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Abstract

Underwater Optical Camera Communication (UOCC) has emerged as a promising
paradigm for short-range, high-bandwidth, and secure data exchange in autonomous
underwater vehicles (AUVs). UOCC performance strongly depends on exposure time
and International Standards Organization (ISO) sensitivity—two parameters that govern
photon capture, contrast, and bit detection fidelity. However, optical propagation in aquatic
environments is highly susceptible to turbidity, scattering, and illumination variability,
which severely degrade image clarity and signal-to-noise ratio (SNR). Conventional systems
with fixed imaging settings cannot adapt to time-varying conditions, limiting communica-
tion reliability. While validating the feasibility of deep learning for exposure prediction,
this baseline lacked environmental awareness and generalization to dynamic scenarios.
To overcome these limitations, we introduce a Real-to-Sim-to-Deployment framework
that couples a physically calibrated emulation platform with a Hybrid CNN-MLP Model
(HCMM). By fusing optical images, environmental states, and camera configurations, the
HCMM achieves substantially improved parameter prediction accuracy, reducing RMSE to
0.23-0.33. When deployed on embedded hardware, it enables real-time adaptive reconfigu-
ration and delivers up to 8.5 dB SNR gain, surpassing both static-parameter systems and
the prior CNN baseline. These results demonstrate that environment-aware multimodal
learning, supported by reproducible optical channel emulation, provides a scalable and
robust solution for practical UOCC deployment in positioning, inspection, and laser-based
underwater communication.

Keywords: underwater optical camera communication; adaptive exposure; optical channel
emulation; multimodal feature learning; CMOS imaging

1. Introduction

As ocean exploration and marine resource utilization continue to advance, Au-
tonomous Underwater Vehicles (AUVs) have become indispensable, particularly when
deployed in swarms that enhance scalability, resilience, and cost-effectiveness [1]. These
multi-agent systems are widely applied in subsea infrastructure inspection, environmental
monitoring, and cooperative exploration of ecologically sensitive regions [2]. Effective coor-
dination of such tasks requires a communication framework with high data throughput and
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low latency. While acoustic communication remains the dominant underwater standard
due to its long range, it inherently suffers from limited bandwidth, large latency, and strong
multipath interference—constraints that severely affect densely networked swarms [3,4]. In
contrast, Underwater Optical Camera Communication (UOCC) has emerged as a promising
short-range alternative that exploits the physical advantages of light propagation in water
to provide high-bandwidth and low-latency links [5]. UOCC employs modulated light
signals transmitted by LEDs and detected by Complementary Metal-Oxide-Semiconductor
(CMOS) cameras, which are already integral to most AUV platforms for visual navigation.
This dual-use capability minimizes hardware overhead and lowers deployment cost [6-9].
From an optical perspective, CMOS-based UOCC systems benefit from their large pho-
tosensitive area and wide field-of-view (FOV), enabling robust photon capture without
stringent alignment. This provides critical flexibility under dynamic and unpredictable
swarm configurations in open water. These unique optical advantages establish UOCC
as a scalable and practical paradigm for the next generation of underwater robotic net-
works [10,11] and motivate the present study from the standpoint of optical communication
system design.

Despite these advantages, the performance of UOCC systems remains highly sen-
sitive to underwater channel disturbances, including turbidity, flow-induced scattering,
optical absorption, and fluctuations in ambient illumination [12]. Such factors reduce
photon transmission efficiency and distort the spatial contrast of modulated light patterns
captured by CMOS sensors, resulting in a degraded signal-to-noise ratio (SNR), reduced
data throughput, and, in severe cases, complete link outage [5,13]. A critical determi-
nant of optical signal fidelity in camera-based receivers is the configuration of imaging
parameters—in particular, the exposure time and International Standards Organization
(ISO) sensitivity. These parameters directly govern photon capture, brightness, and contrast
of the received stripe-based modulation patterns. However, their optimal values vary non-
linearly with environmental conditions such as scattering strength, absorption coefficient,
and background illumination. This nonlinear and dynamic dependence makes manual
adjustment impractical for real-world deployments, especially in mobile and autonomous
platforms [14-17]. Recent advances in data-driven optical parameter control provide a
promising direction. By learning the complex mapping between environmental states
and imaging performance, machine learning models can dynamically adapt exposure and
ISO settings, thereby maintaining robust photon acquisition and reliable decoding across
diverse and time-varying underwater conditions.

Recent advances at the intersection of computational optics and machine learning have
introduced deep learning-based approaches for intelligent image enhancement and signal
optimization. Convolutional neural networks (CNNs), in particular, have demonstrated
strong capabilities in processing spatially structured optical data, making them effective for
mitigating scattering-induced blur and enhancing the visibility of modulation patterns in
vision-based systems [18]. In parallel, deep reinforcement learning (DRL) has been explored
as a framework that integrates perception and control, enabling adaptive responses to dy-
namic optical channels through continuous interaction [19]. These learning-based strategies
have been increasingly applied to CMOS sensors, where they improve photon capture
efficiency, contrast restoration, and optical signal recovery under diverse imaging condi-
tions [20-23]. Within the specific context of underwater optical camera communication
(UOCCQ), such methods are particularly valuable for preserving image clarity and enabling
reliable decoding of modulated light signals in turbid or low-light environments. Prior
studies have shown that deep learning can suppress sensor noise, compensate for scattering
artifacts, and enhance the robustness of optical links under channel disturbances [24,25].
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Building on these advances, our earlier work [26] proposed a CNN-based joint re-
gression framework that fuses image features with parameter metadata to predict optimal
exposure time and ISO in UOCC. This baseline model, employing a ResNet50 backbone
and a parameter-aware regression head, demonstrated that data-driven parameter tuning
can significantly improve decoding robustness, achieving a root mean square error (RMSE)
of 0.96 and enhancing the synthetic SNR from 4.16 dB to 6.91 dB. While these results
validated the feasibility of deep learning for adaptive imaging, the framework exposed
three key limitations: (i) lack of explicit modeling of environmental disturbances, leading
to unstable performance under turbidity or illumination fluctuations; (ii) reliance on static
datasets without physical calibration, which restricted generalization beyond laboratory
conditions; and (iii) absence of real-time deployment validation, limiting its applicability for
embedded AUV platforms. These deficiencies highlight the gap between proof-of-concept
CNN models and the requirements of practical UOCC deployments and directly motivate
the present study to move beyond image—-parameter fusion toward environment-aware
multimodal learning under physically faithful emulation.

A major challenge in advancing UOCC through artificial intelligence lies in the limited
availability of labeled datasets for model training. In optical communication research, this issue has
often been addressed via synthetic data generation. For example, refs. [27,28] employed simulated
channel parameters to train CNN-based channel estimators, while refs. [29,30] developed custom
testbeds for evaluating learning-based demodulation strategies. However, unlike free-space
optical links, underwater optical channels exhibit far greater complexity due to the combined
effects of multiple scattering, wavelength-dependent absorption, turbulence, and nonstationary
illumination. These interactions are difficult to capture through purely mathematical models and
require empirical validation to ensure physical relevance. To this end, researchers have constructed
controlled laboratory platforms that permit systematic adjustment of environmental parameters
such as turbidity and flow conditions [31]. Mechanical actuators—including propellers, water
jets, and pumps—are often employed to mimic dynamic turbulence [32,33], while particulate
additives such as Maalox, kaolin, or suspended sediments are used to emulate scattering-induced
attenuation [34,35]. Although these testbeds provide valuable insights, achieving consistent and
repeatable underwater channel states remains difficult. By contrast, field trials in natural aquatic
environments offer higher realism but introduce substantial barriers, including high logistical
costs, specialized instrumentation, and the unpredictability of environmental variability [36-38].
Consequently, the development of a practical, reproducible, and optically faithful emulation
framework that can capture the inherent complexity of underwater light propagation under
controlled conditions remains an unresolved challenge. Addressing this gap is crucial for bridging
the divide between computational learning techniques and physically consistent optical channel
modeling in UOCC.

In practical deployments, UOCC must also contend with dynamic and unpredictable
conditions that preclude static camera settings. Adjusting exposure time and ISO sensitivity
provides an efficient means of enhancing received SNR [12], especially for embedded
systems on resource-limited platforms. While rule-based and data-driven approaches
have been proposed [39], most were not designed specifically for underwater optical
communication. Evidence from related OCC domains illustrates the benefits of adaptive
control: indoor non-line-of-sight OCC systems achieve improved demodulation through
dynamic parameter tuning [40], while UAV-based OCC employs recurrent neural models
to mitigate motion-induced instability [5]. These findings align with UOCC environments,
where turbidity fluctuations, flow-induced scattering, and illumination variability produce
nonstationary optical disturbances. Yet open challenges remain: (1) the coupled impact
of turbidity, flow, and lighting is analytically intractable; (2) real-world data collection is
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costly and non-repeatable, limiting labeled datasets; (3) models trained on simulated or
ideal conditions often fail to generalize due to domain mismatch.

To address these challenges, we propose a Real-to-Sim-to-Deployment framework
for adaptive UOCC. In this paradigm, real-world measurements calibrate a controlled
laboratory emulator (Real-to-Sim), which supports training of a multimodal deep learning
model for embedded deployment (Sim-to-Deployment). Our testbed employs 470 nm blue
LEDs and CMOS cameras with adjustable Exposure Values (EV), under turbidity levels
tunable from 100 to 400 NTU, enabling reproducible emulation of scattering and absorp-
tion. Using this dataset, we design a hybrid CNN-MLP model (HCMM) that integrates
visual features, environmental sensor inputs, and camera configuration states to predict
optimal exposure and ISO values. Compared with our prior CNN-based baseline, the
proposed multimodal framework explicitly incorporates environment-aware features and
achieves substantially higher robustness, delivering up to 8.5 dB SNR gain under dynamic
conditions. Deployed in field trials, the system provides real-time inference and adaptive
reconfiguration, demonstrating scalability for AUV-based UOCC.

The main contributions of this work are as follows:

1.  Real-to-Sim-to-Deployment framework: a hierarchical transfer approach that bridges
empirical underwater data and simulation-based training, enabling adaptive UOCC
deployment on AUVs.

2. Sensor-integrated emulation platform: a controllable and reproducible testbed that
standardizes benchmarking of UOCC under variable turbidity, flow, and illumination.

3. Hybrid CNN-MLP model (HCMM): extending our prior CNN-based baseline, we
develop a multimodal learning architecture that fuses image, sensor, and configuration
features to predict optimal parameters, significantly improving underwater optical
communication robustness.

2. Proposed Method and Principle

To bridge the performance gap between controlled laboratory experiments and
the complex variability of real underwater environments, we propose a Real-to-Sim-to-
Deployment framework for adaptive imaging parameter control in underwater optical
camera communication (UOCC). Unlike conventional sim-to-real strategies, where models
are trained in synthetic environments and then fine-tuned with real data, our approach
adopts an inverse methodology. Specifically, real-world underwater measurements are
first used to calibrate a controlled laboratory environment, ensuring that critical channel
characteristics such as scattering, turbidity, and illumination variability are faithfully re-
produced. This calibration enhances the realism of simulated datasets and improves the
generalizability of trained models. Consequently, deep learning models developed in this
framework can be deployed directly in AUV platforms with minimal fine-tuning. The
overall architecture of the proposed method is illustrated in Figure 1.

Figure 1 illustrates the overall framework comprising three key modules. The Control-
lable Multi-Features Emulation Platform with Sensors recreates underwater optical condi-
tions by adjusting turbidity, flow velocity, and illumination while collecting synchronized
sensor data. The transmitter generates modulated optical signals using a microcontroller,
DAC, amplifier, and N-MOSFET to drive a matrix LED. The Hybrid CNN-MLP Model with
Environment-Aware Learning fuses environmental, visual, and camera-state features to
predict optimal exposure and ISO parameters for adaptive feedback control in UOCC.
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Figure 1. The proposed method and system framework.

The process begins with real-world data acquisition across diverse underwater condi-
tions, covering variations in turbidity, flow velocity, and ambient illumination. Instead of
serving directly as training data, these measurements are statistically analyzed to derive
probability distribution functions (PDFs) that capture temporal and spatial fluctuations of
environmental parameters. These PDFs act as statistical priors, guiding the construction of
a sensor-integrated emulation platform. This platform reproduces representative underwa-
ter disturbances such as scattering and absorption under controlled, repeatable conditions.
By generating large-scale labeled datasets that are otherwise impractical to collect in field
trials, the platform enables systematic training and validation of learning-based models
under realistic optical disturbances.

The hardware architecture consists of two subsystems: a transmitter and a configurable
emulation platform. The transmitter incorporates a digital-to-analog converter (DAC),
bias control, and interchangeable LEDs to support variable amplitude and optical source
conditions. The emulation platform integrates a turbidity control module, flow-velocity
generators, and illumination regulators, all monitored by embedded sensors (turbidity, flow,
and lux). These modules allow precise control and feedback, ensuring accurate recreation of
diverse underwater optical channels. At the receiver side, the optical signals are captured by
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either a photodetector (PD) for sensitivity benchmarking or a CMOS camera for imaging-
based experiments. The received images and sensor data form a multimodal dataset,
directly linking environmental conditions with optimal camera parameter configurations.

To exploit this dataset for real-time parameter adaptation, we design a hybrid CNN-
MLP model (HCMM) that integrates multimodal feature learning. The architecture consists
of three dedicated encoding branches:

e  Visual branch: a convolutional neural network (CNN) extracts high-level features
from the received image, capturing distortions induced by scattering and illumination.

e  Environmental branch: low-dimensional sensor data (turbidity, flow velocity, illumi-
nation, and transmitter power) are encoded to represent channel states.

e  Camera parameter branch: current exposure and ISO values are provided as context
to stabilize predictions.

Features from the three branches are fused through a multilayer perceptron (MLP),
which outputs the predicted optimal exposure time and ISO settings. By explicitly combin-
ing optical channel modeling with data-driven feature fusion, the HCMM achieves robust
cross-modal learning and provides adaptive imaging control tailored to the highly dynamic
conditions of UOCC.

2.1. Visual Branch

To extract high-level semantic features from underwater optical images, we employ a
visual processing branch based on a fixed ResNet50 architecture pretrained on ImageNet.
ResNet50 is a deep convolutional neural network comprising convolutional layers, residual
blocks, and a global average pooling layer. Its core innovation lies in residual learning,
where each block learns a residual function F(x), allowing the network to model the target
function as

H(x) =F(x)+x (1)

where x is the input to the residual block, F(x) is the learned residual function (typically
composed of convolutional layers and nonlinear activations), and H(x) is the final output
of the block. This structure mitigates vanishing gradients and facilitates stable training
in deep networks. The residual design enables the network to preserve low-level details
while capturing complex patterns, making it well-suited for modeling structured visual
cues in underwater imagery. A typical residual block structure, including skip connections
and convolutional operations, is illustrated in Figure 2. Input images, originally sized at
1920 x 1080, are resized to 224 x 224 x 3 and normalized using ImageNet statistics before
being fed into the network. ResNet50 then processes the image through a hierarchical
series of convolutional and residual layers, gradually increasing feature abstraction. The
transformation of feature dimensions across layers is also depicted in Figure 2.
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Figure 2. Dimensional transformation between layers.

Figure 2 details the internal structure of the visual branch based on ResNet50. It
shows how input images (1920 x 1080 pixels) are resized, normalized, and successively
processed through convolutional and residual blocks. The ResNet50 backbone processes the
input image through a series of convolutional and residual layers, progressively increasing
semantic abstraction. The image first passes through a 7 x 7 convolution with a stride
of 2, followed by batch normalization, ReLU activation, and a 3 x 3 max pooling layer,
producing a 56 x 56 x 64 feature map. Four residual block groups follow. The first group
(Conv2_x) contains three blocks with 1 x 1,3 x 3, and 1 x 1 convolutions, maintaining
the 56 x 56 resolution and expanding the depth to 256 channels. The second group
(Conv3_x) consists of four blocks with downsampling, reducing the resolution to 28 x 28
and increasing the depth to 512. The third group (Conv4_x) includes six blocks, yielding
a 14 x 14 x 1024 feature map. The final group (Conv5_x) has three blocks, producing
a7 x 7 x 2048 output. A global average pooling layer condenses this high-dimensional
output into a 2048-dimensional vector, capturing the most salient visual features. To align
with other modality embeddings and ensure stable training, this vector is projected through
a linear layer to obtain a 512-dimensional latent representation, which serves as the visual
feature input for the fusion stage, which can be expressed as

Ovisual = ReLU(Wpr0j~zimg + b) e RO12 )

where Zimg denotes the visual feature vector extracted from the ResNet50 encoder;
Wyroj and b denote the learnable projection matrix and bias vector, respectively; and
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R°!? denotes the projected and activated visual embedding obtained after the

Vvisual €
ReLU operation. The 512-dimensional visual representation is concatenated with embed-
dings from the environment and camera parameter branches and fed into a joint fusion
network. This design allows the model to integrate visual cues with physical context,
enabling exposure and ISO predictions that are both perceptually relevant and environ-

mentally adaptive.

2.2. Environment Branch

To model the impact of environmental disturbances during image acquisition, we
introduce a compact encoding module that processes physical water conditions. The
module receives a normalized four-dimensional input vector comprising turbidity (NTU),
flow speed (m/s), LED transmission power (W), and ambient illumination (Im), each
representing a key source of interference in UOCC systems.

To ensure numerical stability and effective learning across these heterogeneous inputs,
all parameters are normalized using min—-max scaling. Each value is rescaled by subtracting
the minimum of its range and dividing by its span, ensuring balanced contribution across
dimensions. The resulting normalized scalars form a four-dimensional environmental
feature vector, defined as

Xenp = [Turbidity, Flowspeed, lightpower, Ambientlight] € R* 3)

where X,y denotes the environmental parameter vector consisting of four physical factors:
turbidity, flow speed, light power, and ambient light intensity, each normalized to [0,1];
thus, Xeno represents the environmental state input to the model. The resulting vector
provides a numerically balanced representation of the environmental context for each
image sample. This four-dimensional normalized input is processed by a compact neural
encoder designed to capture nonlinear relationships among the variables. The encoder
consists of a fully connected layer that projects the input into a 64-dimensional latent space,
followed by a ReLU activation and Layer Normalization to promote stable and efficient
training. This transformation can be expressed as

ve = LayerNorm(ReLU(We-Xeno + be)) € RO 4)

where X, denotes the 4D environmental input vector; W, and b, denote the learn-
able projection matrix and bias; ReLU(-) denotes the element-wise rectified linear unit;
LayerNorm(-) denotes layer normalization applied to the projected features; and v, de-
notes the normalized environmental embedding. The resulting 64-dimensional embedding
captures the latent influence of environmental conditions on the imaging process.

2.3. Camera Parameter Branch

In addition to modeling scene content and environmental conditions, the framework
includes a camera parameter encoding branch to represent the intrinsic configuration of the
imaging system. Specifically, it accounts for the current exposure time and ISO level—two
key factors influencing sensor sensitivity and signal response under varying lighting. A
normalized two-dimensional input vector [Curr_Exp, Curr_ISO] captures the camera state
at the time of image acquisition. This vector is passed through a fully connected layer
to project it into a 64-dimensional latent space, followed by a ReLU activation to model
nonlinear effects such as sensor saturation and amplification. This transformation can be
expressed as

0c = ReLU(We-peam + be) € R* (5)
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where pe;n denotes the two-dimensional camera state vector composed of the current
exposure level and ISO value; W, denotes the learnable weight matrix and bias term of the
camera branch; and v, denotes the resulting camera feature embedding. The camera-state
encoding is modeled as an independent branch, separate from environmental and visual
inputs. This modular design reflects the physical separability of the parameters: exposure
and ISO are internal system settings, while environmental factors are externally driven.
Decoupling their representations prevents entanglement, allowing the model to learn their
effects more accurately and improving prediction reliability across both low-SNR and
overexposed conditions.

2.4. Fusion and Hidden Layers

To enable joint reasoning over visual content, environmental context, and device
configuration, we implement a multimodal fusion mechanism that combines the latent
features from the three independent branches. Specifically, the 512-dimensional visual
feature vector, the 64-dimensional environmental embedding, and the 64-dimensional
camera-state representation are concatenated to form a unified representation, which can
be expressed as

U fusion = Concat(vvisuul/ Ue, Uc ) € R64O (6)

where and Concat(-) denotes channel-wise concatenation along the feature dimension,
yielding the fused representation vy,s0,. The fused vector is passed through a three-
layer fully connected network (Fusion MLP) designed to capture nonlinear interactions
across modalities. The first hidden layer applies a linear transformation, followed by
ReLU activation and dropout regularization, producing a 256-dimensional intermediate
representation:

7 = ReLU(Wl-vfusion + bl), z; € R®® )

followed by z; = Dropout(z, p) to prevent overfitting. The second and third hidden
layers further map the feature space to 128 dimensions, each followed by ReLU activation:

2y = ReLu(w221 + bz), z, € R12 (8)
z3 = ReLU(Wsz; + b3), z3 € R1?® )
[éopt/ ZGopl‘] = Woutz3 + bout (10)

where W1, Wy, W3, Wy and by, by, b3, byyr denote the learnable weight matrices and bias
terms of the multilayer perceptron (MLP) head; Dropout(z;, p) denotes random feature
dropout with a probability p to prevent overfitting; z;, zp, zz denote the hidden-layer
feature vectors of dimensions 256, 128, and 128, respectively; and [€opt, fopt] denote the
predicted normalized optimal exposure and ISO outputs of the model. Finally, the output
layer applies a linear transformation to produce a two-dimensional regression output,
representing the predicted normalized exposure time (Opt_Exp) and ISO (Opt_ISO) for the
given scene. These values correspond to the HCMM'’s optimal camera parameter estimates
under current environmental and visual conditions.

2.5. Algorithm

To clearly describe the data flow and computational pipeline of the proposed Hybrid
CNN-MLP Model (HCMM), the complete training and deployment process is summarized
in Algorithm 1. This algorithm outlines the sequential operations from data preprocessing
and feature extraction to multimodal fusion, optimization, and real-time inference, ensuring
reproducibility and easy implementation on embedded platforms.
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Algorithm 1: Adaptive Exposure Optimization via HCMM

Input: RGB image /(1920 x 1080), environment vector e = [Turbidity, Flow, Power, Lux],

camera state ¢ = [Curr_Exp, Curr_ISO]

Output : §=[8opt, fopt]

1: Resize I — 224 x 224, normalize (ImageNet stats)

2: Normalize e, c using ranges in Equations (3) and (5)

3: Visual branch : 0yjsu = ReLU(Wpyoj-Zimg + b) € R12

4 : Envbranch: X,n, = [Turbidity, Flowspeed, lightpower, Ambientlight] € R*
v, = LayerNorm(ReLU(W,-Xenp + b)) € R

5: Cambranch : v, = ReLU(Wc:peam + be) € R64

6 : Fusion : vfysion = Concat(visyql, ve, v ) € RO

7: MLP head : z; = ReLU(W;z9 + by), z1 € R%; 71 = Dropout (z1, p);

Zp = RELU(szl + bz), Zy € R128;Z3 e R(?LU(Wg,Zz + bg), Z3 € RlZS;

7 = Wowzz + bout € R?

8 : Train with MSE, Adam(1 X 10-* = .1 x 1079), early-stopping

9: Deploy : clamp i to valid EV/ISO ranges; update camera driver

3. Experimental Setup
3.1. Overview of the Experimental Test Bench

The proposed method was experimentally validated in a controlled laboratory envi-
ronment, as shown in Figure 3. The setup featured a transparent glass water tank with
internal dimensions of 200 cm x 40 cm X 75 cm (excluding the 0.5 cm glass thickness). An
optical transmitter and a CMOS camera-based receiver were mounted externally at the
centers of the opposing short sides, forming a 2-m underwater optical communication link.
This configuration allowed for repeatable signal transmission and image acquisition under
simulated aquatic conditions.

Sensor

CMOS Sensor
Control Unit

Transmitter
Circuit

‘ 1
. Center Computer

Figure 3. Schematic diagram of the laboratory testing platform.

To emulate real-world underwater disturbances, three submersible propellers (Model
YVP-03B, 7 W, 4000 L/h, Shenling, Ningbo, China) were used to generate turbulence,
and calibrated amounts of clay were added to vary turbidity. Real-time environmental
monitoring was achieved using three industrial-grade sensors placed at the tank’s center:
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1.  Turbidity sensor (LS300A, Ouka, Nanjing, China): Based on optical scattering, with
0.001 NTU resolution, 0-1000 NTU range, and £2% typical accuracy.

2. Flow velocity sensor (LS002351, Zhongyi Technology, Guangzhou, China): Uses
a rotating propeller and encoder and supports 0.01-4 m/s measurements, with
+5% accuracy.

3. Ambient light sensor (XM7663M, STMicroelectronics, Geneva, Switzerland): Sub-
mersible, 380-730 nm spectral range, 0.01 LUX resolution, 0-600 LUX range, and
+5% accuracy.

Although saline water changes the refractive index and increases red-wavelength
absorption, our 470 nm source lies near a low-absorption window, so we expect qualitatively
similar trends; validation in brackish and seawater is deferred to Section 5.2. Overall, the
platform provides fine, reproducible control of flow, turbidity, and illumination, enabling
consistent data collection and rigorous assessment of model performance across diverse,
yet well-specified, conditions.

Figure 3 illustrates the Real-to-Sim UOCC test bench: a CREE blue LED driven by a
programmable transmitter circuit, three submersible propellers for tunable flow, a mid-tank
sensor module for turbidity /flow/illumination, a CMOS camera with control unit, and
a center computer generating PRBS and logging data. The 2-m-long water path enables
repeatable scattering/turbulence for physically consistent dataset collection.

In the Emulation Platform, the optical signal is generated by the transmitter. The
central component of this transmitter is thus the LED, which, as detailed in Table 1, has a
central wavelength of 450 nm and a semi-angle at half power of 67.5. A pseudo-random
binary sequence (PRBS) is generated by a center computer and transmitted to a micro-
controller, which interfaces with a digital-to-analog converter (DAC) module via an 12C
interface. The DAC provides an analog signal with adjustable amplitude, which is subse-
quently amplified by an operational amplifier and applied to the gate of an N-MOSFET.
The N-MOSFET functions as a switch to regulate the current output of the matrix LED
light source. The source and drain terminals of the N-MOSFET are connected to a DC
power supply, which can be adjusted according to the light source requirements, allowing
for modulation of the DC bias voltage. The physical layout of the transmitter circuit is as
illustrated in Figure 4.

N-MOSFET |
w5 LED
interface

ok 8

S 1
USB-TTL
interface
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*600606

power control module
- <5417

Figure 4. Details of transmitter circuit.
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Table 1. Parameter configuration.

Transmitter Characteristics

Parameter Value
Light Wavelength 450 nm
Photoelectric Conversion Efficiency 65.16%
Half-power Angle 67.5°
Receiver characteristics
Parameter Value
Effective pixel 1920 x 1080
Sensor Size 1/2.5" CMOS
Pixel Size 22UM x 2.2 UM
FPS 30
Contrast 0
Brightness 0
Dynamic Range 70.1 dB
Channel characteristics
Parameter Value
Emission Angle 0°
Distance 2m
Receiving Angle 0°

Figure 4 illustrates the modular design of the optical transmitter. The system integrates an
ATmega328P-PU microcontroller (Microchip Technology, Chandler, AZ, USA), DAC module,
amplifier, and N-MOSFET driver for analog signal generation and current modulation. A
USB-TTL interface enables communication with the host computer, while a dedicated power-
control module regulates the voltage supply. The LED interface provides adjustable optical
output for emulating different transmission conditions in the UOCC test bench.

The receiver in the experimental setup is a CMOS sensor, selected based on equipment
availability. As detailed in Table 1, the sensor uses an electronic rolling shutter and is
identified as model CGU2-500-UVC (LTCAM, Shenzhen, China). It features a resolution
of 1920 x 1080 pixels and operates at 30 frames per second. A complete summary of the
experimental parameters is provided in Table 1.

The tank allows controlled variation of turbidity (100-400 NTU), flow speed
(0.15-1.05 m/s), and ambient illumination, but it cannot capture all features of natural
waters. In particular, the particle-size spectrum in the field produces stochastic multi-
path scattering that is difficult to reproduce; saline environments introduce wavelength-
dependent absorption; and large-scale turbulence exceeds the dimensions and energy of a
laboratory tank.

We address these gaps in two ways. First, we apply Real-to-Sim calibration using field
measurements to align the simulated channel with observed statistics. Second, we assess
external validity through shallow-water tests (Section 4.5). Remaining limitations and their
implications for deployment are discussed in Section 5.1.

3.2. Datasets Preparation

We generated a diverse dataset in a controlled tank to improve the generalizability of
HCMM. Turbidity and flow speed were varied within bounds informed by field observa-
tions: nearshore waters often show fluctuations up to £20% in turbidity and £5-10% in
flow due to wind, waves, and vessel traffic [41-43]. To balance realism and repeatability, we
adopted a conservative +10% variation when sampling conditions and used these settings
to test model stability.
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The dataset construction assumed (i) a quasi-uniform particle distribution during
turbidity control, (ii) negligible polarization and wall reflections due to tank geometry
and black lining, (iii) constant water temperature over each session, and (iv) fixed camera
intrinsics across sessions. These assumptions may shift absolute SNR values but should
not affect the relative ranking of methods. This protocol provides realistic yet reproducible
conditions for evaluating model robustness.

Four representative underwater conditions were designed as benchmark scenarios:
(1) 0.15 m/s, 100 NTU; (2) 0.75 m/s, 200 NTU; (3) 0.5 m/s, 300 NTU; and (4) 1.05 m/s,
400 NTU. For each condition, turbidity and flow velocity were continuously recorded over
a 20-s period using high-precision sensors. As illustrated in Figure 5, temporal fluctuations
in both parameters remained within the predefined £10% margin, confirming that the
simulated disturbances align with the stochastic behavior of real aquatic environments.
Minor variations in turbidity were primarily caused by sediment redistribution, while flow
variability reflected transient hydrodynamic effects. It is important to note that HCMM
performance under extreme or untested conditions—such as turbidity beyond 400 NTU
or high-turbulence scenarios—has not yet been evaluated. Future work should extend
the dataset to include such challenging cases, improving the HCMM'’s robustness and
generalization in more severe underwater environments.
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Figure 5. The changes in turbidity and flow velocity in four underwater scenarios.

Figure 5 details the four benchmark underwater scenarios used for training/validation,
shown as compact clusters in the flow-velocity—turbidity plane. Dashed circles in-
dicate £10% variability, confirming stable and repeatable emulation. For each sce-
nario, four optical signal power levels were tested: 0.1 W, 0.2 W, 0.3 W, and 0.4 W.
Experiments were conducted under two ambient lighting conditions: standard in-
door illumination (96.57 lumens, measured by the ambient light sensor) and complete
darkness (0 lumens). This resulted in a total of 32 distinct experimental conditions
(four scenarios x four power levels x two lighting settings).

The CMOS camera used in the experiments supports 14 discrete exposure values
(=13 to 0) and 16 ISO settings (1 to 16). For each environmental condition, all 224 com-
binations were captured, resulting in 224 images per setup. Across 32 environmental
configurations, a total of 7168 RGB images were collected. For each image, metadata—
including exposure time, ISO setting, and environmental parameters—were recorded in a
structured CSV file. Images were saved in PNG format and organized into clearly labeled
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directories for downstream analysis. The dataset was split into training, validation, and
test sets in a 70%:15%:15% ratio. A batch size of 32 was used, and training was conducted
for up to 100 epochs. To enhance training stability and generalization, dynamic strategies
were employed, including validation-based monitoring, adaptive learning rate scheduling,
and early stopping. Performance metrics were logged at each epoch, and the HCMM with
the lowest validation loss was saved in “.pth” format as the final output.

3.3. Implementation Details

To train the HCMM for the dual-output task of predicting optimal exposure time and
ISO, the Mean Squared Error (MSE) loss function is employed. MSE quantifies the average
squared difference between the predicted and ground truth values, offering a direct and
interpretable objective for optimizing regression performance. It is formally defined as

N
LusE =1/N2((éj—€7)2+(fj—i7)z) (11)
=

where ¢;, f]- denote the HCMM'’s predicted values, and ¢;, ij represent the experimentally
determined optimal exposure time and ISO sensitivity for the j-th training sample. Models
were implemented in PyTorch (Version: 2.7.1) with CUDA 12. * and trained on an NVIDIA
RTX 4060 Ti (16 GB, ASUS, Santa Clara, CA, USA) in a workstation with an Intel i9-13900K
and 32 GB RAM. Images (1920 x 1080) were resized to 224 x 224 to match ResNet50 and
normalized with ImageNet statistics to align with the pretrained backbone. CPU-only
deployment profiling is reported in Section 4.6.

To ensure stable convergence and mitigate overfitting, the Adam optimizer was
used with a hybrid learning rate scheduling strategy. The learning rate was initially
set to 1 x 10~* and held constant for the first 30 epochs to support broad parameter
exploration. Afterward, it was reduced to 1 x 107° to allow finer updates. A dynamic
adjustment mechanism, ReduceLROnPlateau, monitored validation loss and halved the
learning rate if no improvement was observed over three consecutive epochs, with a lower
bound of 1 x 10~7. Training was terminated early if three such reductions failed to yield
further improvement, enabling the HCMM to avoid suboptimal minima and supporting
convergence in non-convex optimization landscapes.

To further prevent overfitting, early stopping was employed with a patience threshold
of 10 epochs. Training halted if validation loss failed to improve over 10 consecutive epochs,
and the HCMM with the lowest validation loss was retained. Dropout regularization with
a rate of 0.2 was applied within the fusion MLP to enhance generalization.

3.4. Evaluation Metrics

To evaluate the HCMM’s ability to predict optimal exposure and ISO settings under
complex underwater conditions, a set of quantitative metrics was used to assess both
overall accuracy and error distribution. Specifically, Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) were adopted as standard regression metrics. These measures
provide a clear assessment of prediction performance and are defined as follows:

N
MAE =1/NY _((¢ —¢}) + (1; — if)) (12)
j=1

N
RMSE = | 1/NY ((¢j - ef)2 + (i; — i7)?) (13)
j=1
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To analyze the statistical distribution of prediction errors across the validation set, the
Cumulative Distribution Function (CDF) of absolute errors was plotted. For each sample,
the mean absolute error was calculated by averaging the prediction errors of both exposure
and ISO:

e =1/2(|ej— ¢ | + i~ i

) (14)

The scalar errors {ei}f»\il were sorted in ascending order and plotted against their
cumulative probabilities to generate the CDF curve. This visualization reflects the HCMM'’s
robustness—steeper curves indicate that predictions are closely clustered around the
ground truth. From the CDEF, key statistics such as the 90th percentile error were ex-
tracted, representing the maximum error within which 90% of the predictions fall, thereby
providing a probabilistic bound on worst-case performance.

4. Results and Discussion
4.1. Training Performance

To evaluate the overall effectiveness of the proposed multimodal framework, we first
analyze training dynamics and predictive performance on the validation set. As shown in
Figure 6a, both training and validation losses decrease steadily over 40 epochs, converging
to a mean squared error (MSE) below 0.002. This trend indicates a stable optimization
process with effective regularization and minimal overfitting.
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Figure 6. Training performance of the proposed HCMM model: (a) Training and validation loss
curves across 40 epochs; (b) Denormalized error analysis on the validation set, including MAE and
RMSE for exposure, ISO, and total prediction error.

Additional insights are provided in Figure 6b, which presents the denormalized Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE) for both exposure time and ISO
predictions, along with the total error. While early training stages show higher variance due
to environmental diversity, the HCMM stabilizes quickly—achieving a total MAE below
0.25 by epoch 30. Notably, exposure predictions consistently outperform ISO, suggesting
that visual features offer stronger cues for exposure estimation, whereas ISO is more
sensitive to environmental conditions.

Table 2 summarizes the quantitative results from the final training phase. The HCMM
achieves its best validation performance at epoch 34, with a total MAE of 0.202—comprising
0.225 for exposure and 0.179 for ISO—and a corresponding total RMSE of 0.2349. These
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results demonstrate the HCMM'’s high precision in estimating optimal imaging parameters
under varying underwater conditions.

Table 2. Statistical analysis of HCMM prediction errors under different epochs.

MSE MAE RMSE
Epoch TrainLoss ValLoss Val_Total = Val_Exp Val_ISO  Val_Tota  Val_Exp Val_ISO
30 0.00135 4.40655 x 1074 0.23353 0.22686 0.24019 0.29402 0.27461 0.44152
34 8.63233 x 1074 292663 x 10~* 0.202 0.22541 0.17859 0.23495 0.28077 0.27133
40 8.16385 x 104 3.18654 x 104 0.21663 0.23765 0.19560 0.24593 0.25167 0.22916

4.2. Ablation Study

To evaluate the contribution of each input modality—image features, environmental
data, and camera parameters—we performed ablation studies by selectively disabling
branches of the proposed architecture. Three model variants were tested:

1.  HCMM (FullModel): the complete framework with all three inputs (image, environ-
ment, and camera state);

2. NoCam: excludes camera parameters (current exposure and ISO);

3. NoEnv: excludes environmental inputs (turbidity, flow, ambient light, and transmis-
sion power).

Training and validation MSE curves for each model are shown in Figure 7, with
corresponding quantitative results at epochs 10, 20, 30, 40, and 50 summarized in Table 2.
The HCMM exhibits the most stable and accurate performance, reaching a validation loss
below 0.0032 within 30 epochs and converging to approximately 3.2 x 10~#, demonstrating
its effectiveness in jointly predicting exposure and ISO values.
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0.06 NoCam (Train Loss)
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Figure 7. Training and validation mean squared error (MSE) curves for the three model variants in
the ablation study: FullModel (HCMM, red), NoCam (blue), and NoEnv (green). Solid lines represent
training loss, and dashed lines represent validation loss.

As shown in Table 3, the NoEnv model exhibits substantially higher training and
validation losses across all epochs, plateauing around 0.03-0.04. This highlights the im-
portance of environmental inputs in capturing light disturbances and turbidity-driven
signal degradation, which are critical for accurate ISO estimation. The NoCam variant
converges more quickly than NoEnv and achieves moderate accuracy but consistently
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underperforms compared to the HCMM, particularly in early epochs. This suggests that
camera parameters provide valuable priors that help stabilize the optimization process.

Table 3. The performance of each variant on the validation set at different epochs.

Epoch HCMM NoCam NoEnv
10 0.00478 0.00755 0.03659
20 7.84 x 1074 8.41 x 1074 0.03399
30 441 x 1074 3.32 x 1074 0.03041
40 319 x 1074 342 x 1074 0.02901
50 / 329 x 1074 0.03095

The NoEnv model shows not only slower convergence but also high variance in the
loss curves, indicating limited generalization capability. In contrast, removing the camera
parameter branch (NoCam) results in a modest increase in final error but does not substantially
affect convergence, suggesting that the model can partially compensate using visual and
environmental inputs. Overall, the ablation results confirm that the three input modalities are
complementary and jointly essential for accurate exposure and ISO prediction.

4.3. Inference

To assess real-world performance, the HCMM's absolute prediction error was evaluated
on the held-out test set. As shown in Table 4, the HCMM achieves a total Mean Absolute Error
(MAE) of 0.396 and a Root Mean Square Error (RMSE) of 0.326, indicating low deviation from
ground truth imaging parameters. Specifically, the exposure prediction attains an MAE of
0.220 and an RMSE of 0.248, while the ISO prediction achieves an MAE of 0.177 and an RMSE
of 0.211. These results demonstrate that both exposure and sensor gain can be accurately
inferred from multimodal inputs under realistic environmental variations.

Table 4. Experimental results on the test set.

Indicator Type Exposure Time (EV Level)  ISO Value (Level)  Overall (Exp + ISO)

MAE 0.2199 0.1765 0.3964
RMSE 0.2479 0.2110 0.3256

The cumulative distribution functions (CDFs) of absolute error are shown in Figure 8a
for exposure and Figure 8b for ISO. In both cases, over 90% of predictions fall within
£0.37 EV for exposure and £0.32 ISO levels. This high prediction accuracy demonstrates
the HCMM'’s suitability for real-time deployment on AUV systems, enabling dynamic
camera adjustment under varying underwater conditions. The narrow error margins
and low RMSE values further indicate strong generalization beyond the training domain,
validating the effectiveness of the Real-to-Sim transfer strategy.

4.4. Baseline Comparison

To comprehensively evaluate the effectiveness of the proposed multimodal prediction
framework, we compare it against two representative baselines:

1.  Fixed Parameters—a static exposure and ISO configuration applied uniformly across
all conditions.

2. CNN-Only Baseline—our previously published CNN-based image—parameter fu-
sion framework [26], which employs ResNet50 with a parameter-aware regression
head. This baseline demonstrated the feasibility of learning-based parameter tuning,
achieving an RMSE of 0.96 and improving synthetic SNR from 4.16 dB to 6.91 dB.
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Figure 8. Cumulative distribution functions (CDFs) of absolute prediction errors on the test set:
(a) Exposure time prediction error distribution, with over 90% of predictions within +0.37 EV;
inset shows histogram of exposure errors; (b) ISO prediction error distribution, with over 90% of
predictions within +0.32 levels; inset shows histogram of ISO errors.

The proposed HCMM was evaluated under all 32 channel conditions defined in
Section 3.2. As illustrated in Figure 9, the Fixed Parameters method results in the lowest
and most variable SNR values, reflecting its inability to adapt to environmental changes.
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Figure 9. Comparison of the proposed multimodal prediction framework (HCMM) with two base-
lines under 32 underwater channel conditions. While the CNN-Only Baseline exhibits noticeable
instability in certain environments, the HCMM compensates for these fluctuations and consistently
stabilizes SNR, highlighting the advantage of environment-aware multimodal learning for practical
UOCC deployment.

We evaluate all methods under 32-channel settings spanning turbidity, flow, illumina-
tion, and source power. Fixed parameters yield the lowest and most variable SNR, confirm-
ing that static settings cannot accommodate changing water conditions. The CNN-Only
model improves mean SNR but shows pronounced drops in high-turbidity or low-light
scenes, indicating limited generalization beyond its training distribution.

HCMM maintains higher and more stable SNR across all 32 conditions. By integrating
three signals—image content, environmental measurements, and current camera state—
HCMM anticipates scene difficulty and selects safer operating points. As shown in Table 5,
this multimodal design reduces parameter-prediction error (test RMSE 0.23-0.33) and raises
average SNR to 7.64 dB, a ~1.7 dB gain over CNN-Only. The margin in our tank experiments
is smaller than in synthetic studies because turbulence and lighting fluctuations are less
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severe in the lab, which compresses performance gaps. Even so, HCMM consistently shows
the tightest SNR spread, highlighting improved stability.

Table 5. Performance comparison of different baseline and proposed models.

Method

Fixed Parameters

RMSE (Parameter Prediction) Average SNR (dB) Remarks
Uses static exposure & ISO
— (no learning) ~4.0 (highly variable) across all conditions; lowest
robustness.

CNN-Only Baseline

Image + parameter fusion;
0.96 (reported) 6.91 (synthetic) validated feasibility but lacks
environmental awareness.

HCMM (Proposed)

Multimodal (image +
0.23-0.33 (test set, Table 4) 7.64 (stable) environment + camera state);
highest accuracy and stability.

We also position HCMM against broader multimodal and reinforcement-learning
strategies. Recent multimodal OCC systems often merge image and signal features but
omit explicit environment embeddings, which hampers robustness under domain shifts.
RL controllers can adapt online but typically require many rollouts and a reward signal,
increasing latency and energy on embedded platforms. In contrast, HCMM makes one-
shot, feed-forward predictions using visual, environmental, and camera-state cues. This
keeps inference fast (see Section 4.6) while improving resilience to unseen turbidity and
illumination—properties that are particularly important for AUV deployment.

4.5. Underwater Measurement and Visualization

While the laboratory experiments verified the relative advantages of HCMM, the
controlled environment inherently reduced turbulence and illumination variability, thereby
compressing the performance gap between models. To further validate the generalization
ability of the proposed framework under more realistic conditions, we conducted additional
tests in an untrained shallow-water environment.

Due to experimental constraints, a simplified waterproof enclosure was developed for
the UOCC transceiver system described in Section 3.1. A custom underwater housing was
constructed using a transparent acrylic (PMMA) bar-shaped container with an open-top
design, chosen to minimize optical distortion while ensuring water resistance. The LED
emitter and CMOS receiver were mounted on a rigid vertical rod and inserted into the
container, which measured approximately 1 m in length. All sidewalls were made of opti-
cally clear PMMA to ensure high light transmittance and low scattering. As illustrated in
Figure 10, the open-top design facilitated flexible placement and retrieval while preserving
a stable optical interface through the front-facing walls. During deployment, the entire unit
was submerged to a depth of approximately 0.5 m, with the upper portion of the container
remaining above water to protect the internal electronics. This setup enabled stable testing
conditions in shallow water while maintaining consistent sensor alignment.
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Figure 10. Underwater measurement setup and deployment site at Deqing Lake. The simplified
PMMA housing enabled shallow-water testing to verify the generalization ability of HCMM in
real-world conditions.

Field testing was conducted at night along the Deqing Lake shore of Huzhou Univer-
sity. During the experiment, two operators submerged the transceiver setup to a depth
of approximately 0.5 m by inserting the mounting pole about 1 m into the water, ensur-
ing proper alignment between the LED transmitter and CMOS receiver. Environmental
measurements—including turbidity, flow velocity, and ambient light—were recorded at the
same depth using the sensors described in Section 3.1. The corresponding environmental
variables and transmitter signal power used as model inputs are summarized in Table 6.
Captured images were processed in real time, and the camera parameters were adjusted
based on predictions from the trained HCMM. The original image and the optimized image
are shown in Figure 11.

Table 6. Underwater measurement environment variables.

Parameter Value
Turbidity (NTU) ~38
Flow velocity (m/s) ~0.08
Transmitter signal power (W) 0.4
Ambient light (Im) ~

(a) (b)

Figure 11. CMOS received image: (a) Before; (b) After HCMM-guided adjustment. The optimized
image exhibits enhanced contrast and reduced noise, highlighting HCMM’s ability to improve visual
quality in real underwater conditions.

In UOCC systems, the LED-emitting region captured by the image sensor is the
primary area of interest, as it contains the modulated optical signal in the form of spatial
fringe patterns. Therefore, image quality metrics such as signal-to-noise ratio (SNR) are
most appropriately evaluated within this illumination zone. In our experiments, we
focused on the central column pixel range (150-500), which corresponds to the LED’s
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optical projection region. Gray values from this region were extracted for both the original
and HCMM-optimized images, as shown in Figure 12.
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Figure 12. Gray-value analysis of the LED projection region. Compared with the original image (blue),
the HCMM-optimized result (green) exhibits significantly higher and more stable SNR, demonstrating
improved robustness in real-world underwater conditions.

The SNR of the original image was approximately 19.87, while the optimized image
achieved an SNR of 28.42—indicating a substantial improvement. These results confirm
that HCMM not only improves average SNR but also mitigates the instability exhibited
by baseline methods in certain conditions, thereby enhancing robustness across varying
underwater environments.

Overall, the field tests confirm the effectiveness of the proposed HCMM beyond
controlled laboratory conditions. While the performance gain over the CNN-Only Baseline
appeared modest in Section 4.4 due to limited turbulence and illumination variability
in the emulation platform, the shallow-water deployment demonstrated a much larger
improvement in both image quality and SNR (from 19.87 dB to 28.42 dB). These results
show that HCMM not only enhances average performance but also compensates for the
instability of baseline methods in more realistic environments, reinforcing the importance
of environment-aware multimodal learning for practical UOCC deployment.

4.6. Computational Efficiency, Deployment, and Concise Synthesis

On a CPU-only host (batch = 1; 224 x 224), HCMM processes a frame in 78.3 ms with
24.76 M parameters (1.25 M trainable) and ~4.13 G multiply—accumulate operations, as
shown in Table 7. The CNN-only baseline (same frozen ResNet50 + MLP head) runs in
74.8 ms with 24.72 M parameters (1.21 M trainable) and the same arithmetic cost. The
~3.5 ms difference stems from lightweight branch concatenation and the fusion MLP, not
from the backbone.

Ablation (Section 4.5) indicates that visual features dominate exposure prediction,
while environment inputs (turbidity and illumination) contribute more to ISO selection—
consistent with imaging physics and enabling branch-level constraints in safety-critical
modes. Because the backbone is frozen and the fusion head is small, the model exports
cleanly to ONNX/TensorRT and permits branch-level pruning (e.g., dropping the camera-
state branch) with <2% accuracy loss on our data.
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Table 7. Concise synthesis of outcomes and relation to prior work (CPU-only; parameters in millions;
arithmetic cost from THOP).

Outcome Our Result Baseline/Prior Alignment or

Anomaly
Consistent:
. Low RMSE; >90% Higher RMSE .
EV/ISO prediction within tight bounds (CNN-only) rr}ultlmodal >

image-only

SNR (lab, 32 Higher mean, Fixed /CNN-only COHSISt?nt: adgptlve

. . > static; stability
conditions) lower variance less stable

matters

Lareer eains than in Explained: stronger
SNR (shallow water) BT & — field disturbances —

tank larger benefit
78.3 ms vs. 74.8 ms; Consistent: fusion
Inference cost both ~4.13 G MACs Same GMACs overhead negligible
Feed-forward; RL requires online Different:
Control strategy no online rollouts rollouts [19] latency/energy
advantage

Implication. With CNN-equivalent arithmetic complexity, HCMM delivers more stable
link performance via environment awareness and real-data calibration; compared with
RL controllers that require online interaction, single-shot inference offers clear latency and
energy advantages for constrained deployments.

5. Discussion
5.1. Expanded Interpretation and Implications

The Real-to-Sim-to-Deployment pipeline helps explain HCMM'’s ability to general-
ize. By calibrating the emulator to field distributions of turbidity, flow, and illumination,
the training data span the operating range typical of shallow water. Within this setting,
the model assigns complementary roles to its inputs: visual features dominate exposure
prediction—consistent with exposure’s dependence on scene contrast—while environment
features contribute more to ISO selection, reflecting ISO’s role in compensating for limited
photons and variable background light.

From a system viewpoint, stable SNR across changing conditions is more valuable
than occasional peaks, especially for swarm AUVs whose decoders can tolerate slight
sub-optimality but are vulnerable to sharp SNR dips. HCMM'’s lower variance, therefore,
translates into fewer packet losses and less frequent link renegotiation. The larger gains
observed in shallow-water tests, compared with the lab, indicate that environmental
awareness is particularly effective under non-stationary disturbances such as surface waves,
suspended sediments, and specular glints. Practically, this supports robust short-range
links for cooperative inspection and positioning, where visual sensors are already available
and power margins are tight.

5.2. Limitations and Future Work

The tank cannot reproduce full multi-path scattering or wavelength-selective absorp-
tion; training used a single 470 nm source, which may limit spectral transfer; validation
covered 100—400 NTU and moderate flows; and inference profiling focused on CPUs and
Jetson-class GPUs rather than ultra-low-power MCUs. These factors may compress or
magnify SNR gains relative to harsher open-water settings.

Future work will extend to blue—green bands, integrate Monte-Carlo scattering into
Real-to-Sim calibration, and study duty-cycling and quantization for energy-aware AUV
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autonomy. We will also explore multi-frame temporal fusion, proactive control via re-
inforcement learning, and end-to-end training that ties exposure decisions directly to
communication performance.

6. Conclusions

This work presented a Real-to-Sim-to-Deployment framework that integrates a physi-
cally calibrated underwater emulation platform with a multimodal deep learning model for
adaptive imaging parameter control in underwater optical camera communication (UOCC).
The sensor-integrated testbed, built with 470 nm blue LEDs and CMOS cameras under
tunable turbidity and flow conditions, enabled reproducible optical channel states and
systematic dataset generation. On this basis, we developed a Hybrid CNN-MLP Model
(HCMM) that jointly learns from optical images, environmental sensor inputs, and camera
configurations. Compared with our prior CNN-based image—parameter fusion baseline—
which achieved an RMSE of 0.96 and improved synthetic SNR from 4.16 dB to 6.91 dB but
lacked explicit environmental awareness—the HCMM substantially enhances prediction
accuracy and robustness. Specifically, it reduces RMSE to 0.23-0.33 and achieves up to
8.5 dB SNR gain in both controlled and field environments, consistently surpassing static-
parameter systems and the baseline CNN model. These findings validate the effectiveness
of environment-aware multimodal learning in bridging the gap between proof-of-concept
feasibility and practical deployment. The proposed framework demonstrates scalable
potential for real-time, energy-efficient UOCC on resource-constrained AUV platforms
and can be extended to related domains such as underwater positioning, inspection, and
laser-based links.
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