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Abstract—Over the past decade, several image mosaicing meth-
ods have been proposed in robotic mapping and remote sensing
applications. Owing to the rapid developments on obtaining
optical data from areas beyond human reach, there is a high
demand from different scientists for creating large-area image
mosaics often using images as the only source of information.
One of the most important steps in the mosaicing process is
the motion estimation between overlapping images to obtainthe
topology, i.e, the spatial relationships between images. In this
paper, we propose a generic framework for feature-based image
mosaicing capable of obtaining the topology with a reduced
number of matching attempts and to get the best possible
trajectory estimation. Innovative aspects include the useof a fast
image similarity criterion combined with a minimum spanning
tree (MST) solution, to obtain a tentative topology. This topology
is improved by attempting image matching over the pairs of
higher overlap evidence. Unlike previous approaches for large-
area mosaicing, our framework is able to naturally deal with
the cases where time consecutive images cannot be matched
successfully, such as completely unordered sets. We conclude
this paper by presenting an environmental application of this
mosaicing approach for monitoring coral reefs.

I. I NTRODUCTION

Image mosaicing methods have been widely used for
panoramic imaging [1] and mapping [2]. Aerial and satellite
imagery of the Earth’s surface, merged with high-resolution
topographic models, have proven a key tool to understand
physical processes of our planet (geological, hydrological,
biological, etc.), to monitor environmental changes, whether
man-induced or natural, resource management, development
and infrastructure planning (public works, remediation plans,
land use, etc.). Robots are becoming more and more important
in gathering optical data from places where human cannot
reach. In robot mapping(i.e., aerial and/or underwater), when
a robot is surveying a large area using only a down-looking
camera, it is of interest to obtain a global view of the area.
To have a wide-area visual representation of the scene, it is
necessary to create large-area maps (mosaics). Mosaics enable
different applications such as geological [3], [4] and archaeo-
logical surveys [5], ecology studies [6], [7], [8], environmental
damage assesment [9], [10] and detection of temporal changes
in [11]. Therefore, there is a high demand from different
science communities for creating optical maps of areas where
human cannot reach.

When a robot is mapping an area in a scattering media [4],

illumination effects, noise, lack of image contrast and blurring
are phenomena that make image registration difficult. This
leads to inaccuracies in image registration that cause mis-
alignment when images are mapped onto the mosaic (global)
frame. To compose images into a mosaic form, several steps
are needed and one of the most important steps is image
registration. In the absence of any other information, mostof
the existing methods try the exhaustive strategy of matching
all images against all. However, this approach is only feasible
for a small number of images. Since large-area surveys might
comprise of several hundreds to tens of thousands of im-
ages [4], [5], the all-against-all strategy becomes impractical.

To overcome this problem, we propose in this paper a
generic image mosaicing scheme aiming to get the com-
plete topology with minimum number of image matching
attempts while simultaneously obtaining a globally coherent
mosaic. The algorithm takes as input a set of images that has
been previously acquired. The time order is not taken into
account; therefore, the image set can be totally unordered.
Our technique first infers image similarity information us-
ing a fast method based on the Euclidean distance between
feature descriptors. Then, this similarity is used to create a
tentative topology with associated uncertainty. The estimated
uncertainty, although large at the beginning, is gradually
reduced by successive iterations of image matching and bundle
adjustment.

II. RELATED WORK

Quality constraints of image mosaics are usually very strict,
especially for mapping purposes, as the mosaic might be used
for global navigation [12], localization of interest areas[4]
and detection of temporal changes [11]. Several image mo-
saicing approaches for creating underwater mosaics have been
proposed over the last decade [13], [14], [15], [16]. Pizarro et
al. [13] proposed a mosaicing system that exploited navigation
and attitude information for bundle adjustment. Madjidi and
Negahdaripour [14], addressed the global alignment problem
for a submersible equipped with stereo cameras, using a
mixed adjustment model to recursively determine the pose of
the vehicle. Rzhanov et al. described in [15] a methodology
that exploited navigation data to build geo-referenced photo-
mosaics of the mid-ocean ridges at the East Pacific Rise. Ferrer
et al. [16] proposed a global alignment method for creating



Figure 1. Pipeline of the algorithm.

large-scale underwater photo-mosaics that combines image
registration information and 3D position estimates provided by
navigation sensors available in deep water surveys. Bulow et
al. [17] proposed an online mosaicing (image-to-mosaic regis-
tration) method for Unmanned Aerial Vehicles using an image
registration method based on Fourier-Mellin transformation.
As they have stated, the proposed method fails if there is not
enough overlapping area between time consecutive images.
None of the methods mentioned above have concentrated on
the challenge of finding the non-time consecutive matches
when only image information is available.

III. T OPOLOGYESTIMATION

In this work, we assume that the optical axis of the camera is
kept perpendicular to the scene, which is approximately flat1.
Each image has an associated planar transformation [18] with
4 degrees of freedom,MHi, detaied in Eq. (1), that relates the
image framei to a common mosaic frameM (i.e., absolute
homography).

MHi =





ai −bi ci
bi ai di
0 0 1



 (1)

For simplicity, we consider the reference frame to be the
coordinate system of the first image, so thatMH1 is equal
to identity, thus it is not part of the parameter vector to be
estimated.

Our scheme is composed of five different steps: (1) Ini-
tialization, (2) Generation of the list of potential overlapping
image pairs, (3) Image selection and matching, (4) Minimisa-
tion of the reprojection error and (5) Covariance propagation.
The pipeline of the proposed method is illustrated in Fig. 1
Initialization The initialization step aims at obtaining infor-
mation on the similarity between images and to establish
an initial link between them. This similarity information is
intended to be computed in a fast and approximate way. First,
Scale Invariant Features (SIFT) [19] are extracted. Then a
small subset of feature descriptors (between100 and200) are
randomly selected from each image, and compared against
the subsets of all other images. This comparison is performed
using the Euclidean distance between feature descriptors [19].

For a given pair of images, our similarity measure is propor-
tional to the number of descriptors that are associated using
the distance criterion. The computational cost of this similarity

1In this work, it is assumed that the navigation altitude of the vehicle is
large with respect to the 3D relief of the scene

measure is comparatively low, since it mainly involves com-
puting the angles between a small set of descriptor vectors.Our
multi-threaded C implementation allows for computing the
measure in2.5 miliseconds on a standard desktop machine for
a pair of images with200 descriptors each. In order to establish
the initial link between images, we use a MST where weights
of the edges are the inverted initial similarity values. MSTof
a weighted graph is a subset of edges that form a tree whose
sum of weights of edges is minimum[20]. MST provides
a connected tree which is composed of the most similar
image pairs according to the similarity information. The initial
relative homographies between those image pairs that are in
the MST are treated as identity mappings with very large
uncertainty. Using these relative homographies, the absolute
homographies are computed along with its uncertainty which
is propagated using a first order approximation [21].
Finding Potential Overlapping Image Pairs This step aims
to find the overlapping image pairs given an estimate of the
absolute homographies and its uncertainty. We propose to use
an approach which employs two successive different tests. The
first test computes the distance between image centers by tak-
ing into account their uncertainties. If this distance is smaller
than a selected threshold (such as, size of the image diagonal)
then the second test is applied. The second test consists of
generating several noisy instances of homographies using the
propagated covariances and computing the overlapping area
between images. If the normalized average overlapping area
is above a given threshold (e.g., 30%), then the pair is added
to the list of potential overlapping image pairs.
Image Selection and MatchingThis step starts by selecting
a subset of image pairs from the potential overlapping pair
list. The main reason for this selection is that it is not feasible
to attempt to match the whole list since the list might contain
many non-overlapping pairs due to the high uncertainty and
drift on the current absolute homographies. We have used the
estimated overlapping area between potential overlappingpairs
as a ranking criterion. The size of the subset is determined
by a simple Computational Time criterion, where the total
matching time for the subset is approximately equal to the
computational time spent on all other steps in the iteration
(generation of list of potentially overlapping pairs, bundle
adjustment and covariance propagation). For image matching,
features are detected and matched using SIFT [19], followed
by outlier rejection and motion estimation [18].
Minimizing the Reprojection Error The error terms resulting
from image registration are measured in the image reference
frames. We have employed a standard Bundle Adjustment
(BA) approach [12] which minimizes the weighted reprojec-
tion error over homographies. Reprojection error is expressed
as follows:

ε =
∑

k

∑

t

n
∑

j=1
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k · MHt ·
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wherek and t are a pair of images that were successfully



matched,n is the total number of correspondences between the
overlapping image pairs,(MHk,

MHt) are the absolute homo-
graphies for imagesk andt, respectively.kpj = (kxj ,

k yj, 1)
encodes the coordinates of thejth feature point in image
k, while tpj are the coordinates of the same scene point in
imaget. The weight included cost function is given in Eq. (3),
which is theL2 norm of a stack of weighted residues.f is
minimized overθ, which contains the parameters for all image
homographies.

f = RT · W · R (3)
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is a4Npm×1

vector andW is a diagonal4Npm × 4Npm matrix of weights
for each residue.Npm is the total number of correspondences.
Finally, iHj =

iHM · MHj and jHi =
jHM · MHi. The min-

imisation of the cost function in Eq. 3 was carried out using
the MATLAB

TM
lsqnonlin function for large-scale methods.

The optimization algorithm requires the computation of the
Jacobian matrix containing the derivatives of all residuals with
respect to all parameters. The Jacobian matrix has a clearlyde-
fined block structure, and the sparsity pattern is constant [22],
[23]. In our implementation, analytic expressions were derived
and used for computing the Jacobian matrix.
Covariance PropagationWe apply Haralick’s method [21]
to propagate the uncertainty of the resulting homography
estimations of BA.f in Eq. 3 is a function of parameter
vector θ and x containing all data affected by noise. After
optimization, the first order approximation to the uncertainty
in the parameters is given by [21]
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whereΣx is the covariance matrix ofx andg is the jacobian
of f with respect toθ.

IV. EXPERIMENTAL RESULTS

The generic scheme described in the previous section was
tested on a general setup for image surveys using an un-
derwater robot equipped with a down-looking camera. We
have tested our scheme on a real data set in which some
time-consecutive images do not have overlapping areas. The
dataset was extracted from an underwater image sequence
acquired by a Phantom 500 ROV during a survey in Andros,
the Bahamas [7]. This data set is composed of two horizontal
and three vertical transects. The total number of images is
112. In addition, we have changed the order of the images to
have more non-overlapping consecutive pairs between ordered
images. The initial similarity matrix is depicted in Fig. 2.
The resulting final trajectory and uncertainty can be seen in
Fig. 3 while the resulting mosaic is depicted in Fig. 4 and
Table I summarises the results. The first column of the table
corresponds to the tested method. The second column shows
the total number of successfully matched image pairs that have
least20 inliers. The third column contains the total number of
image pairs that were not successfully matched (unsuccessful

Figure 2. Initial Similarity Matrix of the dataset. This matrix was computed
using a maximum of200 feature points. Values are scaled to[0, 1].

observations). The percentage of the total number of image
matching attempts with respect to all-against-all image match-
ing attempts is given in the fourth column. The last column
corresponds to the average reprojection error calculated using
all the correspondences with the resulting set of homographies
for each tested strategy.

As there are some broken links between the time-
consecutive images, the traditional iterative topology estima-
tion method proposed in [12] cannot be applied. It can be

Table I
SUMMARY OF RESULTS.

Strategy Successful Unsuccessful % of attempts wrt Avg. Error Std. Dev.
Obs. Obs. all-against-all in pixels in pixels

1. Proposed Scheme 278 1, 201 23.79 5.12 3.67
2. Similarity Matrix 294 5, 900 99.65 4.86 3.61
3. All Against All 294 5, 922 100.00 4.86 3.61

observed in Table I that our scheme was able to get94% of the
total overlapping pairs with a considerably smaller numberof
image matching attempts. The second line shows the results for
matching all the pairs for which the similarity matrix provides
at least20 descriptor associations to attempt RANSAC [18].
The third line is for the all-against-all strategy. Initialsimilarity
matrix almost suggests all-against-all matching.

In order to show that the proposed scheme is not dependent
on the image order in the dataset. We have also tested our
scheme on a small dataset that is composed of approximately
two transects having a few overlapping pairs between them.
We have changed the image order fully in random manner only
keeping the first image same. This is mainly to represent the
topology in common global frame. Then, we reorganize the
initial similarity matrix by taking into account this randomly
generated new image order. The initial similarity matricesare
depicted in Fig. 5. We have run our scheme on both original
captured order and the randomly generated order of images.
Results are summarized in Table II.

From the results, it can be seen that our scheme can work
with fully unordered datasets as it uses similarity matrix
obtained from images. Final trajectory and uncertainties on
image centers are given in Fig.6 Final trajectory for the
randomly ordered images is given in Fig.7.



(a) (b)

Figure 3. Axes are in pixels and approximately200 pixels per meter. (a) Final trajectory obtained by the proposed method. Red lines are links between time
consecutive overlapping images while the black ones are between the non-time consecutive. Blue lines show the non-overlapping time consecutive images.
(b) Uncertainty on the final trajectory. Uncertainty ellipses are drawn with95% confidence level.

Figure 5. Initial Similarity Matrices of the second dataset. These matrices
were computed using a maximum of100 feature points.

Table II
SUMMARY OF RESULTS.

Strategy Successful Unsuccessful % of attempts wrt Avg. Error Std. Dev.
Obs. Obs. all-against-all in pixels in pixels

1. Captured Order of images 62 30 22.66 7.05 4.20
1. Random Order of images 62 31 22.90 7.03 4.20
2. Similarity Matrix 64 342 100.00 6.63 4.17
3. All Against All 64 342 100.00 6.63 4.17

V. ENVIRONMENTAL APPLICATION OF MOSAICS ON CORAL

REEFS

Recent declines in coral reefs across the globe underscore
the need for new scientific tools to better understand ecological
patterns and rates of change. Given that multiple factors are
typically responsible for changes within reef ecosystems,the
monitoring of reef health must be carried out at multiple spatial

and temporal scales, rather than relying on measuring only
a few parameters. Comprehensive assessment of coral reef
resources demands a hierarchical mapping strategy involving
micro-scale to macroscale measurements. Image-based mo-
saics of the seabed enable observations on a mesoscale of
10’s to 100’s of m, with mm-scale resolution.

Underwater image-based mosaics address several limita-
tions of traditional, diver-based, coral reef monitoring tech-
niques. First, mosaics provide a landscape view of coral reefs
that has previously been unobtainable [7]. Second, mosaics
are efficient tools for tracking patterns of change over time
[25]. Third, mosaics have high spatial accuracy at both the
scale of an individual coral colony [7] and at the scale of the
entire mosaic [10].

The potential use of mesoscale, or ”landscape,” mosaics has
been investigated for several coral reef-related applications,
including: documenting hurricane damage at both the colony
and reef-framework scale [9], mapping mesophotic [26], [27]
and deep-water [28] coral ecosystems, quantifying the area
damaged by a ship that had run aground [10], and tracking
individual colonies through time [9], [25]. Of these, the ship
grounding and individual monitoring take particular advantage
of the new scale of observation enabled by landscape mosaics.

Accurately documenting patterns of physical damage (and
subsequent recovery patterns) to benthic habitats can be espe-
cially challenging when the spatial extent of injuries exceeds
tens of square meters. Such injuries are often too large and



Figure 4. Resulting final mosaic image. After global alignment, the final mosaic was blended using graph cut algorithms [24]

difficult to measure in situ by divers and too small or costly
to be quantified effectively using aerial and satellite remote
sensing tools. Documenting the extent of damage caused by
physical disturbance is one of the main challenges of post-
damage surveys in coral reef habitats. In the case of vessel
groundings, the effective and accurate assessment of the extent
of the damage caused is a crucial first step in the Habitat
Equivalency Analysis (HEA) required to determine the amount
of compensatory restoration required [29], [30]. Grounding
scars are commonly measured in situ by divers using flexible
tapes following the “fishbone” method described by [31]. In
addition, the boundaries of the damaged areas or the positions
of objects of interest (e.g., injured corals) are surveyed using
surface-deployed GPS units positioned over specific locations,

and the extent of the damage is later calculated from the
polygon delineated by the GPS locations.

Landscape mosaics are advantageous for assessment of
damage and recovery operations because they permit simulta-
neous mapping of both the scale of the entire injury as well as
the fine scale appropriate to assess individual colony damage.
Lirman et al. [10] showed that an estimate of the damaged area
derived from a landscape mosaic agreed within 2% with an
estimate produced by a diver using differential GPS. Gleason
et al. [32] mapped a large scar (>3, 000m2) in Puerto Rico
by assembling multiple individual landscape mosaics acquired
by divers. Despite the huge area, the Puerto Rico mosaic was
rendered at 1 cm spatial resolution, allowing the assessment
of individual coral colonies (Fig. 8).



(a) (b)

Figure 6. Axes are in pixels and approximately200 pixels per meter. (a) Final trajectory obtained by the proposed method. Red lines are links between time
consecutive overlapping images while the black ones are between the non-time consecutive. Blue lines show the non-overlapping time consecutive images.
(b) Uncertainty on the final trajectory. Uncertainty ellipses are drawn with95% confidence level.

Figure 7. Axes are in pixels and approximately200 pixels per meter. Final trajectory obtained by the proposedscheme using randomly ordered images in
the dataset.

Monitoring individual coral colonies requires establishing
a permanent site and periodically measuring the size and
condition of each colony within that site. Currently, state-of-
the-art assessment techniques rely on divers to measure colony
sizes using tape measures or meter sticks, and to estimate
colony condition visually. The drawbacks of this technique
are, first, that the divers must tag each colony so the specific
coral can be identified in the future, and, second, that the divers
must have the relevant biological/ecological training to identify
corals and assess their condition in the field. This diver-based

tagging method is the state-of-the-art method used to establish
new permanent plots today.

Landscape mosaics have two key advantages relative to
the diver-based method that improve colony-based monitoring.
First, tags are not necessary because repeat mosaics taken over
the same area can be registered to one another. Removing the
reliance on tags eliminates the need for physical contact with
corals, thereby greatly reducing the potential for inadvertent
damage and the amount of gear that must be permanently
attached to the seafloor (e.g., nails, tags, markers). Tagging is



Figure 8. Landscape mosaic of a ship-grounding scar in Puerto Rico. The dimensions of the mosaiced area are117× 67 m, covering over4,700 m2 with
1× 1 cm pixels. The entire mosaic is presented here at<5% of its full resolution, but the insets show portions of themosaic at full resolution to give an idea
of the level of detail in comparison with oblique images acquired by divers. Note the pulverized rock within the area of maximum damage (red insets), the
condition of the unaffected area surrounding the scar (green insets), and the coral fragments ready to be adhered to the substrate as part of the remediation
process (blue insets).

labor intensive both during the initial establishment of the plot
and during re-location of colonies through time. Furthermore,
tags can get lost due to burial, failure of the attachment
mechanism, biofouling, or simply diver error, and lost tags
represent lost data as colonies can no-longer be identified.
Second, divers who collect the data do not necessarily have to
have extensive training in coral reef biology.

VI. CONCLUSIONS

We have presented a generic scheme for creating large-
area mosaics with application to environmental mapping over
areas where only image information is available. Our scheme
aims at obtaining the topology with minimum number of
image matching attempts as well as obtaining the best possible
trajectory estimation. The proposed approach is able to deal
with the cases where time consecutive images do not have
overlapping areas.
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