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Abstract: For aquaculture resource evaluation and ecological environment monitoring, the automatic
detection and identification of marine organisms is critical; however, due to the low quality of
underwater images and the characteristics of underwater biological detection, the lack of abundant
features can impede traditional hand-designed feature extraction approaches or CNN-based object
detection algorithms, particularly in complex underwater environments. Therefore, the goal of
this study was to perform object detection in underwater environments. This study developed a
novel method for capturing feature information by adding the convolutional block attention module
(CBAM) to the YOLOv5 backbone network. The interference of underwater organism characteristics
in object characteristics decreased and the output object information of the backbone network was
enhanced. In addition, a self-adaptive global histogram stretching algorithm (SAGHS) was designed
to eliminate degradation problems, such as low contrast and color loss, that are caused by underwater
environmental features in order to restore image quality. Extensive experiments and comprehensive
evaluations using the URPC2021 benchmark dataset demonstrated the effectiveness and adaptivity
of the proposed methods. Additionally, this study conducted an exhaustive analysis of the impacts of
training data on performance.

Keywords: underwater biological detection; underwater image enhancement; attention mechanism;
global histogram stretching

1. Introduction

The exploration of aquatic environments has recently become popular due to the
growing scarcity of natural resources and the growth of the global economy [1]. Machine
vision has been shown to be a low-cost and dependable method that has the benefits of
non-contact monitoring, long-term steady operation, and a broad range of applications.
Underwater object detection is pivotal in numerous applications, such as underwater search
and rescue operations, deep-sea exploration and archaeology, and sea life monitoring [2].
These applications require effective and precise vision-based underwater sea analytics,
including image enhancement, image quality assessment, and object detection methods.
However, capturing underwater images using optical imaging systems poses greater
problems than capturing images under open-air conditions. More specifically, underwater
images frequently suffer from degeneration due to severe color distortion, low contrast,
non-uniform illumination, and noise from artificial lighting sources, which dramatically
degrades image visibility and affects the detection accuracy for underwater object detection
tasks [1]. Over recent years, underwater image enhancement technologies have been
developed that work as preprocessing operations to boost detection accuracy by improving
the visual quality of underwater images.

On the other hand, underwater object detection performance is associated with the
characteristics of underwater biological organisms. Usually, because of differences in size
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or shape and the overlapping or occlusion of marine organisms, traditional hand-designed
feature extraction methods cannot meet detection requirements for actual underwater
scenes. Most studies have emphasized the extraction of traditional low-level features,
such as color, texture, contours, and shape [3], which has led to the disadvantages of
traditional object detection methods, such as poor recognition, low accuracy, and slow
recognition. However, by directly benefiting from deep learning methods, object detection
has witnessed a great boost in performance over recent years, although general object
detection algorithms that are based on deep learning have not yet demonstrated better
detection performance for marine organisms due to the low quality of underwater imaging
and complex underwater environments.

The majority of the extant strategies consider underwater image enhancement and
underwater object detection as two separate pipelines, with underwater image enhance-
ment being evaluated by image quality assessments and underwater object detection being
evaluated by detection accuracy. These two tasks have different optimization objectives,
which lead to different optimal solutions.

To validate the proposed methods, this study conducted experiments using the under-
water robot professional contest (URPC2021) dataset. The experimental results proved the
effectiveness of the proposed underwater image enhancement method and the improved
underwater object detection algorithm. In conclusion, the primary contributions of this
study can be summarized as follows:

1. The correction of bluish and greenish backgrounds and low contrast using an im-
proved global histogram stretching method that dynamically adjusts the histogram
stretching coefficient, for which a detailed linear function and framework were built;

2. The integration of a convolutional block attention module (CBAM) into CSPDarknet53
to enhance the features of small, overlapping, and occluded objects. In particular, the
CBAM mechanism can be employed to improve the contrast between an object and
the surrounding environment and refine redundant information that is produced by
the Focus function;

3. The use of a simple and efficient connection between the attention mechanism and
object detection algorithm for the first time. The CBAM module was added to the
Focus module of the backbone network to reduce the model burden as much as
possible while ensuring the desired detection accuracy of the improved algorithm.

The rest of the paper is organized as follows. Related works are discussed in Section 2.
Section 3 describes the materials and methods that were used in this study, including details
about the detection algorithm for the improved YOLOv5. In Section 4, the experiments
and performance analysis on the improved underwater model are presented. Finally, the
conclusions are presented in Section 5.

2. Related Work
2.1. Underwater Image Enhancement (UIE) Methods

Underwater image enhancement (UIE) is a necessary step to improve the visual quality
of underwater images. UIE can be divided into three categories: model-free, physical
model-based, and deep learning-based approaches.

White balance [4], Gray World theory [5], and histogram equalization [6] are examples
of model-free enhancement methods that improve the visual quality of underwater images
by directly adjusting the pixel values of images. Ancuti et al. suggested a multi-scale fusion
underwater image enhancement method that could be combined with fusion color correc-
tion and contrast enhancement to obtain high-quality images [7]. Based on prior research,
Ancuti et al. also proposed a weighted multi-scale fusion method for underwater image
white balance that could restore faded information and edge information in the original
images using gamma variation and sharpening [8]. Fu et al. proposed a Retinex-based
enhancement system that included color correction, layer decomposition, and underwater
image enhancement in the Lab color space [9]. Zhang et al. extended the Retinex-based
method by using bilateral and trilateral filters to enhance the three channels of underwater
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image in the CIELAB color space [10]. However, because the physical deterioration process
of underwater images has not been taken into account, the model-free UIE approaches can
generate noise, artifacts, and color distortion, which makes them unsuitable for various
types of applications.

Physical model-based methods regard underwater picture enhancement as an inverse
image degradation problem and these algorithms can provide clear images by calculating
the transmission and background light using Definition 1. Because underwater imaging
models are similar to atmospheric models for fog, dehazing algorithms are used to enhance
underwater images. He et al. proposed a dehazing algorithm that was based on dark
channel prior (DCP), which could effectively estimate the thickness of fog and obtain
fog-free images [11]. Based on DCP, Drew et al. proposed an underwater dark channel
prior that considered red light attenuation in water [12]. Peng et al. developed a general-
ized dark primary color prior (GDCP) for underwater image enhancement that included
adaptive color correction in an image creation model [13]. Model-based approaches often
need prior information and the quality of the improved images is dependent on precise
parameter estimation.

Deep learning enhancement methods usually construct convolutional neural networks
and train them using pairs of degraded underwater images and their high-quality counter-
parts [14]. Li et al. suggested an unsupervised generative adversance network (WaterGAN)
that generated underwater images from aerial RGB-D images and then trained an under-
water image recovery network using the synthesized training data [15]. To produce paired
underwater image datasets, Fabbri et al. suggested an underwater color transfer model that
was based on CycleGAN [16] and built an underwater image recovery network using a gra-
dient penalty technique [17]. Ye et al. proposed an unsupervised adaptive network for joint
learning that could jointly estimate scene depth and correct color underwater images [18].
Chen et al. proposed two perceptual enhancement cascade models, which used gradient
strategy feedback information to enhance more prominent features in images [14]. Deep
learning UIE approaches that are based on composite image training generally require
a large number of datasets [19]. Because the quality of the composite images cannot be
guaranteed, these methods cannot be applied to underwater situations.

2.2. Attention Mechanisms

Some studies on attention mechanisms have been presented in the literature. Attention
models enable networks to extract information from crucial areas with reduced energy
consumption, thereby enhancing CNN performance. Wang et al. proposed a residual
attention network that was based on an attention mechanism, which could continuously
extract large amounts of attention information [20]. Hu et al. proposed SENet, which
contained architectural “squeeze” and “excitation” units. These modules enhanced network
expressiveness by modeling the interdependencies between channels [21]. Woo et al.
proposed a lightweight module (CBAM) that combined feature channels and feature spaces
to refine features [22]. This method could achieve considerable performance improvements
while maintaining small overheads.

2.3. Underwater Object Detection Algorithms

Deep learning-based object detection algorithms are currently divided into two cate-
gories: one-stage regression detectors and two-stage region generation detectors. One-stage
detection methods mainly include the YOLO series [23–25], SSDs [26], RetinaNet [27], and
RefineDet [28], which directly predict objects without region generation. Two-stage detec-
tion methods mainly include RCNNs [29], fast RCNNs [30], faster RCNNs [31], and cascade
RCNNs [32]. Initially, these object detection methods were used for natural environments
on land. As deep learning technology has advanced, more and more object detection
algorithms have been applied to challenging underwater environments. Li et al. used a
faster RCNN to detect fish species and achieved an outstanding performance [33]. Li et
al. employed a residual network to detect deep-sea plankton. Their experiments revealed
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that deep residual networks generalized plankton categorization [34]. Cui et al. introduced
a CNN-based fish detection system and optimized it using data augmentation, network
simplification, and training process acceleration [35]. Huang et al. presented three data
augmentation approaches for underwater imaging that could imitate the illumination of
marine environments [36]. Fan et al. suggested a cascade underwater detection framework
with feature augmentation and anchoring refinement, which could address the issue of
imbalanced underwater samples [37]. Zhao et al. designed a new composite backbone
network to detect fish species by improving the residual network and used it to learn
change information within ocean scenes [3]. However, little research has been conducted in
the field of underwater object detection using YOLO.

The above section analyzed the existing research on underwater image enhancement,
attention mechanisms, and one-stage object detection algorithms. According to the above
analysis, object detection algorithms for terrestrial environments can be migrated and
applied to underwater conditions. However, complex underwater environments and
underwater biological properties can lead to low detection accuracy. In response to this
problem, this study developed an improved UIE method and an improved YOLOv5 object
detection algorithm to handle the degradation of underwater images and the low detection
accuracy of existing methods in complex underwater environments.

3. Methodology

This section first presents an overview of the self-adaptive global histogram stretching
algorithm (SAGHS) framework. Then, we demonstrate how to overcome underwater
biological characteristics using the convolutional block attention module (CBAM). Next, the
novel connection between the CBAM and the backbone network is outlined, followed by the
training and inference. The algorithm is presented in detail in the following two subsections.

3.1. Self-Adaptive Histogram Stretching Algorithm

Due to the complexity of underwater environments, underwater images often contain
visual distortions, such as low contrast, color distortions, and foggy effects. Before per-
forming computer vision tasks, it is usual to consider image enhancement preprocessing
methods. Using image enhancement methods, image quality can be improved and the use
of high-quality images facilitates object detection. The main motivation and guidelines for
designing the network architecture of the proposed framework are addressed as follows.
In this section, a two-stage self-adaptive global histogram stretching algorithm (SAGHS)
is introduced, which was based on the structure decomposition and characteristics of
underwater imaging, as shown in Figure 1. It included a self-adaptive contrast correction
module and a self-adaptive color correction module. In the self-adaptive contrast correction
module, the first step was to decompose the RGB channels and then apply color equal-
ization and SAGHS to adjust the dynamic stretching range. In addition, a bilateral was
used to eliminate noise. In the self-adaptive color correction module, RGB images were
converted into a CIELAB model and then a simple linear histogram stretching was applied
to adjust the “L” component. The adjusted CIELAB model was finally converted back into
an RGB model. The basic principles and definition were as follows.

Definition 1. Simplified underwater optical imaging model (J-M model):

IC(x, y) = JC(x, y)tC(x, y) + BC(1− tC(x, y)) (1)

where C ∈ {R, G, B}. IC(x, y) represents the underwater image that was captured by the camera,
JC(x, y)tC(x, y) represents the part of the scene energy that decayed directly, JC(x, y) represents
the scene radiance, tC(x, y) represents the transmission map, and BC(x, y) represents the global
background light. In water, tC(x, y) could be expressed as e−ηd(x,y), where η is the attenuation
coefficient and d(x, y) is the depth map between the scene and the camera.
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Figure 1. The structure of the self-adaptive global histogram stretching algorithm. The self-adaptive
contrast correction is shown in the left-hand side of the figure and the self-adaptive color correction
is shown in the right-hand side of the figure.

Definition 2. Histogram stretching method (Iqbal):

Po = (Pi − c)
(b− c)
(a− c)

+ a (2)

where Pi and Po represent the input and output pixel values, respectively, a and b represent the
minimum and maximum values of the desired range, respectively, and c, d represents the lowest and
highest pixel values that were present in the underwater images, respectively.

Definition 3. The statistics of the histogram distribution with a large of underwater images showed
that the distribution satisfied the Rayleigh distribution and its probability expression was obtained as:

RD =
x
a2 e

−x2

2a2 (3)

where the scale parameter a of the distribution function is the mode, which represents the peak value
in each RGB histogram. When a channel presented a normal distribution, the median and mode
were the same value.

3.1.1. Self-Adaptive Contrast Correction Module

Raw underwater images have low contrast and indistinct details due to light attenua-
tion and dispersion. To properly adjust the contrast and increase detail in these images,
the first step was to decompose the RGB channels and then conduct color equalization.
Our method for decomposing underwater images was inspired by the theory of the Gray
World hypothesis: for an ideal image, the average of the RGB channels in the image should
be “gray” (K). Because red light attenuation in water is difficult to adjust using simple
color equalization, this process leads to the over-saturation of red light; so, according to the
Gray World theory, half of the maximum values of the G and B channels were selected to
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take K = 0.5 as the "gray" value to correct those channels. Next, the image channels were
dynamically adjusted using the self-adaptive histogram stretching method. The specific
function of the dynamic adaptive stretching is documented in Algorithm 1.

Algorithm 1 The self-adaptive global histogram stretching algorithm.

Input: original stretch range Imin, Imax, desired stretch range Omin, Omax, channel represen-
tation λ

Output: Desired stretch minimum dynamic factor βλ, Desired stretch maximum dynamic
coefficient µλ

1: Begin
2: function stretchingRange(Imin, Imax,Omin, Omax)
3: for i, j ∈ [height, weight] do
3: initialize sort array
4: end for
5: Imin, Imax is the pixel values of the 0.5% and 99.5% array respectively
6: Omin ∈ (0, Iλmin)
7: Omin = aλ − βλ × σλ

8: Omax ∈ (Iλmax, 255)
9: Omax = Iλmax ÷ tλ

10: Imax = aλ + µλ × σλ

11: end function
12: function stretching(βλ,µλ)
13: Discuss the solution of βλ,µλ to determine the stretch range and get the output pixel

value Pout

14: Pout = (Pin − Imin)
(Omax−Omin)
(Imax−Imin)

+ Omin

15: return Pout

This excessive stretching of certain color channels not only introduced noise that re-
duced the visibility of the images but it also introduced artifacts that caused color distortion
and corrupted the details of the original images. According to the distribution patterns
of the RGB histograms of underwater images, the global histogram stretching equation
(Definition 2) was rewritten as Equation (4):

Pout = (Pin − Imin)
(Omax −Omin)

(Imax − Imin)
+ Omin (4)

where Pin and Pout represent the input and output pixel values, respectively, and Imin, Imax,
Omin, Omax represent the adaptive parameters of the images before and after stretching,
respectively.

Selection of stretching range Imin, Imax: Generally, this stretching process was con-
figured to follow the Rayleigh distribution (Definition 3) and was restricted to a specific
range. However, to reduce the effects of stretching due to extreme pixel points (e.g., noise,
maxima, minima, etc.) in the underwater images, the upper and lower intensity values
were separated. In the proposed methods, the input intensity levels were limited to 5% of
the minimum and maximum limitations. The restrictions were used to mitigate the effects
of under- and over-exposure in underwater images, as shown by Equation (5):{

Imin = σst[σst.index(a)× 0.5%]

Imax = σst[−(σlen − σst.index(a))× 0.5%]
(5)

where Imin and Imax represent the minimum and maximum stretch values, respectively,
σst represents the ascending arrangement of the pixels in each RGB channel, σst.index(a)
represents the index of the distribution pattern of the histogram, σlen represents the size of
the image, and σst[·] represents the value of the index of the forward arraying pixel set.

Selection of the desired range Omin, Omax:The global histogram stretching algorithm
expected the stretching range to be [0, 255], which resulted in excessive blue-green illu-
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mination in the underwater images. A simplified minimum desired stretching range was
obtained by calculating the standard deviation of the Rayleigh distribution:

Omin = aλ − βλ × σλ (6)

where aλ is the mode of the channel, βλ is the dynamic minimum tensile coefficient, σλ is
the standard deviation of the Rayleigh distribution, and σλ = 0.655aλ.

Next, the maximum desired stretch was determined based on the underwater imaging
model (Definition 1) and the different attenuation levels that were exhibited by the light as
it propagated through the water.

Omax =
Iλ

κ × tλ
=

aλ + µλ × σλ

κ × tλ
(7)

The coefficient µλ was satisfied:

κ × tλ × Iλ

σλ
≤ µλ + 1.526 ≤ κ × tλ × 255

σλ
(8)

For Equations (6) and (8), βλ and µλ had no solution or limited integer solutions.
These adaptive parameters took into account both light transmission and the original image
histogram distribution, so the image contrast could be further rectified.

3.1.2. Self-Adaptive Color Correction Module

Following the contrast correction by the RGB color model, the images were trans-
formed into a CIELAB color model. In the CIELAB model, the L component represented
the image brightness in the range of [0, 100] from brightest to darkest, where a denotes
the component from green to red, b denotes the component from blue to yellow, and both
values are in the range of [127, −128]. The L component was applied for linear contrast
stretching in this case, which was expressed as Equation (9) within the range of [1%, 99%].
The stretching of the a and b components was defined as an S-model curve, as shown by
Equation (10). The L component stretching equation satisfied the linear stretching:

Fs(V) =
V −min(V)

max(V)−min(V)
(9)

where a and b are defined as S-model curves:

Ox = Ix × (ϕ1−| Ix
128 |) (10)

where Ix and Ox represent the input and output pixels, respectively, x ∈ {a, b} repre-
sents the a, b components, ϕ is the optimal experimental result value that ranges from
1.2 to 2.0 (1.3 was selected in this study). This formula used an exponential function as a
redistribution coefficient. The closer the value to 0, the better the stretching effect.

The color and luminance in images are important parameters that improve image
visibility. The channels were composed after the L, a, and b components had been stretched
and the image in the CIELAB color model was translated back into the RGB color model.
After the adaptive histogram stretching in the RGB color model and the linear and nonlinear
stretching adjustments in the CIELAB model, clear images with high contrast, balancing,
and saturation were finally obtained. Compared to the existing underwater image enhance-
ment methods, this method could obtain better perceptual quality and less noise, thus
improving detection accuracy.

3.2. Convolutional Block Attention Module Mechanism (CBAM)

Due to the difficulty of marine organisms being tiny and features not being distinct
from the background, it was difficult for the model to extract and conserve features. The
channel attention (CA) map controlled the inter-channel relationships of features, while
the spatial attention (SA) map was used to exploit the internal spatial relationships in
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the features. The CBAM could capture the dependencies between the features at a fine-
grain level and generalize them well to enhance feature expression and improve detection
accuracy during feature extraction. The CBAM structure is shown in Figure 2 and the
formula is shown in Equation (11):{

F1 = Mc(F)⊗ F
F2 = Ms(F1)⊗ F1

(11)

Figure 2. The structure of the convolutional block attention module mechanism. This module had
two sequential sub-modules: the channel attention module and the spatial attention module. The
intermediate feature maps were adaptively refined using the CBAM.

3.2.1. Channel Attention Module

The structure of the channel attention module is shown in Figure 3. The channel
attention module compressed the spatial dimensions of feature maps using average pooling
and max pooling. The max pooling preserved more image texture information. To retain
more of the background information in the images, the average pooling computed the
average of all components in the pooling zone. The channel attention module used both the
average and max pooling to aggregate the spatial information of features and deliver two
different spatial context descriptors: FC

avg and FC
max. To build a distinct channel attention

map (Mc), the two descriptors were transmitted to a shared multilayer perception (MLP).
The channel attention mechanism allowed the importance of individual feature channels
to be modeled and then enhanced or suppressed different channels for specific tasks. In
this study, we increased the weights of the channels that contributed the most to detection
accuracy and decreased the weights of the channels that did not contribute much to
detection accuracy, which ultimately improved the detection accuracy of the network. In
the channel attention module, the calculation formula of the weight coefficient matrix
Mc(F) was expressed as:

Mc(F) = σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))){
MLP(AvgPool(F)) = W1(W0(Fc

avg))

MLP(MaxPool(F)) = W1(W0(Fc
max))

(12)

where σ represents the sigmoid activation function, W0,W1 represents the weight of the
MLP, W0 ∈ RC/r×C, W1 ∈ RC×C/r, and r = 16 represents the reduction ratio.

Figure 3. The structure of the channel attention module. The channel module utilized both max
pooling outputs and average pooling outputs within a shared network.
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3.2.2. Spatial Attention Module

The spatial attention module differed from the channel attention module in that it
focused more on distinguishing the locations of features and complementing the channel
attention mechanism. The structure of the spatial attention module is shown in Figure 4.
The spatial attention module applied average pooling and max pooling along the channel
dimensions and two feature maps (Fs

avg and Fs
max) were then combined. The number of

channels was reduced to one by the dimensionality reduction filtering of 7 × 7 convo-
lution kernels. Finally, spatial attention feature maps were obtained using the sigmoid
activation function.

Mc(F) = σ( f 7×7([Fs
avg; Fs

max])){
Fs

avg = AvgPool(F)
Fs

max = MaxPool(F)

(13)

The spatial attention module utilized global contextual information. It exploited the
spatial attention module to selectively capture spatial interdependencies between feature
locations in order to produce a typical contribution of points in the spatial dimension and
extract more robust marine organism features. The interrelationships between channel
mappings were also explored to model the importance of each feature channel and enhance
the feature representation of organisms. The attention modules were added to the backbone
feature extraction network, which mainly used the attention modules to focus on the actual
content information of the detected target. This was effective for the output results of the
feature extraction network.

Figure 4. The structure of the spatial attention module. The spatial module utilized two similar
outputs that were pooled along the channel axes and then forwarded them to a convolutional layer.

3.3. Enhanced YOLOv5 Network

Based on the original YOLOv5 detection model, the CBAM mechanism was added
to the backbone feature extraction network to construct the CBAM–YOLOv5 detection
algorithm. The CBAM mechanism helped the convolutional feature network model to
learn the feature weights of different regions and identify the characteristics of denseness,
mutual occlusion, and multiple small marine organisms. The CBAM was developed as a
lightweight plug-and-play module, which could be integrated into a convolutional neural
network for end-to-end training. This study designed a simple and effective connection
to improve detection accuracy at the cost of slight increased computation efforts. The
improved network structure is shown in Figure 5.
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Figure 5. The improved YOLOv5 network structure, which was combined with the CBAM. For each
layer, (W, H, C) indicates the size (width (W), height (H), and number of channels (C), respectively)
of the output features from that layer.

3.3.1. YOLOv5 Object Detection Algorithm

The YOLOv5 model is fast and flexible compared to the other versions in the YOLO
series. Input images were fed into the backbone feature extraction network for stretching
(Focus function) to reduce the height and width of the images and the altered images were
integrated using the Concat function to increase the number of input channels for feature
extraction in the convolutional module. Then, the extracted feature maps were followed by
three sets of simplified CSP modules, CONV operations, and the SPP module to improve
the detection accuracy of the model. The features were extracted using four max pooling
operations that were aggregated by Concat. The path aggregation network and detection
section were included directly in the detection module. The second structural module of
the CSP was used during the path aggregation to reduce the number of parameters. The
path aggregation network structure improved the detection of small objects by integrating
high- and low-level features. The object detection task involved pixel-level classification,
with exterior features (such as edges) being prominent. The new bottom-up augmentation
allowed the feature mapping at the top layer to benefit from the extensive position infor-
mation that was provided by the bottom layer, thus enhancing large object recognition. In
the detection module of YOLOv5, candidate boxes were generated on feature maps with
three different scales and the bounding boxes were filtered by a weighted NMS, with the
object classification and box regression as the outputs.

3.3.2. Improved YOLOv5 Backbone Network

The attention mechanism had varying impacts, depending on where it was added
within the network. In this study, a more concise and efficient solution was found by
adding the convolutional block attention mechanism after the first convolutional block in
the backbone network, as shown in Figure 6. Following our experimental analysis and
literature review, we found that placing the convolutional block attention module at the
beginning of the backbone network could effectively reduce the interference in underwater
biological detection from complex water environments.



J. Mar. Sci. Eng. 2022, 10, 1204 11 of 21

Figure 6. The CBAM, which was integrated into a convolutional block in CSPDarknet53. This figure
shows the exact position of the proposed module when integrated into CSPDarknet53.

As seen in Figure 6, it was assumed that the size of the input images for the YOLOv5s
model was 640 × 640 × 3 and 320 × 320 × 32 for the CBAM after the Focus function. After
entering the channel attention module, the sharpened 1 × 1 × 32 feature maps were obtained
after the global max pooling and the blurred 1 × 1 × 32 feature maps were obtained after the
global average pooling. The feature maps that were obtained by parallel pooling lost less
information and had strong localization abilities. Then, the feature maps entered the MLP
module to reduce their dimensions to 1 × 1 × 2. The nonlinear data after the MLP were
classified and the dimensionality reduction coefficient was 16. Then, the dimensions of
the feature maps were increased to 1 × 1 × 32. The MLP output features were subjected to
an element-wise operation and after the sigmoid function activated, the channel attention
feature maps of size 1 × 1 × 32 were generated. The input feature maps (F) underwent
element-wise multiplication with the channel attention features to obtain an output size
of 320 × 320 × 32. Next, the output feature maps were treated as the inputs for the spatial
attention module. In the spatial attention module, the designed maps were symmetric with
those from the channel attention module. Through the channel-based global max pooling
and global average pooling, two feature maps of size 320 × 320 × 1 were obtained. The
channels of the two feature maps were merged into a feature map of size 320 × 320 × 2 using
the Concat function and then the dimensionality of the channels was reduced to 1 using
a 7 × 7 convolution. Finally, the sigmoid activation function was used to obtain a spatial
attention map of size 320 × 320 × 1. The inputs of the spatial attention module were
multiplied by those of the spatial attention module to obtain output feature maps of size
320 × 320 × 32. The output feature maps from the CBAM were consistent with the input
feature maps.
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4. Experimental Configuration
4.1. Dataset

In this study, the underwater robot professional contest 2021 (URPC2021 Dalian)
benchmark dataset was used for training. This benchmark dataset was created primarily
to provide resources for evaluating underwater domain detection algorithms for picture
and video sequences. The images in this benchmark dataset were obtained from the frame
rate interception of videos that were captured by an underwater robot ROV in natural
environments. The URPC2021 dataset contains 8200 underwater images and box-level
annotation. There are four categories in this dataset: holothurian, echinus, starfish, and
scallops. This study randomly divided all of the images into a training set and a validation
set at a ratio of 0.85:0.15. This section presents the statistics of the distribution of objects in
each category, which are also shown in Figure 7.

Figure 7. The statistics of the distribution of objects in the URPC2021 training dataset.

The complex environments in these images present a substantial difficulty for marine
organism identification, which is evidenced by the four elements that are depicted in
Figure 8. The following main obstacles to marine organism identification are posed by
complex underwater environments:

• Low resolution: the textural feature information of aquatic organisms is lost in low-
quality images, which makes it more difficult to recognize creatures with comparable
features;

• Motion blur: since the dataset was obtained from video clipping, motion blur was
inevitable due to the movement of the sampling robot. In low light conditions, there
are few differences between the morphologies of underwater creatures;

• Color cast and low contrast: as color and contrast are affected by the propagation
properties of underwater light, images in underwater datasets mostly have blue-green
backgrounds with low contrast, which makes certain creatures, such as scallops, easy
to confuse with the background;

• Small and/or occluded target organisms: the density of underwater creatures is high
and mutual, which results in a serious loss of texture information for occluded crea-
tures.
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(a) (b) (c) (d)

Figure 8. Four typical images from the URPC2021 dataset that were difficult to recognize: (a) low-
resolution underwater image; (b) motion blur; (c) color cast and low contrast; (d) high density of
small objects.

4.2. Experiment Details

The YOLOv5 model that was used in this study could adapt to image scaling, select
640 × 640 as the size of the input image, and obtain feature maps that were of equal size to
the detection scales. We found that a learning rate of 0.01 could achieve faster convergence
and that the training speed was faster with a batch size of 16. The hardware environment
and software training platform parameters that were used were an Inter(R) Xeon(R) silver
4208 CPU at 2.10 Hz, an NVIDIA RTX 2080 super(8G) GPU with a Ubuntu18.04 operating
system, and the Pytorch environment of CUDA10.2 (torch = 1.7.1). For all comparison
models, the initial learning rate was set to 0.01. The momentum was 0.937 and the weight
decay was 0.0005. The number of training rounds was unified to 100 epochs.

4.3. Evaluation Indicators

To evaluate the performance of the proposed architecture for the detection of small
underwater creatures, this study analyzed the experimental results for precision, recall,
mean average precision (mAP), F1 score, and frames per second (FPS).

Precision refers to the ratio of correctly predicted positive samples to all indicated
positive examples.

Recall refers to the percentage of correctly predicted positive samples out of all posi-
tive samples.

F1 score is used as an overall measure of the quality of an algorithm since precision
and recall are often mutually exclusive.

mAP is the average AP value across multiple categories.
Frames per second (FPS) is an important measure of a model’s performance for

detection tasks with real-time requirements.

4.4. Results and Discussion
4.4.1. Image Preprocessing Experiments

Underwater images from various places (low contrast, bluish background, greenish
background, etc.) were selected to evaluate the efficiency of the proposed SAGHS algorithm.
In Figure 9, it can clearly be seen that the subjective visibility of the underwater images
under different water conditions was better after SAGHS processing. In low-contrast
situations, differences between objects and the background contrast in images were more
obvious after using the SAGHS method. In bluish and greenish images, processed images
were supplemented with other colors. At the same time, to further test the outcomes of the
underwater image processing, image point extraction and recognition were performed and
to verify their effects on target detection, we used the SIFT feature point matching method
for our experiments. The essence of the SIFT algorithm was to discover the key points in
images at different scales and calculate the directions of the key points. The key points that
SIFT obtained did not change due to lighting, affine transformations or noise. The practical
idea was to perform a certain degree of rotation bias operation on the images that were
used for comparison and then conduct an SIFT point matching analysis. It was discovered
that the feature matching algorithm could identify more feature points and produce more
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accurate matching results for enhanced underwater images. The SIFT results are shown in
Figure 10.

(a) (b) (c)

Figure 9. Examples of the enhanced underwater images. The top row shows the raw images and
the bottom row shows the results of the proposed SAGHS method: (a) low contrast; (b) bluish
background; (c) greenish background.

(a) (b) (c) (d)

Figure 10. The results of the SIFT feature matching. The top row shows the raw images and the
bottom row shows the results of the proposed SAGHS method: (a) low contrast; (b) low resolution;
(c) greenish background; (d) bluish background.

Our underwater image enhancement method not only combined the advantages of
physical model-based and model-free image enhancement methods but it also removed
the dependence of the deep learning model on data. The SAGHS algorithm introduced
dynamic coefficients and the J-M underwater imaging model after applying the linear
histogram stretching formula. To improve underwater images, the SAGHS algorithm
could dynamically adjust RGB histograms and space color pixel values. The proposed
method not only took into account the pixel characteristics of the images but also the
underwater image characteristics. As a result, the SAGHS algorithm demonstrated better
robustness when facing high-turbidity and low-light images. In contrast to existing image
processing algorithms that focus on single degradation problems, the proposed method
focused on improving the accuracy of underwater object detection. Image contrast and
color deviations are two unique underwater environmental degradation problems that
could be comprehensively solved using the proposed method. On the other hand, existing
underwater enhancement algorithms have complicated structures and volumes, which
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require large amounts of computational time to process images. The proposed algorithm
outperformed deep learning-based image processing methods in terms of architecture and
had the ability to migrate from image enhancement to video enhancement.

4.4.2. Object Detection Experiments

In this section, we present the results of our object detection experiments. To evaluate
the efficacy of the improved YOLOv5 model, it was compared to a baseline model. Figure 11
depicts the mAP curves of three algorithms using the URPC2021 validation set and reveals
that mAP values of 0.5 (i.e., the IoU was set to 0.5 and the AP was calculated for all images
in each class and then averaged over all classes) and 0.5:0.95 (i.e., the average mAP across
multiple IoU thresholds for each of the three models (from 0.5 to 0.95, with a step size of
0.05)) tended to be steady as the number of epochs increased. Each model began to converge
around the fifth epoch. As can be seen from Figure 11a, the curves tended to be stable and
the detection effects of YOLOv5 + SAGHS and YOLOv5 + CBAM were better than that of
the baseline for mAP = 0.5. When mAP = 0.5:0.95 was used to evaluate the algorithms, the
curve of YOLOv5 + SAGHS was lower than those of the baseline and YOLOv5 + CBAM,
as shown in Figure 11b. This was because the underwater image enhancement methods
led to intense precision and the processed images demonstrated few differences between
objects and the background (such as between echini and rocks), thus affecting the detection
accuracy.

(a) (b)

Figure 11. Using the URPC2021 validation set, the different algorithms tended to be stable throughout
epoch changes: (a) the detection accuracy at mAP = 0.5; (b) the detection accuracy at mAP = 0.5:0.95.

The results for the precision, recall, and mAP of the different algorithms for IoU values
of 0.5 and 0.5:0.95 are shown in Table 1. In addition to the baseline, a mainstream two-stage
faster RCNN algorithm and another model of YOLOv5 were also compared. As shown in
Table 1, it could be concluded that the proposed YOLOv5 + CBAM algorithm performed
the best, with scores of 79.2% at mAP = 0.5 and 45.1% at mAP = 0.5:0.95. In the CBAM
attention module, channel attention and spatial attention were combined to capture the
salient features of objects and suppress irrelevant noise information. Compared to the
other methods, the proposed algorithm achieved a better score at mAP = 0.5 by roughly
5%–12.8%. The YOLOv5 + SAGHS algorithm score increased by 2.4% compared to the
baseline. The SAGHS algorithm dynamically stretched and calculated pixels one by one to
restore visual clarity. A linear function of color space dynamically stretched color detail.
The YOLOv5 + SAGHS method outperformed the existing UIE methods in terms of recall
and solved the low recall problem. This improvement was due to the fact that the enhanced
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object detection algorithm and the proposed UIE method were better at object detection
in underwater settings, in terms of structure and processing. The faster RCNN algorithm
had the worst performance, with 66.4% at mAP = 0.5. The YOLOv5-l model was wider
and deeper than the YOLOv5-s model, with a greater emphasis on learning object features.
However, the YOLOv5-l model achieved a worse score for recall.

Table 1. A comparison of the original and improved YOLOv5 models.

Precision Recall mAP = 0.5 mAP = 0.5:0.95

YOLOv5s 0.823 0.689 0.729 0.42
YOLOv5l 0.811 0.704 0.742 0.427

Faster RCNN N/A N/A 0.664 N/A
YOLOv5s + SAGHS 0.781↓ 0.737↑ 0.753↑ 0.417↓
YOLOV5s + CBAM 0.837↑ 0.762↑ 0.792↑ 0.451↑

The morphologies of the four types of underwater organisms differ. This study used
the mAP = 0.5 evaluation index to analyze the differences in detection accuracy between
the algorithms for each class of organism. Table 2 illustrates the detection accuracy of each
algorithm for the different classes of organism. The proposed UIE method and detection
algorithm performed the best in terms of underwater biological identification. For echinus
detection, the YOLOv5 + CBAM method achieved the highest score at 93.4%. The maximum
pooling in the channel attention module could encode the salient information of objects,
which could adequately compensate for the global information that was encoded by the
average pooling. The YOLOv5 + SAGHS and YOLOv5 + CBAM algorithms achieved the
same score for scallop detection (82.3%). In complex underwater environments, scallops
look similar to the seabed. In holothurian detection, the scores of the YOLOv5 + SAGHS and
YOLOv5 + CBAM methods increased by 7.5% and 11.2%, respectively. This result proved
that the SAGHS mechanism separated objects from the background and the CBAM method
was able to recognize small objects that were challenging to detect. The large convolution
kernels in the spatial attention module could effectively obtain important information from
the holothurian. Both methods were effective at detecting various heterobiotic features.
The detection accuracy scores of the YOLOv5 + SAGHS and YOLOv5 + CBAM algorithms
showed the same general trends for the same organisms.

Table 2. Our test results using the URPC2021 dataset (mAP = 0.5).

Holothurian Echinus Scallop Starfish

Faster RCNN 0.715 0.855 0.712 0.823
YOLOv5s 0.685 0.802 0.701 0.753

YOLOv5s + SAGHS 0.79 0.918 0.823 0.893
YOLOV5s + CBAM 0.827 0.934 0.823 0.91

Figure 12 shows the clustering histogram that was used to compare the detection
accuracy scores of the four selected algorithms. It was obvious that the detection of echini
was the most accurate. Holothurian detection achieved the lowest overall average accuracy.
This finding was related to the fact that holothurians were marked in fewer samples than
the other types of organisms and were easily deformed when disturbed. The detection
of holothurians was significantly improved when the detection methods had larger total
mAP values. Multiple algorithms showed similar trends in detection accuracy for different
marine organisms.
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Figure 12. A clustered bar graph of the marine organism detection performance of the four algorithms
using the URPC 2021 validation set.

In addition, the F1 score was also chosen as a single and whole category evaluation
metric to validate the detection accuracy of the three primary algorithms in each category.
Figure 13 demonstrates that the F1 scores were over 0.75 for the majority of categories. The
proposed method outperformed the baseline model for various organism detection and
produced the greatest overall performance. Other than in scallop detection, the YOLOv5 +
CBAM algorithm performed better than the YOLOv5 + SAGHS model. This was because
the backbone network with the attention mechanism was more capable of extracting
meaningful feature information.

Figure 13. An all-class comparison histogram of the F1 scores that were achieved by the four
algorithms.

At the inference stage, we used 1400 images from the URPC 2021 validation dataset to
test the model run speeds. High FPS values indicated that the model inference was rapid
and could meet real-time requirements when used in the same software and hardware
environment. The FPS comparison of each model is shown in Table 3. The results of our
experiments demonstrated that the FPS of the YOLOv5 + CBAM algorithm was slightly
lower (from 125 to 91) but still meet real-time requirements. The images were enhanced
before detection, so the FPS of the YOLOv5 + SAGHS algorithm was the same as that of
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the baseline model. The layers and parameters of the backbone network increased slightly
when using the CBAM mechanism. In this study, only one CBAM module was added to
the backbone network and the few increased parameters could fully meet the requirements
of the lightweight model.

Table 3. The impacts of our improvements on network performance.

Parameter FPS Backbone Layer

YOLOv5s 7,074,330 125 283
YOLOv5s + SAGHS 7,074,330 125 283
YOLOV5s + CBAM 7,074,940 91 293

From our analysis of the four difficult detection algorithms (as shown in Figure 14),
complex underwater environments and small targets were the main reasons for detection
errors. In relation to the other selected models, the YOLOv5 + SAGHS method aimed
to solve these underwater degradation problems to enhance color and contrast quality,
thereby distinguishing objects from the background so that the target information could be
successfully learned and the number of detection errors could be reduced. As shown in
Figure 14a, the detection accuracy that was obtained using the YOLOv5 + SAGHS model
was significantly higher when holothurian and rocks were similar in color. The SAGHS
method reduced the number of object identification errors, as evidenced in Figure 14b.
However, the YOLOv5 + SAGHS algorithm could repeatedly and incorrectly detect objects,
as shown in Figure 14c,d. Because scallops and echini are small and often in dense popula-
tions, the YOLOv5 + CBAM algorithm was used to detect them. The CBAM mechanism
could not only effectively improve the backbone network’s capacity to extract object fea-
ture information but could also make it easier to recognize marine organisms in different
underwater scenes. The fusion strategy that involved a lightweight attention mechanism
combined with a backbone network could increase the generalization performance of the
network model.
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(a) (b) (c) (d)

Figure 14. Comparison of test results. The top row is RAWS, the middle row is the results of the
proposed SAGHS method and the bottom row is the results of improved YOLOv5 with CBAM.
(a) Detection of incomplete objects (b) Detection when targets are occluded or overlapped with each
other (c) Detection of fuzzy objects and (d) Detection of the object is similar to the background.

5. Conclusions

This study developed a self-adaptive global histogram stretching algorithm and an
improved YOLOv5 underwater organism detection model to tackle the problems of under-
water image degradation and low detection accuracy. Originally, an adaptive histogram
was devised to extend the range approach of an underwater image enhancement algorithm
to improve visibility and detail while minimizing artifacts and noise. In addition, to recog-
nize small and overlapping objects in underwater images, an advanced YOLOv5-based
underwater object detection algorithm was designed in conjunction with the CBAM model.
The experimental results revealed that compared to existing or superior object algorithms,
the proposed algorithm produced significantly enhanced detection accuracy and demon-
strated its usefulness. The concepts of attention mechanisms and image enhancement were
used to learn complicated underwater environments and biological feature information,
which improved the accuracy of underwater object detection and produced significant im-
pacts for practical applications. In the future, the network model will be further optimized
to be lighter while maintaining detection accuracy. This algorithm could be used in various
applications in different disciplines, such as mariculture resource surveys, underwater
operational robots, and object detection in underwater images and videos.
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