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ARTICLE INFO ABSTRACT

Keywords: Designing accurate, reliable, and energy-efficient localization techniques for underwater acoustic networks
Localization is highly challenging due to factors such as large propagation delays, the absence of Global Positioning
Artificial Intelligence System (GPS), node mobility, and limited acoustic link capacity. In any underwater sensor network (UWSN)

Energy efficiency
Statistical filters
Sensor noise

monitoring application, data collected by underwater nodes becomes more meaningful when accompanied
by location information. However, traditional localization methods often rely on geometric models and
statistical filters that are highly sensitive to sensor noise and communication constraints. Energy consumption
is another primary concern in UWSNs, not only because replacing and recharging underwater batteries are
challenging, but also due to the energy-hungry nature of underwater acoustic communications. To address
these challenges, we provide a comprehensive literature review of research contributions on the integration of
Artificial Intelligence (AI) and energy efficiency in underwater localization techniques. First, we introduce the
recent advancements in Al-based approaches, including deep learning and machine learning models, which
are promising for enhancing accuracy, robustness, and adaptability in complex underwater environments
through learning-driven techniques. Subsequently, we review various energy-saving strategies integrated into
the localization scheme to address the power constraints of underwater sensor nodes. Finally, we discuss future
research directions and conclude with key insights.
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1. Introduction

Underwater communication and localization are vital for exploring
the dynamic nature of the ocean environment. However, the ocean en-
vironment introduces severe communications challenges due to limited
bandwidth and large propagation delays of underwater communication
signals (Hasan et al., 2025c). Since the Global Navigation Satellite
System (GNSS) cannot penetrate water, the underwater moving ob-
jects often depend on acoustic methods for localization. Autonomous
Underwater Vehicles (AUVs) have been widely used for tasks such
as seafloor mapping, environmental monitoring, and defense opera-
tions (Ludvigsen and Sgrensen, 2016), Hasan et al. (2025b). Precise
positioning of AUVs is not only essential for search & rescue operations
and covert surveillance, but also for reliable underwater communica-
tion and long-term ocean monitoring, where it ensures data integrity,
mission safety, and sustained network connectivity.

To address these needs, numerous techniques have been intro-
duced for localization, utilizing a variety of sensors, including acoustic
modems, vision, Inertial Measurement Unit (IMU), depth sensors, and
magnetometers (Samatas and Pachidis, 2022). However, these sensors
provide asynchronous measurements and are prone to high short-
term noise. Most of them are energy-hungry and rely on simplified
acoustic models, often assuming a constant sound speed and uniform
Doppler effects, whereas real-world conditions (temperature gradients,
salinity variations, and uneven seabeds) can significantly distort signal
propagation. To fuse those sensor measurements, many researchers
introduced Bayesian filters such as Kalman filter (KF), Extended Kalman
filter (EKF), Unscented Kalman filter (UKF), and Particle filter (Chen
et al., 2003). For instance, Wang et al. (2024b) proposed a multi-
sensor fusion method based on UKF on manifolds to reduce cumulative
error in underwater cave datasets, while Jiang et al. (2023) introduced
an Unscented Particle Filter (UPF) that improves particle distribution
and positioning accuracy. Yet, such methods come with high compu-
tational cost and on the assumptions of Gaussian noise and known
initial states, which limit their robustness in nonlinear and uncertain
underwater environments. Moreover, Doppler-based feature extraction
across channels increases the energy burden on sensor nodes, where
battery replacement is impractical. When integrated with heavy compu-
tational Bayesian filters, this energy cost can severely limit the mission
duration. Only a few approaches (Zargelin et al., 2020b), Zargelin et al.
(2020a) consider the limitations of sensors and their computational
capacity, and these still require further adaptation to be suitable for un-
derwater environments. Thus, next-generation localization approaches
must consider the energy-aware innovative techniques with adaptive,
data-driven models that capture the true complexity of the underwater
channel.

Beyond Bayesian filters, optimization-based methods were proposed
to refine positioning accuracy. For instance, Zhang et al. (2022) recti-
fied inertial and acoustic errors during turning maneuvers by leverag-
ing motion states, while Liu et al. (2023) developed a tightly coupled
navigation model using two transponders to mitigate multi-path inter-
ference. However, as the number of vehicles increases, tightly coupled
solutions significantly increase computational complexities. For collab-
orative missions involving multiple AUVs, Luo et al. (2025) proposed
a cooperative positioning framework resilient to underwater noise and

delays. Despite these advancements, most existing research still concen-
trates on robust filtering, coupling strategies, or cooperative schemes.
This highlights the need for next-generation approaches that not only
ensure accuracy and robustness, but also address energy efficiency and
scalability in real underwater environments.

More recently, deep learning has emerged as a promising approach
for underwater localization by leveraging data-driven feature extraction
and sequence modeling. Convolutional Neural Networks (CNNs) are
mostly utilized for visual landmark recognition (Han et al., 2020).
It has been adapted to process sonar imagery to mitigate resolution
limits by learning robust, high-level descriptors without relying on
artificial beacons. Moreover, CNNs are employed to fuse multi-modal
oceanographic data and enable real-time regression-based estimation of
underwater sound speed profiles (Wu et al., 2024). Meanwhile, Recur-
rent Neural Networks (RNNs) excel at fusing time-series measurements
(acoustic pings, IMU measurements), offering greater fault tolerance
and bounded error growth compared to classical Bayesian filters (KF,
EKF, PF) (Yu et al., 2019).

Building on these advances, next-generation Al-driven models ex-
tend beyond point localization to integrated tasks such as Simultaneous
Localization and Mapping (SLAM), which is essential in complex seabed
environments. SLAM combined with the EKF (Eitel et al., 2015) is
commonly used for estimating robot pose and landmarks. However,
EKF-based SLAM (Davison, 2003) often struggles in highly nonlinear
conditions due to its reliance on linearization. To overcome these
challenges, alternative approaches such as particle SLAM (Liu et al.,
2024), graph-based SLAM (Grisetti et al., 2011), and visual SLAM (Hu
et al., 2022) have been developed, each addressing nonlinear dynamics,
configuration detection, and adaptation to underwater environments,
respectively. More recently, the fusion of deep learning with SLAM
has achieved notable success, leveraging neural networks to signifi-
cantly improve mapping and navigation (He et al., 2024a; Chen et al.,
2021). These advancements collectively strengthen underwater SLAM
algorithms, making deep learning-enhanced systems more accurate and
reliable for underwater navigation.

Extending this trajectory, hybrid frameworks have begun to merge
SLAM with complementary navigation systems. For instance, the author
in Sabra and Fung (2017) introduced a fuzzy-logic fusion scheme
where a decision support system was introduced that dynamically
blends Ultra-short baseline (USBL), SLAM, and Inertial Navigation Sys-
tem/ Doppler Velocity log (INS/DVL) estimates, demonstrating high
availability but imposing heavy onboard compute and memory loads.
In contrast, lightweight neural-network architectures can deliver low-
latency inference and nonlinear modeling in a single shot, reducing
both energy and scheduling overhead for nonlinear systems. To fur-
ther push next-generation localization, hybrid Al frameworks are now
integrating CNN-based feature embedding from horizontal-scan sonars
with RNN-driven temporal fusion so that AUVs can navigate com-
plex, time-varying channels with high accuracy and minimal power
consumption.

In parallel, several recent studies have targeted energy efficiency
in underwater localization by focusing on different elements and al-
gorithm strategies. For example, Misra et al. (2014a) formulated a
Stackelberg game to minimize the energy consumption of the anchor
node rather than sensor nodes. Similarly, authors in Yuan et al. (2018b)
extended this idea by jointly accounting for both sensor and anchor
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Table 1
Summary of existing localization surveys.
Reference Year Localization Energy-saving Al Integration Channel Consideration Limitations
Method strategies
Toky et al. (2020) 2020 v Identified some NLA used a neural v Time synchronization
network to refine under mobility.
DV Hop’s average
hope count.

Luo et al. (2021) 2021 v Energy consumption X v Mobile drift,
appeared as an energy-accuracy trade-off,
evaluation criterion. beacon path planning.

Christensen et al. 2022 Navigation v CNN, RL Highlighted environmental Multi-model fusion,

(2022) only uncertainties. absence of energy cost
analysis.

Islam et al. (2022) 2022 X v X Multi-path, Doppler Briefly discussed.

Osamy et al. (2022) 2022 In the context of Evaluated methods X Static-anchor assumptions,
optimizing node like fuzzy logic, lack of realistic channel
replacement. artificial neural modeling.

network, and
reinforcement
learning.

Yadav and Khilar 2023 Range free Relied on fewer GPS Extended Improved Considered stratification Environment assumptions;

(2023a) buoys for cost PSO (EIPSO) (sound velocity profile + limited real validation.
saving. ray theory)

Yadav and Khilar 2023 I-LASP for Clustering Optimization in Used stratification via Cluster stability issues; no

(2023b) localization + (LEACH-BR) with I-LASP, clustering I-LASP integration. AI/ML adaptation;

clustering beacon & reinforced thresholds for clustering overhead.
nodes; multi-hop to energy balancing.
save energy.
Yadav et al. (2024) 2023 Hybrid: Focused on reducing Metaheuristic Explicit stratification Still metaheuristic
Centroid + computation & (Swarm Intelligence modeling; both sparse & limitations; requires GPS
Ray theory + convergence, less - IUSSOT) dense regions. buoys; lacks field
1USSOT energy spent. validation.
(Improved
Salp Swarm
Optimization)
Jwo et al. (2023a) 2023 v X Thorough coverage GNSS multi-path and No explicit treatment of
of Artificial Neural shadowing challenges. non-Gaussian or
Networks—MLP, time-varying noise beyond
RBFNN, GRNN, simple statistical
ARMA NNs, ANFIS, assumptions.
and LSTM/RNN.
Feng et al. (2024) 2024 X X ML/DL methods Attenuation, multi-path Limited datasets, lack of
and non-Gaussian noise. data-driven multi-path
fingerprint analysis.

Alexandris et al. 2024 v X KF/PF only Sound-speed, multi-path, DL fusion

(2024) optical.

Murali and Shankar 2024 v v ML method Multi-path, Doppler, Lack of analysis on RNN

(2024) attenuation. multi-path, in-situ
harvesting.

Hasan et al. (2024) 2024 X Battery Swap X Accoustic and Optical Overlooked
charging-localization
integration.

Merveille et al. 2024 v X Analyzed deep Noise and multipath in the Energy constraints.

(2024) learning techniques context of underwater

for feature SLAM
extraction and data
fusion.

Aubard et al. (2025) 2025 X X CNN, Domain Sonar-specific noise No energy or channel

adaptation modeling.

Elmezain et al. 2025 X X CNN, transformer Optical attenuation Overlooked multi-modal

(2025) fusion and energy cost
analysis.

Heshmat et al. 2025 v X CNN, RNN, Optical Acoustic channel modeling.

(2025) transformer

Our 2025 v v Comprehensive v -

review of DL/ML
models for
localization

[v] - Explicitly addressed; [X] - Explicitly not considered; [-] - Not applicable.



M.1. Chowdhury et al.

node energy costs, but their proposed method relied on a specific en-
vironment, whereas predefined weights were required to set the utility
function. In another work, Yu and Choi (2014a) introduced an energy-
aware, wake-up/sleep scheduling scheme combined with an interacting
multiple-model filter to track maneuvering targets; however, process
and measurement noise were assumed to be zero-mean, and the filter
required exact initial covariances and mode transition probabilities that
are rarely met underwater. The authors in Chen et al. (2017a) proposed
a filter that explicitly trades off acoustic transmission cost against
localization accuracy; yet they evaluated it only in static network
topologies, overlooking the dynamics of real deployments. To reduce
the transmission latency, the authors in Basagni et al. (2017) lever-
aged a model-based reinforcement-learning framework to let nodes
learn link-quality metrics, but their performance depends critically
on precise link-success estimates, which a noisy channel can easily
corrupt. Therefore, it can misguide relay and modem selection, degrade
both reliability and energy savings. These works highlight the progress
toward next-generation, energy-efficient underwater localization, such
as game-theoretic anchor control, topology-aware cost functions, adap-
tive wake-scheduling, and learning-based link management. However,
an ideal framework must go further; it should relax Gaussian and
static-network assumptions, adapt in real time to channel variability,
co-design sensing, communication, and inference modules to jointly
maximize localization accuracy and energy endurance.

For underwater applications, there is a clear need for a unified
perspective that shows how intelligence and energy efficiency can
be jointly designed to achieve higher accuracy and robustness. This
review aims to fill that gap by providing a balanced and comprehensive
overview that integrates advances in both Al-based and energy-aware
localization approaches.

The contributions of this paper are as follows:

» We evaluate the potential of Al-based localization algorithms
by analyzing their robustness, accuracy, and efficiency. Specifi-
cally, we demonstrate how these algorithms can effectively re-
duce localization errors in dynamic underwater environments.
Furthermore, we provide practical insights into their implemen-
tation, highlighting their advantages over traditional approaches
in addressing the unique challenges of underwater localization.
We present a detailed discussion about the existing literature
focusing on range-based energy-efficient techniques, and further
analyze the trade-offs between accuracy, energy consumption,
and deployment complexity in various underwater scenarios.
Lastly, we identify critical challenges in existing localization
methods and highlight potential research directions for over-
coming these issues. Our recommendations aim to guide the
development of robust, energy-efficient localization techniques
that are suited to the specific constraints of underwater net-
works, such as mobility, resource limitations, and environmental
dynamics.

We have organized the remainder of this paper as follows: Section 2
provides existing review articles on underwater localization and out-
lines the gaps, focusing on Al-integration and energy-saving strategies.
Section 3 illustrates an in-depth review of the Al-based underwater
localization techniques found in the literature. Section 4 examines
various energy-saving methods for underwater localization. We explore
future research opportunities and identify challenges for developing
robust, reliable, and energy-efficient localization in Section 5. Finally,
the article concludes in Section 6.

1.1. Review methodology
To ensure a comprehensive survey, we searched multiple databases,

including IEEE Xplore, ScienceDirect, SpringerLink, and MDPI, and
other technical reports available in the public domain. The keywords
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used included “underwater localization”, “UWSN”, “AUV positioning”,
“artificial intelligence”, “deep learning”, “energy-efficient localiza-
tion”, and combinations thereof. The search covered articles published
between 2010 and 2025, with a stronger focus on works from 2020
onwards.

We include papers that addressed underwater localization with
either Al-driven approaches (end-to-end SLAM, sequential learning,
feature-extraction methods, and general machine learning models) or
energy-efficient techniques, while excluding purely terrestrial works
and studies lacking methodological detail. In particular, Al-driven
works demonstrate the growing role of learning-based models in han-
dling acoustic noise, temporal dependencies, and multimodal fusion,
whereas energy-efficient strategies are categorized into four distance-
based methods (Time of Arrival (ToA), Time Difference of Arrival
(TDoA), Received Signal Strength (RSS), and Angle of Arrival (AoA)).
For each group, we analyze common limitations such as sensitivity
to channel dynamics, scalability issues, and dependency on anchor
placement. Reported performance is also compared in terms of RMSE
error trends and computational overhead, which reveal that while
many methods achieve strong accuracy in controlled simulations, their
feasibility under realistic conditions remains uncertain. It is worth not-
ing that the majority of the included studies rely on simulation-based
evaluations rather than full-scale ocean experiments, which may bias
results toward techniques that excel in idealized settings but degrade in
real-world deployments. We highlight this gap throughout the review
for more field-validated benchmarks that capture both accuracy and
energy trade-offs under operational constraints.

2. Overview of related surveys

Numerous studies have been conducted on underwater localization,
primarily focusing on the techniques and algorithms involved; how-
ever, only a limited number of articles have addressed Al in underwater
sensor networks. Table 1 summarizes the current works and identifies
their gaps. The authors in Christensen et al. (2022) reviewed recent
developments in Al applications for underwater robotics, specifically
covering model learning, control, perception, and navigation. While
they covered vision-based SLAM, they overlooked end-to-end neural or
hybrid filtering frameworks that fuse acoustic measurements with IMU
data, specifically for localization accuracy rather than navigation only.
Similarly, Feng et al. (2024) systematically reviewed feature-extraction
techniques and classification methods such as shallow ML (Machine
Learning), deep neural networks, and transformers, yet their survey
only acknowledged propagation effects in passing and omitted data-
driven channel models. Aubard et al. (2025) focused on neural-network
verification and adversarial attack defense areas by comparing 19 open-
source data sets and various simulators. By pinpointing the simulation
to real-world mismatch, the authors tried to direct future researchers
to extend sonar DL (Deep Learning) from simulation to robust, real-
world autonomy. However, the authors overlooked multi-modal fusion
strategies, such as integrating sonar DL outputs with IMU and vision
data in joint neural or hybrid filter architectures for enhanced state
estimation. Elmezain et al. (2025) provided a comprehensive analysis
of deep learning architectures for underwater object tracking. Despite
reviewing template-based and search-region frameworks, they did not
consider an end-to-end deep learning architecture, especially vision-
SLAM, that simultaneously tracks objects and estimates their position.
In another work (Alexandris et al., 2024), the authors discussed the
advancement in INS and acoustic systems, but did not provide any
discussion on deep learning based or hybrid model approaches that
combine acoustic, inertial, vision, and pressure data together to yield
a single pose estimate. Heshmat et al. (2025) reviewed the evolution
of the underwater SLAM, highlighting CNNs, transformer models, and
multi-modal fusion that improved the feature extraction and mapping
under poor visibility, sensor noise, and multi-path. However, the acous-
tic channel model and deep learning-augmented fusion filters were
overlooked.
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Fig. 1. System architecture of underwater wireless sensor networks (UWSNs).

When it comes to energy-efficient underwater localization, Islam
et al. (2022) evaluated four major techniques, such as ToA, TDoA, AoA,
and RSS, focusing on synchronization-free methods, reducing the num-
ber of anchors, and leveraging energy harvesting. Although they high-
lighted hyperbolic ranging techniques, they did not explore machine-
learning-based multi-path fingerprinting to minimize retransmission.
Murali and Shankar (2024) bridged node positioning and power con-
servation by highlighting supervised or reinforcement-learning models
for predicting sleep/wake schedules and adaptive transmission power,
but the authors overlooked water stratification effects on ToA/TDoA
accuracy, nor did they consider an RNN-based method for learning
true multi-path profiles to predict effective time delays. Hasan et al.
(2024) provided a comprehensive overview of the charging system for
AUV energy autonomy. The review outlined various recharging meth-
ods such as battery swapping, solar charging, and submerged docks.
However, they did not cover how individual sensor nodes can minimize
their energy consumption. Moreover, they overlooked in situ energy
harvesting technologies, such as salinity gradient energy harvesters and
ocean current turbines.

As illustrated in Table 1, a significant research gap exists in the
domain of UWSNS, particularly in addressing comprehensive Al tech-
niques, multi-modal fusion frameworks (combining acoustic, inertial,
vision, and environmental data into cohesive deep or hybrid filters).
These issues are pivotal for ensuring the reliability and robustness
of underwater networks, yet remain underexplored in the existing
literature. This study aims to bridge this gap and must not only unify
Al-driven, multi-modal fusion frameworks but also embed advanced
energy-aware strategies (ML-driven duty cycling, in situ energy har-
vesting, and multi-path aware channel modeling) to contribute to the
ongoing development of reliable, efficient, and intelligent underwater
wireless sensor networks.

3. Localization based on Al techniques

A typical UWSN architecture is illustrated in Fig. 1, consisting of
multiple target nodes positioned underwater alongside surface buoys
placed on the water surface. Typically, these surface buoys are respon-
sible for receiving and transmitting signals, which they then send to the

base station located either on the water surface or onshore. Due to the
dynamic and complex underwater environment, several core wireless
sensor network (WSN) approaches, such as geographic routing (Karp
and Kung, 2000), geographic key distribution (Liu and Ning, 2003),
blockchain technology (Goyat et al., 2021), and location-based authen-
tication (Sastry et al., 2003), cannot be directly applied to underwater
wireless sensor networks (UWSNs). These methods typically assume
a stable, known location, frequent position updates, and straightfor-
ward physical access, all of which are difficult to achieve underwater.
Recent advancements in Al have introduced novel approaches to ad-
dress the unique challenges of dynamic underwater environments,
offering enhanced accuracy and robustness in underwater localization.
Al techniques can analyze large amounts of complex data to extract
meaningful patterns, improving localization performance (Jwo et al.,
2023Db). In this section, we explore various Al-driven techniques applied
to underwater localization as shown in Fig. 2:

» Deep learning-based methods: To extract and integrate fea-
tures, model temporal dependencies, and perform end-to-end pose
estimation or SLAM.

» Machine learning-based methods: Multilayer perceptrons,
Radial-basis networks, fuzzy systems, and reinforcement-learning
agents to fuse inertial, acoustic, or RSSI measurements and opti-
mize beacon scheduling or path planning.

3.1. Deep learning-based methodologies

3.1.1. End-to-end pose/SLAM networks

Recent advancements in deep learning approaches improve under-
water localization, each addressing specific challenges inherent to the
marine environment. Wang et al. (2025) developed a monocular visual
SLAM (EUM-SLAM) tailored for underwater conditions by integrating
deep-learning-based optical flow into the DROID-SLAM backbone. The
proposed system constructed 3D maps and tracked camera trajecto-
ries in real-time, as shown in Eq. (1), outperforming both traditional
SLAM and earlier deep SLAM methods. To simulate turbidity and
lighting variation, the authors introduced an underwater-specific data
augmentation pipeline. In addition, they designed an SE-enhanced
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NN-dead reckoning,
RBFNN-ESKF, PC/BC-DIM,
RL, MLP-ALL, TinyML,

UIPENet

End-to-End Sequence
Pose/Slam Methods

Feature-
Extraction

localization

Fig. 2. Overview of Al-based methods for underwater localization.

encoder (squeeze and excitation layers) to adaptively recalibrate fea-
ture channels under low-contrast conditions. Results showed improved
robustness to turbidity, lighting variation, and motion, highlighting the
feasibility of dense optical-flow-based SLAM in underwater navigation.
Despite these advancements, EUM-SLAM relied solely on visual data,
making it vulnerable when visibility was severely degraded. To address
the limitations of requiring consistent visual input, authors in Joshi
et al. (2020) presented a deep learning-based end-to-end pose esti-
mation framework for underwater relative localization between AUVs.
The framework predicted the 6D relative pose from a single camera
image by detecting the 2D projection of the 3D model and applying
a RANSAC-based Perspective-n-Point (PnP) solver, as presented in Eq.
(2). The key innovation lay in its training strategy, where rendered
images from Unreal Engine were translated into realistic underwater
images using CycleGAN, allowing the system to train without real-
world labels. Their approach bypassed traditional SLAM and sequence
modeling by processing each frame independently, without construct-
ing maps or trajectories. The method achieved state-of-the-art accuracy
in both pool and ocean tests, demonstrating robustness across domains
and sensor types. While the proposed framework demonstrated high
accuracy across diverse environments, it lacks temporal consistency,
and its performance can degrade in poses if the training set is poor or
when bounding box detection fails. In contrast to purely vision-based
systems, Wolf et al. (2020) explored the use of bio-inspired sensing for
3D underwater localization. By combining CNNs and artificial lateral
lines (ALLSs), the study estimated the object’s position based on the fish’s
hydrodynamics. In this approach, fluid flow was simulated based on a
moving object. A CNN was used to predict the probability of object
locations based on an array of sensors. Using the lateral line organ in
fish, this method addressed the complex problem of localizing multiple
sources simultaneously, representing an advancement over previous
approaches. However, the research heavily relied on simulated data
in training and evaluation, which may not simulate actual underwa-
ter conditions. Additionally, the system’s effectiveness in high-noise
conditions is uncertain because of its dependence on noise levels.

3.1.2. Sequence & temporal models

Teixeira et al. (2020) conducted a comprehensive benchmark com-
paring classical and deep-learning-based visual odometry (VO) and
visual-SLAM methods on two challenging underwater datasets collected
by an AUV. To mitigate trajectory drift in deep VO systems, the study
introduced a visual-inertial fusion network, which used a Long Short-
Term Memory (LSTM) model trained with IMU data. As shown in Eq.
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Fig. 3. Comparisons of MEEs (Kumar et al., 2024).

(4), the sensor node locations were obtained by minimizing the transla-
tion and rotation errors between the estimated and ground-truth poses.
Experiments with the UX-1 underwater robot datasets showed that deep
learning VO approaches were more robust to poor textures, turbidity,
and lighting variations compared to traditional feature-based meth-
ods. While this approach improved trajectory correction, it remained
limited to visual-inertial fusion, without addressing optical distortions
or integrating other sensing modalities such as acoustics. To enhance
robustness in noisy underwater environments, Kumar et al. (2024) pro-
posed a novel Proximity-Driven Recurrent Neural Network (PD-RNN)
framework, which addressed the limitations in traditional localization
techniques such as TDoA and RSSI. They are prone to errors under
environmental noise, multi-path effects, and signal degradation. Their
approach integrated proximity information into a recurrent neural
network that can model temporal dependencies in the input signals, as
presented in Eq. (7). It significantly outperformed traditional RSSI and
TDoA techniques under ideal conditions, as shown in Fig. 3, achieving
a mean estimation error as low as 0.13 —1.24 m. However, it focused on
2—D positioning, while 3— D localization is critical for many underwater
applications.

In a broader context of ocean sensing, Gou et al. (2020) pre-
sented a modular deep learning framework designed to forecast spatio-
temporal oceanographic data. It is capable of handling complex multi-
dimensional datasets from various sensors using flexible plug-and-
play architectures. This system supports multiple architectures such
as MLP (Multi-layer Perceptron), CNN, ConvLSTM, and Transformer-
based models. The authors validated the system on both simulated
and real-world (Argo float) datasets, demonstrating the superiority
of ConvLSTM and Transformer-based models in spatio-temporal pre-
diction tasks. It demonstrated a strong ability to predict thermocline
distributions, which are critical for robust underwater acoustic com-
munication. Although they require large volumes of training data,
which may not always be available in marine contexts. Meanwhile, Bai
et al. (2023) explored a novel geolocation approach using polarization-
sensitive omnidirectional cameras. It leveraged polarization patterns in
water, captured across different global locations under varied condi-
tions (visibility, depth, time of day). The proposed method achieved
~ 55 km longitudinal accuracy during the day and ~ 1000 km at
night using deep neural networks (DNNs), outperforming traditional
physics-based models. In addition, the authors validated the robustness
of polarization images over intensity images for geolocalization under
variable water turbidity. However, degraded at depths < 50 m due
to low polarization contrast and changes in optical properties. To ad-
dress unmodeled environmental noise, authors in Chame et al. (2018)
proposed a neural network framework known as Behaviors-Prediction-
Reliability-Fusion (B-PR-F) that adapts information from redundant
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black-box estimations. Using this approach, the localization signal was
contextually anticipated within an ordered neighborhood of processing.
Simulation and real experiments showed that B-PR-F outperformed the
Kalman Filter and Augmented Monte Carlo Localization (A-MCL). It
delivered more reliable position estimates, reduced error accumula-
tion, and improved robustness in dynamic underwater conditions. Even
though the strategy relies on the availability and accuracy of black-
box models, which are only sometimes reliable or effective under all
circumstances.

3.1.3. Feature-extraction networks (CNNs & autoencoders)

Burguera et al. (2022) introduced a three-stage loop closing front
end for underwater visual graph-SLAM. Their approach incorporated a
Siamese Convolutional Neural Network (SCNN) to quickly reject non-
loop image pairs, followed by random sample consensus (RANSAC)-
based pose estimation and a pose-based consistency filter (PLF) to
remove remaining outliers. Eq. (8) defines the optimization objective
for Pose Graph SLAM, where the sensor node position is obtained
by minimizing the global error between odometry and loop-closure
constraints. The system significantly reduced the false positive rate
to < 5% while preserving > 96% true-positive loops. However, the
proposed methods trained the SCNN and MLP only once, limiting adapt-
ability to changes in underwater lighting and magnetic conditions. To
enhance point cloud processing, Du et al. (2025) designed a density-
adaptive filter using kd-tree neighborhood searches to remove outliers
while preserving edges. They further developed an unsupervised graph
(UIPENet) convolutional network that scored and selected rotation and
translation-invariant interest points directly from the denoised cloud.
UIPENet achieved higher feature robustness and lower pose estimation
error than conventional CNN-based point cloud descriptors. Though the
translation invariance was handled via normalization, true translation-
robust feature learning was limited. Li et al. (2023) developed a real-
time underwater target detection algorithm for AUVs using Side Scan
Sonar (SSS) images with improved accuracy and efficiency. The combi-
nation of YOLOV?7, attention mechanisms, and efficient image screening
led to high performance in both simulated and real-world environ-
ments. It achieved state-of-the-art performance with a recall of 0.836
and 0.355 s inference time per image. However, challenges remained
regarding dataset requirements, target ambiguity, and deployment in
diverse underwater conditions.

The authors in Gong et al. (2020) addressed the problem of under-
water target detection by designing a proactive acoustic array system
where selected nodes emitted linear frequency modulated (LFM) probe
signals and others listened for reflections. The Fractional Fourier Trans-
form (FrFT) was applied to each received signal to generate a 2 — D
time-frequency spectrum whose peak encoded target range and radial
velocity. A lightweight CNN was trained to detect the characteristics
from an undersampled FrFT spectrum, enabling efficient range and
velocity estimation. Despite its efficiency, this method assumed a single
line-of-sight (LoS) path and constant average sound speed, ignored
multi-path, Doppler fluctuations, and stratification effects. Peng et al.
(2023) introduced an end-to-end terrain-relative localization frame-
work that combines point cloud feature extraction, keypoint selection,
and self-attention-enhanced matching. Their model achieved horizontal
RMS < 0.03 m and heading RMS < 0.02° outperforming terrain contour
matching (TERCOM), iterative closest point (ICP), point pair features
(PPF)-FoldNet, and GeoTransformer. However, the computational load
(though real-time at ~ 8.6 ms/ frame) may be high for AUV-embedded
hardware. To address visual degradation in underwater environments,
Amarasinghe et al. (2023) proposed 3 — D-Net tailored for underwater
visual SLAM. It had three branches, such as interest point detection, de-
scriptor generation, and depth prediction. To enhance localization and
mapping, the obtained outputs from these branches were integrated
with traditional SLAM systems. To adapt to turbidity, low lighting,
and poor feature richness, a generative adversarial network (GAN)-
generated synthetic underwater dataset was used for training, which
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limits the performance to other underwater conditions. Authors in Qiu
et al. (2023b) introduced a hybrid neural network-based approach
combining a CNN and LSTM to predict underwater glider positions
accurately, as presented in Fig. 4. This method effectively addressed
the significant influence of ocean currents on underwater gliders by
leveraging historical ocean current data. To predict the glider velocity
and position, a Current Forecasting Model (CFM) was developed, which
was then integrated with the CNN-LSTM network. The hybrid CNN-
LSTM model enhanced prediction accuracy by modeling spatial and
temporal dependencies in the data. Although the model demonstrated
robust performance for the specific type of underwater glider and
region tested, its applicability to different types of gliders and various
oceanic regions requires further validation. Despite the improvements,
the method faced error accumulation over time, potentially affecting
long-duration missions. A model-based CNN method was presented
in Chen and Schmidt (2021) for estimating the range of underwater
acoustic sources. This study evaluated matched-field processing (MFP)
as an alternative to conventional MFP. By training the CNN with
specific environmental models, the authors examined its performance
under slightly varying conditions. Compared to MFP, the CNN approach
significantly improved prediction accuracy and lowered Mean Absolute
Error (MAE), particularly in environments with slight deviations from
the training data. However, it may become highly inaccurate when
mismatches between simulated environments and real-world conditions
occur. Additionally, the model may not handle complex scenarios
involving overlapping sources.

3.2. Machine learning-based methodologies

Hou et al. (2019) proposed an online 2-D SLAM system that in-
tegrated low-frequency magnetic beacon ranging with a single fixed
acoustic beacon via a Multi-layer perceptrons- Extended Kalman Filter
(MLP-EKF) pipeline. By replacing heavy sonar/vision feature extraction
with lightweight neural inference and leveraging low-power magnetic
fields, acoustic and magnetic beacon (AMB)-SLAM aimed to deliver
real-time localization and mapping with minimal energy overhead.
This approach removed the feature-extraction burden by relying on
MLP inference and avoiding seabed deployment. Simulation results
showed that AMB-SLAM achieved RMSE < 6 m, compared to > 15 m
for magnetic-only SLAM. Although promising, its performance was
validated only in calm and small-scale environments, assuming a stable
geomagnetic environment. Authors in Song et al. (2020) described a
navigation method for AUVs using neural networks in rapidly chang-
ing environments. The proposed method (NN-DR) integrated a KF,
a neural network, and velocity compensation to mitigate accumu-
lated errors from inertial sensors. Pitch angles can be predicted by
reducing gyroscope measurement errors, especially in dynamic environ-
ments. In an extensive simulation study (at 300 s), NN-DR significantly
improved navigation accuracy (160x more accurate) compared to tra-
ditional dead-reckoning methods. Furthermore, it is highly suitable for
fast-changing underwater environments since it can withstand dynamic
environmental changes like waves. However, adapting to changes in
highly dynamic environments in real time may be challenging. A
similar approach to Chame et al. (2018) was proposed in Ali et al.
(2021), which utilized a predictive coding-biased competition/divisive
input modulation (PC/BC-DIM) neural network for underwater robot
self-localization. This method aimed to address the challenges inherent
in underwater environments, such as non-Gaussian noise and high
computational costs, by offering a more accurate and efficient local-
ization solution than traditional techniques. Utilizing this approach,
computational costs were significantly reduced, enhancing real-time
applications. The method produced a low mean localization error ~
1.27 m and a low computation cost ~ 2.2 ms, outperforming the Kalman
filter and Monte Carlo localization in non-Gaussian noise conditions.
Furthermore, it effectively managed underwater non-Gaussian noise,
resulting in a more reliable localization estimate. However, the method
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Table 2
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Comparison of existing Al-based localization schemes based on learning architecture and sensor fusion.

Reference Neural Network Type Sensor Modalities Fusion/Filter Real-Time
Wang et al. (2025) CNN, SE layers, Attention ConvGRU Monocular Visual SLAM (Monocular + Optical Flow) Yes

Joshi et al. (2020) CNN, CycleGAN Visual (RGB images) PnP (no temporal fusion) Yes

Wolf et al. (2020) CNN Artificial Lateral Line (Pressure) - -
Teixeira et al. (2020) CNN, LSTM Visual + IMU Visual-Inertial Fusion X

Kumar et al. (2024) RNN Acoustic (RSSI, TDoA) Proximity-driven RNN -

Bai et al. (2023) DNN Polarization-Sensitive Camera X -

Chame et al. (2018) Neural Net (black-box fusion) Contextual signals (unspecified) Black-box info fusion -

Gong et al. (2020) Lightweight CNN Acoustic (FrFT spectra) Peak Detection via CNN Yes

Hou et al. (2019) MLP Magnetic + Acoustic Beacon MLP + EKF Yes

Song et al. (2020)
Ali et al. (2021)

Pu et al. (2022)
Saha et al. (2024)
Shaukat et al. (2021)

Neural Network + KF
PC/BC-DIM Neural Network
MLP

TinyML

RBF Neural Network

IMU (Dead Reckoning)

Unspecified (Positional Input)
Pressure (Artificial Lateral Line)
Piezo-Acoustic + Energy Harvesting
IMU + External Sensors

Kalman Filter + Velocity Compensation -
Predictive Coding + Biased Competition -
MLP Estimation -
CNN + On-device TinyML Yes
RBF + Error-State Kalman Filter (ESKF) -

[X] - Explicitly not considered; [-] - Not applicable.

Table 3

Comparison of Al-based localization schemes based on application and performance metrics.

Reference Application Output

Dimen-
sionality

Performance

Limitation

Wang et al. (2025) Underwater Visual SLAM

Trajectory and Loop Closure 3D

Joshi et al. (2020) Relative Pose Estimation 6-DOF Pose 3D
Wolf et al. (2020) Hydrodynamic Object Object Location 3D
Localization
Teixeira et al. (2020) VO Drift Correction Trajectory 3D
Kumar et al. (2024) Target Localization Position 3D
Burguera et al. (2022) Loop Closure Detection Relative Pose 3D
Du et al. (2025) Point Cloud Registration Pose (Rotation and 3D
Translation)
Peng et al. (2023) Terrain-based Localization RMS Position and Heading 3D
Hou et al. (2019) 2D SLAM with Low Power Trajectory 2D
Song et al. (2020) Dead-Reckoning Navigation in  Pose Estimation 3D
Dynamic Waters
Ali et al. (2021) Self-localization of Underwater Pose 3D
Robots
Pu et al. (2022) Pressure-Based Localization Coordinates of Vibrating 2D
Source
Saha et al. (2024) Low-Power Underwater Location and Communication 2D

Robust visual SLAM, handled
turbidity

State-of-the-art accuracy
across domains

Multi-object capability;
biologically inspired
Improved drift via IMU
0.13-1.24 m MEE

FP < 5%, TP >96%

Edge preservation and
descriptor invariance
<0.03m, <0.02° RMS

Accurate real-time mapping
without seabed deployment

Improved accuracy in
fast-changing underwater
environments

Reduced computational cost,
handles non-Gaussian noise
Enhanced accuracy; supports
multiple sources

High accuracy; energy-efficient

Relied on visual-only input;
struggled in poor visibility
Failed with poor detection or
unseen poses
Simulation-based

Ignored optical distortions
Only 2D

Static training; may not adapt
to scene change
Translation-robustness was
limited

Required high computational
load

Tested only in calm,
small-scale, geomagnetically
stable settings

Challenging to adapt to rapid
real-time changes

Performance depended on
quality of extracted features
Interference at same frequency
increased localization errors
Scalability challenges and

Tracking with Sensing

Shaukat et al. (2021) Navigation and Localization

with Nonlinear Modeling

State Estimation (Trajectory) 3D

with tinyML mutual interference in dense

setup
Improved over ESKF; handled Scalability issues in large
nonlinearity and disturbances  networks

is based on provided features for the neural network, which can impact
accuracy if the correct features are not identified.

An artificial lateral line system for underwater localization was
proposed in Pu et al. (2022), based on the fish mechanosensory lateral
line system. An MLP neural network was used in this system to detect
and process pressure variations caused by vibrating sources and predict
their coordinates in two dimensions. As a result of the integration
of MLP neural networks, localization accuracy was significantly en-
hanced, and the simultaneous localization of multiple vibration sources
was effectively managed. Furthermore, data augmentation techniques
enhanced the robustness and accuracy of models. Despite this, the
method also relied on manually provided features for the neural net-
work, which may affect the accuracy of the model. Moreover, mutual
interference between sources, particularly those operating at the same
frequency, can increase localization errors. The work in Saha et al.
(2024) introduced a novel, artificial intelligence-driven sensor tag,
LocoMote, which allowed undersea localization and sensing to be fine-
grained. A tiny machine learning (tinyML) technique was integrated
into this system to provide precise underwater tracking and real-time
communication. For accurate localization, it utilized CNNs, employed

piezo-acoustic ultrasonics, and was powered by an energy-harvesting
system. LocoMote aimed to provide a comprehensive solution for long-
term, fine-grained monitoring of marine environments with minimal
footprint and power consumption. However, maintaining communica-
tion efficiency may become more challenging as the number of nodes
increases. Additionally, mutual interference between multiple tags is
possible, especially in densely populated areas. The work in Shaukat
et al. (2021) proposed an innovative technique for improving underwa-
ter vehicle localization and navigation accuracy through the integration
of a radial basis function neural network (RBF) with an Error-State
Kalman Filter (ESKF). This hybrid algorithm aimed to improve state
estimation in highly nonlinear underwater environments by utilizing
the RBF neural network’s ability to approximate nonlinear functions.
As a result of the RBF neural network, the limitations of the ESKF were
compensated, as well as the effects of high nonlinearity, modeling un-
certainty, and external disturbances. The RBF-augmented ESKF showed
significantly improved navigation and localization accuracy compared
to the conventional ESKF based on Monte Carlo simulations. However,
as the number of underwater nodes increases, scalability may become
an issue, causing latency and performance problems.



M.1. Chowdhury et al.

Applied Ocean Research 165 (2025) 104842

Table 4
Comparison of recent underwater localization studies: techniques, data, outcomes, and limitations.
Reference Year Localization Sensors Dataset Outcomes Advantages/Limita-
technique tions
Qiu et al. (2023a) 2023 CNN + LSTM Glider IMU + Underwater Glider More accurate speed Overcome

hybrid NN + Ocean Current model field trials + + position current-induced

current forecast Simulation prediction vs. classic drift; Worked
DR; reduced drift without
error GPS/acoustic aid.

Model-dependent;
Performance was
limited if the
current forecast was
inaccurate.

Li et al. (2023) 2023 MA-YOLOV7 + Side Scan Sonar Field AUV trials + Recall = 0.836; Real-time; Effective

Attention + (SSS) Simulation 0.355s per image; for small targets.

Multi-scale fusion accurate real-time Required labeled
detection/localiza- sonar datasets;
tion of targets computational load

for embedded AUV.
He et al. (2024b) 2024 Pure inertial deep Low-cost IMU Long sea trial, Improved inertial No external

model with (SINS), time-interval 261.5 km, 28 h prediction accuracy beacons; long-run

dual-mode switching cues over mainstream stability.

(Transformer + baselines; Quantitative error

CNN) suppressed error breakdown vs. each
divergence over baseline was not
long runs uniformly reported.

Pu et al. (2024) 2024 CNN + Mobility Acoustic ToA, UWSN Simulation Achieved high Handled
Prediction (HLCM) anchor speeds, localization heterogeneous
pressure sensors accuracy and fault errors and mobility
tolerance with drift; High coverage.
CNN-based error Computational
correction and drift overhead;
compensation Dependent on CNN
training
Wang et al. (2024a) 2024 YOLO + IOU Imaging Sonar + AUV Dynamic Real-time robust Robust against noise
matching + Acoustic image Docking feature tracking in and reverberation;

DeepSort tracking sequences noisy sonar images; Real-time tracking.
effective against Required large
distortion datasets; sensitive in

cluttered sonar.
Kumar et al. (2024) 2024 Proximity-driven Hydrophone arrays, Simulation + Real Significant reduction Exploited temporal

RNN (CogniLoc) acoustic emissions experiments in mean estimation + proximity
error (MEE); robust patterns; Effective
under noise in dynamic

conditions. Needed

sequential data;

training complexity.
Du et al. (2025) 2025 Graph Convolutional 3D Point Cloud Simulation + Improved feature Handled noise in

Network (GCN) for Underwater SLAM extraction, point clouds;

SLAM front-end test denoising, robust Real-time feasible.
inter-frame High compute;
matching training
(RANSACH+ICP) unsupervised but

needed tuning.
Wang et al. (2025) 2025 Monocular visual Monocular camera Aqualoc, 18.7% RMSE Better robustness in

SLAM with DL (underwater) TUM-RGBD reduction vs. DROID turbidity/illumina-

optical-flow on Aqualoc; mean tion. Vision-only:
ATE 3.4cm on degraded in severe
TUM-RGBD visibility loss.

Shamshad et al. 2025 KNN-based ML RSS + Neighbor Testbed (tank) + 99.98% accuracy; Extremely accurate;

(2025)

localization with
cost optimization

orientation features

NS-3 simulations

reduced error from
4.59 m to

3.88x 1078 m;
energy 0.0045J;
delay 0.067 s

Very low
energy/time cost.
Sensitive to dataset
quality; NLoS
harshness may
degrade

In summary, we have explored localization schemes for UWSNs that
leverage Al techniques such as machine learning and deep learning.
We provide a detailed comparison of the existing works, highlighting
aspects such as neural architectures, sensor modalities, fusion tech-
niques, application domains, and key performance metrics. These areas
present opportunities for further research and development, as outlined

in Table 2, 3, and Table 4. While the existing approaches demon-
strated high accuracy and robustness, their methodological quality
and potential biases must also be considered. A key limitation across
many studies is the reliance on simulation-only validation. Only a few
works conducted field trials, and even those were typically small-scale
or constrained to tank experiments. Another concern is incomplete
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Fig. 4. CNN-LSTM hybrid neural network structure (Qiu et al., 2023b).

performance reporting. Many studies emphasized accuracy improve-
ments (RMSE reduction or higher detection rates), but overlooked other
crucial factors such as energy consumption, computational overhead,
scalability, or robustness under harsh noise conditions. Future studies
should adopt more standardized evaluation frameworks, disclose full
performance trade-offs, and validate methods in diverse real-world
settings to strengthen the reliability of claims.

4. Energy-efficient localization

Reducing energy costs is a goal in many application fields (Ali
etal., 2019; Ning et al., 2019). Since battery replacement or recharging
opportunities are restricted, designing energy-aware schemes is partic-
ularly vital in underwater communication. This section first highlights
the energy-saving scheme in underwater localization in detail and
provides a comparative summary in Table 5.

Underwater localization techniques can be categorized into range-
based and range-free approaches. Range-based methods exploit node
position by combining distance measurements, often obtained through
specialized hardware or via existing radio communication resources,
between known beacon nodes and regular sensor nodes. Depending on
which signal attributes are measured at the receiver, common range-
based indicators include TDoA, ToA, AoA, and RSSI. These methods
offer high theoretical accuracy but are often constrained by the need for
synchronization, susceptibility to multipath and stratification effects,
and high energy cost due to frequent beacon transmissions. By con-
trast, range-free methods (centroid localization, DV-hop) do not rely
on precise timing or distance measurements but instead use coarse
neighborhood or hop-count information, making them less accurate
but more energy efficient and simpler to deploy. Despite these ad-
vances, both range-based and range-free methods face scalability and
sustainability issues in practical deployments. While numerous studies
addressed challenges such as node mobility, node deployment, and
routing strategies, the majority are limited to focusing on the network
layer (Kumar et al., 2022b). Achieving significant energy savings often
requires embedding a degree of autonomy and intelligence, enabling
nodes to learn and adapt their behavior (Sutton and Craven, 1998).
When a localization model exhibits intelligence, it can learn from
its own and other models’ experiences and use that information to
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enhance its performance when navigating uncertainty in underwater
settings. In localization, autonomy refers to the ability of the sensor
nodes to locate enough anchor nodes to determine their location.
This is because most localization systems need many anchor nodes
to assist a single sensor node in deciding its location (Rezazadeh
et al., 2018; Yuan et al., 2018a). To enable sensor nodes to localize
even with limited reference nodes, Misra et al. (2014b) introduced a
framework, Opportunistic Localization by Topology Control (OLTC),
focusing on establishing interaction between unlocalized nodes and
localized nodes as a Single-Leader-Multi-Follower Stackelberg game.
The leader requested a beacon and aimed to minimize the localization
delay, whereas the followers adjusted transmission power to maximize
the profit, which balanced energy consumption and localization utility.
However, game-theoretic computations may increase overhead in large
networks. Similarly, Yuan et al. (2018c) made use of a Stackelberg
game to allow sensor nodes to connect with enough anchor nodes
to determine their positions while consuming the least energy. Un-
like the method in Misra et al. (2014b), this approach reduced the
energy consumption per node by accounting for the energy cost of
both anchor and sensor nodes. Nevertheless, the effectiveness of this
technique was limited to a single environment, and the utility functions
must be specified using predetermined weights. This technique requires
time and energy-consuming recalculation of the utility weights if the
environment changes, such as the number of nodes or network size.
In another work, Karmakar et al. (2018) introduced a protocol to
deliver the data efficiently for AUV-equipped underwater networks.
The proposed protocol improved the packet delivery ratio and re-
duced energy consumption. However, the authors focused only on
AUV-only networks, limiting applicability to hybrid networks involv-
ing fixed nodes. While these techniques yield encouraging outcomes,
they cannot manage the network dynamic fluctuations or submerged
surroundings. Therefore, future prospective researchers must consider
the unpredictable environment while designing localization in UWSNS.

4.1. Received signal strength indicator (RSSI)
Unlike techniques such as ToA and TDoA, which rely on precise

time synchronization and involve significant communication overhead,
RSSI operates without the need for strict time synchronization, making
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Table 5
Comparison of existing energy-efficient localization scheme.

Reference Year Measurement Energy-saving AI/ML component  Channel modeling  Real-time Limitations

modality strategies

Mei et al. (2020a) 2020 RSSI Min-max - Depth dependent v Required known
absorption- absorption and path absorption bounds.
mitigation loss.
optimization.

Poursheikhali and 2019 RSSI No synchronization - Curved-ray v Neglected

Zamiri-Jafarian required. propagation, multi-path beyond

(2019a) absorption loss, flat flat fading.

fading.

Islam and Lee 2019 TDoA Clustering and - Assumed ideal v Required time

(2019a) (multi-antenna) retransmission TDoA with three synchronization and
control. non-collinear surface resurfacing.

hydrophones.

Sahana and Singh 2020 ToA/TDoA (acoustic Clustering and - Basic underwater v Assumed stable

(2020a) ranging via cluster ~ backup Heads (only acoustic path-loss cluster partitions.

head) higher energy assumed.
cluster heads
perform ranging).
Liao et al. (2021) 2021 ToA (one-way Selected an optimal RL Modeled LOS/NLOS v Assumed accurate
beacon listening) time window via delay errors. IMU and clock.
RL.

You et al. (2020) 2020 ToA RL agent learned RL Accounted for LOS v Required extensive
which anchors to vs NLOS via reward offline training.
query to minimize shaping; did not
redundant way explicitly model
ranging. multi-path or

Doppler.
Chen et al. (2018a) 2018 ToA/TDoA (acoustic Sensor locations - Assumed known, v Required periodic
ranging) were refined static sound-speed contact with

on-the-fly during profile. GPS-enabled
tracking, avoiding super-nodes (buoys)
standalone for ground-truth.
re-localization
phases.

Mirza and Schurgers 2008 Inter-drifter range Broadcast-only - Accounted for clock Post-mission Assumed highly

(2008a) via broadcast TOA. ranging with skew (0.02 ppm), accurate clocks
post-facto node mobility (skew < 0.02 ppm),
processing. during flight, and known sound-speed,

MAC back-off. stable topology over
sync period.

Murgod and 2020 ToA Clustering with - Assumed ideal v Required

Sundaram (2020a) sleep/active modes. acoustic ToA with GPS-equipped

constant sound anchors, time sync,
speed. and backup-head
selection overhead.

Mirza and Schurgers 2007 Pairwise acoustic Link-selection - Assumed simple Post-mission Required

(2007) ToA ranging. policy. ToA propagation post-mission

with fixed speed of collection of all ToA

sound. logs and assumed
accurate initial
clock sync.

Zhou et al. (2010a) 2010 Acoustic ranging Mobility prediction - Accounted for v Required accurate

(implicit ToA/TDoA) acoustic constraints initial GPS at
but used an surface buoys, time
idealized synchronization,
range-error model. and assumed known
mobility patterns.

Moradi et al. 2012 ToA (one way) Event-driven - Assumed direct-path v Required

(2012a) one-way beacons. ToA. synchronized clocks

initially.

Yi et al. (2015a) 2015 ToA (one-way Eliminated two-way - Modeled clock offset v/ Required accurate

beacon receptions).

handshakes.

drift.

crystal clock (~
0.02 ppm) and IMU.

[v] - Explicitly addressed; [-] - Not applicable.

it a more energy-efficient option (Zhang et al., 2023). A localization
technique for energy-harvesting wireless underwater optical sensor
networks based on RSSI was proposed by Saeed et al. (2019). It allowed
low-energy nodes to gather ambient energy and reactivate after enough
harvested energy, as depicted in Fig. 5. Subject to the limitations of
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the optical underwater channel, distances were computed for position
estimation by the active nodes using RSS. The block kernel matrices
for the RSS distance estimations were then calculated. A matrix com-
pletion approach reduced the error in the shortest path estimate in
the block kernel matrices. When block kernel matrices were finished,
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Fig. 5. Time-slotted operation of sensor nodes (Saeed et al., 2019).

nodes were localized using a closed-form location estimate process.
The suggested plan used energy collection to increase robustness and
lengthen the network lifespan. Fig. 6 demonstrates that energy harvest-
ing directly controls the number of active nodes, and higher energy
availability significantly improves network connectivity and localiza-
tion capability. However, it must consider how node mobility affects
node localizability, which might lead to highly inaccurate predictions.

While adjusting to the dynamic changes in the environment, Yuan
et al. (2021) introduced the Adaptive Energy-Efficient Localization
Algorithm (Adaptive EELA). By allowing sensor nodes to be localized
with the least amount of energy consumption possible, the suggested
method seeks to achieve energy-efficient localization. The proposed
method balanced energy consumption and localization accuracy by
optimizing the transmission power of both sensor and anchor nodes.
Large amounts of processing power and offline data were needed for
the training set. Initially, distributing fuzzy variables might require a
significant amount of energy. Sathish et al. (2023) followed a similar
RSSI-based advanced efficiency-driven localization method to achieve
precise localization with minimal energy consumption, but focused on
optimizing for varying network scales. The proposed method achieved
high accuracy in underwater environments and handles varying net-
work sizes. However, careful anchor node placement and fine-tuning
RSSI parameters were required. In addition, the accuracy depends on
calibrating the path loss model for specific underwater conditions.

Clustering techniques have also proved effective in minimizing en-
ergy consumption. In Sahana and Singh (2020b), the authors developed
a clustering protocol that formed clusters and a cluster head within
a random time. To extend the network lifetime, the authors intro-
duced a backup node responsible for gathering information on other
cluster nodes and transferring it to the floating nodes. The proposed
work decreased energy consumption by deploying nodes with different
energy sources. Islam and Lee (2019b) extended the clustering idea
further by assigning the primary localization responsibilities to cluster
heads, rather than involving all nodes equally. This strategy substan-
tially reduced the energy consumption per node. Additionally, they
introduced a retransmission control mechanism to minimize redundant
communications, further enhancing energy efficiency.

Some studies address the physics of acoustic propagation to im-
prove both energy efficiency and localization accuracy. The authors
in Poursheikhali and Zamiri-Jafarian (2019b) developed a model that
accounted for curved acoustic wave paths in inhomogeneous media,
such as linear sounds and non-linear sound speed profiles. The au-
thors formulated a novel RSSI measurement technique that can over-
come dependency on signal attenuation and synchronization. More-
over, they investigated the fading effect caused by underwater obstacles

12

Applied Ocean Research 165 (2025) 104842

300 T T

—6— 300 nodes
—A— 100 nodes
—#—50 nodes i

250

200

150

100

Number of active nodes (1Y)

50

0 0.25 0.5 0.75 1 1.25

Energy arrival rate (J/s)

1.5 1.75 2

Fig. 6. RMSPE Vs. Energy arrival rate (Saeed et al., 2019).

or non-line-of-sight (NLOS) paths. Nevertheless, the model relies on
specific sound speed profiles, which may not reflect realistic ocean
environments.

Mei et al. (2020b) transformed localization as a min-max oper-
ations problem, seeking to minimize energy consumption while en-
suring robust distance estimation under varying noise levels, absorp-
tion coefficients, and transmit-power settings. However, it assumed
prior knowledge of the worst-case absorption coefficient and maximum
communication range. Verma et al. (2001) took a holistic approach
by combining energy-efficient localization with secure routing. Their
proposed energy-efficient localization-based secure routing (OEEL-SR)
protocol employed an enhanced version of the gravitational search
optimization (IGSO) method to determine node locations, while the
chaotic wolf optimization (CWO) method was used to identify the se-
cure path throughout the routing process. This approach used the trust
notation of nodes to transport packets to sink nodes while improving
the transmission ratio and data energy consumption. Compared to the
current approach, OEEL-SR increased accuracy by 55% and decreased
energy usage by 20%. However, the protocol was predicated on ideal
circumstances that could not exist in the real world.

4.2. Time of arrival (ToA)

Two-way communication consumes energy. To avoid the two-way
handshaking and mitigate the effect of beacon transmission loss, the
authors in Yi et al. (2015b) proposed Time of Arrival Tracked Syn-
chronization (ToA-TS) techniques. Instead of exchanging round-trip
messages, each node used an accurate crystal clock and its onboard
IMU to timestamp incoming beacons, maintaining synchronization with
minimal communications. This eliminated the need for reply messages,
directly reducing per-node transmission energy.

To design an even-triggered operation, Moradi et al. (2012b) de-
veloped an event-driven localization framework. Rather than periodic
broadcasting localization packets, nodes only transmitted when a pre-
defined event occurred (detection of a target or a significant topology
change). Moreover, the model shifted localization computation to a
centralized sink to minimize the computational burden on sensor nodes.
Although the divide response time increased with water depth, it
remains manageable due to reduced propagation delays. However,
anchors must be carefully deployed to ensure adequate coverage and
minimize packet loss. To further cut down on ToA-based beacon ex-
changes, Zhou et al. (2010b) proposed a mobility prediction-based
localization scheme where node mobility was predicted using historical
data and current velocity vectors. The model conserved energy by
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Fig. 7. Mathematical model for AUV-aided TDoA-based localization.

reducing the frequency of anchor-node communication. Nonetheless,
the accuracy of mobility prediction can degrade in highly unpredictable
environments. In a network of drifting sensors, where nodes move
unpredictably with currents, a post-mission ToA localization frame-
work tailored in Mirza and Schurgers (2007), focusing on reducing
the energy cost of localization in dynamic underwater networks and
adapting the accuracy to meet application-specific needs. The model
demonstrated robust performance for large-scale networks with varying
densities of drifters and beacons. However, it is unsuitable for real-time
applications.

Clustering can also reduce ToA costs.
Murgod and Sundaram (2020b) divided the network into clusters,
elected a cluster head, and only the head performed ToA ranging on
behalf of its members. All the nodes slept until called, significantly
reducing their energy. The energy-efficient cluster-based localization
algorithm (EECBLA) also applied a ToA-based distance estimate to
refine the cluster head position. Compared to previous approaches, it
reduced localization error to around 4 to 6 m. The constant activity
of the anchor node may cause rapid energy loss. Mirza and Schurg-
ers (2008b) presented Sufficient Distance Map Estimation (SDME),
a revolutionary energy-aware distributed approach for drifters using
inter-drifter range measurement as the foundation. It used synchroniza-
tion and broadcast-based range to ensure precise position estimates
while consuming the least energy. Significant energy savings were
attained by lowering the number of transmissions—on average, 0.4
to 0.7 transmissions were required for each localization step. Their
suggested investigation indicated that real-time localization was not
feasible. Clock drift and synchronization mistakes can build up and
affect the localization accuracy without regular resynchronization.

Chen et al. (2018b) developed a simultaneous localization and
target tracking (SLAT) method with high-accuracy localization with
mobility prediction (HLMP) to get reasonably accurate sensor position
estimations. These techniques minimized the requirement for frequent
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localization updates, which decreased energy usage. Real-time local-
ization is unsuitable for the suggested approach as it concentrates
on post-mission localization. Reinforcement Learning (RL) can also
optimize ToA-based beacon selection. The authors in You et al. (2020)
suggested an energy-efficient underwater localization technique based
on RL without depending on predefined channel models. The scheme
was dependent on the two-way travel time of underwater acoustic
signals. The energy needed for localization dropped from 8.1 Joules
to 6.3 Joules. There was a 72.2% improvement in the balance be-
tween energy use and localization accuracy. However, it necessitated
a training period that may take more energy. In their subsequent
work (Liao et al., 2021), the authors lowered the localization concealed
mobile node error and energy consumption. The goal was to reduce
the amount of energy used by a hidden mobile node (HMN) that did
not communicate with anchor nodes via acoustic signals to remain
hidden and conserve energy. Furthermore, the concealed mobile node
can only locate itself by receiving signals from anchor nodes. Compared
to previous methods, the suggested approach used 85.6% less energy,
and the balance improved by 49.6% and 76.9%, respectively.

4.3. Time difference of arrival (TDoA)

In Ullah et al. (2019), distance-based and angle-based localization
algorithms with comparatively lower energy consumption and mean
estimate errors (MEEs) were introduced for the underwater environ-
ment. The location of the sensor node can be estimated by solving the
nonlinear range equations given in Eq. (10), where r,(k) denotes the
estimated distance between the unknown node and the nth anchor. It
concentrated on the localization of underwater nodes with a particular
emphasis on MEEs. With variances between 2.7494 and 3.4789 m
and between 91.0353 and 104.9206 m for the angle-based system,
the distance-based strategy produced lower MEEs. Although it helped
to save energy, its effectiveness was diminished by increasing MEEs,
which made localization accuracy less specific.
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Table 6
Al-enabled underwater localization roadmap: now, near-term, and long-term.
Axis Current State Next-Generation Approaches Future Directions
Algorithms Classical PF/KF/EKF, early DL RL for adaptive updates, Multimodal end-to-end
front-ends hybrid Al+filters, (acoustic+IMU+vision),
self-/weakly-supervised models graph/transformer models.
Energy Energy as evaluation metric TinyML at edge, RL-driven Cross-layer co-design, in-situ
duty cycling, event-triggered harvesting-aware Al
updates
Channel Simple SSP assumptions, Learned denoising for Data-driven channel twins;
limited multipath/Doppler ToA/TDoA, domain adaptation robust, uncertainty-aware
handling across sites inference.
Systems Sim/small pilots, centralized Federated learning across Digital twins for design-time
training nodes; on-AUV inference optimization; trustworthy Al
Validation Mostly simulation Public benchmarks; multi-site Standardized testbeds;

field trials

certification-style evaluation.

As presented in Fig. 7, an enhanced AUV-aided TDoA localization
algorithm (EATLA) was proposed in Hao et al. (2020b), where the
AUV dived into the predefined depth and transmitted the data packet
periodically. After that, the unknown node received the data packet
and calculated its position. A time delay system was proposed to save
energy consumption. The position of the unknown sensor node was
determined by solving the trilateration system, as shown in Eq. (12).
Due to the use of mobile AUV underwater, the localization coverage
was improved, resulting in fewer localization errors and a relatively
shortened localization time. Similarly, Ojha et al. (2020) utilized a
high-speed AUV as a location provider to create a virtual anchor plane.
This approach achieved high localization coverage despite the absence
of synchronization between the sensor nodes and the AUV.

To compensate for residual errors in TDoA approaches, Kaveri-
pakam et al. (2023) combined TDoA and AoA to leverage their re-
spective strengths, overcoming the limitations of individual techniques.
The authors implemented adaptive beamforming and array process-
ing techniques to mitigate multi-path propagation and improve signal
quality. In addition, a machine learning model was introduced to
predict localization errors and refine estimates dynamically. Although
this hybrid scheme demanded precise anchor placement and careful
synchronization among anchors, it significantly reduced the number of
required TDoA exchanges and thus the total energy expended without
repeated retransmissions.

4.4. Angle of arrival (AoA)

A hybrid localization algorithm for a 3-D network model based on
Doppler Shift and AoA (DAHL) was proposed in Hao et al. (2020a).
Rather than relying solely on TDoA pings, DAHL combined Doppler-
shift and AoA measurements in a two-stage algebraic solver. The mobile
node position and velocity estimation errors were optimized by in-
troducing auxiliary parameters. The two-stage algebraic approach was
employed to simplify the complex, high-dimensional nonlinear rela-
tionship between Doppler shift measurements and the mobile node’s
position. Even under increased measurement noise, the method demon-
strated strong performance in accurately estimating both the position
and velocity of the node. Once these parameters were determined,
real-time tracking of the mobile node became feasible. To enhance
the effectiveness of the DAHL method, the study strategically balanced
energy consumption between anchor nodes and regular nodes.

Building on the same idea of minimizing TDoA exchanges, Kumar
et al. (2022a) selected a Primary Anchor (PA) that provided AoA
measurements, using a small, directional array to determine the bearing
of the node’s acoustic ping and a Secondary Anchor (SA) that supplied
an RSS-based distance estimate. By fusing AoA from the PA with
RSS from the SA, they can derive a rough position without initiating
a full TDoA handshake. The model evaluated utility functions such
as residual energy, transmission distance, and measurement error to
optimize the SA selection. The proposed technique maintained a higher
packet delivery ratio by avoiding packet collisions and optimizing
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directional transmission. The node position was determined using a
PA equipped with GPS and capable of reliable data processing. As
a result, if the PA fails, localization accuracy is compromised, since
the SA will begin transmitting data randomly to another anchor node,
which then communicates directly with the sink, potentially disrupting
the coordination and precision of the system.

In summary, we have illustrated an energy-efficient localization
scheme for UWSNs. We classified the existing literature into four cate-
gories: RSSI, ToA, TDoA, and AoA. The methods described are energy
efficient and achieved comparatively low localization error, network
lifetime, and packet delivery ratio. Besides, we analyzed their simu-
lation result and identified the drawbacks of each research work. We
also present a detailed comparison of existing works, highlighting their
limitations and scope for further research in Table 5.

5. Future research direction

While numerous energy-efficient and reliable schemes have been
developed in terrestrial wireless sensor networks, these approaches
are unsuitable for underwater environments because of the distinct
properties of communication channels. Moreover, existing localiza-
tion schemes often struggle to meet the constraints of underwater
networks. In these future underwater sensor networks, localization
services will face new possibilities and challenges in terms of robust-
ness and adaptability. The recent ground-breaking proposed algorithms
are promising for optimizing both localization accuracy and energy
consumption, and will likely impact UWSNs localization. Before dis-
cussing these approaches in detail, it is useful to first outline how
underwater localization is progressing along four key dimensions: al-
gorithms, energy strategies, channel modeling, and system validation.
Table 6 presents an Al-enabled roadmap, illustrating the current state of
the field, anticipated short-term developments, and long-term research
directions.

5.1. Al-driven localization

Many approaches (Wang et al., 2025; Peng et al., 2023; Bai et al.,
2023) highlighted the need for better generalization across different un-
derwater domains, suggesting the development of adaptive or domain-
transfer learning strategies. Many approaches still depend heavily on
simulated data and require improvements, as shown in Table 7. Domain
adaptation and transfer learning remain underexplored despite the
clear domain shift between simulation and ocean deployment. There-
fore, future efforts should focus on real-world validation under diverse
and dynamic marine conditions (Teixeira et al., 2020; Wolf et al.,
2020; Burguera et al., 2022). In addition, while several approaches
employ supervised learning, only a few leverage self-supervised or
unsupervised techniques, which are more scalable and data-efficient for
underwater applications. Additionally, as underwater sensor networks
scale up, addressing computational efficiency, energy consumption,
and real-time adaptability becomes increasingly important. Lightweight
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Table 7
Comparison based on dataset, validation environment, and training approach.
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Reference Dataset

Validation Environment

Training Approach

Wang et al. (2025)
Joshi et al. (2020)
Chen et al. (2023)
Wolf et al. (2020)
Teixeira et al. (2020)
Kumar et al. (2024)
Burguera et al. (2022)
Du et al. (2025)
Peng et al. (2023)
Hou et al. (2019)
Song et al. (2020)
Ali et al. (2021)

Pu et al. (2022)
Saha et al. (2024)
Shaukat et al. (2021)

Augmented underwater images (custom)
Synthetic (Unreal Engine), CycleGAN

RGB images (PoseNet dataset)

Simulated hydrodynamics

Underwater AUV dataset

Synthetic signal simulation

Underwater visual images

3D underwater cloud data

Terrain maps and simulated point clouds
Small-scale magnetic and acoustic
Simulated dynamic underwater environment
Feature-based simulation data Synthetic
Pressure sensor simulation
Real marine tag trials
Monte Carlo simulation

Simulated (turbid lighting) and real images
Pool and ocean trials
Indoor/outdoor visual scenes
Simulation only

Real AUV trials

Ideal and multi-path noise

Field AUV deployment

Simulated and real cloud edges
Simulated and real terrain

Not specified (presumed controlled)
Extensive simulation

Vibration sources
Field and simulated
Nonlinear trajectory test

Self-supervised optical flow and SE encoder
Unsupervised image translation and pose regression
Supervised single image pose estimation
Supervised CNN on ALL sensor data

LSTM trained on VO trajectory and IMU correction
Supervised RNN with proximity info

SCNN and RANSAC

Unsupervised graph scoring (UIPENet)
Self-attention and keypoint learning

MLP trained offline for EKF fusion

NN prediction and velocity compensation
PC/BC-DIM training with encoded features
Supervised MLP with feature engineering

TinyML with CNN for classification

RBFNN and ESKF integration

models such as TinyML and decentralized training methods like feder-
ated learning can help mitigate these concerns. Incorporating temporal
modeling into pose estimation frameworks currently operating frame
by frame (Joshi et al., 2020) and can improve consistency and accuracy
in long-duration missions. 2D approaches to 3D are still a critical need
to support real-time, low-power interference on embedded systems like
AUVs and underwater sensor tags (Hou et al., 2019), Saha et al. (2024).
Another critical direction lies in the automatic extraction of features
and multimodal sensor fusion, enabling systems to adapt to complex
and dynamic environments. Al techniques also offer new avenues for
addressing security threats in underwater localization, such as Sybil
and wormhole attacks. By learning patterns of legitimate behavior over
time, machine learning models can be trained to detect anomalies in
distance measurements, signal timing, or node identity. For instance,
neural networks can classify abnormal transmission patterns indica-
tive of spoofed nodes (Sybil) or shortcut routing paths (wormholes).
Integrating trust models with AI, or using reinforcement learning to
dynamically adjust trust scores based on behavior, may further enhance
secure and resilient localization. Future studies should investigate how
to combine these detection mechanisms with localization algorithms
to provide both accurate and secure positioning in hostile underwater
environments.

A promising direction is the integration of federated learning, re-
inforcement learning, and hybrid AI models to jointly optimize lo-
calization accuracy and energy efficiency. Federated learning enables
collaborative model training across distributed underwater nodes with-
out requiring raw data exchange, reducing communication overhead
and energy cost while preserving privacy. Reinforcement learning can
dynamically adjust beacon transmission rates, duty cycling, or anchor
selection based on real-time error growth. Hybrid AI models that
combine data-driven deep learning with physics-based constraints or
Bayesian filtering can further reduce drift while keeping computational
load manageable for energy-limited nodes. Together, these approaches
point toward next-generation frameworks where localization, commu-
nication, and energy management are co-designed, extending mission
duration while maintaining reliable positioning in harsh underwater
environments.

5.2. Reinforcement learning

Energy-efficient underwater localization schemes still face several
critical challenges that limit their scalability and real-world appli-
cability, as presented in Table 8. Future energy-efficient underwater
localization research is increasingly focusing on intelligent, adaptive
frameworks that dynamically respond to environmental uncertainty,
mobility, and communication constraints. One promising approach lies
in the use of RL because of its ability to autonomously make decisions
regarding mobility, energy optimization, and adaptation to dynamic
environments (Frikha et al., 2021), Yu et al. (2025). One proposed
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scheme in You et al. (2020) enabled the target to optimize the beacon
selection policy without knowing the channel model between the target
and the beacon, thereby reducing the error and energy consumption.
Moreover, NLOS transmission of underwater acoustic signals leads
to increased localization errors when algorithms assume line-of-sight
(LOS) conditions. Therefore, localization algorithms must detect and
avoid using nodes affected by NLOS transmission. To address this
challenge, a reinforcement learning (RL)-based mobile hidden passive
localization algorithm has been proposed (Liao et al., 2021). This
approach aimed to reduce both the energy consumption of HMNs and
localization errors. By allowing HMNs-restricted to receive signals from
anchor nodes only to intelligently determine their positions and select
the most suitable time window for localization, the algorithm remained
effective even under uncertain underwater environmental conditions.

5.3. Mobility and delay prediction

Propagation delay is a critical factor that disrupts node synchro-
nization and affects localization accuracy (Hasan et al., 2025a). It
is essential to adjust lengthy propagation delays to achieve precise
localization. A mobility prediction algorithm for anchor nodes has been
proposed (Zhou et al., 2010b), wherein each anchor node calculates
and records its speed during each localization interval. This approach
enables predicting and compensating propagation delays, thereby im-
proving localization accuracy. Ordinary nodes utilize the predicted
speed from anchor nodes to perform the localization process.

Many UWSN localization schemes require enough anchor nodes
to assist sensor nodes in determining their positions. These localiza-
tion processes depend on various factors, including the locations of
reference nodes, the number of sensor and anchor nodes, the local-
ization method employed, and the distribution of anchor nodes. An
energy-aware solution is necessary to enhance efficiency, enabling each
sensor node to identify the required anchor nodes while considering
localization through effective topology management.

5.4. Quantum-inspired positioning techniques

Quantum sensing and quantum-inspired techniques offer a promis-
ing frontier for underwater localization with the potential to improve
traditional limitations in accuracy, drift, robustness, and synchroniza-
tion. The authors in Mei et al. (2024) proposed quantum-inspired
optimization algorithms to increase population diversity instead of
relying on closed-form solutions, which require assumptions. Integrat-
ing quantum-enhanced sensors with Al-driven models can redefine
localization accuracy and reliability in GPS-denied underwater environ-
ments. Warrier et al. (2024) focused on image classification rather than
position estimation, but quantum advantages can extend to underwater
localization. Hybrid quantum models can reduce the computational
time and handle sensor drift, enabling richer multi-sensor fusion.
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Table 8
Limitations and future scope of energy-efficient localization schemes.
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Reference Categories

Limitation

Scope

Range based
Misra et al. (2014b)

Yuan et al. (2018¢) Range based

Ullah et al. (2019) Dynamic,
range-based,

angle-based

Li et al. (2016) Dynamic,

range-based

Liu et al. (2015) Dynamic,

range-based

Zhang et al. (2020) Dynamic,

range-based
Xu et al. (2019) Dynamic,
range-based

Yu and Choi (2014b) Range based

Chen et al. (2017b) Range based

Assuming time
synchronization for nodes may
not be feasible in the natural
underwater environment.

Energy consumption for the
anchor node was higher than
the existing one due to
building their two-hop
neighboring list.

(i) Less feasible for many
sensor nodes and network
fields than for a small area.
(ii) Angle-based measurement
could have been more
accurate than distance-based
measurement due to the water
current and other obstacles.
(i) Measurement and time
measurement noise affected
the localization accuracy.

(ii) Tested in a shallow water
environment (depth <500 m).

The error can accumulate in
the presence of unpredictable
mobility patterns.

Simulator could not capture
the actual complexity of the
natural environment.
Environmental factors like
noise and seawater current
can affect positioning
accuracy. Only salinity and
wind speed were considered.

Assuming the position of the
all-sensor node may not be
feasible in the natural complex
underwater environment.
Managing the complexity of
artificial measurements and
the adaptive filter might be
challenging.

(i) Investigate the proposed
scheme in the presence of
shadow zones, jamming, and
natural interference.

(ii) Adopt a mixed strategy to
select the appropriate
transmission power level for
the nodes.

Adopt incorporating learning
strategies to enhance the
robustness of the proposed
method.

(i) Implement RSSI for
underwater localization.
(ii) Reduce the MEEs further.

(i) Investigate the algorithm
in the actual underwater
environment to verify the
feasibility of the proposed
sound speed solution.

(ii) Improving the immunity
of the proposed algorithm
against time measurement
noise.

(i) Investigate the effect of
time-variable transmission rate
and clock skew in the
proposed strategies.

(ii) Evaluate the proposed
work in the natural
underwater environment.
Consider power management
of nodes during the silent
period.

(i) Conduct the test
underwater to improve the
proposed algorithm.

(ii) Consider the other
environmental factors to
validate the algorithm.
Reducing the computational
complexity.

Consider more complex
underwater environmental
factors to validate the
proposed work.

5.5. Lesson learned

Based on the review of the existing literature on underwater lo-
calization, as summarized in Table 1, 2, 3, 4, 5, 6, 7, and 8, several
promising methods for underwater positioning have been identified
and discussed in terms of Al-driven techniques and energy efficiency.
According to the literature, the dynamic nature of underwater com-
munication is impacted by factors such as node mobility, multipath,
and refractive properties of the sound signal, which pose significant
challenges for accurate and robust localization. Since underwater nodes
are constantly drifting with water currents, the localization algorithm
must be designed to operate with sufficient efficiency and adapt to
these node drifts in real-time. One of the main challenges behind
developing an intelligent and energy-efficient localization scheme is
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ensuring that Al models remain lightweight. The narrow band of un-
derwater channels and the energy limitation of underwater nodes make
this more complicated. Although the recent advancement in develop-
ing lightweight learning models and hybrid Al-based frameworks that
balance performance with resource constraints is promising, but still
in the initial phase. These approaches leverage onboard processing,
adaptive learning, and minimal communication overhead to preserve
node energy while maintaining localization accuracy.

Adapting to dynamic environment changes is challenging when
designing energy-efficient localization schemes due to the short sensor
lifetime. One potential solution involves enabling nodes to operate
in two distinct modes, active and sleep mode, to optimize energy
consumption. Another approach is post-facto processing, which delays
data analysis until data collection is complete, thereby significantly
reducing energy costs associated with periodic real-time localization.
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However, the performance will degrade quickly. Based on this idea,
authors in Mirza and Schurgers (2008b) developed SDME, which used
minimal communication while ensuring sufficient information for ac-
curate localization was stored in the network. Most of the energy was
consumed in predicting the location of a dead mobile sensor node
(MSN). By avoiding beacon transmissions from the source to the MSN,
communication overhead and energy consumption can be reduced.
Researchers have proposed a passive localization algorithm to reduce
energy consumption and localization errors for hidden mobile nodes.

Moreover, absorption and path loss can degrade the accuracy of
localization. A practical energy-efficient localization approach involves
minimizing the required range measurements. This can be achieved
through link selection, which is only necessary during significant topol-
ogy changes that occur less frequently than re-localization processes.
Consequently, the total number of links utilized for ranging can be
significantly reduced.

6. Conclusion

Underwater localization presents a wide range of challenges due to
the harsh, complex, and constantly changing underwater environment.
Among these, two of the most critical issues are high energy consump-
tion and the need for intelligent, adaptive localization strategies. In
recent years, significant research efforts have focused on overcoming
these obstacles, with a growing emphasis on leveraging Al to enhance
both the accuracy and efficiency of underwater localization systems.
However, there has been no comprehensive review of these research
works to guide future research on designing reliable, accurate, and
efficient underwater localization schemes. In this work, we have re-
viewed and classified some key research studies on localization. First,
we present a detailed discussion of Al-based localization techniques in
underwater sensor networks, followed by a review of energy-efficient
localization techniques.

Additionally, we have outlined promising future research direc-
tions in Al-driven UWSN localization, emphasizing the need to design
lightweight, energy-efficient schemes and real-world testbeds to eval-
uate the performance of these techniques. This review paper aims to
serve as a valuable resource for researchers focused on developing
innovative strategies and frameworks to address key challenges in un-
derwater localization, particularly those related to reliability, accuracy,
and energy efficiency.

CRediT authorship contribution statement

Mainul Islam Chowdhury: Writing — review & editing, Writing —
original draft, Funding acquisition, Formal analysis. Quoc Viet Phung:
Writing — review & editing, Supervision, Funding acquisition. Iftekhar
Ahmed: Supervision, Funding acquisition. Walid K. Hasan: Writing —
review & editing. Daryoush Habibi: Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Mainul Islam Chowdhury reports fnancial support was provided by
Western Australia Department of Jobs Tourism Science and Innovaton.
If there are other authors, they declare that they have no known
competng fnancial interests or personal relatonships that could have
appeared to influence the work reported in this paper.

Acknowledgment
This research has been partially supported through a grant from

the Department of Jobs, Tourism, Science and Innovation in Western
Australia.

17

Applied Ocean Research 165 (2025) 104842
Appendix

The following equation defines the dense bundle adjustment op-
timization used in EUM-SLAM (Wang et al., 2025) to recover the
location of the sensor node. The method minimized the reprojection
error between the observed 2D image points and the projected 3D map
points. By optimizing over all camera poses R, and 3D landmarks X,
the system estimated the most accurate trajectory of the underwater
sensor node.

N M 5
ER1,X) =Y, Y ([l = #(Reoti X))
i=1 j=1

where R; and 7; denote the rotation matrix and translation vector (pose)
of the ith camera, X; represents the 3-D coordinates of the jth point,
7(R;,1;, X ;) is the projection of X; onto the ith camera image plane, u;;
is the observed 2-D feature point, and p(-) is a robust loss function that
reduces the influence of outliers.

In DeepURL (Joshi et al., 2020), the final localization equation came
from solving the PnP problem: the 6D pose (R,7) of the underwater
robot was estimated by aligning the predicted 2D keypoints with the
known 3D model points using the camera projection model. This op-
timization was solved robustly with RANSAC-based PnP, yielding the
sensor node’s relative position and orientation.

(€8]

{ Ry, 1) = PnP-RANSAC({(X,, )}, ) @

This equation computes the 6D pose (rotation R, and translation
7) of the AUV by solving the Perspective-n-Point (PnP) problem with
RANSAGC, using N pairs of 3D model points X; and their detected 2D
projections x;.

5 3

Ta
(R, ﬁO,) = arccos <M>

This equation defines the orientation error between the ground truth
rotation R, and the estimated rotation R,, where tr(-) is the matrix
trace.

The authors in Teixeira et al. (2020) defined the optimization used
to estimate the sensor node (robot) location. The method regressed
a 6-DoF pose (3D translation + rotation) from image sequences via
deep networks (SfMLearner, GeoNet). The translation part of the pose
corresponds to the sensor node’s location in space. The fusion network
refined these estimates by minimizing the combined translation error
and quaternion rotation error with respect to ground truth.

loss = \/Z(E§ +E2+E2) + ) g, —qll “

The position of nodes in Kumar et al. (2024) was estimated by
feeding sequential RSSI measurements from anchor nodes into an RNN.
The RNN captured temporal dependencies through hidden states and
outputs the predicted node location.

Input Layer:

ot

X1

X, =" ®)

XNt
Recurrent Layer:
h; = tanh(Wjch, + Wy,h,_y +by,) (6)
Output Layer (location prediction):
9, = softmax(h,W,, +b,) )

The localization was formulated in Burguera et al. (2022) through
Pose Graph optimization. The error function minimized is:

wGy= Y |xi-exHexk)| ®

N
VXSiEE,
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where (xfi’;.) are the measured relative pose constraints (from odometry
or loop closure) between nodes s; and d;, E, is the set of edges
(constraints) in the pose graph, e(G,) is the total error to be minimized
in graph optimization.

The work in Peng et al. (2023) proposed a deep learning-based
underwater terrain matching localization. The final localization was
expressed as offsets (4x, Ay, Au) (x-position, y-position, heading) that
minimized the difference between predicted and actual poses.

[x’] _ [sinA(pk —cosA(pk] [x] + [Ax,-]
y cos Agy, sindgy | |y Ay,
where x,y are the predicted position coordinates from inertial mea-
surements, x’,)’ are the corrected position coordinates after terrain
matching, Ax, Ay are the translation offsets, Ap, is the heading (yaw)
offset.

The authors in Ullah et al. (2019) proposed two final equations
for estimating the location of a sensor node, depending on whether
distance-based or angle-based measurements were used.

9

ro(k) = \/(x(k) —x) + (00 = 3,)7 + (200 - z,)° (10)

where r, (k) is the estimated distance between the unknown sensor node
(x(k), y(k), z(k)) and the anchor node (x,, y,. z,)-

1 X1 X, + 1Y,

[ x2 2 [x2 2
XT+Y 4/ X5+Y;

where 0 is the angle between nodes A(X,,Y;) and B(X,,Y;).

The final equation in Hao et al. (2020b) showed how the unknown
sensor node’s coordinates were obtained using trilateration based on
distances measured via TDoA between the sensor and multiple AUV
positions. By substituting measured delays into these equations, the
node’s position (x, y, z) is uniquely determined.

0 = cos™ an

x=x)?+ -y + -z =d?

(X=X + (=) +(z = 2)" = (dy + 9))?
(x=x3)2 + (=3 +(z— 230" = (d) + )
(= x)* + (=) +(z— 2" = (dg + 3)°

(12)

- 2 _,
where, d,, = Z2EVEHMC x = A d +B,, y=Ayd, +B,, 2= A.d +B,
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