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Abstract 

This paper presents a method for the cre-
ation of three-dimensional maps of under-
water cisterns and wells using a submersible 
robot equipped with two scanning sonars and 
a compass. Previous work in this area utilized 
a particle filter to perform offline simultane-
ous localization and mapping (SLAM) in two 
dimensions using a single sonar [11]. This 
work utilizes scan matching and incorporates 
an additional sonar that scans in a perpendic-
ular plane. 
Given a set of overlapping horizontal and 

vertical sonar scans, an algorithm was im-
plemented to map underwater chambers by 
matching sets of scans using a weighted 
iterative closest point (ICP) method. This 
matching process has been augmented to 
align the features of the underwater cistern 
data without robot odometry. Results from a 
swimming pool and an archeological site tri-
als indicate successful mapping is achieved. 

I. Introduction 

Underwater robots are used for the study of harsh, 
inaccessible environments. These robots allow 
researchers to explore and collect samples from 
regions that are dangerous or costly for humans to 
explore. The application of underwater robots to 
retrieve data has led to advances in several areas 
including oceanographic research [15], marine bi-
ology, and marine archeology [6]. For example, 
in [24] underwater robots were shown to navigate 
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Figure 1: An ROV navigating through an ancient tunnel sys-
tem in Malta (top) and corresponding render in the generated 
map (bottom) 

rough terrain and efficiently gather data to survey 
hydrothermal vents. 
Small-scale (i.e. less than 0.5 meters) underwater 

robots are ideal for exploration of narrow passage-
ways (see Fig. 1a) including wells, cisterns and var-
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ious underwater chambers that feature tight tunnels 
and access points. Moreover, maps generated of 
cisterns can provide archaeologists with a detailed 
glimpse into the underlying structure of these sites. 
A robot navigating narrow passages and small 

entrances is unfortunately limited in payload. Fur-
thermore tight passage ways and unpredictable 
obstacles make motion simulation difficult. This 
paper presents a strategy that does not require 
odometry sensors, e.g. Doppler Velocity Log, or 
motion modeling to construct maps of such under-
water tunnel systems. Instead, an ICP algorithm is 
proposed that uses sonar scans to generate a global 
map of the underwater passageways. The algorithm 
relies on measurements from horizontal and vertical 
scanning sonars, a depth sensor, and a compass. 
This work is motivated by the multi-year, multi-

institutional project International Computer Engi-
neering Experience (ICEX) that aims to construct 
maps of ancient water storage systems in collab-
oration with archeologists in Malta, Gozo, and 
Sicily. Data was gathered in cisterns and wells 
in locations that include catacombs, historic parks, 
modern theaters and conference centres where mod-
ern architecture has built on top of ancient sites. 
What follows is a brief description of related 

work in Section II, followed by the proposed map-
ping algorithm in Section III. Swimming pool and 
archeological site experiments used to validate the 
approach are documented in Section IV. Results 
and conclusions drawn from the experiments are 
presented in Sections V and VI respectively. 

II. Background 

In recent years, implementations of SLAM al-
gorithms have been used to navigate and map 
underwater terrain [7]. The constructed maps have 
been used for precise robot navigation and research 
applications in fields such as marine biology and 
archaeology. 
Underwater robot mapping techniques typically 

combine both odometry and additional sensor infor-
mation to create a global map of the surrounding 
environment. Two common mapping techniques 
are visual mosaics and occupancy grids. The visual 
mosaic approach generates a composite view of the 
mapped region from local maps. For example, in 

[16], a real time navigation system used underwater 
mosaics to navigate the seafloor. An occupancy 
grid, however, discretizes the space being mapped 
into a grid of cells. The log-likelihood algorithm is 
typically used to determine the liklihood that each 
cell of that grid is occupied [23]. 

Rather than fitting geometric contours to sensor 
measurements, the scan-matching technique com-
pares and aligns data from raw measurements. In 
particular, the Iterative Closest Point (ICP) algo-
rithm matches point clouds to determine the relative 
transformation between scan pairs by iteratively 
minimizing the distance between points in the data. 
ICP can be implemented for localization, map 
building, and path planning. For example, in [10] 
a pose-based SLAM algorithm was implemented 
with ICP to estimate robot displacement between 
consecutive sonar scans. 

Previous work in Maltese cistern mapping [5], 
[8], [21], [11] generated maps by visually mosaick-
ing sonar scans, implementing underwater robot 
SLAM using mobile and stationary scans, and 
performing particle filter based mapping on sets of 
stationary scans. Over sixty single sonar data sets 
have been captured from different Maltese mapping 
expeditions in the field. Sonar scan mosaicking 
combined overlapping images by hand to create 
a composite map. Manual scan mosaicking is 
tedious and prone to error in estimating the length 
of overlapping walls between scans, especially for 
longer tunnels or large, rectangular chambers. In 
[21], the FastSLAM algorithm used a motion model 
of the underwater robot to estimate the robot's 
pose, however the unpredictablility of collision with 
obstacles severly limited the use of the motion 
model. 

Recent work [11] implemented an offline particle 
filter based pairwise scan matching technique and 
successfully generated two dimensional maps of 
Maltese cisterns. Unlike [11], this approach uses 
ICP based scan matching to determine relative 
horizontal robot translations between scans, and 
incorporates additional sonar scans in a perpen-
dicular plane to construct three-dimensional maps. 
The algorithm uses overlapping stationary scans to 
localize the robot in the horizontal plane, without 
robot odometry or a motion model. 



(a) Dual sonar configuration. (b) Plot of signal strengths. 
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[α3 zh,3 zv,3] 

(c) Series of overlapping scan pairs at unknown poses. 
Figure 2: Method of data collection using the VideoRay Pro 3 
by taking successive stationary horizontal and vertical scans. 

III. Algorithm 

The purpose of this algorithm is to construct a 3D 
occupancy grid map M = {mi,j,k E [0, 1]|i, j, k E 
[0..Imax]}, from a set of sonar measurements Z 
= {[αt zh,t zv,t ]|t E [0..tmax]}. A scan pair mea-
surement consists of the robot's compass readingαt 

and two corresponding 360° sonar scans: one in the 
horizontal plane, zh,t, and one in the vertical plane, 
zv,t . To obtain this data set, the robot must use two 
scanning sonars mounted as shown in Fig. 2a. 
Each stationary scan zt contains a series of scan 

angles Oi containing a vector of signal strengths. 
The returned signal strengths are a function of range 
and represent the echo intensities of the discretized 
sonar signal. These orthogonal scan pairs are 
assumed to be taken simultaneously at time t from 
a static robot pose Xt = [xt yt αt], (see Fig. 2b). 
A series of stationary scan pairs were collected at 
unknown poses (xt, yt) as shown in Fig. 2c. 
To accomplish this goal, the LatticeMap algo-

rithm (Alg. 1) is proposed. LatticeMap begins 
by low-pass filtering the raw sonar data Z and 
converting it from polar coordinates to Cartesian 
coordinates, (step 1). These filtered measurements 
Z', are next used to estimate the robot's pose X̂t at 
each time step t (i.e. at each stationary scan loca-
tions). This estimation is accomplished by finding 
the pose X̂t that results in the best match between 
the horizontal sonar scan zh,t and the previous T 
horizontal scans. In this case, we determine the 

Algorithm 1 M = LatticeMap(Z)
 
1: Z'+ preprocess(Z) 
2: for all T E T do 
3: for all t do 
4: Xpotential + 0 

(5: while X0 + poseGen (z , αt) doh,t−T :t
( (6: X* + scan matcher(z ,X0)h,t, zh,t−T :t 

( (7: q + match eval(zh,t, z , X *)h,t−T :t 
8: Xpotential + (X*, q) 
9: end while 
10: X̂t + max(Xpotential) 
11: end for 
12: end for 
13: M + occupancyGrid(X̂,Z') 

best match by generating a number of random robot 
poses X0, and using these poses as initial guesses 
in an ICP algorithm which converges to a local 
minimum best pose X*, (step 6). The quality q 
of this pose is calculated using a match evaluation 
algorithm, (step 7). The best pose is that which 
has the highest q, (step 10). Once the estimated 
robot poses X̂t are determined, the entire processed 
measurement set Z', including vertical scans zv,t , 
are converted to a 3D occupancy grid, (step 13). 
The algorithm iterates through the scans and 

considers the scan at time t with respect to the 
previous T scans zh,t−T :t. Multiple passes with 
different values of T eliminate noise and generate 
a more consistent composite map. 
The key steps to Alg. 1, namely preprocessing, 

pose generation, scan matching, and match evalua-
tion, are described below. 

A. Preprocessing 

Preprocessing reduces the raw sonar measure-
ment data in Z to the a filtered set of 2D cartesian co-
ordinate points in Z' that represent wall locations in 
the corresponding environment. The effectiveness 
of the process depends on the environment and data 
collection method. Sonar data collected in narrow 
passageways is subject to a higher likelihood of 
multipath while data collected in open areas has 
increased noise levels at longer ranges. 
To start, each sonar scan is comprised of an array 

of strength of return measurements si,j for each 
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Figure 3: Steps 1,5, and 6 of the LatticeMap Algorithm 

Figure 4: Step 7 of the LatticeMap algorithm: Scan matches 
are raytraced to produce occupancy grids, then overlayed. 
Cells in agreement add to the matchings score. 

angle the sonar faces Oi. That is, zh,t = {[Oi 

si,0 ... si,b] | i E [0 : 360]}. In this case the 
index that increments from 0 to b corresponds to 
range from the sonar where the bth strength of return 
measurement is that at the maximum range. 
For each angle Oi, strength of returns correspond-

ing to a predefined distance from the origin are 
zeroed (i.e. a deadzone). A low pass filter is then 
applied to strength of return arrays. All strength of 
return values are then zeroed but the n most intense 
points. Finally, the remaining non-zero strength 
signals are converted to points in an x-y Cartesian 
coordinate frame, i.e. z( = {[xj,t yj,t ] | j E [1 : h,t 
n]}. See Fig. 3a. 

B. Pose generation 

The pose generation step creates initial robot 
poses X0 for the scan zh,t that the ICP algorithm 
will then use as a starting point for matching zh,t 
with previous scans zh,t−T :t. Several starting points 
for the ICP algorithm are required to search for the 
nearest local minimum [4]. 
The goal of the pose generator is to generate 

the minimum number of poses necessary to ide-



ally find the global minimum of the search space. 
Because overlap is assumed between consecutive 
scans, poses are only generated within the bounds 
of the previous scans zt−T :t as shown in Fig. 3b. 
Furthermore, generating several initial poses that 
will result in identical scan matches are prevented 
by defining a radius around each generated pose X0 

within which no additional poses are generated. 

C. Scan Matching 

The scan matcher uses an ICP algorithm to 
determine the pose offset X* between any model 
set of points zmodel and a target set of points ztarget 
given an inital offset X0. Within the context of the 
LatticeMap algorithm, the model and target point 

( (sets will be z and z respectively. Fig. 3c h,t h,t−T :t 
shows an example of initial and final poses between 
two scans. As in preprocessing, implementation 
details are data-specific. 
The scan matcher shown in Alg. 2 uses an 

iterative approach to bring the two point clouds 
closer together until either of two stopping criterion 
are met: 1) the number of iterations reaches a 
specified maximum (step 2) or 2) the sum of square 
errors between correspondences reaches a threshold 
errorM in (step 6). As in [17], the three distinctive 
components of Alg. 2 are point matching (steps 
3,4), correspondence rejection (steps 5-14), and 
minimization (step 15). 
The point matching component in step 3 con-

siders all points of data. Points in the model set 
zmodel are matched with their k nearest neighbors 
by Euclidean distance in the target set ztarget . These 
correspondences are prioritized by distance and 
filtered such that no point in either set is repeated, 
(step 4). 
Next, the correspondence rejection component 

filters the remaining correspondences based on their 
Euclidean distance, (steps 9-14). The average µ 
and standard deviation ( of the correspondence 
distances are determined; the correspondences with 
distance d > µ + S × ( are rejected where S is 
a predefined scalar. Weighting the distances when 
calculating these statistics prevents outliers from 
overly affecting this process. For less noisy data 
sets, the correspondances can be further filtered by 
the difference between each corresponding point's 

local normal vector [17]. These rejected coorespon-
dences play no further role in the current iteration of 
scan matching. For the remaining correspondences, ∑
the sum of square errors S S E = ||ztargeti − 
zmodeli ||2 is calculated. If S S E < errorM in, the 
algorithm halts. 
Finally, for the minimization component, a pre-

specified error metric is minimized (step 15) using 
the singular value decomposition method [2] or a 
Levenburg Marquardt solver [1]. A weighted point-
point error metric was used for noisier data which ∑
minimizes mi||T ·zmodeli −ztargeti ||2 where T is 
the transformation matrix corresponding to x( [19]. 
Here the weight w of a point is proportional to the 
distance from the scan origin. For cleaner data sets, 
normal estimation is more reliable and a point to ∑
plane error metric is used: wi||ni · (T · zmodeli − 
ztargeti )||2 where n is the estimated normal about a 
point [25]. 
The algorithm transforms zmodel by X* and 

repeats. After one of the two stopping criteria is 
reached, the final pose offest X* is returned. 

Algorithm 2 X* = ScanMatch(zmodel, ztarget , X0) 
1: T + X0 

2: while iterations < maxI ters do 
3: M + KNearestNeighborsztarget (T · zmodel) 
4: M ( + StableMarriage(Distances(M ))∑ 
5: sse + m∗M ' ||mtarget − mmodel||2 

6: if sse < errorM in then break 
7: µ + Average(Distances(M () 
8: ( + StandardDeviation(Distances(M ()) 
9: for all m E M ( do 
10: if Distance(m) < µ + S × ( then 
11: wi + DistanceWeight(m) 
12: else 
13: wi + 0 
14: end for ∑ 
15: T + argmin( wi||T · zmodeli − ztargeti ||2) 
16: end while 
17: X* + T 

D. Match Evaluation 

(The match evaluator considers a scan z andh,t−T :t 
matched scan zh,t with pose X* and heuristcally 
score the quality of the matching q. The scans 



are superimposed onto a grid and overlayed as 
shown in Fig. 4. A score is given to each pair of 
corresponding cells. If a cell occupancy in the grid 

(of z matches the cell occupancy in the grid of h,t−T :t 
zh,t then that cell is given a positive score. 
Futhermore a ray is traced between the sensor 

positions of each scan. If the ray does not encounter 
any occupied cells, an additional score is given 
to the matching. As such, it is assumed that 
consecutive scans exist within line of sight of each 
other. 
Finally the score of the matching q is the sum of 

the scores of all the cells and the line of sight bonus. 

E. Occupancy Grid Generation 

Given a set of processed scans Z' and correspond-
ing poses X̂ , the occupancy grid generator produces 
a map M = {mi,j,k E [0, 1]|i, j, k E [0..Imax]}
using an octree based log-odds approach [23]. A 
ray is traced from the sensor origin X̂t to each 

( (point in zv,t and zh,t, updating each cell m along 
the way according to log-odds(mi,j,k,t | Z () = t 
log-odds(Z ( | mi,j,k,t−1) + log-odds(mi,j,k,t−1).t 

IV. Experiment 

To validate the use of the mapping algorithm 
on an underwater robot system, a micro-ROV was 
deployed at a swimming pool of known size and 
several unexplored cisterns. 

A. Hardware Implementation 

A VideoRay Pro 3 mounted with two Tritech 
Micron scanning sonars was used to collect data. 
The vehicle payload includes a depth sensor, com-
pass, and video camera. The vehicle is driven 
with two thrusters placed parallel to each other in 
the horizontal plane to provide differential thrust 
control as wel as a single thruster aligned with the 
vertical plane for depth control. Custom software 
was developed using the Robot Operating System 
(ROS) framework [14] to allow for synchronized 
real time data capture of the control signals and 
sensors. 
The scanning sonars were mounted to scan in 

perpendicular planes. To create a 360 ° planar scan, 
the Tritech sonar transmits a directional acoustic 

ping for each angle in increments of .4 ° to 1.8 ° at 
a rate of 10Hz-50Hz and records signal strength of 
return as a function of distance. A high intensity 
return signal represents strong acoustic reflection in 
the water at that position. However, due to noise 
and signal multipath, the highest intensity bin does 
not necessarily represent a wall or an object. 

B. Site Descriptions 

The algorithm was validated using data sets 
collected at Maltese cistern and at a swimming 
pool with known geometry. At both sites, a series 
of 360 ° horizontal and vertical stationary scans 
was recorded as shown in Fig. 2b and Fig. 5. 
Motion between scans was limited to ensure overlap 
between consecutive scans as illustrated in Fig. 2c. 
A reference data set was collected at the Scripps 

College Tiernan Field House swimming pool lo-
cated in Claremont, California. The pool is 25 
meters in length, has vertical walls, a sloping 
bottom, and features a semicircular stairwell located 
in the center of the shallow end of the pool. This 
data set was used to validate the ICP matching 
algorithm accuracy. 
Field exploration was conducted in a cistern lo-

cated below the Mediterranean Conference Center 
(MCC) in Malta. The MCC has its roots as a 16th 
century hospital originally belonging to the Order 
of St. John [3]. 

V. Results 

The LatticeMap algorithm was applied to three 
data sets: two from a swimming pool at Scripps Col-
lege Tiernan Field House and one from a cistern at 
the Mediterranean Conference Center in Malta. The 
accuracy of the LatticeMap algorithm was validated 
by comparing the resulting map with the actual 
pool dimensions with dimensions extracted from 
the point cloud map generated by the LatticeMap 
procedure as shown in Fig. 6a. Additionally the 
generated poses were compare to truth poses as 
shown in Fig. 7. The generation of the pool data 
sets took roughly one minute while the cistern data 
set took five. 
The true pool dimensions were determined using 

a measuring tape with an uncertainty of 0.05m. 
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Figure 5: Point map of the Scripps Tiernan House pool. Scan 
15 is highlighted to illustrate the range of the sonar. Plot 
includes scans from 23 locations. 

Twenty-three stationary scan pairs were collected 
at the swimming pool (see Fig 5). The error of the 
LatticeMap algorithm was computed by measuring 
the dimensions of 9 different geometric parts of the 
swimming pool. For each part, the truth dimension 
was compared to the algorithm generated dimension 
by measuring 10 to 20 different locations on the 
point cloud generated map. 
The calculated standard error for the mapped pool 

dimensions are listed in Fig. 6, demonstrating that 
5 out of 9 LatticeMap measurements are within the 
95% confidence interval. 
Additionally, the poses generated by the Lat-

ticeMap algorithm were compared to truth poses 
for 18 scans as shown in Fig. 7. The error in 
y measurements is an absolute .1 m at all points 
while the error in x measurements in absolute .1m 
up to 7.5 meters then compounds at a rate of .1 
meters/meter. The error in the x direction grows 
by approximately 2 cm per meter travelled by the 
ROV while the error in the y direction averages at 
.06 m; both errors are within the error of the truth 
measurements. 
The map created of MCC meets expectations 

based on a hand made mosaic of the site and shows 
that the algorithm can produce a feasible map even 
when scans are recorded in disjoint chambers as 
shown in Fig. 8. Furthermore, three-dimensional 
mesh rendering (Fig. 1b and 8) roughly matches 
video taken during data collection. 
To provide archaeologists with a 3D visualization 

of the MCC, surfaces of the MCC cistern data set 
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Figure 6: Map of Scripps pool generated by LatticeMap 
and comparison to truth data. Standard error of distance 
measurements is reported. 

are reconstructed using the level set technique as 
shown in Fig. 9. The method is similar to those 
described in [26] and [12] with some additional 
processing. Starting with an unorganized point 
cloud, the data is processed to remove outliers and 
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Figure 7: x position error vs. truth x position from 18 scans 
at the Scripps pool with errors bars reporting the error in truth 
measurements. 

separate individual rooms/sections. For the MCC 
data set, each room and the connecting tunnel are 
separated to create three sections. For each section, 
an occupancy grid is generated and each surface is 
reconstructed individually. See [13], [26] and [12] 
for details on the surface reconstruction process. 
All sections are then merged volumetrically and the 
surface is generated using marching cubes [9]. 

VI. Conclusion 

In this paper an ICP-based three-dimensional 
underwater mapping method is demonstrated. No-
tably the algorithm does not require odometric 
information to generate a consistent global map. 
Results from two sites validate the method. 
Extensions to this algorithm may increase the 

accuracy of the generated maps by incorporating the 
uncertainty associated with sonar measurements. 
For example, [10] shows the use of the Mahalanobis 
distance metric. While most cisterns do not contain 
looping features, the algorithm could be extended to 

Figure 8: Map of two rooms connected by a small tunnel in 
the MCC cistern. 

Figure 9: Three-dimensional rendered visualization of 
Mediterranean Conference Center cisterns. 

detect loop-closures due to backtracking. 
Finally, while three-dimensional maps were gen-

erated, they relied on the fact that all data was 
collected on the same z-plane. Removing this 
limitation and localizing in three dimensions would 
allow for the capture of richer three-dimensional 
features. 

Acknowledgments 

The findings in this project are made possible by 
the support of the following: the National Science 
Foundation, the Rose Hills Foundation, the Harvey 
Mudd College Clay Wolken Fellowship, and the 
Harvey Mudd College Engineering Department. 
This project was also closely developed and exe-
cuted in conjuction with research faculty member 
Dr. Jane Lehr at CalPoly San Luis Obispo. 
This material is based upon work supported by 

the National Science Foundation under Grant No. 
1245813. 



References 

[1] Agarwal, Sameer, and Keir Mierle. Ceres Solver: Tuto-
rial & Reference. Google Inc (2012). 

[2] Arun, K. Somani, Thomas S. Huang, and Steven D. 
Blostein. Least-squares fitting of two 3-D point sets. 
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 5 (1987): 698-700. 

[3] Bain, Carolyn Lonely Planet Malta an Gozo. Lonely 
Planet, 2010. Print. 

[4] Besl, Paul J., and Neil D. McKay. Method for registra-
tion of 3-D shapes. Robotics-DL tentative. International 
Society for Optics and Photonics, 1992. 

[5] Clark, Christopher M., et al. Archaeology via underwa-
ter robots: Mapping and localization within maltese cis-
tern systems. Control, Automation, Robotics and Vision, 
2008. ICARCV 2008. 10th International Conference on. 
IEEE, 2008. 

[6] Eustice,	 Ryan M., Hanumant Singh, and John J. 
Leonard. Exactly sparse delayed-state filters for view-
based SLAM. Robotics, IEEE Transactions on 22.6 
(2006): 1100-1114. 

[7] Fairfield, Nathaniel, George Kantor, and David Wetter-
green. Real�Time SLAM with Octree Evidence Grids 
for Exploration in Underwater Tunnels. Journal of Field 
Robotics 24.1�2 (2007): 03-21. 

[8] Hiranandani, D., et al. Underwater robots with sonar 
and smart tether for underground cistern mapping and 
exploration. The 10th International Symposium on Vir-
tual Reality, Archaeology and Cultural Heritage VAST. 
2009. 

[9] Lorensen, William E., and Harvey E. Cline. "Marching 
cubes: A high resolution 3D surface construction algo-
rithm." ACM Siggraph Computer Graphics. Vol. 21. No. 
4. ACM, 1987. 

[10] Mallios, Angelos, et al. Scan matching SLAM in under-
water environments. Autonomous Robots (2013): 1-18. 

[11] McVicker, William, et al. Mapping and visualizing an-
cient water storage systems with an ROV—An approach 
based on fusing stationary scans within a particle 
filter. Robotics and Biomimetics (ROBIO), 2012 IEEE 
International Conference on. IEEE, 2012. 

[12] Narayanan, H.	 Variational level sets in shape recon-
struction from unorganised data sets. Project Report, 
University of Michigan 2005. 

[13] Osher, Stanley, and Ronald Fedkiw. Level set methods 
and dynamic implicit surfaces. Vol. 153. Springer, 2003. 

[14] Quigley,	 Morgan., Conley, Ken., Gerkey, Brian P.., 
Faust, Josh., Foote, Tully., Leibs, Jeremy., Wheeler, 

Rob., and Ng, Andrew Y. ROS: an open-source Robot 
Operating System. ICRA Workshop on Open Source 
Software, 2009. 

[15] Rachmayer, Ralf, et al. Oceanographic Research Using 
Remotely Operated Underwater Robotic Vehicles: Ex-
ploration of Hydrothermal Vent Sites on the Mid-Atlantic 
Ridge At 37 North 32 West. Marine Technology Society 
Journal 32.3 (1998): 37-47. 

[16] Richmond, Kristof, and Stephen M. Rock.	 An op-
erational real-time large-scale visual mosaicking and 
navigation system. OCEANS 2006. IEEE, 2006. 

[17] Rusinkiewicz, Szymon,	 and Marc Levoy. Efficient 
variants of the ICP algorithm. 3-D Digital Imaging 
and Modeling, 2001. Proceedings. Third International 
Conference on. IEEE, 2001. 

[18] Schofield, Oscar, et al. How do polar marine ecosystems 
respond to rapid climate change?. Science 328.5985 
(2010): 1520-1523. 

[19] Segal, Aleksandr, Dirk Haehnel, and Sebastian Thrun. 
Generalized-ICP. Robotics: Science and Systems. Vol. 
2. 2009. 

[20] Wang, Wei, and Christopher M. Clark. Modeling and 
simulation of the VideoRay Pro III underwater vehicle. 
OCEANS 2006-Asia Pacific. IEEE, 2007. 

[21] White, Cory, et al. The Malta cistern mapping project: 
Underwater robot mapping and localization within an-
cient tunnel systems. Journal of Field Robotics 27.4 
(2010): 399-411. 

[22] Williams, Stefan B.,	 et al. Autonomous underwater 
simultaneous localisation and map building. Robotics 
and Automation, 2000. Proceedings. ICRA'00. IEEE 
International Conference on. Vol. 2. IEEE, 2000. 

[23] Wurm, Kai M., et al. OctoMap: A probabilistic, flexible, 
and compact 3D map representation for robotic systems. 
Proc. of the ICRA 2010 workshop on best practice in 3D 
perception and modeling for mobile manipulation. Vol. 
2. 2010. 

[24] Yoerger,	 Dana R., et al. Autonomous and remotely 
operated vehicle technology for hydrothermal vent dis-
covery, exploration, and sampling. (2007). 

[25] Y. Chen, G. Medioni. Object Modeling by Registration 
of Multiple Range Images. Proceedings of the 1992 
IEEE Intl. Conf. on Robotics and Automation, pp. 2724-
2729, 1991. 

[26] Zhao, Hong-Kai, Stanley Osher, and Ronald Fedkiw. 
Fast surface reconstruction using the level set method. 
Variational and Level Set Methods in Computer Vision, 
2001. Proceedings. IEEE Workshop on. IEEE, 2001. 

View publication statsView publication stats

https://www.researchgate.net/publication/304160269

