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 A B S T R A C T

Designing accurate, reliable, and energy-efficient localization techniques for underwater acoustic networks 
is highly challenging due to factors such as large propagation delays, the absence of Global Positioning 
System (GPS), node mobility, and limited acoustic link capacity. In any underwater sensor network (UWSN) 
monitoring application, data collected by underwater nodes becomes more meaningful when accompanied 
by location information. However, traditional localization methods often rely on geometric models and 
statistical filters that are highly sensitive to sensor noise and communication constraints. Energy consumption 
is another primary concern in UWSNs, not only because replacing and recharging underwater batteries are 
challenging, but also due to the energy-hungry nature of underwater acoustic communications. To address 
these challenges, we provide a comprehensive literature review of research contributions on the integration of 
Artificial Intelligence (AI) and energy efficiency in underwater localization techniques. First, we introduce the 
recent advancements in AI-based approaches, including deep learning and machine learning models, which 
are promising for enhancing accuracy, robustness, and adaptability in complex underwater environments 
through learning-driven techniques. Subsequently, we review various energy-saving strategies integrated into 
the localization scheme to address the power constraints of underwater sensor nodes. Finally, we discuss future 
research directions and conclude with key insights.
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1. Introduction

Underwater communication and localization are vital for exploring 
the dynamic nature of the ocean environment. However, the ocean en-
vironment introduces severe communications challenges due to limited 
bandwidth and large propagation delays of underwater communication 
signals (Hasan et al., 2025c). Since the Global Navigation Satellite 
System (GNSS) cannot penetrate water, the underwater moving ob-
jects often depend on acoustic methods for localization. Autonomous 
Underwater Vehicles (AUVs) have been widely used for tasks such 
as seafloor mapping, environmental monitoring, and defense opera-
tions (Ludvigsen and Sørensen, 2016), Hasan et al. (2025b). Precise 
positioning of AUVs is not only essential for search & rescue operations 
and covert surveillance, but also for reliable underwater communica-
tion and long-term ocean monitoring, where it ensures data integrity, 
mission safety, and sustained network connectivity.

To address these needs, numerous techniques have been intro-
duced for localization, utilizing a variety of sensors, including acoustic 
modems, vision, Inertial Measurement Unit (IMU), depth sensors, and 
magnetometers (Samatas and Pachidis, 2022). However, these sensors 
provide asynchronous measurements and are prone to high short-
term noise. Most of them are energy-hungry and rely on simplified 
acoustic models, often assuming a constant sound speed and uniform 
Doppler effects, whereas real-world conditions (temperature gradients, 
salinity variations, and uneven seabeds) can significantly distort signal 
propagation. To fuse those sensor measurements, many researchers 
introduced Bayesian filters such as Kalman filter (KF), Extended Kalman 
filter (EKF), Unscented Kalman filter (UKF), and Particle filter (Chen 
et al., 2003). For instance, Wang et al. (2024b) proposed a multi-
sensor fusion method based on UKF on manifolds to reduce cumulative 
error in underwater cave datasets, while Jiang et al. (2023) introduced 
an Unscented Particle Filter (UPF) that improves particle distribution 
and positioning accuracy. Yet, such methods come with high compu-
tational cost and on the assumptions of Gaussian noise and known 
initial states, which limit their robustness in nonlinear and uncertain 
underwater environments. Moreover, Doppler-based feature extraction 
across channels increases the energy burden on sensor nodes, where 
battery replacement is impractical. When integrated with heavy compu-
tational Bayesian filters, this energy cost can severely limit the mission 
duration. Only a few approaches (Zargelin et al., 2020b), Zargelin et al. 
(2020a) consider the limitations of sensors and their computational 
capacity, and these still require further adaptation to be suitable for un-
derwater environments. Thus, next-generation localization approaches 
must consider the energy-aware innovative techniques with adaptive, 
data-driven models that capture the true complexity of the underwater 
channel.

Beyond Bayesian filters, optimization-based methods were proposed 
to refine positioning accuracy. For instance, Zhang et al. (2022) recti-
fied inertial and acoustic errors during turning maneuvers by leverag-
ing motion states, while Liu et al. (2023) developed a tightly coupled 
navigation model using two transponders to mitigate multi-path inter-
ference. However, as the number of vehicles increases, tightly coupled 
solutions significantly increase computational complexities. For collab-
orative missions involving multiple AUVs, Luo et al. (2025) proposed 
a cooperative positioning framework resilient to underwater noise and 
2 
delays. Despite these advancements, most existing research still concen-
trates on robust filtering, coupling strategies, or cooperative schemes. 
This highlights the need for next-generation approaches that not only 
ensure accuracy and robustness, but also address energy efficiency and 
scalability in real underwater environments.

More recently, deep learning has emerged as a promising approach 
for underwater localization by leveraging data-driven feature extraction 
and sequence modeling. Convolutional Neural Networks (CNNs) are 
mostly utilized for visual landmark recognition (Han et al., 2020). 
It has been adapted to process sonar imagery to mitigate resolution 
limits by learning robust, high-level descriptors without relying on 
artificial beacons. Moreover, CNNs are employed to fuse multi-modal 
oceanographic data and enable real-time regression-based estimation of 
underwater sound speed profiles (Wu et al., 2024). Meanwhile, Recur-
rent Neural Networks (RNNs) excel at fusing time-series measurements 
(acoustic pings, IMU measurements), offering greater fault tolerance 
and bounded error growth compared to classical Bayesian filters (KF, 
EKF, PF) (Yu et al., 2019).

Building on these advances, next-generation AI-driven models ex-
tend beyond point localization to integrated tasks such as Simultaneous 
Localization and Mapping (SLAM), which is essential in complex seabed 
environments. SLAM combined with the EKF (Eitel et al., 2015) is 
commonly used for estimating robot pose and landmarks. However, 
EKF-based SLAM (Davison, 2003) often struggles in highly nonlinear 
conditions due to its reliance on linearization. To overcome these 
challenges, alternative approaches such as particle SLAM (Liu et al., 
2024), graph-based SLAM (Grisetti et al., 2011), and visual SLAM (Hu 
et al., 2022) have been developed, each addressing nonlinear dynamics, 
configuration detection, and adaptation to underwater environments, 
respectively. More recently, the fusion of deep learning with SLAM 
has achieved notable success, leveraging neural networks to signifi-
cantly improve mapping and navigation (He et al., 2024a; Chen et al., 
2021). These advancements collectively strengthen underwater SLAM 
algorithms, making deep learning–enhanced systems more accurate and 
reliable for underwater navigation.

Extending this trajectory, hybrid frameworks have begun to merge 
SLAM with complementary navigation systems. For instance, the author 
in Sabra and Fung (2017) introduced a fuzzy-logic fusion scheme 
where a decision support system was introduced that dynamically 
blends Ultra-short baseline (USBL), SLAM, and Inertial Navigation Sys-
tem/ Doppler Velocity log (INS/DVL) estimates, demonstrating high 
availability but imposing heavy onboard compute and memory loads. 
In contrast, lightweight neural-network architectures can deliver low-
latency inference and nonlinear modeling in a single shot, reducing 
both energy and scheduling overhead for nonlinear systems. To fur-
ther push next-generation localization, hybrid AI frameworks are now 
integrating CNN-based feature embedding from horizontal-scan sonars 
with RNN-driven temporal fusion so that AUVs can navigate com-
plex, time-varying channels with high accuracy and minimal power 
consumption.

In parallel, several recent studies have targeted energy efficiency 
in underwater localization by focusing on different elements and al-
gorithm strategies. For example, Misra et al. (2014a) formulated a 
Stackelberg game to minimize the energy consumption of the anchor 
node rather than sensor nodes. Similarly, authors in Yuan et al. (2018b) 
extended this idea by jointly accounting for both sensor and anchor 
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Table 1
Summary of existing localization surveys.
 Reference Year Localization 

Method
Energy-saving 
strategies

AI Integration Channel Consideration Limitations  

 Toky et al. (2020) 2020 ✓ Identified some NLA used a neural 
network to refine 
DV Hop’s average 
hope count.

✓ Time synchronization 
under mobility.

 

 Luo et al. (2021) 2021 ✓ Energy consumption 
appeared as an 
evaluation criterion.

X ✓ Mobile drift, 
energy-accuracy trade-off, 
beacon path planning.

 

 Christensen et al. 
(2022)

2022 Navigation 
only

✓ CNN, RL Highlighted environmental 
uncertainties.

Multi-model fusion, 
absence of energy cost 
analysis.

 

 Islam et al. (2022) 2022 X ✓ X Multi-path, Doppler Briefly discussed.  
 Osamy et al. (2022) 2022 ✓ In the context of 

optimizing node 
replacement.

Evaluated methods 
like fuzzy logic, 
artificial neural 
network, and 
reinforcement 
learning.

X Static-anchor assumptions, 
lack of realistic channel 
modeling.

 

 Yadav and Khilar 
(2023a)

2023 Range free Relied on fewer GPS 
buoys for cost 
saving.

Extended Improved 
PSO (EIPSO)

Considered stratification 
(sound velocity profile + 
ray theory)

Environment assumptions; 
limited real validation.

 

 Yadav and Khilar 
(2023b)

2023 I-LASP for 
localization + 
clustering

Clustering 
(LEACH-BR) with 
beacon & reinforced 
nodes; multi-hop to 
save energy.

Optimization in 
I-LASP, clustering 
thresholds for 
energy balancing.

Used stratification via 
I-LASP integration.

Cluster stability issues; no 
AI/ML adaptation; 
clustering overhead.

 

 Yadav et al. (2024) 2023 Hybrid: 
Centroid + 
Ray theory + 
IUSSOT 
(Improved 
Salp Swarm 
Optimization)

Focused on reducing 
computation & 
convergence, less 
energy spent.

Metaheuristic 
(Swarm Intelligence 
– IUSSOT)

Explicit stratification 
modeling; both sparse & 
dense regions.

Still metaheuristic 
limitations; requires GPS 
buoys; lacks field 
validation.

 

 Jwo et al. (2023a) 2023 ✓ X Thorough coverage 
of Artificial Neural 
Networks—MLP, 
RBFNN, GRNN, 
ARMA NNs, ANFIS, 
and LSTM/RNN.

GNSS multi-path and 
shadowing challenges.

No explicit treatment of 
non-Gaussian or 
time-varying noise beyond 
simple statistical 
assumptions.

 

 Feng et al. (2024) 2024 X X ML/DL methods Attenuation, multi-path 
and non-Gaussian noise.

Limited datasets, lack of 
data-driven multi-path 
fingerprint analysis.

 

 Alexandris et al. 
(2024)

2024 ✓ X KF/PF only Sound-speed, multi-path, 
optical.

DL fusion  

 Murali and Shankar 
(2024)

2024 ✓ ✓ ML method Multi-path, Doppler, 
attenuation.

Lack of analysis on RNN 
multi-path, in-situ 
harvesting.

 

 Hasan et al. (2024) 2024 X Battery Swap X Accoustic and Optical Overlooked 
charging-localization 
integration.

 

 Merveille et al. 
(2024)

2024 ✓ X Analyzed deep 
learning techniques 
for feature 
extraction and data 
fusion.

Noise and multipath in the 
context of underwater 
SLAM

Energy constraints.  

 Aubard et al. (2025) 2025 X X CNN, Domain 
adaptation

Sonar-specific noise No energy or channel 
modeling.

 

 Elmezain et al. 
(2025)

2025 X X CNN, transformer Optical attenuation Overlooked multi-modal 
fusion and energy cost 
analysis.

 

 Heshmat et al. 
(2025)

2025 ✓ X CNN, RNN, 
transformer

Optical Acoustic channel modeling. 

 Our 2025 ✓ ✓ Comprehensive 
review of DL/ML 
models for 
localization

✓ –  

[✓] - Explicitly addressed; [X] - Explicitly not considered; [–] - Not applicable.
3 
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node energy costs, but their proposed method relied on a specific en-
vironment, whereas predefined weights were required to set the utility 
function. In another work, Yu and Choi (2014a) introduced an energy-
aware, wake-up/sleep scheduling scheme combined with an interacting 
multiple-model filter to track maneuvering targets; however, process 
and measurement noise were assumed to be zero-mean, and the filter 
required exact initial covariances and mode transition probabilities that 
are rarely met underwater. The authors in Chen et al. (2017a) proposed 
a filter that explicitly trades off acoustic transmission cost against 
localization accuracy; yet they evaluated it only in static network 
topologies, overlooking the dynamics of real deployments. To reduce 
the transmission latency, the authors in Basagni et al. (2017) lever-
aged a model-based reinforcement-learning framework to let nodes 
learn link-quality metrics, but their performance depends critically 
on precise link-success estimates, which a noisy channel can easily 
corrupt. Therefore, it can misguide relay and modem selection, degrade 
both reliability and energy savings. These works highlight the progress 
toward next-generation, energy-efficient underwater localization, such 
as game-theoretic anchor control, topology-aware cost functions, adap-
tive wake-scheduling, and learning-based link management. However, 
an ideal framework must go further; it should relax Gaussian and 
static-network assumptions, adapt in real time to channel variability, 
co-design sensing, communication, and inference modules to jointly 
maximize localization accuracy and energy endurance.

For underwater applications, there is a clear need for a unified 
perspective that shows how intelligence and energy efficiency can 
be jointly designed to achieve higher accuracy and robustness. This 
review aims to fill that gap by providing a balanced and comprehensive 
overview that integrates advances in both AI-based and energy-aware 
localization approaches.

The contributions of this paper are as follows:

• We evaluate the potential of AI-based localization algorithms 
by analyzing their robustness, accuracy, and efficiency. Specifi-
cally, we demonstrate how these algorithms can effectively re-
duce localization errors in dynamic underwater environments. 
Furthermore, we provide practical insights into their implemen-
tation, highlighting their advantages over traditional approaches 
in addressing the unique challenges of underwater localization.

• We present a detailed discussion about the existing literature 
focusing on range-based energy-efficient techniques, and further 
analyze the trade-offs between accuracy, energy consumption, 
and deployment complexity in various underwater scenarios.

• Lastly, we identify critical challenges in existing localization 
methods and highlight potential research directions for over-
coming these issues. Our recommendations aim to guide the 
development of robust, energy-efficient localization techniques 
that are suited to the specific constraints of underwater net-
works, such as mobility, resource limitations, and environmental 
dynamics.

We have organized the remainder of this paper as follows: Section 2 
provides existing review articles on underwater localization and out-
lines the gaps, focusing on AI-integration and energy-saving strategies. 
Section 3 illustrates an in-depth review of the AI-based underwater 
localization techniques found in the literature. Section 4 examines 
various energy-saving methods for underwater localization. We explore 
future research opportunities and identify challenges for developing 
robust, reliable, and energy-efficient localization in Section 5. Finally, 
the article concludes in Section 6.

1.1. Review methodology

To ensure a comprehensive survey, we searched multiple databases, 
including IEEE Xplore, ScienceDirect, SpringerLink, and MDPI, and 
other technical reports available in the public domain. The keywords 
4 
used included ‘‘underwater localization’’, ‘‘UWSN’’, ‘‘AUV positioning’’, 
‘‘artificial intelligence’’, ‘‘deep learning’’, ‘‘energy-efficient localiza-
tion’’, and combinations thereof. The search covered articles published 
between 2010 and 2025, with a stronger focus on works from 2020 
onwards.

We include papers that addressed underwater localization with 
either AI-driven approaches (end-to-end SLAM, sequential learning, 
feature-extraction methods, and general machine learning models) or 
energy-efficient techniques, while excluding purely terrestrial works 
and studies lacking methodological detail. In particular, AI-driven 
works demonstrate the growing role of learning-based models in han-
dling acoustic noise, temporal dependencies, and multimodal fusion, 
whereas energy-efficient strategies are categorized into four distance-
based methods (Time of Arrival (ToA), Time Difference of Arrival 
(TDoA), Received Signal Strength (RSS), and Angle of Arrival (AoA)). 
For each group, we analyze common limitations such as sensitivity 
to channel dynamics, scalability issues, and dependency on anchor 
placement. Reported performance is also compared in terms of RMSE 
error trends and computational overhead, which reveal that while 
many methods achieve strong accuracy in controlled simulations, their 
feasibility under realistic conditions remains uncertain. It is worth not-
ing that the majority of the included studies rely on simulation-based 
evaluations rather than full-scale ocean experiments, which may bias 
results toward techniques that excel in idealized settings but degrade in 
real-world deployments. We highlight this gap throughout the review 
for more field-validated benchmarks that capture both accuracy and 
energy trade-offs under operational constraints.

2. Overview of related surveys

Numerous studies have been conducted on underwater localization, 
primarily focusing on the techniques and algorithms involved; how-
ever, only a limited number of articles have addressed AI in underwater 
sensor networks. Table  1 summarizes the current works and identifies 
their gaps. The authors in Christensen et al. (2022) reviewed recent 
developments in AI applications for underwater robotics, specifically 
covering model learning, control, perception, and navigation. While 
they covered vision-based SLAM, they overlooked end-to-end neural or 
hybrid filtering frameworks that fuse acoustic measurements with IMU 
data, specifically for localization accuracy rather than navigation only. 
Similarly, Feng et al. (2024) systematically reviewed feature-extraction 
techniques and classification methods such as shallow ML (Machine 
Learning), deep neural networks, and transformers, yet their survey 
only acknowledged propagation effects in passing and omitted data-
driven channel models. Aubard et al. (2025) focused on neural-network 
verification and adversarial attack defense areas by comparing 19 open-
source data sets and various simulators. By pinpointing the simulation 
to real-world mismatch, the authors tried to direct future researchers 
to extend sonar DL (Deep Learning) from simulation to robust, real-
world autonomy. However, the authors overlooked multi-modal fusion 
strategies, such as integrating sonar DL outputs with IMU and vision 
data in joint neural or hybrid filter architectures for enhanced state 
estimation. Elmezain et al. (2025) provided a comprehensive analysis 
of deep learning architectures for underwater object tracking. Despite 
reviewing template-based and search-region frameworks, they did not 
consider an end-to-end deep learning architecture, especially vision-
SLAM, that simultaneously tracks objects and estimates their position. 
In another work (Alexandris et al., 2024), the authors discussed the 
advancement in INS and acoustic systems, but did not provide any 
discussion on deep learning based or hybrid model approaches that 
combine acoustic, inertial, vision, and pressure data together to yield 
a single pose estimate. Heshmat et al. (2025) reviewed the evolution 
of the underwater SLAM, highlighting CNNs, transformer models, and 
multi-modal fusion that improved the feature extraction and mapping 
under poor visibility, sensor noise, and multi-path. However, the acous-
tic channel model and deep learning-augmented fusion filters were 
overlooked.
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Fig. 1. System architecture of underwater wireless sensor networks (UWSNs).
When it comes to energy-efficient underwater localization, Islam 
et al. (2022) evaluated four major techniques, such as ToA, TDoA, AoA, 
and RSS, focusing on synchronization-free methods, reducing the num-
ber of anchors, and leveraging energy harvesting. Although they high-
lighted hyperbolic ranging techniques, they did not explore machine-
learning-based multi-path fingerprinting to minimize retransmission. 
Murali and Shankar (2024) bridged node positioning and power con-
servation by highlighting supervised or reinforcement-learning models 
for predicting sleep/wake schedules and adaptive transmission power, 
but the authors overlooked water stratification effects on ToA/TDoA 
accuracy, nor did they consider an RNN-based method for learning 
true multi-path profiles to predict effective time delays. Hasan et al. 
(2024) provided a comprehensive overview of the charging system for 
AUV energy autonomy. The review outlined various recharging meth-
ods such as battery swapping, solar charging, and submerged docks. 
However, they did not cover how individual sensor nodes can minimize 
their energy consumption. Moreover, they overlooked in situ energy 
harvesting technologies, such as salinity gradient energy harvesters and 
ocean current turbines.

As illustrated in Table  1, a significant research gap exists in the 
domain of UWSNs, particularly in addressing comprehensive AI tech-
niques, multi-modal fusion frameworks (combining acoustic, inertial, 
vision, and environmental data into cohesive deep or hybrid filters). 
These issues are pivotal for ensuring the reliability and robustness 
of underwater networks, yet remain underexplored in the existing 
literature. This study aims to bridge this gap and must not only unify 
AI-driven, multi-modal fusion frameworks but also embed advanced 
energy-aware strategies (ML-driven duty cycling, in situ energy har-
vesting, and multi-path aware channel modeling) to contribute to the 
ongoing development of reliable, efficient, and intelligent underwater 
wireless sensor networks.

3. Localization based on AI techniques

A typical UWSN architecture is illustrated in Fig.  1, consisting of 
multiple target nodes positioned underwater alongside surface buoys 
placed on the water surface. Typically, these surface buoys are respon-
sible for receiving and transmitting signals, which they then send to the 
5 
base station located either on the water surface or onshore. Due to the 
dynamic and complex underwater environment, several core wireless 
sensor network (WSN) approaches, such as geographic routing (Karp 
and Kung, 2000), geographic key distribution (Liu and Ning, 2003), 
blockchain technology (Goyat et al., 2021), and location-based authen-
tication (Sastry et al., 2003), cannot be directly applied to underwater 
wireless sensor networks (UWSNs). These methods typically assume 
a stable, known location, frequent position updates, and straightfor-
ward physical access, all of which are difficult to achieve underwater. 
Recent advancements in AI have introduced novel approaches to ad-
dress the unique challenges of dynamic underwater environments, 
offering enhanced accuracy and robustness in underwater localization. 
AI techniques can analyze large amounts of complex data to extract 
meaningful patterns, improving localization performance (Jwo et al., 
2023b). In this section, we explore various AI-driven techniques applied 
to underwater localization as shown in Fig.  2:

• Deep learning-based methods: To extract and integrate fea-
tures, model temporal dependencies, and perform end-to-end pose 
estimation or SLAM.

• Machine learning-based methods: Multilayer perceptrons,
Radial-basis networks, fuzzy systems, and reinforcement-learning 
agents to fuse inertial, acoustic, or RSSI measurements and opti-
mize beacon scheduling or path planning.

3.1. Deep learning-based methodologies

3.1.1. End-to-end pose/SLAM networks
Recent advancements in deep learning approaches improve under-

water localization, each addressing specific challenges inherent to the 
marine environment. Wang et al. (2025) developed a monocular visual 
SLAM (EUM-SLAM) tailored for underwater conditions by integrating 
deep-learning-based optical flow into the DROID-SLAM backbone. The 
proposed system constructed 3D maps and tracked camera trajecto-
ries in real-time, as shown in Eq.  (1), outperforming both traditional 
SLAM and earlier deep SLAM methods. To simulate turbidity and 
lighting variation, the authors introduced an underwater-specific data 
augmentation pipeline. In addition, they designed an SE-enhanced 
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Fig. 2. Overview of AI-based methods for underwater localization.

encoder (squeeze and excitation layers) to adaptively recalibrate fea-
ture channels under low-contrast conditions. Results showed improved 
robustness to turbidity, lighting variation, and motion, highlighting the 
feasibility of dense optical-flow-based SLAM in underwater navigation. 
Despite these advancements, EUM-SLAM relied solely on visual data, 
making it vulnerable when visibility was severely degraded. To address 
the limitations of requiring consistent visual input, authors in Joshi 
et al. (2020) presented a deep learning-based end-to-end pose esti-
mation framework for underwater relative localization between AUVs. 
The framework predicted the 6D relative pose from a single camera 
image by detecting the 2D projection of the 3D model and applying 
a RANSAC-based Perspective-n-Point (PnP) solver, as presented in Eq. 
(2). The key innovation lay in its training strategy, where rendered 
images from Unreal Engine were translated into realistic underwater 
images using CycleGAN, allowing the system to train without real-
world labels. Their approach bypassed traditional SLAM and sequence 
modeling by processing each frame independently, without construct-
ing maps or trajectories. The method achieved state-of-the-art accuracy 
in both pool and ocean tests, demonstrating robustness across domains 
and sensor types. While the proposed framework demonstrated high 
accuracy across diverse environments, it lacks temporal consistency, 
and its performance can degrade in poses if the training set is poor or 
when bounding box detection fails. In contrast to purely vision-based 
systems, Wolf et al. (2020) explored the use of bio-inspired sensing for 
3D underwater localization. By combining CNNs and artificial lateral 
lines (ALLs), the study estimated the object’s position based on the fish’s 
hydrodynamics. In this approach, fluid flow was simulated based on a 
moving object. A CNN was used to predict the probability of object 
locations based on an array of sensors. Using the lateral line organ in 
fish, this method addressed the complex problem of localizing multiple 
sources simultaneously, representing an advancement over previous 
approaches. However, the research heavily relied on simulated data 
in training and evaluation, which may not simulate actual underwa-
ter conditions. Additionally, the system’s effectiveness in high-noise 
conditions is uncertain because of its dependence on noise levels.

3.1.2. Sequence & temporal models
Teixeira et al. (2020) conducted a comprehensive benchmark com-

paring classical and deep-learning-based visual odometry (VO) and 
visual-SLAM methods on two challenging underwater datasets collected 
by an AUV. To mitigate trajectory drift in deep VO systems, the study 
introduced a visual-inertial fusion network, which used a Long Short-
Term Memory (LSTM) model trained with IMU data. As shown in Eq. 
6 
Fig. 3. Comparisons of MEEs (Kumar et al., 2024).

(4), the sensor node locations were obtained by minimizing the transla-
tion and rotation errors between the estimated and ground-truth poses. 
Experiments with the UX-1 underwater robot datasets showed that deep 
learning VO approaches were more robust to poor textures, turbidity, 
and lighting variations compared to traditional feature-based meth-
ods. While this approach improved trajectory correction, it remained 
limited to visual-inertial fusion, without addressing optical distortions 
or integrating other sensing modalities such as acoustics. To enhance 
robustness in noisy underwater environments, Kumar et al. (2024) pro-
posed a novel Proximity-Driven Recurrent Neural Network (PD-RNN) 
framework, which addressed the limitations in traditional localization 
techniques such as TDoA and RSSI. They are prone to errors under 
environmental noise, multi-path effects, and signal degradation. Their 
approach integrated proximity information into a recurrent neural 
network that can model temporal dependencies in the input signals, as 
presented in Eq.  (7). It significantly outperformed traditional RSSI and 
TDoA techniques under ideal conditions, as shown in Fig.  3, achieving 
a mean estimation error as low as 0.13−1.24 m. However, it focused on 
2−𝐷 positioning, while 3−𝐷 localization is critical for many underwater 
applications.

In a broader context of ocean sensing, Gou et al. (2020) pre-
sented a modular deep learning framework designed to forecast spatio-
temporal oceanographic data. It is capable of handling complex multi-
dimensional datasets from various sensors using flexible plug-and-
play architectures. This system supports multiple architectures such 
as MLP (Multi-layer Perceptron), CNN, ConvLSTM, and Transformer-
based models. The authors validated the system on both simulated 
and real-world (Argo float) datasets, demonstrating the superiority 
of ConvLSTM and Transformer-based models in spatio-temporal pre-
diction tasks. It demonstrated a strong ability to predict thermocline 
distributions, which are critical for robust underwater acoustic com-
munication. Although they require large volumes of training data, 
which may not always be available in marine contexts. Meanwhile, Bai 
et al. (2023) explored a novel geolocation approach using polarization-
sensitive omnidirectional cameras. It leveraged polarization patterns in 
water, captured across different global locations under varied condi-
tions (visibility, depth, time of day). The proposed method achieved 
≈ 55 km longitudinal accuracy during the day and ≈ 1000 km at 
night using deep neural networks (DNNs), outperforming traditional 
physics-based models. In addition, the authors validated the robustness 
of polarization images over intensity images for geolocalization under 
variable water turbidity. However, degraded at depths < 50 m due 
to low polarization contrast and changes in optical properties. To ad-
dress unmodeled environmental noise, authors in Chame et al. (2018) 
proposed a neural network framework known as Behaviors-Prediction-
Reliability-Fusion (B-PR-F) that adapts information from redundant 
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black-box estimations. Using this approach, the localization signal was 
contextually anticipated within an ordered neighborhood of processing. 
Simulation and real experiments showed that B-PR-F outperformed the 
Kalman Filter and Augmented Monte Carlo Localization (A-MCL). It 
delivered more reliable position estimates, reduced error accumula-
tion, and improved robustness in dynamic underwater conditions. Even 
though the strategy relies on the availability and accuracy of black-
box models, which are only sometimes reliable or effective under all 
circumstances.

3.1.3. Feature-extraction networks (CNNs & autoencoders)
Burguera et al. (2022) introduced a three-stage loop closing front 

end for underwater visual graph-SLAM. Their approach incorporated a 
Siamese Convolutional Neural Network (SCNN) to quickly reject non-
loop image pairs, followed by random sample consensus (RANSAC)-
based pose estimation and a pose-based consistency filter (PLF) to 
remove remaining outliers. Eq.  (8) defines the optimization objective 
for Pose Graph SLAM, where the sensor node position is obtained 
by minimizing the global error between odometry and loop-closure 
constraints. The system significantly reduced the false positive rate 
to < 5% while preserving > 96% true-positive loops. However, the 
proposed methods trained the SCNN and MLP only once, limiting adapt-
ability to changes in underwater lighting and magnetic conditions. To 
enhance point cloud processing, Du et al. (2025) designed a density-
adaptive filter using kd-tree neighborhood searches to remove outliers 
while preserving edges. They further developed an unsupervised graph 
(UIPENet) convolutional network that scored and selected rotation and 
translation-invariant interest points directly from the denoised cloud. 
UIPENet achieved higher feature robustness and lower pose estimation 
error than conventional CNN-based point cloud descriptors. Though the 
translation invariance was handled via normalization, true translation-
robust feature learning was limited. Li et al. (2023) developed a real-
time underwater target detection algorithm for AUVs using Side Scan 
Sonar (SSS) images with improved accuracy and efficiency. The combi-
nation of YOLOv7, attention mechanisms, and efficient image screening 
led to high performance in both simulated and real-world environ-
ments. It achieved state-of-the-art performance with a recall of 0.836 
and 0.355 s inference time per image. However, challenges remained 
regarding dataset requirements, target ambiguity, and deployment in 
diverse underwater conditions.

The authors in Gong et al. (2020) addressed the problem of under-
water target detection by designing a proactive acoustic array system 
where selected nodes emitted linear frequency modulated (LFM) probe 
signals and others listened for reflections. The Fractional Fourier Trans-
form (FrFT) was applied to each received signal to generate a 2 − 𝐷
time-frequency spectrum whose peak encoded target range and radial 
velocity. A lightweight CNN was trained to detect the characteristics 
from an undersampled FrFT spectrum, enabling efficient range and 
velocity estimation. Despite its efficiency, this method assumed a single 
line-of-sight (LoS) path and constant average sound speed, ignored 
multi-path, Doppler fluctuations, and stratification effects. Peng et al. 
(2023) introduced an end-to-end terrain-relative localization frame-
work that combines point cloud feature extraction, keypoint selection, 
and self-attention-enhanced matching. Their model achieved horizontal 
RMS ≤ 0.03 m and heading RMS ≤ 0.02◦ outperforming terrain contour 
matching (TERCOM), iterative closest point (ICP), point pair features 
(PPF)-FoldNet, and GeoTransformer. However, the computational load 
(though real-time at ≈ 8.6 ms∕𝑓𝑟𝑎𝑚𝑒) may be high for AUV-embedded 
hardware. To address visual degradation in underwater environments, 
Amarasinghe et al. (2023) proposed 3 −𝐷-Net tailored for underwater 
visual SLAM. It had three branches, such as interest point detection, de-
scriptor generation, and depth prediction. To enhance localization and 
mapping, the obtained outputs from these branches were integrated 
with traditional SLAM systems. To adapt to turbidity, low lighting, 
and poor feature richness, a generative adversarial network (GAN)-
generated synthetic underwater dataset was used for training, which 
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limits the performance to other underwater conditions. Authors in Qiu 
et al. (2023b) introduced a hybrid neural network-based approach 
combining a CNN and LSTM to predict underwater glider positions 
accurately, as presented in Fig.  4. This method effectively addressed 
the significant influence of ocean currents on underwater gliders by 
leveraging historical ocean current data. To predict the glider velocity 
and position, a Current Forecasting Model (CFM) was developed, which 
was then integrated with the CNN-LSTM network. The hybrid CNN-
LSTM model enhanced prediction accuracy by modeling spatial and 
temporal dependencies in the data. Although the model demonstrated 
robust performance for the specific type of underwater glider and 
region tested, its applicability to different types of gliders and various 
oceanic regions requires further validation. Despite the improvements, 
the method faced error accumulation over time, potentially affecting 
long-duration missions. A model-based CNN method was presented 
in Chen and Schmidt (2021) for estimating the range of underwater 
acoustic sources. This study evaluated matched-field processing (MFP) 
as an alternative to conventional MFP. By training the CNN with 
specific environmental models, the authors examined its performance 
under slightly varying conditions. Compared to MFP, the CNN approach 
significantly improved prediction accuracy and lowered Mean Absolute 
Error (MAE), particularly in environments with slight deviations from 
the training data. However, it may become highly inaccurate when 
mismatches between simulated environments and real-world conditions 
occur. Additionally, the model may not handle complex scenarios 
involving overlapping sources.

3.2. Machine learning-based methodologies

Hou et al. (2019) proposed an online 2-D SLAM system that in-
tegrated low-frequency magnetic beacon ranging with a single fixed 
acoustic beacon via a Multi-layer perceptrons- Extended Kalman Filter 
(MLP-EKF) pipeline. By replacing heavy sonar/vision feature extraction 
with lightweight neural inference and leveraging low-power magnetic 
fields, acoustic and magnetic beacon (AMB)-SLAM aimed to deliver 
real-time localization and mapping with minimal energy overhead. 
This approach removed the feature-extraction burden by relying on 
MLP inference and avoiding seabed deployment. Simulation results 
showed that AMB-SLAM achieved RMSE < 6 m, compared to > 15 m
for magnetic-only SLAM. Although promising, its performance was 
validated only in calm and small-scale environments, assuming a stable 
geomagnetic environment. Authors in Song et al. (2020) described a 
navigation method for AUVs using neural networks in rapidly chang-
ing environments. The proposed method (NN-DR) integrated a KF, 
a neural network, and velocity compensation to mitigate accumu-
lated errors from inertial sensors. Pitch angles can be predicted by 
reducing gyroscope measurement errors, especially in dynamic environ-
ments. In an extensive simulation study (at 300 s), NN-DR significantly 
improved navigation accuracy (160x more accurate) compared to tra-
ditional dead-reckoning methods. Furthermore, it is highly suitable for 
fast-changing underwater environments since it can withstand dynamic 
environmental changes like waves. However, adapting to changes in 
highly dynamic environments in real time may be challenging. A 
similar approach to Chame et al. (2018) was proposed in Ali et al. 
(2021), which utilized a predictive coding-biased competition/divisive 
input modulation (PC/BC-DIM) neural network for underwater robot 
self-localization. This method aimed to address the challenges inherent 
in underwater environments, such as non-Gaussian noise and high 
computational costs, by offering a more accurate and efficient local-
ization solution than traditional techniques. Utilizing this approach, 
computational costs were significantly reduced, enhancing real-time 
applications. The method produced a low mean localization error ≈
1.27 m and a low computation cost ≈ 2.2 ms, outperforming the Kalman 
filter and Monte Carlo localization in non-Gaussian noise conditions. 
Furthermore, it effectively managed underwater non-Gaussian noise, 
resulting in a more reliable localization estimate. However, the method 
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Table 2
Comparison of existing AI-based localization schemes based on learning architecture and sensor fusion.
 Reference Neural Network Type Sensor Modalities Fusion/Filter Real-Time 
 Wang et al. (2025) CNN, SE layers, Attention ConvGRU Monocular Visual SLAM (Monocular + Optical Flow) Yes  
 Joshi et al. (2020) CNN, CycleGAN Visual (RGB images) PnP (no temporal fusion) Yes  
 Wolf et al. (2020) CNN Artificial Lateral Line (Pressure) – –  
 Teixeira et al. (2020) CNN, LSTM Visual + IMU Visual-Inertial Fusion X  
 Kumar et al. (2024) RNN Acoustic (RSSI, TDoA) Proximity-driven RNN –  
 Bai et al. (2023) DNN Polarization-Sensitive Camera X –  
 Chame et al. (2018) Neural Net (black-box fusion) Contextual signals (unspecified) Black-box info fusion –  
 Gong et al. (2020) Lightweight CNN Acoustic (FrFT spectra) Peak Detection via CNN Yes  
 Hou et al. (2019) MLP Magnetic + Acoustic Beacon MLP + EKF Yes  
 Song et al. (2020) Neural Network + KF IMU (Dead Reckoning) Kalman Filter + Velocity Compensation –  
 Ali et al. (2021) PC/BC-DIM Neural Network Unspecified (Positional Input) Predictive Coding + Biased Competition –  
 Pu et al. (2022) MLP Pressure (Artificial Lateral Line) MLP Estimation –  
 Saha et al. (2024) TinyML Piezo-Acoustic + Energy Harvesting CNN + On-device TinyML Yes  
 Shaukat et al. (2021) RBF Neural Network IMU + External Sensors RBF + Error-State Kalman Filter (ESKF) –  
[X] - Explicitly not considered; [–] - Not applicable.
Table 3
Comparison of AI-based localization schemes based on application and performance metrics.
 Reference Application Output Dimen-

sionality
Performance Limitation  

 Wang et al. (2025) Underwater Visual SLAM Trajectory and Loop Closure 3D Robust visual SLAM, handled 
turbidity

Relied on visual-only input; 
struggled in poor visibility

 

 Joshi et al. (2020) Relative Pose Estimation 6-DOF Pose 3D State-of-the-art accuracy 
across domains

Failed with poor detection or 
unseen poses

 

 Wolf et al. (2020) Hydrodynamic Object 
Localization

Object Location 3D Multi-object capability; 
biologically inspired

Simulation-based  

 Teixeira et al. (2020) VO Drift Correction Trajectory 3D Improved drift via IMU Ignored optical distortions  
 Kumar et al. (2024) Target Localization Position 3D 0.13–1.24 m MEE Only 2D  
 Burguera et al. (2022) Loop Closure Detection Relative Pose 3D FP < 5%, TP >96% Static training; may not adapt 

to scene change
 

 Du et al. (2025) Point Cloud Registration Pose (Rotation and 
Translation)

3D Edge preservation and 
descriptor invariance

Translation-robustness was 
limited

 

 Peng et al. (2023) Terrain-based Localization RMS Position and Heading 3D ≤ 0.03𝑚, ≤ 0.02◦ RMS Required high computational 
load

 

 Hou et al. (2019) 2D SLAM with Low Power Trajectory 2D Accurate real-time mapping 
without seabed deployment

Tested only in calm, 
small-scale, geomagnetically 
stable settings

 

 Song et al. (2020) Dead-Reckoning Navigation in 
Dynamic Waters

Pose Estimation 3D Improved accuracy in 
fast-changing underwater 
environments

Challenging to adapt to rapid 
real-time changes

 

 Ali et al. (2021) Self-localization of Underwater 
Robots

Pose 3D Reduced computational cost, 
handles non-Gaussian noise

Performance depended on 
quality of extracted features

 

 Pu et al. (2022) Pressure-Based Localization Coordinates of Vibrating 
Source

2D Enhanced accuracy; supports 
multiple sources

Interference at same frequency 
increased localization errors

 

 Saha et al. (2024) Low-Power Underwater 
Tracking with Sensing

Location and Communication 2D High accuracy; energy-efficient 
with tinyML

Scalability challenges and 
mutual interference in dense 
setup

 

 Shaukat et al. (2021) Navigation and Localization 
with Nonlinear Modeling

State Estimation (Trajectory) 3D Improved over ESKF; handled 
nonlinearity and disturbances

Scalability issues in large 
networks

 

is based on provided features for the neural network, which can impact 
accuracy if the correct features are not identified.

An artificial lateral line system for underwater localization was 
proposed in Pu et al. (2022), based on the fish mechanosensory lateral 
line system. An MLP neural network was used in this system to detect 
and process pressure variations caused by vibrating sources and predict 
their coordinates in two dimensions. As a result of the integration 
of MLP neural networks, localization accuracy was significantly en-
hanced, and the simultaneous localization of multiple vibration sources 
was effectively managed. Furthermore, data augmentation techniques 
enhanced the robustness and accuracy of models. Despite this, the 
method also relied on manually provided features for the neural net-
work, which may affect the accuracy of the model. Moreover, mutual 
interference between sources, particularly those operating at the same 
frequency, can increase localization errors. The work in Saha et al. 
(2024) introduced a novel, artificial intelligence-driven sensor tag, 
LocoMote, which allowed undersea localization and sensing to be fine-
grained. A tiny machine learning (tinyML) technique was integrated 
into this system to provide precise underwater tracking and real-time 
communication. For accurate localization, it utilized CNNs, employed 
8 
piezo-acoustic ultrasonics, and was powered by an energy-harvesting 
system. LocoMote aimed to provide a comprehensive solution for long-
term, fine-grained monitoring of marine environments with minimal 
footprint and power consumption. However, maintaining communica-
tion efficiency may become more challenging as the number of nodes 
increases. Additionally, mutual interference between multiple tags is 
possible, especially in densely populated areas. The work in Shaukat 
et al. (2021) proposed an innovative technique for improving underwa-
ter vehicle localization and navigation accuracy through the integration 
of a radial basis function neural network (RBF) with an Error-State 
Kalman Filter (ESKF). This hybrid algorithm aimed to improve state 
estimation in highly nonlinear underwater environments by utilizing 
the RBF neural network’s ability to approximate nonlinear functions. 
As a result of the RBF neural network, the limitations of the ESKF were 
compensated, as well as the effects of high nonlinearity, modeling un-
certainty, and external disturbances. The RBF-augmented ESKF showed 
significantly improved navigation and localization accuracy compared 
to the conventional ESKF based on Monte Carlo simulations. However, 
as the number of underwater nodes increases, scalability may become 
an issue, causing latency and performance problems.



M.I. Chowdhury et al. Applied Ocean Research 165 (2025) 104842 
Table 4
Comparison of recent underwater localization studies: techniques, data, outcomes, and limitations.
 Reference Year Localization 

technique
Sensors Dataset Outcomes Advantages/Limita-

tions
 

 Qiu et al. (2023a) 2023 CNN + LSTM 
hybrid NN + Ocean 
current forecast

Glider IMU + 
Current model

Underwater Glider 
field trials + 
Simulation

More accurate speed 
+ position 
prediction vs. classic 
DR; reduced drift 
error

Overcome 
current-induced 
drift; Worked 
without 
GPS/acoustic aid. 
Model-dependent; 
Performance was 
limited if the 
current forecast was 
inaccurate.

 

 Li et al. (2023) 2023 MA-YOLOv7 + 
Attention + 
Multi-scale fusion

Side Scan Sonar 
(SSS)

Field AUV trials + 
Simulation

Recall = 0.836; 
0.355s per image; 
accurate real-time 
detection/localiza-
tion of targets

Real-time; Effective 
for small targets. 
Required labeled 
sonar datasets; 
computational load 
for embedded AUV.

 

 He et al. (2024b) 2024 Pure inertial deep 
model with 
dual-mode switching 
(Transformer + 
CNN)

Low-cost IMU 
(SINS), time-interval 
cues

Long sea trial, 
261.5 km, 28 h

Improved inertial 
prediction accuracy 
over mainstream 
baselines; 
suppressed error 
divergence over 
long runs

No external 
beacons; long-run 
stability. 
Quantitative error 
breakdown vs. each 
baseline was not 
uniformly reported.

 

 Pu et al. (2024) 2024 CNN + Mobility 
Prediction (HLCM)

Acoustic ToA, 
anchor speeds, 
pressure sensors

UWSN Simulation Achieved high 
localization 
accuracy and fault 
tolerance with 
CNN-based error 
correction and drift 
compensation

Handled 
heterogeneous 
errors and mobility 
drift; High coverage. 
Computational 
overhead; 
Dependent on CNN 
training

 

 Wang et al. (2024a) 2024 YOLO + IOU 
matching + 
DeepSort tracking

Imaging Sonar + 
Acoustic image 
sequences

AUV Dynamic 
Docking

Real-time robust 
feature tracking in 
noisy sonar images; 
effective against 
distortion

Robust against noise 
and reverberation; 
Real-time tracking. 
Required large 
datasets; sensitive in 
cluttered sonar.

 

 Kumar et al. (2024) 2024 Proximity-driven 
RNN (CogniLoc)

Hydrophone arrays, 
acoustic emissions

Simulation + Real 
experiments

Significant reduction 
in mean estimation 
error (MEE); robust 
under noise

Exploited temporal 
+ proximity 
patterns; Effective 
in dynamic 
conditions. Needed 
sequential data; 
training complexity.

 

 Du et al. (2025) 2025 Graph Convolutional 
Network (GCN) for 
SLAM front-end

3D Point Cloud Simulation + 
Underwater SLAM 
test

Improved feature 
extraction, 
denoising, robust 
inter-frame 
matching 
(RANSAC+ICP)

Handled noise in 
point clouds; 
Real-time feasible. 
High compute; 
training 
unsupervised but 
needed tuning.

 

 Wang et al. (2025) 2025 Monocular visual 
SLAM with DL 
optical-flow

Monocular camera 
(underwater)

Aqualoc, 
TUM-RGBD

18.7% RMSE 
reduction vs. DROID 
on Aqualoc; mean 
ATE 3.4 cm on 
TUM-RGBD

Better robustness in 
turbidity/illumina-
tion. Vision-only: 
degraded in severe 
visibility loss.

 

 Shamshad et al. 
(2025)

2025 KNN-based ML 
localization with 
cost optimization

RSS + Neighbor 
orientation features

Testbed (tank) + 
NS-3 simulations

99.98% accuracy; 
reduced error from 
4.59 m to 
3.88 × 10−8 m; 
energy 0.0045J; 
delay 0.067 s

Extremely accurate; 
Very low 
energy/time cost. 
Sensitive to dataset 
quality; NLoS 
harshness may 
degrade

 

In summary, we have explored localization schemes for UWSNs that 
leverage AI techniques such as machine learning and deep learning. 
We provide a detailed comparison of the existing works, highlighting 
aspects such as neural architectures, sensor modalities, fusion tech-
niques, application domains, and key performance metrics. These areas 
present opportunities for further research and development, as outlined 
9 
in Table  2, 3, and Table  4. While the existing approaches demon-
strated high accuracy and robustness, their methodological quality 
and potential biases must also be considered. A key limitation across 
many studies is the reliance on simulation-only validation. Only a few 
works conducted field trials, and even those were typically small-scale 
or constrained to tank experiments. Another concern is incomplete 
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Fig. 4. CNN-LSTM hybrid neural network structure (Qiu et al., 2023b).
performance reporting. Many studies emphasized accuracy improve-
ments (RMSE reduction or higher detection rates), but overlooked other 
crucial factors such as energy consumption, computational overhead, 
scalability, or robustness under harsh noise conditions. Future studies 
should adopt more standardized evaluation frameworks, disclose full 
performance trade-offs, and validate methods in diverse real-world 
settings to strengthen the reliability of claims.

4. Energy-efficient localization

Reducing energy costs is a goal in many application fields (Ali 
et al., 2019; Ning et al., 2019). Since battery replacement or recharging 
opportunities are restricted, designing energy-aware schemes is partic-
ularly vital in underwater communication. This section first highlights 
the energy-saving scheme in underwater localization in detail and 
provides a comparative summary in Table  5.

Underwater localization techniques can be categorized into range-
based and range-free approaches. Range-based methods exploit node 
position by combining distance measurements, often obtained through 
specialized hardware or via existing radio communication resources, 
between known beacon nodes and regular sensor nodes. Depending on 
which signal attributes are measured at the receiver, common range-
based indicators include TDoA, ToA, AoA, and RSSI. These methods 
offer high theoretical accuracy but are often constrained by the need for 
synchronization, susceptibility to multipath and stratification effects, 
and high energy cost due to frequent beacon transmissions. By con-
trast, range-free methods (centroid localization, DV-hop) do not rely 
on precise timing or distance measurements but instead use coarse 
neighborhood or hop-count information, making them less accurate 
but more energy efficient and simpler to deploy. Despite these ad-
vances, both range-based and range-free methods face scalability and 
sustainability issues in practical deployments. While numerous studies 
addressed challenges such as node mobility, node deployment, and 
routing strategies, the majority are limited to focusing on the network 
layer (Kumar et al., 2022b). Achieving significant energy savings often 
requires embedding a degree of autonomy and intelligence, enabling 
nodes to learn and adapt their behavior (Sutton and Craven, 1998). 
When a localization model exhibits intelligence, it can learn from 
its own and other models’ experiences and use that information to 
10 
enhance its performance when navigating uncertainty in underwater 
settings. In localization, autonomy refers to the ability of the sensor 
nodes to locate enough anchor nodes to determine their location. 
This is because most localization systems need many anchor nodes 
to assist a single sensor node in deciding its location (Rezazadeh 
et al., 2018; Yuan et al., 2018a). To enable sensor nodes to localize 
even with limited reference nodes, Misra et al. (2014b) introduced a 
framework, Opportunistic Localization by Topology Control (OLTC), 
focusing on establishing interaction between unlocalized nodes and 
localized nodes as a Single-Leader-Multi-Follower Stackelberg game. 
The leader requested a beacon and aimed to minimize the localization 
delay, whereas the followers adjusted transmission power to maximize 
the profit, which balanced energy consumption and localization utility. 
However, game-theoretic computations may increase overhead in large 
networks. Similarly, Yuan et al. (2018c) made use of a Stackelberg 
game to allow sensor nodes to connect with enough anchor nodes 
to determine their positions while consuming the least energy. Un-
like the method in Misra et al. (2014b), this approach reduced the 
energy consumption per node by accounting for the energy cost of 
both anchor and sensor nodes. Nevertheless, the effectiveness of this 
technique was limited to a single environment, and the utility functions 
must be specified using predetermined weights. This technique requires 
time and energy-consuming recalculation of the utility weights if the 
environment changes, such as the number of nodes or network size. 
In another work, Karmakar et al. (2018) introduced a protocol to 
deliver the data efficiently for AUV-equipped underwater networks. 
The proposed protocol improved the packet delivery ratio and re-
duced energy consumption. However, the authors focused only on 
AUV-only networks, limiting applicability to hybrid networks involv-
ing fixed nodes. While these techniques yield encouraging outcomes, 
they cannot manage the network dynamic fluctuations or submerged 
surroundings. Therefore, future prospective researchers must consider 
the unpredictable environment while designing localization in UWSNs.

4.1. Received signal strength indicator (RSSI)

Unlike techniques such as ToA and TDoA, which rely on precise 
time synchronization and involve significant communication overhead, 
RSSI operates without the need for strict time synchronization, making 
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Table 5
Comparison of existing energy-efficient localization scheme.
 Reference Year Measurement 

modality
Energy-saving 
strategies

AI/ML component Channel modeling Real-time Limitations  

 Mei et al. (2020a) 2020 RSSI Min–max 
absorption-
mitigation 
optimization.

– Depth dependent 
absorption and path 
loss.

✓ Required known 
absorption bounds.

 

 Poursheikhali and 
Zamiri-Jafarian 
(2019a)

2019 RSSI No synchronization 
required.

– Curved-ray 
propagation, 
absorption loss, flat 
fading.

✓ Neglected 
multi-path beyond 
flat fading.

 

 Islam and Lee 
(2019a)

2019 TDoA 
(multi-antenna)

Clustering and 
retransmission 
control.

– Assumed ideal 
TDoA with three 
non-collinear 
hydrophones.

✓ Required time 
synchronization and 
surface resurfacing.

 

 Sahana and Singh 
(2020a)

2020 ToA/TDoA (acoustic 
ranging via cluster 
head)

Clustering and 
backup Heads (only 
higher energy 
cluster heads 
perform ranging).

– Basic underwater 
acoustic path-loss 
assumed.

✓ Assumed stable 
cluster partitions.

 

 Liao et al. (2021) 2021 ToA (one-way 
beacon listening)

Selected an optimal 
time window via 
RL.

RL Modeled LOS/NLOS 
delay errors.

✓ Assumed accurate 
IMU and clock.

 

 You et al. (2020) 2020 ToA RL agent learned 
which anchors to 
query to minimize 
redundant way 
ranging.

RL Accounted for LOS 
vs NLOS via reward 
shaping; did not 
explicitly model 
multi-path or 
Doppler.

✓ Required extensive 
offline training.

 

 Chen et al. (2018a) 2018 ToA/TDoA (acoustic 
ranging)

Sensor locations 
were refined 
on-the-fly during 
tracking, avoiding 
standalone 
re-localization 
phases.

– Assumed known, 
static sound-speed 
profile.

✓ Required periodic 
contact with 
GPS-enabled 
super-nodes (buoys) 
for ground-truth.

 

 Mirza and Schurgers 
(2008a)

2008 Inter-drifter range 
via broadcast TOA.

Broadcast-only 
ranging with 
post-facto 
processing.

– Accounted for clock 
skew (0.02 ppm), 
node mobility 
during flight, and 
MAC back-off.

Post-mission Assumed highly 
accurate clocks 
(skew ≤ 0.02 ppm), 
known sound-speed, 
stable topology over 
sync period.

 

 Murgod and 
Sundaram (2020a)

2020 ToA Clustering with 
sleep/active modes.

– Assumed ideal 
acoustic ToA with 
constant sound 
speed.

✓ Required 
GPS-equipped 
anchors, time sync, 
and backup-head 
selection overhead.

 

 Mirza and Schurgers 
(2007)

2007 Pairwise acoustic 
ToA ranging.

Link-selection 
policy.

– Assumed simple 
ToA propagation 
with fixed speed of 
sound.

Post-mission Required 
post-mission 
collection of all ToA 
logs and assumed 
accurate initial 
clock sync.

 

 Zhou et al. (2010a) 2010 Acoustic ranging 
(implicit ToA/TDoA)

Mobility prediction – Accounted for 
acoustic constraints 
but used an 
idealized 
range-error model.

✓ Required accurate 
initial GPS at 
surface buoys, time 
synchronization, 
and assumed known 
mobility patterns.

 

 Moradi et al. 
(2012a)

2012 ToA (one way) Event-driven 
one-way beacons.

– Assumed direct-path 
ToA.

✓ Required 
synchronized clocks 
initially.

 

 Yi et al. (2015a) 2015 ToA (one-way 
beacon receptions).

Eliminated two-way 
handshakes.

– Modeled clock offset 
drift.

✓ Required accurate 
crystal clock (≈
0.02 ppm) and IMU.

 

[✓] - Explicitly addressed; [–] - Not applicable.
it a more energy-efficient option (Zhang et al., 2023). A localization 
technique for energy-harvesting wireless underwater optical sensor 
networks based on RSSI was proposed by Saeed et al. (2019). It allowed 
low-energy nodes to gather ambient energy and reactivate after enough 
harvested energy, as depicted in Fig.  5. Subject to the limitations of 
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the optical underwater channel, distances were computed for position 
estimation by the active nodes using RSS. The block kernel matrices 
for the RSS distance estimations were then calculated. A matrix com-
pletion approach reduced the error in the shortest path estimate in 
the block kernel matrices. When block kernel matrices were finished, 
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Fig. 5. Time-slotted operation of sensor nodes (Saeed et al., 2019).

nodes were localized using a closed-form location estimate process. 
The suggested plan used energy collection to increase robustness and 
lengthen the network lifespan. Fig.  6 demonstrates that energy harvest-
ing directly controls the number of active nodes, and higher energy 
availability significantly improves network connectivity and localiza-
tion capability. However, it must consider how node mobility affects 
node localizability, which might lead to highly inaccurate predictions.

While adjusting to the dynamic changes in the environment, Yuan 
et al. (2021) introduced the Adaptive Energy-Efficient Localization 
Algorithm (Adaptive EELA). By allowing sensor nodes to be localized 
with the least amount of energy consumption possible, the suggested 
method seeks to achieve energy-efficient localization. The proposed 
method balanced energy consumption and localization accuracy by 
optimizing the transmission power of both sensor and anchor nodes. 
Large amounts of processing power and offline data were needed for 
the training set. Initially, distributing fuzzy variables might require a 
significant amount of energy. Sathish et al. (2023) followed a similar 
RSSI-based advanced efficiency-driven localization method to achieve 
precise localization with minimal energy consumption, but focused on 
optimizing for varying network scales. The proposed method achieved 
high accuracy in underwater environments and handles varying net-
work sizes. However, careful anchor node placement and fine-tuning 
RSSI parameters were required. In addition, the accuracy depends on 
calibrating the path loss model for specific underwater conditions.

Clustering techniques have also proved effective in minimizing en-
ergy consumption. In Sahana and Singh (2020b), the authors developed 
a clustering protocol that formed clusters and a cluster head within 
a random time. To extend the network lifetime, the authors intro-
duced a backup node responsible for gathering information on other 
cluster nodes and transferring it to the floating nodes. The proposed 
work decreased energy consumption by deploying nodes with different 
energy sources. Islam and Lee (2019b) extended the clustering idea 
further by assigning the primary localization responsibilities to cluster 
heads, rather than involving all nodes equally. This strategy substan-
tially reduced the energy consumption per node. Additionally, they 
introduced a retransmission control mechanism to minimize redundant 
communications, further enhancing energy efficiency.

Some studies address the physics of acoustic propagation to im-
prove both energy efficiency and localization accuracy. The authors 
in Poursheikhali and Zamiri-Jafarian (2019b) developed a model that 
accounted for curved acoustic wave paths in inhomogeneous media, 
such as linear sounds and non-linear sound speed profiles. The au-
thors formulated a novel RSSI measurement technique that can over-
come dependency on signal attenuation and synchronization. More-
over, they investigated the fading effect caused by underwater obstacles 
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Fig. 6.  RMSPE Vs. Energy arrival rate (Saeed et al., 2019).

or non-line-of-sight (NLOS) paths. Nevertheless, the model relies on 
specific sound speed profiles, which may not reflect realistic ocean 
environments.

Mei et al. (2020b) transformed localization as a min–max oper-
ations problem, seeking to minimize energy consumption while en-
suring robust distance estimation under varying noise levels, absorp-
tion coefficients, and transmit-power settings. However, it assumed 
prior knowledge of the worst-case absorption coefficient and maximum 
communication range. Verma et al. (2001) took a holistic approach 
by combining energy-efficient localization with secure routing. Their 
proposed energy-efficient localization-based secure routing (OEEL-SR) 
protocol employed an enhanced version of the gravitational search 
optimization (IGSO) method to determine node locations, while the 
chaotic wolf optimization (CWO) method was used to identify the se-
cure path throughout the routing process. This approach used the trust 
notation of nodes to transport packets to sink nodes while improving 
the transmission ratio and data energy consumption. Compared to the 
current approach, OEEL-SR increased accuracy by 55% and decreased 
energy usage by 20%. However, the protocol was predicated on ideal 
circumstances that could not exist in the real world.

4.2. Time of arrival (ToA)

Two-way communication consumes energy. To avoid the two-way 
handshaking and mitigate the effect of beacon transmission loss, the 
authors in Yi et al. (2015b) proposed Time of Arrival Tracked Syn-
chronization (ToA-TS) techniques. Instead of exchanging round-trip 
messages, each node used an accurate crystal clock and its onboard 
IMU to timestamp incoming beacons, maintaining synchronization with 
minimal communications. This eliminated the need for reply messages, 
directly reducing per-node transmission energy.

To design an even-triggered operation, Moradi et al. (2012b) de-
veloped an event-driven localization framework. Rather than periodic 
broadcasting localization packets, nodes only transmitted when a pre-
defined event occurred (detection of a target or a significant topology 
change). Moreover, the model shifted localization computation to a 
centralized sink to minimize the computational burden on sensor nodes. 
Although the divide response time increased with water depth, it 
remains manageable due to reduced propagation delays. However, 
anchors must be carefully deployed to ensure adequate coverage and 
minimize packet loss. To further cut down on ToA-based beacon ex-
changes, Zhou et al. (2010b) proposed a mobility prediction-based 
localization scheme where node mobility was predicted using historical 
data and current velocity vectors. The model conserved energy by 
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Fig. 7. Mathematical model for AUV-aided TDoA-based localization.
reducing the frequency of anchor-node communication. Nonetheless, 
the accuracy of mobility prediction can degrade in highly unpredictable 
environments. In a network of drifting sensors, where nodes move 
unpredictably with currents, a post-mission ToA localization frame-
work tailored in Mirza and Schurgers (2007), focusing on reducing 
the energy cost of localization in dynamic underwater networks and 
adapting the accuracy to meet application-specific needs. The model 
demonstrated robust performance for large-scale networks with varying 
densities of drifters and beacons. However, it is unsuitable for real-time 
applications.

Clustering can also reduce ToA costs. 
Murgod and Sundaram (2020b) divided the network into clusters, 
elected a cluster head, and only the head performed ToA ranging on 
behalf of its members. All the nodes slept until called, significantly 
reducing their energy. The energy-efficient cluster-based localization 
algorithm (EECBLA) also applied a ToA-based distance estimate to 
refine the cluster head position. Compared to previous approaches, it 
reduced localization error to around 4 to 6 m. The constant activity 
of the anchor node may cause rapid energy loss. Mirza and Schurg-
ers (2008b) presented Sufficient Distance Map Estimation (SDME), 
a revolutionary energy-aware distributed approach for drifters using 
inter-drifter range measurement as the foundation. It used synchroniza-
tion and broadcast-based range to ensure precise position estimates 
while consuming the least energy. Significant energy savings were 
attained by lowering the number of transmissions—on average, 0.4 
to 0.7 transmissions were required for each localization step. Their 
suggested investigation indicated that real-time localization was not 
feasible. Clock drift and synchronization mistakes can build up and 
affect the localization accuracy without regular resynchronization.

Chen et al. (2018b) developed a simultaneous localization and 
target tracking (SLAT) method with high-accuracy localization with 
mobility prediction (HLMP) to get reasonably accurate sensor position 
estimations. These techniques minimized the requirement for frequent 
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localization updates, which decreased energy usage. Real-time local-
ization is unsuitable for the suggested approach as it concentrates 
on post-mission localization. Reinforcement Learning (RL) can also 
optimize ToA-based beacon selection. The authors in You et al. (2020) 
suggested an energy-efficient underwater localization technique based 
on RL without depending on predefined channel models. The scheme 
was dependent on the two-way travel time of underwater acoustic 
signals. The energy needed for localization dropped from 8.1 Joules 
to 6.3 Joules. There was a 72.2% improvement in the balance be-
tween energy use and localization accuracy. However, it necessitated 
a training period that may take more energy. In their subsequent 
work (Liao et al., 2021), the authors lowered the localization concealed 
mobile node error and energy consumption. The goal was to reduce 
the amount of energy used by a hidden mobile node (HMN) that did 
not communicate with anchor nodes via acoustic signals to remain 
hidden and conserve energy. Furthermore, the concealed mobile node 
can only locate itself by receiving signals from anchor nodes. Compared 
to previous methods, the suggested approach used 85.6% less energy, 
and the balance improved by 49.6% and 76.9%, respectively.

4.3. Time difference of arrival (TDoA)

In Ullah et al. (2019), distance-based and angle-based localization 
algorithms with comparatively lower energy consumption and mean 
estimate errors (MEEs) were introduced for the underwater environ-
ment. The location of the sensor node can be estimated by solving the 
nonlinear range equations given in Eq.  (10), where 𝑟𝑛(𝑘) denotes the 
estimated distance between the unknown node and the 𝑛th anchor. It 
concentrated on the localization of underwater nodes with a particular 
emphasis on MEEs. With variances between 2.7494 and 3.4789 m 
and between 91.0353 and 104.9206 m for the angle-based system, 
the distance-based strategy produced lower MEEs. Although it helped 
to save energy, its effectiveness was diminished by increasing MEEs, 
which made localization accuracy less specific.
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Table 6
AI-enabled underwater localization roadmap: now, near-term, and long-term.
 Axis Current State Next-Generation Approaches Future Directions  
 Algorithms Classical PF/KF/EKF, early DL 

front-ends
RL for adaptive updates, 
hybrid AI+filters, 
self-/weakly-supervised models

Multimodal end-to-end 
(acoustic+IMU+vision), 
graph/transformer models.

 

 Energy Energy as evaluation metric TinyML at edge, RL-driven 
duty cycling, event-triggered 
updates

Cross-layer co-design, in-situ 
harvesting-aware AI.

 

 Channel Simple SSP assumptions, 
limited multipath/Doppler 
handling

Learned denoising for 
ToA/TDoA, domain adaptation 
across sites

Data-driven channel twins; 
robust, uncertainty-aware 
inference.

 

 Systems Sim/small pilots, centralized 
training

Federated learning across 
nodes; on-AUV inference

Digital twins for design-time 
optimization; trustworthy AI.

 

 Validation Mostly simulation Public benchmarks; multi-site 
field trials

Standardized testbeds; 
certification-style evaluation.

 

As presented in Fig.  7, an enhanced AUV-aided TDoA localization 
algorithm (EATLA) was proposed in Hao et al. (2020b), where the 
AUV dived into the predefined depth and transmitted the data packet 
periodically. After that, the unknown node received the data packet 
and calculated its position. A time delay system was proposed to save 
energy consumption. The position of the unknown sensor node was 
determined by solving the trilateration system, as shown in Eq.  (12). 
Due to the use of mobile AUV underwater, the localization coverage 
was improved, resulting in fewer localization errors and a relatively 
shortened localization time. Similarly, Ojha et al. (2020) utilized a 
high-speed AUV as a location provider to create a virtual anchor plane. 
This approach achieved high localization coverage despite the absence 
of synchronization between the sensor nodes and the AUV.

To compensate for residual errors in TDoA approaches, Kaveri-
pakam et al. (2023) combined TDoA and AoA to leverage their re-
spective strengths, overcoming the limitations of individual techniques. 
The authors implemented adaptive beamforming and array process-
ing techniques to mitigate multi-path propagation and improve signal 
quality. In addition, a machine learning model was introduced to 
predict localization errors and refine estimates dynamically. Although 
this hybrid scheme demanded precise anchor placement and careful 
synchronization among anchors, it significantly reduced the number of 
required TDoA exchanges and thus the total energy expended without 
repeated retransmissions.

4.4. Angle of arrival (AoA)

A hybrid localization algorithm for a 3-D network model based on 
Doppler Shift and AoA (DAHL) was proposed in Hao et al. (2020a). 
Rather than relying solely on TDoA pings, DAHL combined Doppler-
shift and AoA measurements in a two-stage algebraic solver. The mobile 
node position and velocity estimation errors were optimized by in-
troducing auxiliary parameters. The two-stage algebraic approach was 
employed to simplify the complex, high-dimensional nonlinear rela-
tionship between Doppler shift measurements and the mobile node’s 
position. Even under increased measurement noise, the method demon-
strated strong performance in accurately estimating both the position 
and velocity of the node. Once these parameters were determined, 
real-time tracking of the mobile node became feasible. To enhance 
the effectiveness of the DAHL method, the study strategically balanced 
energy consumption between anchor nodes and regular nodes.

Building on the same idea of minimizing TDoA exchanges, Kumar 
et al. (2022a) selected a Primary Anchor (PA) that provided AoA 
measurements, using a small, directional array to determine the bearing 
of the node’s acoustic ping and a Secondary Anchor (SA) that supplied 
an RSS-based distance estimate. By fusing AoA from the PA with 
RSS from the SA, they can derive a rough position without initiating 
a full TDoA handshake. The model evaluated utility functions such 
as residual energy, transmission distance, and measurement error to 
optimize the SA selection. The proposed technique maintained a higher 
packet delivery ratio by avoiding packet collisions and optimizing 
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directional transmission. The node position was determined using a 
PA equipped with GPS and capable of reliable data processing. As 
a result, if the PA fails, localization accuracy is compromised, since 
the SA will begin transmitting data randomly to another anchor node, 
which then communicates directly with the sink, potentially disrupting 
the coordination and precision of the system.

In summary, we have illustrated an energy-efficient localization 
scheme for UWSNs. We classified the existing literature into four cate-
gories: RSSI, ToA, TDoA, and AoA. The methods described are energy 
efficient and achieved comparatively low localization error, network 
lifetime, and packet delivery ratio. Besides, we analyzed their simu-
lation result and identified the drawbacks of each research work. We 
also present a detailed comparison of existing works, highlighting their 
limitations and scope for further research in Table  5.

5. Future research direction

While numerous energy-efficient and reliable schemes have been 
developed in terrestrial wireless sensor networks, these approaches 
are unsuitable for underwater environments because of the distinct 
properties of communication channels. Moreover, existing localiza-
tion schemes often struggle to meet the constraints of underwater 
networks. In these future underwater sensor networks, localization 
services will face new possibilities and challenges in terms of robust-
ness and adaptability. The recent ground-breaking proposed algorithms 
are promising for optimizing both localization accuracy and energy 
consumption, and will likely impact UWSNs localization. Before dis-
cussing these approaches in detail, it is useful to first outline how 
underwater localization is progressing along four key dimensions: al-
gorithms, energy strategies, channel modeling, and system validation. 
Table  6 presents an AI-enabled roadmap, illustrating the current state of 
the field, anticipated short-term developments, and long-term research 
directions.

5.1. AI-driven localization

Many approaches (Wang et al., 2025; Peng et al., 2023; Bai et al., 
2023) highlighted the need for better generalization across different un-
derwater domains, suggesting the development of adaptive or domain-
transfer learning strategies. Many approaches still depend heavily on 
simulated data and require improvements, as shown in Table  7. Domain 
adaptation and transfer learning remain underexplored despite the 
clear domain shift between simulation and ocean deployment. There-
fore, future efforts should focus on real-world validation under diverse 
and dynamic marine conditions (Teixeira et al., 2020; Wolf et al., 
2020; Burguera et al., 2022). In addition, while several approaches 
employ supervised learning, only a few leverage self-supervised or 
unsupervised techniques, which are more scalable and data-efficient for 
underwater applications. Additionally, as underwater sensor networks 
scale up, addressing computational efficiency, energy consumption, 
and real-time adaptability becomes increasingly important. Lightweight 
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Table 7
Comparison based on dataset, validation environment, and training approach.
 Reference Dataset Validation Environment Training Approach  
 Wang et al. (2025) Augmented underwater images (custom) Simulated (turbid lighting) and real images Self-supervised optical flow and SE encoder  
 Joshi et al. (2020) Synthetic (Unreal Engine), CycleGAN Pool and ocean trials Unsupervised image translation and pose regression 
 Chen et al. (2023) RGB images (PoseNet dataset) Indoor/outdoor visual scenes Supervised single image pose estimation  
 Wolf et al. (2020) Simulated hydrodynamics Simulation only Supervised CNN on ALL sensor data  
 Teixeira et al. (2020) Underwater AUV dataset Real AUV trials LSTM trained on VO trajectory and IMU correction  
 Kumar et al. (2024) Synthetic signal simulation Ideal and multi-path noise Supervised RNN with proximity info  
 Burguera et al. (2022) Underwater visual images Field AUV deployment SCNN and RANSAC  
 Du et al. (2025) 3D underwater cloud data Simulated and real cloud edges Unsupervised graph scoring (UIPENet)  
 Peng et al. (2023) Terrain maps and simulated point clouds Simulated and real terrain Self-attention and keypoint learning  
 Hou et al. (2019) Small-scale magnetic and acoustic Not specified (presumed controlled) MLP trained offline for EKF fusion  
 Song et al. (2020) Simulated dynamic underwater environment Extensive simulation NN prediction and velocity compensation  
 Ali et al. (2021) Feature-based simulation data Synthetic PC/BC-DIM training with encoded features  
 Pu et al. (2022) Pressure sensor simulation Vibration sources Supervised MLP with feature engineering  
 Saha et al. (2024) Real marine tag trials Field and simulated TinyML with CNN for classification  
 Shaukat et al. (2021) Monte Carlo simulation Nonlinear trajectory test RBFNN and ESKF integration  
models such as TinyML and decentralized training methods like feder-
ated learning can help mitigate these concerns. Incorporating temporal 
modeling into pose estimation frameworks currently operating frame 
by frame (Joshi et al., 2020) and can improve consistency and accuracy 
in long-duration missions. 2D approaches to 3D are still a critical need 
to support real-time, low-power interference on embedded systems like 
AUVs and underwater sensor tags (Hou et al., 2019), Saha et al. (2024). 
Another critical direction lies in the automatic extraction of features 
and multimodal sensor fusion, enabling systems to adapt to complex 
and dynamic environments. AI techniques also offer new avenues for 
addressing security threats in underwater localization, such as Sybil 
and wormhole attacks. By learning patterns of legitimate behavior over 
time, machine learning models can be trained to detect anomalies in 
distance measurements, signal timing, or node identity. For instance, 
neural networks can classify abnormal transmission patterns indica-
tive of spoofed nodes (Sybil) or shortcut routing paths (wormholes). 
Integrating trust models with AI, or using reinforcement learning to 
dynamically adjust trust scores based on behavior, may further enhance 
secure and resilient localization. Future studies should investigate how 
to combine these detection mechanisms with localization algorithms 
to provide both accurate and secure positioning in hostile underwater 
environments.

A promising direction is the integration of federated learning, re-
inforcement learning, and hybrid AI models to jointly optimize lo-
calization accuracy and energy efficiency. Federated learning enables 
collaborative model training across distributed underwater nodes with-
out requiring raw data exchange, reducing communication overhead 
and energy cost while preserving privacy. Reinforcement learning can 
dynamically adjust beacon transmission rates, duty cycling, or anchor 
selection based on real-time error growth. Hybrid AI models that 
combine data-driven deep learning with physics-based constraints or 
Bayesian filtering can further reduce drift while keeping computational 
load manageable for energy-limited nodes. Together, these approaches 
point toward next-generation frameworks where localization, commu-
nication, and energy management are co-designed, extending mission 
duration while maintaining reliable positioning in harsh underwater 
environments.

5.2. Reinforcement learning

Energy-efficient underwater localization schemes still face several 
critical challenges that limit their scalability and real-world appli-
cability, as presented in Table  8. Future energy-efficient underwater 
localization research is increasingly focusing on intelligent, adaptive 
frameworks that dynamically respond to environmental uncertainty, 
mobility, and communication constraints. One promising approach lies 
in the use of RL because of its ability to autonomously make decisions 
regarding mobility, energy optimization, and adaptation to dynamic 
environments (Frikha et al., 2021), Yu et al. (2025). One proposed 
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scheme in You et al. (2020) enabled the target to optimize the beacon 
selection policy without knowing the channel model between the target 
and the beacon, thereby reducing the error and energy consumption. 
Moreover, NLOS transmission of underwater acoustic signals leads 
to increased localization errors when algorithms assume line-of-sight 
(LOS) conditions. Therefore, localization algorithms must detect and 
avoid using nodes affected by NLOS transmission. To address this 
challenge, a reinforcement learning (RL)-based mobile hidden passive 
localization algorithm has been proposed (Liao et al., 2021). This 
approach aimed to reduce both the energy consumption of HMNs and 
localization errors. By allowing HMNs-restricted to receive signals from 
anchor nodes only to intelligently determine their positions and select 
the most suitable time window for localization, the algorithm remained 
effective even under uncertain underwater environmental conditions.

5.3. Mobility and delay prediction

Propagation delay is a critical factor that disrupts node synchro-
nization and affects localization accuracy (Hasan et al., 2025a). It 
is essential to adjust lengthy propagation delays to achieve precise 
localization. A mobility prediction algorithm for anchor nodes has been 
proposed (Zhou et al., 2010b), wherein each anchor node calculates 
and records its speed during each localization interval. This approach 
enables predicting and compensating propagation delays, thereby im-
proving localization accuracy. Ordinary nodes utilize the predicted 
speed from anchor nodes to perform the localization process.

Many UWSN localization schemes require enough anchor nodes 
to assist sensor nodes in determining their positions. These localiza-
tion processes depend on various factors, including the locations of 
reference nodes, the number of sensor and anchor nodes, the local-
ization method employed, and the distribution of anchor nodes. An 
energy-aware solution is necessary to enhance efficiency, enabling each 
sensor node to identify the required anchor nodes while considering 
localization through effective topology management.

5.4. Quantum-inspired positioning techniques

Quantum sensing and quantum-inspired techniques offer a promis-
ing frontier for underwater localization with the potential to improve 
traditional limitations in accuracy, drift, robustness, and synchroniza-
tion. The authors in Mei et al. (2024) proposed quantum-inspired 
optimization algorithms to increase population diversity instead of 
relying on closed-form solutions, which require assumptions. Integrat-
ing quantum-enhanced sensors with AI-driven models can redefine 
localization accuracy and reliability in GPS-denied underwater environ-
ments. Warrier et al. (2024) focused on image classification rather than 
position estimation, but quantum advantages can extend to underwater 
localization. Hybrid quantum models can reduce the computational 
time and handle sensor drift, enabling richer multi-sensor fusion.
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Table 8
Limitations and future scope of energy-efficient localization schemes.
 Reference Categories Limitation Scope  
 
Misra et al. (2014b)

Range based Assuming time 
synchronization for nodes may 
not be feasible in the natural 
underwater environment.

(i) Investigate the proposed 
scheme in the presence of 
shadow zones, jamming, and 
natural interference.
(ii) Adopt a mixed strategy to 
select the appropriate 
transmission power level for 
the nodes.

 

 Yuan et al. (2018c) Range based Energy consumption for the 
anchor node was higher than 
the existing one due to 
building their two-hop 
neighboring list.

Adopt incorporating learning 
strategies to enhance the 
robustness of the proposed 
method.

 

 Ullah et al. (2019) Dynamic, 
range-based, 
angle-based

(i) Less feasible for many 
sensor nodes and network 
fields than for a small area.
(ii) Angle-based measurement 
could have been more 
accurate than distance-based 
measurement due to the water 
current and other obstacles.

(i) Implement RSSI for 
underwater localization.
(ii) Reduce the MEEs further.

 

 Li et al. (2016) Dynamic, 
range-based

(i) Measurement and time 
measurement noise affected 
the localization accuracy.
(ii) Tested in a shallow water 
environment (depth <500 m).

(i) Investigate the algorithm 
in the actual underwater 
environment to verify the 
feasibility of the proposed 
sound speed solution.
(ii) Improving the immunity 
of the proposed algorithm 
against time measurement 
noise.

 

 Liu et al. (2015) Dynamic, 
range-based

The error can accumulate in 
the presence of unpredictable 
mobility patterns.

(i) Investigate the effect of 
time-variable transmission rate 
and clock skew in the 
proposed strategies.
(ii) Evaluate the proposed 
work in the natural 
underwater environment.

 

 Zhang et al. (2020) Dynamic, 
range-based

Simulator could not capture 
the actual complexity of the 
natural environment.

Consider power management 
of nodes during the silent 
period.

 

 Xu et al. (2019) Dynamic, 
range-based

Environmental factors like 
noise and seawater current 
can affect positioning 
accuracy. Only salinity and 
wind speed were considered.

(i) Conduct the test 
underwater to improve the 
proposed algorithm.
(ii) Consider the other 
environmental factors to 
validate the algorithm.

 

 Yu and Choi (2014b) Range based Assuming the position of the 
all-sensor node may not be 
feasible in the natural complex 
underwater environment.

Reducing the computational 
complexity.

 

 Chen et al. (2017b) Range based Managing the complexity of 
artificial measurements and 
the adaptive filter might be 
challenging.

Consider more complex 
underwater environmental 
factors to validate the 
proposed work.

 

5.5. Lesson learned

Based on the review of the existing literature on underwater lo-
calization, as summarized in Table  1, 2, 3, 4, 5, 6, 7, and 8, several 
promising methods for underwater positioning have been identified 
and discussed in terms of AI-driven techniques and energy efficiency. 
According to the literature, the dynamic nature of underwater com-
munication is impacted by factors such as node mobility, multipath, 
and refractive properties of the sound signal, which pose significant 
challenges for accurate and robust localization. Since underwater nodes 
are constantly drifting with water currents, the localization algorithm 
must be designed to operate with sufficient efficiency and adapt to 
these node drifts in real-time. One of the main challenges behind 
developing an intelligent and energy-efficient localization scheme is 
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ensuring that AI models remain lightweight. The narrow band of un-
derwater channels and the energy limitation of underwater nodes make 
this more complicated. Although the recent advancement in develop-
ing lightweight learning models and hybrid AI-based frameworks that 
balance performance with resource constraints is promising, but still 
in the initial phase. These approaches leverage onboard processing, 
adaptive learning, and minimal communication overhead to preserve 
node energy while maintaining localization accuracy.

Adapting to dynamic environment changes is challenging when 
designing energy-efficient localization schemes due to the short sensor 
lifetime. One potential solution involves enabling nodes to operate 
in two distinct modes, active and sleep mode, to optimize energy 
consumption. Another approach is post-facto processing, which delays 
data analysis until data collection is complete, thereby significantly 
reducing energy costs associated with periodic real-time localization. 
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However, the performance will degrade quickly. Based on this idea, 
authors in Mirza and Schurgers (2008b) developed SDME, which used 
minimal communication while ensuring sufficient information for ac-
curate localization was stored in the network. Most of the energy was 
consumed in predicting the location of a dead mobile sensor node 
(MSN). By avoiding beacon transmissions from the source to the MSN, 
communication overhead and energy consumption can be reduced. 
Researchers have proposed a passive localization algorithm to reduce 
energy consumption and localization errors for hidden mobile nodes.

Moreover, absorption and path loss can degrade the accuracy of 
localization. A practical energy-efficient localization approach involves 
minimizing the required range measurements. This can be achieved 
through link selection, which is only necessary during significant topol-
ogy changes that occur less frequently than re-localization processes. 
Consequently, the total number of links utilized for ranging can be 
significantly reduced.

6. Conclusion

Underwater localization presents a wide range of challenges due to 
the harsh, complex, and constantly changing underwater environment. 
Among these, two of the most critical issues are high energy consump-
tion and the need for intelligent, adaptive localization strategies. In 
recent years, significant research efforts have focused on overcoming 
these obstacles, with a growing emphasis on leveraging AI to enhance 
both the accuracy and efficiency of underwater localization systems. 
However, there has been no comprehensive review of these research 
works to guide future research on designing reliable, accurate, and 
efficient underwater localization schemes. In this work, we have re-
viewed and classified some key research studies on localization. First, 
we present a detailed discussion of AI-based localization techniques in 
underwater sensor networks, followed by a review of energy-efficient 
localization techniques.

Additionally, we have outlined promising future research direc-
tions in AI-driven UWSN localization, emphasizing the need to design 
lightweight, energy-efficient schemes and real-world testbeds to eval-
uate the performance of these techniques. This review paper aims to 
serve as a valuable resource for researchers focused on developing 
innovative strategies and frameworks to address key challenges in un-
derwater localization, particularly those related to reliability, accuracy, 
and energy efficiency.
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Appendix

The following equation defines the dense bundle adjustment op-
timization used in EUM-SLAM (Wang et al., 2025) to recover the 
location of the sensor node. The method minimized the reprojection 
error between the observed 2D image points and the projected 3D map 
points. By optimizing over all camera poses 𝑅, 𝑡 and 3D landmarks 𝑋, 
the system estimated the most accurate trajectory of the underwater 
sensor node. 

𝐸(𝑅, 𝑡,𝑋) =
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝜌
(

‖

‖

‖

𝑢𝑖𝑗 − 𝜋(𝑅𝑖, 𝑡𝑖, 𝑋𝑗 )
‖

‖

‖

2)
(1)

where 𝑅𝑖 and 𝑡𝑖 denote the rotation matrix and translation vector (pose) 
of the 𝑖th camera, 𝑋𝑗 represents the 3-D coordinates of the 𝑗th point, 
𝜋(𝑅𝑖, 𝑡𝑖, 𝑋𝑗 ) is the projection of 𝑋𝑗 onto the 𝑖th camera image plane, 𝑢𝑖𝑗
is the observed 2-D feature point, and 𝜌(⋅) is a robust loss function that 
reduces the influence of outliers.

In DeepURL (Joshi et al., 2020), the final localization equation came 
from solving the PnP problem: the 6D pose (𝑅, 𝑡) of the underwater 
robot was estimated by aligning the predicted 2D keypoints with the 
known 3D model points using the camera projection model. This op-
timization was solved robustly with RANSAC-based PnP, yielding the 
sensor node’s relative position and orientation. 
{𝑅̂𝑜𝑡, 𝑡} = PnP-RANSAC

(

{(𝑋𝑖, 𝑥𝑖)}𝑁𝑖=1
)

(2)

This equation computes the 6D pose (rotation 𝑅̂𝑜𝑡 and translation 
𝑡) of the AUV by solving the Perspective-n-Point (PnP) problem with 
RANSAC, using 𝑁 pairs of 3D model points 𝑋𝑖 and their detected 2D 
projections 𝑥𝑖. 

𝜙(𝑅𝑜𝑡, 𝑅̂𝑜𝑡) = arccos

(

tr(𝑅𝑇
𝑜𝑡𝑅̂𝑜𝑡) − 1
2

)

(3)

This equation defines the orientation error between the ground truth 
rotation 𝑅𝑜𝑡 and the estimated rotation 𝑅̂𝑜𝑡, where tr(⋅) is the matrix 
trace.

The authors in Teixeira et al. (2020) defined the optimization used 
to estimate the sensor node (robot) location. The method regressed 
a 6-DoF pose (3D translation + rotation) from image sequences via 
deep networks (SfMLearner, GeoNet). The translation part of the pose 
corresponds to the sensor node’s location in space. The fusion network 
refined these estimates by minimizing the combined translation error 
and quaternion rotation error with respect to ground truth. 

loss =
√

∑

(𝐸2
𝑥 + 𝐸2

𝑦 + 𝐸2
𝑧 ) +

∑

‖𝑞𝑒 − 𝑞‖ (4)

The position of nodes in Kumar et al. (2024) was estimated by 
feeding sequential RSSI measurements from anchor nodes into an RNN. 
The RNN captured temporal dependencies through hidden states and 
outputs the predicted node location.

Input Layer: 

𝑋𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1,𝑡
𝑥2,𝑡
⋮

𝑥𝑁,𝑡

⎤

⎥

⎥

⎥

⎥

⎦

(5)

Recurrent Layer: 
ℎ𝑡 = tanh

(

𝑊ℎ𝑥ℎ𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ
)

(6)

Output Layer (location prediction): 
𝑦̂𝑡 = softmax

(

ℎ𝑡𝑊ℎ𝑦 + 𝑏𝑦
)

(7)

The localization was formulated in Burguera et al. (2022) through 
Pose Graph optimization. The error function minimized is: 

𝑒(𝐺𝑡) =
∑

𝑠𝑖

‖

‖

‖

𝑋𝑠𝑖
𝑑𝑖 −

(

⊖(𝑋𝑊
𝑠𝑖 )⊕𝑋𝑊

𝑑𝑖
)

‖

‖

‖

2
(8)
∀𝑋𝑑𝑖∈𝐸𝑡
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where (𝑥𝑠𝑖𝑑𝑖) are the measured relative pose constraints (from odometry 
or loop closure) between nodes 𝑠𝑖 and 𝑑𝑖, 𝐸𝑡 is the set of edges 
(constraints) in the pose graph, 𝑒(𝐺𝑡) is the total error to be minimized 
in graph optimization.

The work in Peng et al. (2023) proposed a deep learning–based 
underwater terrain matching localization. The final localization was 
expressed as offsets (𝛥𝑥, 𝛥𝑦, 𝛥𝑢) (x-position, y-position, heading) that 
minimized the difference between predicted and actual poses. 
[

𝑥′

𝑦′

]

=
[

sin𝛥𝜑𝑘 −cos𝛥𝜑𝑘
cos𝛥𝜑𝑘 sin𝛥𝜑𝑘

] [

𝑥
𝑦

]

+
[

𝛥𝑥𝑖
𝛥𝑦𝑖

]

(9)

where 𝑥, 𝑦 are the predicted position coordinates from inertial mea-
surements, 𝑥′, 𝑦′ are the corrected position coordinates after terrain 
matching, 𝛥𝑥, 𝛥𝑦 are the translation offsets, 𝛥𝜑𝑘 is the heading (yaw) 
offset.

The authors in Ullah et al. (2019) proposed two final equations 
for estimating the location of a sensor node, depending on whether 
distance-based or angle-based measurements were used. 

𝑟𝑛(𝑘) =
√

(

𝑥(𝑘) − 𝑥𝑛
)2 +

(

𝑦(𝑘) − 𝑦𝑛
)2 +

(

𝑧(𝑘) − 𝑧𝑛
)2 (10)

where 𝑟𝑛(𝑘) is the estimated distance between the unknown sensor node 
(𝑥(𝑘), 𝑦(𝑘), 𝑧(𝑘)) and the anchor node (𝑥𝑛, 𝑦𝑛, 𝑧𝑛). 

𝜃 = cos−1
⎛

⎜

⎜

⎜

⎝

𝑋1𝑋2 + 𝑌1𝑌2
√

𝑋2
1 + 𝑌 2

1

√

𝑋2
2 + 𝑌 2

2

(11)

where 𝜃 is the angle between nodes 𝐴(𝑋1, 𝑌1) and 𝐵(𝑋2, 𝑌2).
The final equation in Hao et al. (2020b) showed how the unknown 

sensor node’s coordinates were obtained using trilateration based on 
distances measured via TDoA between the sensor and multiple AUV 
positions. By substituting measured delays into these equations, the 
node’s position (𝑥, 𝑦, 𝑧) is uniquely determined. 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝑑2𝑠1
(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = (𝑑𝑠1 + 𝜑1)2

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = (𝑑𝑠1 + 𝜑2)2

(𝑥 − 𝑥4)2 + (𝑦 − 𝑦4)2 + (𝑧 − 𝑧4)2 = (𝑑𝑠1 + 𝜑3)2

(12)

where, 𝑑𝑠1 = −𝐵±
√

𝐵2−4𝐴𝐶
2𝐴 , 𝑥 = 𝐴𝑥𝑑𝑠1+𝐵𝑥, 𝑦 = 𝐴𝑦𝑑𝑠1+𝐵𝑦, 𝑧 = 𝐴𝑧𝑑𝑠1+𝐵𝑧
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