of the two fully connected layers are the same.
The final output of the global maximum pooling operation of the
PCAM can be expressed by the following formula.

;CPCAMz = o W,o(Ws5-max{x(i,j)})]x 7

In summary of the above steps, the output process of the PCAM
can be summarized as the following formula.

h w

~ ~ ~ 1 .
Xpcam = Xpcar T Xpea = 0'{ W25{W1mz ZX(Z,J)i|}x 8)

i=1j=1

+ o[ W,8(W;-max{x(i,j)})]x

The output result of the PCAM is processed by the batch
normalizing (BN), which effectively prevents the gradient from
disappearing, speeds up the training and learning efficiency of
the network, and to a certain extent also prevents unfavorable
factors such as over-fitting (Liang et al., 2021). The schematic
diagram of the parallel channel attention mechanism is shown in
Fig. 6.

Based on the above improvement measures, the flow chart of
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:
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Fig. 7. Improved Semantic Segmentation Algorithm Flow Chart

the proposed improved semantic segmentation algorithm is
shown in Fig. 7.

2.3 Crack Identification Results and Analysis

2.3.1 Dataset Establishment

The datasets used in the training of weak classifiers in this study
are all shots of a steel trestle structure engineering site that has
been in service for many years. The shooting environment simulates
consumer-grade camera monitoring, and a total of 150 images of

Global Average Pooling FC ReLU FC Sigmoid
I1x1xe¢ lx]xf Ixlxc 1x1xc¢ 1xlxe¢ Epear = Xsp
r ~
X X
—_ i HN.
HxWxC HxWxC
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r

Fig. 6. Schematic Diagram of Parallel Channel Attention Mechanism
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cracks in the steel structure trestle were taken. The dataset is
expanded to 4500 sheets by the data enhancement method described
in above, which becomes a Global Dataset. Among them, 65%
was used as the training dataset, 20% was used as the verification
dataset, and the remaining 15% was used as the test dataset. And
the cut out of the crack concentration was used to form a Local
Dataset, and the Global Dataset and the Local Dataset were used
to train the network. The image size of the above two datasets is
set to 960*720.

2.3.2 Experimental Parameter Settings
This study is based on Matlab 2020a to train the DeepLab V3+
model. The computer hardware parameters used are as follows:
CPU: Intel(R) Core(TM)i7-9750H CPU @ 2.70 GHz, RAM:
64.0 GB, GPU: NVIDIA GeForce GTX 2080.

The enhanced data was used set to train the DeepLab V3+
network. The training parameter settings of a single weak classifier
are shown in the following table.

2.3.3 Evaluation Index

The essence of semantic segmentation task is classification task.
It's just that the object of the conventional classification task is
the object in the image, and the object of the semantic segmentation
is the pixel point in the image. Confusion matrix can be used to
value the result of classification. True/False means the prediction
is right or wrong, and Positive/Negative means the prediction
result. For example, True Positive (TP) in this engineering application
indicates that the predicted result is a crack pixel point and is a

Table 1. Training Parameter Settings of a Single Weak Classifier

Parameter name Parameter value

Optimization algorithm Adam
Learn Rate Schedule Piecewise
Learn Rate Drop Period 10

Learn Rate Drop Factor 0.3

Initial Learn Rate le-3

L2 Regularization factor 0.005
Minibatch Size 8
Maxepochs 128
Shuftle' every-epoch
Validation Frequency 302
Validation Patience 4

Table 2. Comprehensive Comparison of Network Performance

correct prediction, that is, the crack pixel point is correctly
detected. False Negative (FN) indicates that the predicted result
is not a crack pixel, but this is a wrong prediction, that means the
crack pixel is not detected correctly. Similarly, False Positive
(FP) indicates that the prediction result is a crack pixel, but it's a
wrong prediction, and True Negative (TN) indicates that the
prediction result is not a crack pixel and is a correct prediction.

The evaluation indicators used in the experiment contain the
accuracy and mean intersection over union (mloU). The above
indicators can relatively intuitively give the comprehensive
performance of image segmentation. Specifically, it can be defined
by the following formula.

TP

TP+FP ©)

Precision =

The precision of the prediction results represents the proportion
of all samples predicted to be cracks whose true value is also a
crack.

TP

Recall = m

(10)
Recall represents the correct rate of precision of all true crack
samples.

Accuracy = TP+ TN
Y T TPYTN+FP+FN

(In

Accuracy is the simplest metric used to mark the proportion
of correct pixels to the total pixels.

TP

1 k
JoU=—vF — 20 12
mloU = Y - ENTFPT TP (12)

Mean intersection over union (mloU) is a recognized algorithm
evaluation standard. It calculates the ratio of intersection and
union of two sets. In the field of semantic segmentation, the true
value and the predicted value are the manifestations of the two
sets, where k + 1 is the number of categories.

2.3.4 Analysis of Experimental Results

In order to verify the effectiveness of the image semantic
segmentation algorithm of the improved DeepLab V3+ model,
the accuracy and the mean intersection over union were used as
the predictive evaluation indicators. And the results obtained by
the improved DeepLab V3+ model's image semantic segmentation
algorithm was compared with the standard full convolutional

Training set Testing set
Network model

Accuracy mloU Accuracy mloU
FCN 0.8885 0.4738 0.8289 0.3552
SE-FCN 0.9162 0.5068 0.8562 0.3871
Single DeepLab V3+ Net 0.8413 0.4783 0.8067 0.4458
Joint Decision DeepLab V3+ Nets 0.9437 0.5406 0.9285 0.5064
Improved DeepLab V3+ Nets 0.9883 0.5825 0.9647 0.5369
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network, the fully convolutional network with the SE module
and the single DeepLab V3+ model to verify the effectiveness of
improved algorithm measures. The specific comparison results
of each algorithm are shown in Table 2.

It can be seen from the information in Table 2 that after the
introduction of weak classifier clusters for joint decision-making
and parallel channel attention, the improved DeepLab V3+
model has a corresponding improvement in performance when
dealing with crack recognition tasks in steel structure trestle
images. Compared with the standard FCN, the accuracy of the
training set and test set are increased by approximately 9.98%
and 13.58% respectively, and mloU has been increased by
approximately 10.87 and 18.17%, respectively. Compared with
the FCN with the introduction of the SE module, the accuracy of
the training set and the test set are increased by about 7.21% and
10.85%, and the mIoU has been increased by about 7.57% and
14.98% respectively. Compared with a single DeepLab V3+
network, the accuracy of the training set and test set are increased
by approximately 14.70% and 15.8%, respectively, and mIoU
has increased by approximately 10.42% and 9.11%, respectively.
Compared with the DeepLab V3+ network that only introduces a
joint decision-making mechanism, the accuracy of the training
set and test set are increased by approximately 4.46% and
3.62%, respectively, and mloU has increased by approximately
4.19% and 3.05% respectively.

Although the use of a set of weak classifiers for joint decision-
making and the introduction of a parallel channel attention
mechanism will increase the number of network parameters
correspondingly and extend the training time. However, performance
indicators such as the accuracy of image pixel segmentation and
the average intersection ratio increased significantly after the
introduction of improved measures. This improvement is particularly

important in the pixel-level recognition task of cracks with
complex image background information. In the experiment, the
actual segmentation effect of each network for the crack image
of the steel structure trestle is shown in Fig. 8. The cracks near
the bolts are manually drilled through steel. Manual cracks
simulate the characteristics of steel structure cracks, such as
narrow, small and metallic luster. Cracks in welds are naturally
formed.

It can be seen from Fig. 8 that when Single DeepLab V3+ Net
is used to perform pixel segmentation on the crack image of the
steel structure trestle, the effect is the worst, and the shallow rust
around many cracks will also be judged as crack pixels, causing
false alarms. When FCN is used to split the crack image semantics
of this structure, the effect is not ideal, and it will also be
interfered by certain background factors. At the same time, it can
be seen from the second line of image segmentation effect that
FCN still has incomplete segmentation of crack pixels. The FCN
introduced with the SE module alone is better than FCN in the
actual segmentation effect, but still has problems such as being
affected by the image background and incomplete segmentation
of cracked pixels. Although the segmentation accuracy has been
improved, it still does not reach the ideal state. When the joint
decision-making improvement mechanism of weak classifiers is
introduced separately, the division effect is further improved, and
the crack-like pixels can be almost completely segmented.
However, the result is still affected by shallow corrosion, and
some of the corrosion will be falsely reported as cracked pixels.
Therefore, whether the SE module is introduced separately or the
weak classifier cluster joint decision-making improvement
mechanism is introduced separately, the actual segmentation
effect of crack pixels is not ideal.

Finally, the comprehensively improved DeepLab V3+ Nets

Joint

i Single o Improved
Original Ground Decision
: FCN SE-FCN DeepLab DeepLab
image truth DeepLab
V3+Net V3+ Nets
V3-+Nets

Fig. 8. The Actual Segmentation Effect of the Crack Image of the Steel Structure Trestle of Each Network
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can accurately segment the crack structure of the steel structure
trestle at the pixel level, and can effectively avoid the interference of
the background factors of the shallow cracks, and has a significant
improvement in the segmentation of the background. Improved
DeepLab V3+ Nets can almost completely identify all crack

pixels, so as to effectively judge the damage degree of the stress-
concentrated parts of the steel structure trestle. The actual crack
pixel segmentation is ideal. This also proved the effectiveness of
the measures of Improved DeepLab V3+ Nets. When faced with
crack images of complex background information, it can completely

(h)
Fig. 9. Panoramic Image Stitching of Trestle: (a) Partial Picture 1, (b) Partial Picture 2, (c) Partial Picture 3, (d) Feature Points of Partial Picture 1, (e) Feature
Points of Partial Picture 2, (f) Matching of Feature Points, (g) Panoramic Composite Image, (h) Panoramic Image Acquired by the Camera




KSCE Journal of Civil Engineering 1161

and accurately segment the cracks at the pixel level, and judge
the damage degree of the steel structure trestle where the stress is
concentrated.

3. Panoramic Image Stitching

In practical engineering applications, consumer-grade cameras
can better locate damage and perform maintenance work if they
use a larger perceived field of view to acquire images. However,
at the same time, the proportion of pixels occupied by damaged
cracks will be too small, resulting in a decrease in recognition
accuracy. Therefore, the pixels damaged by cracks should occupy
the main body, otherwise the performance of computer vision
algorithms will be affected.

Aiming at one of the above contradictions, this paper introduced
a feature-based panorama image stitching method. Feature detection
and stitching have been widely used in computer vision fields,
such as object matching and tracking. The principle of this
concept is to select certain feature points from the image and
analyze the image locally instead of observing the whole image.
As long as there are enough detectable interest points in the
image, and these interest points are distinct and stable, and thus
they can be accurately localized.

Speeded Up Robust Features (SURF, accelerated robust
features), is a robust local feature point detection and description
algorithm. SURF is an improvement to the Sift algorithm, which
improves the execution efficiency of the algorithm and provides
the possibility for the algorithm to be applied in real-time computer
vision systems. Like the Sift algorithm, the basic path of the
SUREF algorithm can be divided into three parts: the extraction of
local feature points, the description of feature points, and the
matching of feature points. The feature points are set according
to the number of SURF algorithm parameters, and the algorithm
will automatically select the feature points in the image according to
the preset number of feature points. The trestle structure image in
this study has obvious edge protrusions and some rust. These are
all stably obtainable feature points. After many experiments,
when the number of feature points is 300, the feature matching
effect can be guaranteed while consuming less computing resources,
and the matching effect is stable. The panoramic image and its
composition are shown in Figs. 9(a) — 9(h).

Figures 9(a) — 9(c) are the partial images of one section of the
trestle collected each time the camera rotates. Figs. 9(d) — 9(e)
are the feature points of the first two local images of one trestle
section obtained by SURF. Fig. 9(f) shows the process of SURF
matching the first two local images of the trestle according to the
feature points. Fig. 9(g) is the generated result of the trestle
panorama based on SURF. Fig. 9(h) is the real panorama of the
trestle, which is used to verify whether the effect of Fig. 9(g)
meets the requirements of practical engineering applications.

4. Crack Localization

The example of this project is the belt conveyor trestle from the

No. 2 transfer point of the coal conveying system in an industrial
park to the buffer silo, which adopts the modular steel tube space
truss structure. Since the end of the project is low from the
ground, the pipe truss structure used in this project is a quadrilateral
pipe truss structure. Compared with other truss structures, the
pipe truss has high bending and torsional rigidity, and the
structure is relatively light in weight under the same constraint
conditions, and the appearance is neat and tidy. The service life
of the trestle structure is expected to be 50 years. The live load of
the trestle floor is 3.0 kKN/m?, and the standard value of the roof
live load is 0.5 kN/m?. This trestle project is composed of 28
sections of modular trestle, and the engineering volume is huge.
In this paper, a certain section of the structure in this project is
selected for structural damage identification and location verification.
This kind of trestle has a long service life and a strong load
capacity. Once the crack damage occurs in the concentrated
force, it will cause great economic losses and even casualties.
Therefore, long-term uninterrupted SHM is required for this type
of structure.

According to the analysis of the above experimental results,
the crack damage identification method proposed in this paper
can effectively identify the cracks of the steel structure trestle.
The matching and positioning of crack images is affected by the
spatial resolution, so this study used a combination of feature-
based panorama stitching and subdivision iterative path methods
to locate cracks. The space filling curve is an important approximate
representation method. It divides the data space into grids of the
same size, and then encodes these grids according to a certain
method. Each grid is assigned a unique code and keeps proximity of
the space to a certain extent. It means the labels of adjacent grids
are also adjacent, and a spatial object consists of a group of grids.
In this way, the multidimensional spatial data can be reduced to a
one-dimensional space.

The camera cannot monitor the entire surface of the structure
while meeting the monitoring accuracy, so it needs to scan the
entire surface according to a certain route. After scanning, the
related patches can be spliced according to the scanning path to
obtain the overall image. The Peano curve can be iteratively
subdivided according to the actual monitoring needs. Therefore,
the Peano curve is used to stitch the trestle images to locate the
cracks on the surface.

The Italian mathematician Peano G invented a curve that fills
a square, called the Peano curve. Later, Hilbert made this curve,
also known as the Hilbert curve (Jagadish, 1997). The Hilbert-
Peano curve is a fractal shape that can be drawn infinitely
complex. In the process of iterative generation, it continuously
refines small individuals. With the increase of the curve order,
the existing two-dimensional image is divided into 4” parts of the
same size. The line segments in the figure are actually the lines
used to connect the parts. It is characterized by meandering and
continuous drawing, which can pass through all points in a
certain area on the plane. The Hilbert curve is a fantastic curve.
As long as the function is properly selected, a continuous
parametric curve is drawn. When the parameter t is within the
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(a) (b) (c)
Fig. 10. Hilbert Space Filling Curve whenn =1,23:@n=1,(b)n =2,
(©n=3

(b)

Fig. 11. The Panorama Stitching Process Based on SURF Matching: (a) The
Diagram of the Path and Imaging Locations, (b) The Location
Procedure of Patches

range of 0 and 1, the curve will traverse all the points in the unit
square and get a full curve and get a space-filled curve.

As shown in the figure below, the scanning path of each part
of the trestle structure is made of the Hilbet-Peano curve, and
imaging is performed according to the path nodes. Finally, the
region where the crack is located in detail by combining the
above-mentioned panorama stitching method based on SURF
matching. The panorama stitching process based on SURF
matching is shown in Fig. 11.

It can be seen from the above synthesis that the stitching of
the structural panorama is performed by using the Speeded Up
Robust Features (SURF) and the iterative scanning path of the
Hilbet-Peano space filling curve, which can determine the general
orientation of the crack damage part on the overall structure of
the steel trestle.

sub-region partial image

Crack segmentation effect

Fig. 12. The Detection-Segmentation for Local Crack Monitoring

To verify its feasibility without destroying the structure, real
existing cracks from other sources were detected and segmented
using region division and improvement DeepLab V3+, as shown in
Fig. 12. The camera system can save a lot of computing resources
through region division and Canny edge detection algorithm. Then
the improved DeepLab V3+ model was used to efficiently identify
cracks on the trestle surface. Finally, the SURF algorithm and the
Hilbet-Peano space filling curve were used to determine the
approximate location of the crack region globally.

In this simulation, a Nikon D90 camera (the camera imaging
resolution in this manuscript is 3216*2136 pixels) is used to
simulate the work of a consumer-grade camera. The camera was
arranged on a vertical line which is 5 meters away from the
trestle, and is fixed on a 1.8-meter-high bracket to simulate the
working state of the camera. In the simulation, a whole section of
trestle is taken as an example (the actual project is made up of 28
sections of this structure, the total span of the truss in this type of
bid section is 20 meters, the height is 2.5 meters, and the
transverse section size of the truss is 4.9 meters. The rods were
made of Q345B hollow steel pipes). The camera rotates to take
images sequentially from one end of the trestle to the other. For
each acquired image, the curve as shown in Fig. 11 is used to
scan, and each order curve represents a different scanning precision.
A schematic diagram of the camera's shooting direction and

camera

Fig. 13. Schematic Diagram of Camera Shooting Direction and Layout
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Table 3. Comparison of Characteristics between DL-Based CV Method and Ultrasonic Inspection

DL-based CV crack detection

Ultrasonic inspection-based crack detection

1 In order to prevent the observation blind spots, it is reason-
able to equip each section of the trestle with three cameras to
monitor the key stress parts in real time (the coverage area of
a single camera is about 25 m long and 3 m high).

The actual structure of the trestle is larger and more complicated. It is nec-
essary to arrange the appropriate number and position of ultrasonic
inspection probes according to the actual situation.

The non-contact automatic preliminary identification of the
surface cracks in the key stress parts of the trestle can quickly

Contact inspection with an ultrasonic inspection probe enables precise and
efficient identification of cracks inside the trestle.

2 . .

and easily determine whether there are cracks on the surface

of the structure.

It can perform non-contact automatic long-term uninterrupted ~ When a crack occurs in the trestle, it is necessary to suspend the work of
3 SHM in the working state of the trestle. the conveyor belt in the trestle, eliminate the interference of vibration, and

then accurately inspect and identify the cracked part.

The devices involved in the DL-based CV method are all low-  More professional equipment is required, and the price of the equipment

4 priced consumer-grade devices that can perform SHM on the tres-  will vary greatly according to the detection range and accuracy of the

tle at a low cost. At the same time, the system can also be used for
multi-purpose applications (such as security monitoring).

probe. Appropriate ultrasonic inspection equipment should be selected
according to the characteristics of the actual structure.

arrangement is shown in Fig. 13. The simulation was choosing a
position 8 meters away from the trestle on the vertical line of it.
The data that identified the smallest crack on the surface of the
trestle structure were about 3 mm wide and 6 to 7 cm long. In this
recognition result, the camera resolution was set to 3216%2136
pixels in order to simulate the imaging effect of a consumer-
grade camera, and the lighting condition is light haze during the
day.

5. Discussion

It is worth noting that the method proposed in this paper is to
meet the production and monitoring requirements of enterprises.
This method is the SHM system used in conjunction with the
new steel trestle in service at the same time. The SHM of the key
stress parts of the steel trestle can be realized at a relatively low
cost. Meanwhile, the SHM system has the monitoring characteristics
of unmanned automation, full life cycle, and long-term uninterrupted.
Therefore, the CV method for relatively inexpensive consumer-
grade camera systems was chosen. The DL-based CV method
used in this study was designed to automatically and quickly
identify cracks on the surface of steel trestles. Therefore, based
on the method in this study, the cracks of the trestles can be
detected more accurately by other measures (e.g., ultrasonic
inspection). Ultrasonic inspection is also one of the most widely
used crack damage identification methods. It has many advantages,
for example, ultrasonic inspection can judge the damage degree
of cracks, and can find cracks inside the structure. The DL-based
CV method can make a quick judgement on whether the crack
occurs, and its application is more flexible. Therefore, the
combination of DL-based CV method and ultrasonic inspection
can further improve the accuracy of crack identification on the
trestle surface, which will be a very valuable research direction
in the future. The characteristics of the DL-based CV method
and the ultrasonic inspection in the task of identifying surface
cracks on steel trestle are compared as shown in Table 3.

In general, traditional SHM methods, such as ultrasonic
inspection, have better accuracy in structural damage detection,
and can find possible damage inside the structure and judge the
damage degree of the structure. However, due to the particularity
of the trestle structure and service environment, the detection
method of the traditional SHM method is often limited when
dealing with the steel trestle in this study. It led to inconvenient
inspections or the results of inspections were interrupted, which
can affect the productivity of enterprises using trestles. The
ensemble SHM method proposed in this study, according to the
structure and service characteristics of the steel trestle, can
automate the long-term uninterrupted SHM of the steel trestle at
a lower cost. The deployment of this method is more flexible,
and it can quickly and effectively determine whether there is a
crack on the surface of the steel trestle and perform preliminary
positioning, but the judgement of the degree of crack damage is
currently not as accurate as the traditional SHM method. If the
method in this study is combined with the traditional SHM
method, the SHM of the steel trestle can be better performed.
And the advantages are embodied in taking into account the
speed, convenience and accuracy of monitoring tasks at the same
time. This will have good research and application prospects in
the future.

6. Conclusions

Aiming at various limitations of the service environment of steel
structure trestle, a SHM system based on consumer-grade cameras
can be used to effectively conduct long-term, stable and efficient
SHM of steel trestle structure, which reduced monitoring costs.
Small cracks on its surface can be identified autonomously and
without contact, which improves the monitoring accuracy. At the
same time, the approximate orientation of the crack on the whole
structure was located, and the automatic SHM of the trestle
structure was realized. The main conclusions are as follows:

1. By introducing the Canny boundary detection algorithm to
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extract the image of the steel structure trestle, it can
effectively improve the efficiency of the subsequent algorithm
for image processing, and improve the accuracy of the
subsequent algorithm recognition.

2. As to each section of the steel structure trestle image, it is
divided into areas of suitable size, and each area was focused
and zoomed by camera to perform crack pixel segmentation.
Distant regions can be identified for cracks without loss of
pixel resolution. Compared with the traditional manual
structural defect inspection method, the efficiency and
accuracy of crack identification are significantly improved.
At the same time, the size of each trestle structure is not
very huge, and there are not many areas divided by the
image. Therefore, the efficiency of crack identification by
region-by-region magnification is higher than that of object
detection algorithms.

3. An improved pixel-level semantic segmentation algorithm
was proposed, which can effectively identify the surface
cracks of steel structures. A global dataset and a local dataset
were constructed by data augmentation, and a total of 10
DeepLab V3+ networks built with ResNet18 as the backbone
were trained using these two datasets. The 10 DeepLab
V3+ networks were divided into two weak classifiers, so
that the algorithm took into account both global and local
search capabilities. The introduction improved the performance
of the original network with a small increase in the amount of
parameters and training time, so that the network model can
better complete the task of crack pixel segmentation, and it can
run well on consumer-grade computer equipment. At the same
time, the difficulty of training a single complex model was
avoided and time cost was reduced.

4. During the service process of the trestle structure, the
problem of shallow corrosion will inevitably occur, and
the crack identification of the trestle will be affected by
the shallow-corrosion, which will cause interference. The
parallel attention mechanism was introduced to effectively
distinguish the shallow corrosion interference, so as to
more accurately identify the more dangerous crack damage,
and further improve the SHM accuracy of the trestle.

5. Using SURF matching and setting an iterative scan path for
the stitching of the structural panorama. The location of
crack damage can be roughly located on the overall steel
trestle structure. It provided a practical reference method
for continuous SHM by using consumer-grade cameras.
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