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Abstract—Over the past decade, several image mosaicing meth-illumination effects, noise, lack of image contrast andtihg

ods have been proposed in robotic mapping and remote sensingare phenomena that make image registration difficult. This
applications. Owing to the rapid developments on obtaining |a54s to inaccuracies in image registration that cause mis-
optical data from areas beyond human reach, there is a high i hen i d h . lobal
demand from different scientists for creating large-area mage alignment when lmages are _mappe Ont_o the mosaic (global)
mosaics often using images as the only source of information frame. To compose images into a mosaic form, several steps
One of the most important steps in the mosaicing process is are needed and one of the most important steps is image
the motion estimation between overlapping images to obtaithe  registration. In the absence of any other information, nadst
topology, i.e, the spatial relationships between imagesnlthis the existing methods try the exhaustive strategy of magchin

paper, we propose a generic framework for feature-based inge . . . ; .
mosaicing capable of obtaining the topology with a reduced all images against all. However, this approach is only fdasi

number of matching attempts and to get the best possible for @ small number of images. Since large-area surveys might
trajectory estimation. Innovative aspects include the usef a fast comprise of several hundreds to tens of thousands of im-

image similarity criterion combined with a minimum spanning  ages [4], [5], the all-against-all strategy becomes imjicat
tree (MST) solution, to obtain a tentative topology. This t@ology To overcome this problem, we propose in this paper a

is improved by attempting image matching over the pairs of oo . h o ¢ t th
higher overlap evidence. Unlike previous approaches for lge- generc image mosaicing scheme aiming 1o ge e com-

area mosaicing, our framework is able to naturally deal with Plete topology with minimum number of image matching
the cases where time consecutive images cannot be matchedttempts while simultaneously obtaining a globally cohere

successfully, such as completely unordered sets. We condtu mosaic. The algorithm takes as input a set of images that has
this paper by presenting an environmental application of ths  peen previously acquired. The time order is not taken into
mosaicing approach for monitoring coral reefs. ) .
account; therefore, the image set can be totally unordered.

Our technique first infers image similarity information us-
ing a fast method based on the Euclidean distance between

Image mosaicing methods have been widely used ffgature descriptors. Then, this similarity is used to @eat
panoramic imaging [1] and mapping [2]. Aerial and satelliteentative topology with associated uncertainty. The et
imagery of the Earth’s surface, merged with high-resohutiauncertainty, although large at the beginning, is gradually
topographic models, have proven a key tool to understaretiuced by successive iterations of image matching andiéund
physical processes of our planet (geological, hydroldgicadjustment.
biological, etc.), to monitor environmental changes, ket
man-induced or natural, resource management, development
and infrastructure planning (public works, remediatioand, Quality constraints of image mosaics are usually veryftstric
land use, etc.). Robots are becoming more and more importagpecially for mapping purposes, as the mosaic might be used
in gathering optical data from places where human canrfot global navigation [12], localization of interest are@
reach. In robot mapping(i.e., aerial and/or underwatehenv and detection of temporal changes [11]. Several image mo-
a robot is surveying a large area using only a down-lookirggicing approaches for creating underwater mosaics hare be
camera, it is of interest to obtain a global view of the aregroposed over the last decade [13], [14], [15], [16]. Piaaat
To have a wide-area visual representation of the scene, itals[13] proposed a mosaicing system that exploited naizigat
necessary to create large-area maps (mosaics). Mosalgle enand attitude information for bundle adjustment. Madjiddan
different applications such as geological [3], [4] and aet+ Negahdaripour [14], addressed the global alignment proble
logical surveys [5], ecology studies [6], [7], [8], envinmental for a submersible equipped with stereo cameras, using a
damage assesment [9], [10] and detection of temporal clsangeéxed adjustment model to recursively determine the pose of
in [11]. Therefore, there is a high demand from differerthe vehicle. Rzhanov et al. described in [15] a methodology
science communities for creating optical maps of areas evhéhat exploited navigation data to build geo-referencedtgho
human cannot reach. mosaics of the mid-ocean ridges at the East Pacific RisesiFerr

When a robot is mapping an area in a scattering media [4], al. [16] proposed a global alignment method for creating

|I. INTRODUCTION

II. RELATED WORK



measure is comparatively low, since it mainly involves com-
Yes puting the angles between a small set of descriptor vediorns.

Generation
[Initialization Jr>f O Potenti! N° pssoill I ETE covariance | multi-threaded C implementation allows for computing the
servation justment Estimation . - R
Lot Matching measure ir2.5 miliseconds on a standard desktop machine for

a pair of images witl200 descriptors each. In order to establish
the initial link between images, we use a MST where weights
of the edges are the inverted initial similarity values. M&T

a weighted graph is a subset of edges that form a tree whose
sum of weights of edges is minimum[20]. MST provides

large-scale underwater photo-mosaics that combines ima&y&onnected tree which is composed of the most similar
registration information and 3D position estimates predity iMage pairs according to the similarity information. Theiai
navigation sensors available in deep water surveys. Butow'glative homographies between those image pairs that are in
al. [17] proposed an online mosaicing (image-to-mosaitsregth® MST are treated as identity mappings with very large
tration) method for Unmanned Aerial Vehicles using an imagL@CGfta'mY-. Using these relative homographies, the alsol
registration method based on Fourier-Mellin transfororati homographies are computed along with its uncertainty which
As they have stated, the proposed method fails if there is fgtPropagated using a first order approximation [21].

enough overlapping area between time consecutive imageilding Potential Overlapping Image Pairs This step aims
None of the methods mentioned above have concentrated®rind the overlapping image pairs given an estimate of the
the challenge of finding the non-time consecutive matcha@gsolute homographies and its uncertainty. We proposeeto us

Figure 1. Pipeline of the algorithm.

when only image information is available. an approach which employs two successive different tesis. T
first test computes the distance between image centers by tak
[1l. TOPOLOGYESTIMATION ing into account their uncertainties. If this distance isaer

In this work, we assume that the optical axis of the cameral[i2" @ selected threshold (such as, size of the image difgona

kept perpendicular to the scene, which is approximately%‘latthen th? second test Is gpphed. The second test consists of
Each image has an associated planar transformation [18] wiE"€rating several noisy instances of homographies using t

4 degrees of freedom!H,, detaied in Eq. (1), that relates theProPagated covariances and computing the overlapping area
image framei to a common mosaic frama/ (i.e., absolute petween images. If the normalized average overlapplng area
is above a given threshold (e.g., 30%), then the pair is added

homography). to the list of potential overlapping image pairs.
a; —bi ¢ Image Selection and MatchingThis step starts by selecting
MH; = | b a d; (1) a subset of image pairs from the potential overlapping pair
0 0 1 list. The main reason for this selection is that it is not fleles

For simplicity, we consider the reference frame to be tﬁn%a?teanop;_fvgzmhi;he V;Rg'%ﬂzt tznt(r:]eetﬂie ::SLI:T:EE;;?MZ:] d
coordinate system of the first image, so tHaH, is equal y ppIng p 9 y

to identity, thus it is not part of the parameter vector to b%”f.t on the current_absolute homographles_. We have L.j.sed the
estimated. estimated overlapping area between potential overlapyairg

Our scheme is composed of five different steps: (1) InE—S a ranking criterion. The size of the subset is determined

tialization, (2) Generation of the list of potential overtang yat?;h?:]mptliiqg?g?ptl;?tfunlfs{e;ngeaCn:i:(licr):ét\glheée utgletctoiﬁle
image pairs, (3) Image selection and matching, (4) Minimis%:)m utzgtional time spent on all otphper steps i)r/1 tr?e iteration
tion of the reprojection error and (5) Covariance propagati P P P

The pipeline of the proposed method is illustrated in Fig. 1(ggneration o list Of. potentially ovgrlapping_ pairs, blmd.
Initialization The initialization step aims at obtaining infor-""dJUStment and covariance propagation). For image maghin

mation on the similarity between images and to establi ﬁatures are detected and matched using SIFT [19], followed

an initial link between them. This similarity informatios i y outlier rejection and motion estimation [18].

intended to be computed in a fast and approximate way. Firjg[inimizing the Reprojection Error The error terms resulting
3

Scale Invariant Features (SIFT) [19] are extracted. Thenfrgm |ma\?ve rﬁg:;stratlﬂnlare dmeasturr:ac(jj Irr(]j tger:r(;}agzdr_efetrrﬁnﬁf
small subset of feature descriptors (betwééf and200) are ames. We have employed a stanca undie Adjustme

randomly selected from each image, and compared agai .s'?‘) approach [12] which minimizes thg we|ghte_d reprojec-
error over homographies. Reprojection error is exg@ds

the subsets of all other images. This comparison is perfdrmaézr}onows_
using the Euclidean distance between feature descripl8is [ '
For a given pair of images, our similarity measure is propor-
tional to the number of descriptors that are associatedyusin -
P @ c=TE % I*p

_My-1 My, tp. + 2
the distance criterion. The computational cost of this leirity K 0Pyl 2)

=1
t Mpy-1 M k
. - o . 1P = H - He -y [l
in this work, it is assumed that the navigation altitude o trehicle is ) )
large with respect to the 3D relief of the scene wherek andt are a pair of images that were successfully



matchedn is the total number of correspondences between t e e
overlapping image pair$*H,, ™H,) are the absolute homo- '
graphies for images andt, respectively*p; = (*z;,% y;,1)
encodes the coordinates of th&" feature point in image
k, while tpj are the coordinates of the same scene point
imaget. The weight included cost function is given in Eq. (3)
which is the L, norm of a stack of weighted residueg.is
minimized over, which contains the parameters for all imag
homographies.

Image Indices

f=RT-W-R ()
| =P —H; i, .
whereR = J'r,f? — ip, —IH; -ip, L is adNp, x1

: ; ; ; Figure 2. Initial Similarity Matrix of the dataset. This miatwas computed
vector andw ISa d|agonaI4Npm x 4Npm matrix of weights using a maximum o200 feature points. Values are scaled[@1].
for each residuelV,,, is the total number of correspondences.

Finally, ‘H; = ‘Hy, - MH; and’/H; = 7Hy, - ¥ H,. The min-

imisation of tpMe cost fqnction i_n Eq. 3 was carried out “SinSbservations). The percentage of the total number of image
the MATLAB "~ Isgnonlin function for large-scale methods.matching attempts with respect to all-against-all imagécha
The optimization algorithm requires the computation of thﬁIg attempts is given in the fourth column. The last column
Jacobian matrix containing the derivatives of all residweith corresponds to the average reprojection error calculatidu

respect to all parameters. The Jacobian matrix has a cléerly 5| the correspondences with the resulting set of homogeaph
fined block structure, and the sparsity pattern is cons@2it [ o, each tested strategy.

[23]. In our implementation, analytic expressions werever As there are some broken links between the time-

and used for computing the Jacobian ma}tri>’<. consecutive images, the traditional iterative topologynes-
Covariance PropagationWe apply Haralick's method [21] (ion method proposed in [12] cannot be applied. It can be
to propagate the uncertainty of the resulting homography

estimations of BA.f in Egq. 3 is a function of parameter Table |

vector # and x containing all data affected by noise. After e L e

Optimization, the firSt Order appr0Ximati0n to the Uncmi ‘ Strategy Successful | Unsuccessful[ % of attempts wrt | Avg. Error ‘Std.vDev.

in the parameters iS given by [21] 1. Proposed Scheme] 02b758 ?,bjdl a”-agg.l;zt-a” - gf:zls - gf:}?ls
2. Similarity Matrix 294 5,900 99.65 4.86 3.61

o -1 o ) T 9 -1 3. All Against Al 294 5,922 100.00 4.86 3.61
2, = (_g) 9 5y <_g) . (_g) (4)

o6 ox ox 2 observed in Table | that our scheme was able tddet of the

whereXx is the covariance matrix of andg is the jacobian total overlapping pairs with a considerably smaller nuntfer
of f with respect taf. image matching attempts. The second line shows the results f
matching all the pairs for which the similarity matrix prdeis
at least20 descriptor associations to attempt RANSAC [18].

The generic scheme described in the previous section widee third line is for the all-against-all strategy. Initgnilarity
tested on a general setup for image surveys using an umatrix almost suggests all-against-all matching.
derwater robot equipped with a down-looking camera. We In order to show that the proposed scheme is not dependent
have tested our scheme on a real data set in which soorethe image order in the dataset. We have also tested our
time-consecutive images do not have overlapping areas. Buheme on a small dataset that is composed of approximately
dataset was extracted from an underwater image sequetwee transects having a few overlapping pairs between them.
acquired by a Phantom 500 ROV during a survey in Andro#/e have changed the image order fully in random manner only
the Bahamas [7]. This data set is composed of two horizonkaleping the first image same. This is mainly to represent the
and three vertical transects. The total number of imagestigpology in common global frame. Then, we reorganize the
112. In addition, we have changed the order of the images itdtial similarity matrix by taking into account this randuy
have more non-overlapping consecutive pairs between @idegenerated new image order. The initial similarity matriaes
images. The initial similarity matrix is depicted in Fig. 2depicted in Fig. 5. We have run our scheme on both original
The resulting final trajectory and uncertainty can be seen ¢aptured order and the randomly generated order of images.
Fig. 3 while the resulting mosaic is depicted in Fig. 4 anResults are summarized in Table II.
Table | summarises the results. The first column of the tableFrom the results, it can be seen that our scheme can work
corresponds to the tested method. The second column shevith fully unordered datasets as it uses similarity matrix
the total number of successfully matched image pairs that habtained from images. Final trajectory and uncertainties o
least20 inliers. The third column contains the total number ofmage centers are given in Fig.6 Final trajectory for the
image pairs that were not successfully matchawifccessful randomly ordered images is given in Fig.7.

IV. EXPERIMENTAL RESULTS
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Figure 3. Axes are in pixels and approximatelj0 pixels per meter. (a) Final trajectory obtained by the psggbmethod. Red lines are links between time
consecutive overlapping images while the black ones anedeet the non-time consecutive. Blue lines show the nonlaweing time consecutive images.
(b) Uncertainty on the final trajectory. Uncertainty eliigsare drawn witt95% confidence level.
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were computed using a maximum of0 feature points.

Table Il

SUMMARY OF RESULTS.

|7Strategy ‘

Successful
Obs.

Unsuccessful
Obs.

% of attempts wrt
all-against-all

Avg. Error
in pixels

Std. Dev.
in pixels

1. Captured Order of images
1. Random Order of images
2. Similarity Matrix

3. All Against All

62
62
64
64

30
31
342
342

22.66
22.90
100.00
100.00

7.05
7.03
6.63
6.63

4.20
4.20
4.17
4.17

V. ENVIRONMENTAL APPLICATION OF MOSAICS ON CORAL

REEFS

Recent declines in coral reefs across the globe undersc@tée new scale of observation enabled by landscape mosaics
the need for new scientific tools to better understand eqeddg Accurately documenting patterns of physical damage (and
patterns and rates of change. Given that multiple factogs @ubsequent recovery patterns) to benthic habitats cangee es
typically responsible for changes within reef ecosysteting, cially challenging when the spatial extent of injuries eedte
monitoring of reef health must be carried out at multipletisppa tens of square meters. Such injuries are often too large and

and temporal scales, rather than relying on measuring only
a few parameters. Comprehensive assessment of coral reef
resources demands a hierarchical mapping strategy imgplvi
micro-scale to macroscale measurements. Image-based mo-
saics of the seabed enable observations on a mesoscale of
10’s to 100’s of m, with mm-scale resolution.

Underwater image-based mosaics address several limita-
tions of traditional, diver-based, coral reef monitoriregh-
nigues. First, mosaics provide a landscape view of cordsree
that has previously been unobtainable [7]. Second, mosaics
are efficient tools for tracking patterns of change over time
[25]. Third, mosaics have high spatial accuracy at both the
scale of an individual coral colony [7] and at the scale of the
entire mosaic [10].

The potential use of mesoscale, or "landscape,” mosaics has
been investigated for several coral reef-related apjioaf
including: documenting hurricane damage at both the colony
and reef-framework scale [9], mapping mesophotic [26]] [27
and deep-water [28] coral ecosystems, quantifying the area
damaged by a ship that had run aground [10], and tracking
individual colonies through time [9], [25]. Of these, theish
grounding and individual monitoring take particular adtemye



Figure 4. Resulting final mosaic image. After global aligmtehe final mosaic was blended using graph cut algorithr$ [2

difficult to measure in situ by divers and too small or costlgnd the extent of the damage is later calculated from the
to be quantified effectively using aerial and satellite reanopolygon delineated by the GPS locations.

sensing tools. Documenting the extent of damage caused b{ )
physical disturbance is one of the main challenges of post--andscape mosaics are advantageous for assessment of

damage surveys in coral reef habitats. In the case of vesiafnage and recovery operations because they permit simuita
groundings, the effective and accurate assessment of taetex'€0US mapping of both the scale of the entire injury as well as
of the damage caused is a crucial first step in the Habit3€ fine scale appropriate to assess individual colony damag
Equivalency Analysis (HEA) required to determine the antoufy!™an et al. [10] showed that an estimate of the damaged area
of compensatory restoration required [29], [30]. Grougdind€/ved from a landscape mosaic agreed within 2% with an
scars are commonly measured in situ by divers using flexigigtimate produced by a diver using d|ffe2er_1t|al GPS. Gleaso
tapes following the “fishbone” method described by [31]. Ifft @ [32] mapped a large scar§, 000m°) in Puerto Rico.
addition, the boundaries of the damaged areas or the pusitig? @5Sémbling multiple individual landscape mosaics aequi

of objects of interest (e.g., injured corals) are surveysidgl by divers. Despite the huge area, the Puerto Rico mosaic was

surface-deployed GPS units positioned over specific lonati 'éNdered at 1 cm spatial resolution, allowing the assessmen
of individual coral colonies (Fig. 8).
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Figure 7. Axes are in pixels and approximat@@0 pixels per meter. Final trajectory obtained by the propasegiieme using randomly ordered images in
the dataset.

Monitoring individual coral colonies requires establigli tagging method is the state-of-the-art method used to ledtab
a permanent site and periodically measuring the size anew permanent plots today.
condition of each Colony within that site. Currently, stafe Landscape mosaics have two key advantages relative to
the-art assessment techniques rely on divers to measuneycokhe diver-based method that improve colony-based moniori
sizes using tape measures or meter sticks, and to esting&t, tags are not necessary because repeat mosaics taen o
colony condition visually. The drawbacks of this techniqughe same area can be registered to one another. Removing the
are, first, that the divers must tag each colony so the specfiitiance on tags eliminates the need for physical contattt wi
coral can be identified in the fUtUre, and, Second, that therdli COfalS, thereby greaﬂy reducing the potentia| for inathmr
must have the relevant biological/ecological trainingdentify gamage and the amount of gear that must be permanently
corals and assess their condition in the field. This diveseda attached to the seafloor (e.g.’ na"s, tags, markers)_ ﬂ"ggg|



Diver Photos vs. Mosaic Zooms

Figure 8. Landscape mosaic of a ship-grounding scar in ®(Rido. The dimensions of the mosaiced arealdrg x 67 m, covering overt,700 m2 with

1 x 1 cm pixels. The entire mosaic is presented here!s%o of its full resolution, but the insets show portions of thesaic at full resolution to give an idea
of the level of detail in comparison with oblique images agepl by divers. Note the pulverized rock within the area ofximum damage (red insets), the
condition of the unaffected area surrounding the scar (ghegets), and the coral fragments ready to be adhered touthstrate as part of the remediation
process (blue insets).

labor intensive both during the initial establishment & ot ACKNOWLEDGMENTS.

and during re-location of colonies through time. Further®o  This work was partially funded through the Spanish
tags can get lost due to burial, failure of the attachmeRfinistry of Education and Science (MCINN) under grant
mechanism, biofouling, or simply diver error, and lost tagéTM2010-15216, EU Project FP7-ICT-2009-248497 and US
represent lost data as colonies can no-longer be identifiegcgrpp program project CS-1333. Nuno Gracias was sup-
Second, divers who collect the data do not necessarily 'mvepbrted by MCINN under the Ramon y Cajal program.
have extensive training in coral reef biology.
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