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Highlights

What are the main findings?

• The proposed online multi-AUV method achieves reliable sweep video coverage of
unknown and uneven seafloors while maintaining safety margins and adapting to
terrain occlusions.

• Benchmarking against lawnmower strategies shows that the proposed approach pro-
vides higher coverage, safer trajectories, and more efficient mapping under challenging
terrain conditions.

What are the implications of the main findings?

• The proposed method offers an effective solution for occlusion-aware underwater
sensing missions over unknown and uneven seafloor environments where fixed-
pattern approaches are inadequate.

• The framework can be extended to larger multi-AUV systems and real-world deploy-
ments, enabling more efficient video sensing applications.

Abstract

Autonomous underwater vehicles (AUVs) play a critical role in underwater remote sensing
and monitoring applications. This paper addresses the problem of navigating multiple
AUVs to perform sweep video sensing of unknown underwater regions over uneven
seafloors, where visibility is limited by the conical field of view (FoV) of the onboard
cameras and by occlusions caused by terrain. Coverage is formulated as a feasibility
objective of achieving a prescribed target fraction while respecting vehicle kinematics,
actuation limits, terrain clearance, and inter-vehicle spacing constraints. We propose an
online, occlusion-aware trajectory planning algorithm that integrates frontier-based goal
selection, safe viewing depth estimation with clearance constraints, and model predictive
control (MPC) for trajectory tracking. The algorithm adaptively guides a team of AUVs
to preserve line of sight (LoS) visibility, maintain safe separation, and ensure sufficient
clearance while progressively expanding coverage. The approach is validated through
MATLAB simulations on randomly generated 2.5D seafloor surfaces with varying elevation
characteristics. Benchmarking against classical lawnmower baselines demonstrates the
effectiveness of the proposed method in achieving occlusion-aware coverage in scenarios
where fixed-pattern strategies are insufficient.
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1. Introduction
Driven by the global pursuit of natural resources and the increasing focus on space

exploration, underwater research has gained significant attention in recent years [1,2].
Autonomous Underwater Vehicles (AUVs) have emerged as indispensable tools in this
domain, supporting a wide range of missions, including search and rescue, seabed mapping,
infrastructure inspection, and environmental monitoring and cleanup [3,4]. Their ability to
operate autonomously in complex and dynamic marine environments has expanded the
scope of underwater exploration and data acquisition [5,6].

Within this context, underwater sweep video sensing plays a central role in observing
and understanding submerged environments [7]. It enables continuous and detailed data
collection, facilitating the assessment of underwater features and environmental condi-
tions [1]. These capabilities facilitate early detection of critical events, such as pollution, the
presence of hazardous substances, sediment contamination, or habitat degradation, thus
contributing to the protection and sustainable management of marine ecosystems [4,8–10].
Underwater video sensing and surveillance has therefore become a cornerstone of modern
marine research and conservation efforts.

Among available technologies, AUVs offer distinct advantages for sweep video sens-
ing. Their operational flexibility and autonomy make them particularly suited for deploy-
ment in remote, hazardous, or ecologically sensitive areas [5,11]. Compared to traditional
methods, they reduce both operational cost and mission duration while maintaining high-
quality data acquisition [9,12]. Moreover, AUVs can autonomously collect and transmit
data in real time, addressing key challenges related to trajectory planning, control, and
communication in submerged environments [5].

Effective underwater sweep video sensing requires integrating mission-specific sen-
sors, such as ground-facing cameras [5]. The camera’s field of view (FoV) is a critical factor
influencing the vehicle’s trajectory, especially in missions that demand continuous moni-
toring of a region of interest [13]. Successful video sensing depends on maintaining this
region within the camera’s FoV throughout the mission [13,14]. However, uneven seafloor
topography, characterized by knolls, ridges, and depressions, can obstruct line-of-sight
(LoS), creating blind spots and leaving parts of the region uncovered [15]. To overcome
these challenges, advanced path planning algorithms are required to generate feasible
trajectories that preserve continuous LoS, ensure complete coverage, and avoid occlusions
caused by terrain variability [7].

Ensuring complete coverage over an uneven seafloor is inherently difficult, and the
challenge intensifies when the environment is unknown and no prior topographic informa-
tion is available. In known environments, coverage can be planned offline with optimized
trajectories designed to mitigate occlusions caused by terrain irregularities [7]. In contrast,
in unknown environments, such pre-computed paths are not feasible. AUVs must instead
perform online trajectory planning, adapting their motion in real time based on sensor data
to overcome LoS blockages, prevent coverage gaps, and reduce the risk of collisions [16].

Single-AUV operations in large, unknown underwater environments are further
constrained by endurance, coverage, and adaptability limitations, making coordinated
multi-AUV deployment a practical solution for efficient and reliable underwater video
sensing [17,18]. Deploying multiple AUVs enables faster and wider area coverage, im-
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proved energy efficiency through distributed task execution, and enhanced system ro-
bustness [6,17–19]. Collaborative strategies allow for optimized task allocation that avoids
redundant paths and ensures full coverage with minimal overlap [6,19]. Furthermore, the
ability to dynamically adjust formations enables the fleet to respond more effectively to
visibility constraints imposed by uneven terrain [17,19]. However, realizing these benefits
depends critically on precise trajectory planning for each AUV to maintain video sensing
quality while navigating over variable, unknown topography. This work addresses this
need by developing trajectory planning techniques for high-performance multi-AUV un-
derwater video sensing of unknown and uneven seafloors, while accounting for operational
efficiency, coverage quality, and LoS continuity [7].

In summary, we address the problem of multi-AUV sweep video sensing over an
unknown and uneven seafloor. Each vehicle is equipped with a ground-facing camera that
provides a conical FoV and collects local bathymetric data during motion. The objective is
to achieve complete visual coverage while satisfying range, depth, and minimum-clearance
constraints and avoiding inter-vehicle conflicts. A key challenge is that coverage can only
be credited when a point on the seafloor lies within the FoV and is directly visible under
clear LoS.

1.1. Contribution

This paper presents an online multi-AUV trajectory planning algorithm for occlusion-
aware sweep video sensing of an underwater region over unknown and uneven seafloors.
The objective is to achieve a desired coverage with efficient motion while ensuring both
inter-vehicle safety and maintaining clearance from the terrain. Coverage is only advanced
when a point on the seafloor is directly observable, meaning it lies within the FoV of the
onboard camera and has an unobstructed LoS.

The proposed framework operates in an iterative sense-assign-track cycle. Each cycle
begins with an occlusion-aware sensing update that refines both a binary coverage map
and a 2.5D elevation map of the seafloor. Frontier cells, located at the boundary between
explored and unexplored areas, are extracted as candidate goals. AUVs are then assigned
to nearby frontiers using a greedy nearest-neighbor rule with a spacing constraint that
promotes safe allocation. For each assigned goal, a safe viewing depth is selected based
on the nearest known elevation in the current map, assuming local surface continuity,
while enforcing terrain clearance and depth limits. Motion toward the goal is generated
through a short-horizon MPC, which minimizes position error and clearance violations
under kinematic and separation constraints. Each AUV executes only the first control, keeps
its goal latched until reached within tolerance, and then triggers reassignment. The loop
continues until the target coverage is achieved.

In summary, the key contributions are as follows:

1. Online occlusion-aware multi-AUV coverage framework: An online method for sweep
coverage of unknown and uneven seafloors in video sensing tasks. The environment
is modeled as a 2.5D elevation grid where depths are progressively revealed through
sensing. An occlusion-aware sensor model ensures that only truly visible cells within
the FoV contribute to both the terrain estimate and coverage map, enabling safe and
terrain-aware coverage expansion.

2. Goal generation and assignment: Frontier cells, located at the boundary between
explored and unexplored regions, are extracted as candidate goals. Each AUV is
assigned to a nearby unallocated frontier using a greedy nearest frontier rule with
a spacing constraint, distributing the fleet without centralized optimization and
requiring only pose, goal, and maps broadcasts. Safe goal altitudes are then computed
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from nearest known terrain estimates, ensuring that the FoV footprint remains within
range and satisfies terrain clearance and depth limits.

3. Adaptive trajectory tracking and termination: Short-horizon MPC generates trajectories
that balance goal progress, clearance safety, and actuation limits. Each AUV maintains
its current until a reach tolerance is met, after which reassignment occurs. The mission
terminates once the global coverage ratio exceeds a predefined threshold.

1.2. Related Work

Underwater video sensing for area coverage relies on the coverage path planning
(CPP) formulation. In CPP, the goal is to compute a trajectory that covers the entire target
region from an initial to a terminal state while detecting and avoiding obstacles [20].
This problem is widely studied in robotics, with applications spanning autonomous lawn
mowing, surveillance, agriculture, and structural inspection [21–24].

Authors in [25] classify coverage path planning techniques into classical and heuristic
approaches, highlighting that many employ canonical sweep strategies such as back-
and-forth (lawnmower) motions and boustrophedon decompositions, often posed in two-
dimensional or fixed-altitude workspaces. When a map is available in advance, cellular
decomposition provides a convenient strategy to divide the region into smaller grid or
polygonal cells [26,27]. A representative exact method is the boustrophedon decomposition
by the authors in [28], which partitions free space into sweepable cells so the robot can
traverse parallel strips with completeness guarantees. However, planar models of coverage
generally measure progress by ground-footprint overlap, failing to account for 3D self-
occlusions [25].

When terrain blocks the LoS between the vehicle and the target area, footprint-only
accounting can overestimate what is observed. LoS-aware planning addresses this by using
elevation models or ray casting checks so that seafloor points are counted only if directly
visible [7]. For example, ref. [7] proposes an occlusion-aware AUV coverage framework
that selects viewpoints ensuring visibility of seafloor points despite terrain occlusions.
Following this line of work, our approach assumes the sensor inherently returns only
cells within the FoV and unobstructed, ensuring strict occlusion-aware accounting when
navigating AUVs over the seafloor.

In unknown environments, offline coverage path planning methods that rely a prior
global map cannot guarantee completeness. Online coverage, by contrast, interleaves sens-
ing with replanning, progressively expanding the map and reducing the unexplored region
over time [29]. In this direction, ref. [30] presents an efficient method for large-scale 3D
environments, while ref. [29] introduces a receding-horizon next-best-view strategy that
serves as a standard benchmark. In the underwater context, authors in [31] propose a mul-
tisensor online 3D view-planning framework for autonomous exploration, demonstrating
the adaptability of online exploration to demanding marine conditions.

Frontier-based exploration has remained central to unknown environment planning
since Yamauchi introduced the idea of treating the boundary between known and unknown
regions as exploration goals [32]. Numerous refinements have been proposed ever since to
accelerate frontier detection and improve scalability. For example, authors in [33] introduce
expanding wavefront detection to more efficiently identify frontier cells, with subsequent
studies providing further algorithmic improvements for robust and scalable detection [34].
More recently, frontier selection has been combined with deep reinforcement learning to
enhance exploration efficiency in large or complex environments [35]. In the marine domain,
authors in [36] extend frontier-based viewpoint generation to underwater settings, demon-
strating its effectiveness for exploration and mapping tasks. Collectively, these efforts highlight
the adaptability of frontier-based strategies and their continued importance for navigating
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unknown environments. Building on this foundation, we employ frontier-based exploration
for multi-AUV coverage by combining frontier selection with altitude planning.

MPC provides a receding-horizon framework that enforces state and input constraints
while adapting to updated sensor information [37]. Its application to AUVs has been ex-
plored under diverse challenges. For instance, ref. [38] proposes a 3D trajectory-tracking
method capable of handling operational constraints in complex ocean conditions, while
ref. [39] incorporates Lyapunov stability analysis to improve robustness against distur-
bances. To address uncertainty, authors in [40] develop a tube-based, event-triggered MPC
scheme that enhances resilience to disturbances and parameter variability. More recently,
the authors in [41] extend MPC to over-actuated AUVs through a hybrid approach integrat-
ing variable-universe s-plane algorithms for precise 3D tracking. The study in [42] further
presents a localization aware, MPC-based path planning approach in which a USV coor-
dinates a fleet of AUVs to enhance energy efficiency, coverage, and localization accuracy
given acoustic communication constraints. Collectively, these contributions highlight the
versatility of MPC as a robust framework for underwater motion planning.

Distinct from prior coverage and exploration approaches, this study presents an online
multi-AUV framework that achieves occlusion-aware coverage of unknown and uneven
seafloors. The method integrates frontier-based goal generation, safe altitude selection
from an evolving terrain map, and short-horizon MPC for coordinated motion under
kinematic and safety constraints. Together, these components constitute a novel solution
for reliable video coverage in such environments, where traditional sweep patterns tend
to overestimate coverage and information-gain policies may fail to account for critical
occlusion effects.

1.3. Article Organization

The rest of this article is organized as follows. Section 2 introduces the materials and
methods, including the system model, essential definitions, problem formulation, and the
proposed solution. Section 3 presents the results and discussion, assessing the performance
of the proposed method. Section 4 concludes the paper and outlines future directions.

2. Materials and Methods
This section presents the foundational models, underlying assumptions, and concep-

tual framework of the proposed approach. It provides a detailed description of the system
components and constraints, formally defines the problem, and introduces the proposed
solution strategy.

2.1. System Model

We consider a team of M AUVs, indexed by i = 1, . . . , M. Each vehicle is equipped
with a ground-facing camera and tasked with performing sweep video sensing of an
underwater region over an unknown and uneven seafloor. The seafloor is represented as a
2.5D elevation map defined by a function T(x, y), where any point on the surface is given
by (x, y, T(x, y)) [22,43]. The elevation values satisfy T(x, y) < 0.

The region of interest is defined as a bounded horizontal 2D area A = [xmin, xmax] ×
[ymin, ymax], located on the seafloor. Its boundary coordinates are specified during the mis-
sion planning from available surface data and are maintained underwater using standard
onboard navigation and localization techniques [44]. Apart from this predefined boundary,
the interior seafloor topography is unknown prior to deployment, and no bathymetric map
or elevation data are available.

We discretize A into a uniform grid G with resolution σ > 0 as [43]

G = {(xa, yb)| xa = xmin + aσ, yb = ymin + bσ}, (1)
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where a = 0, . . . ,Dx and b = 0, . . . ,Dy, with integers Dx and Dy chosen such that xmin +

Dxσ = xmax and ymin + Dyσ = ymax [see Figure 1]. For each grid cell (xa, yb) ∈ G, the
elevation T(xa, yb) is initially unknown and becomes available only through onboard
sensing. At time t, each grid cell is associated with a coverage flag Ct(xa, yb) ∈ {0, 1} and,
if observed, a local elevation estimate T̂t(xa, yb). The coverage status and the estimated
terrain elevation are shared across all AUVs, allowing any single observation to update the
corresponding cell.

 
(a) (b) 

Figure 1. 2.5D seafloor discretized into grid G with resolution σ = 1 m. (a) 3D surface with grid G
overlaid; (b) plan-view (2D) height map.

The motion of each AUV i is governed by the following kinematic model [7,45]:
.
xi(t) = ui(t) cos ψi(t)

.
yi(t) = ui(t)sin ψi(t)

.
zi(t) = wi(t)
.
ψi(t) = ri(t), (2)

where the position of AUV i is denoted by pi(t) = (xi(t), yi(t), zi(t)), and its orientation is
described by the yaw angle ψi(t) ∈ [0, 2π). The control inputs consist of the surge velocity
ui(t) ∈ [0, umax], heave velocity wi(t) ∈ [wmin, wmax], and yaw rate ri(t) ∈ [−rmax, rmax].
When ri(t) ̸= 0, the AUV follows a circular trajectory with a turn radius given by
Ri(t) = ui(t)/|ri(t)| [7].

We use depth z ≤ 0, with z = 0 at the surface. For safe operation, the depth of each
AUV is bounded by Zmin and Zmax, where 0 > Zmax > Zmin. Each AUV i must therefore
maintain its depth within the following range [7]:

zi(t) ∈ [Zmin, Zmax]. (3)

To ensure safe clearance from the seafloor, the following condition must hold for all t [7]:

hi(t) ≥ hsafe, (4)

where hi(t) = zi(t)− T(xi(t), yi(t)) denotes the altitude of AUV i above the seafloor at the
time t, and hsafe > 0 is a positive safety constant. Similarly, to avoid inter-vehicle collisions,
the distance between any two AUVs i and j with i ̸= j must satisfy the condition [7,46]:

εij(t) ≥ εsafe, (5)

where εij(t) denotes the Euclidean distance between AUVs i and j at time t, and εsafe > 0
specifies the minimum required separation distance [7].

At the start of the mission, all AUVs are deployed on the water surface above the region
of interest A and then descend to their prescribed starting depths within the safe range
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[Zmin, Zmax]. Their initial horizontal positions are assigned within a small circle centered at
the midpoint of A, and their initial headings ψi(0) are uniformly distributed. Each AUV’s
initial depth zi(0) is set to a shallow value, allowing the algorithm to determine subsequent
safe viewing depths during the coverage process.

The onboard ground-facing camera of each AUV i, located at (xi(t), yi(t), zi(t)),
provides a conical FoV defined by an apex angle θ ∈ (0, π) and a maximum sensing range
R [see Figure 2] [7,47]. The radius ρi(t) of the FoV footprint on the seafloor is given by

ρi(t) = hi(t) · tan(
θ

2
), (6)

centered at (xi(t), yi(t), T(xi(t), yi(t))), where T(xi(t), yi(t)) < zi(t). To ensure that the
footprint remains within the sensor’s effective range, the following condition must hold:

hi(t) ≤ R · cos(
θ

2
). (7)

This constraint ensures that the projected footprint does not exceed the slant sensing
range R. Furthermore, in this design, the camera is assumed to be stabilized using a
gimbal [48].

Figure 2. Conical FoV projected onto the ground plane with θ = 60
◦

and range R = 20 m.

We assume that the camera return model incorporates an occlusion-aware feature.
Specifically, a grid cell ( xa, yb) is considered visible only if it lies within the footprint
defined in (6), satisfies the constraint in (7), and maintains a clear LoS to the AUV. In
other words, the sensing process inherently enforces LoS consistency for cells within the
footprint. Any cell inside the footprint but with an occluded LoS is not considered covered,
as illustrated in Figure 3. For each covered cell (xa, yb), the coverage map is updated such
that Ct(xa, yb) : = 1, and the local terrain estimate is set to T̂t(xa, yb) : = T(xa, yb).

All AUVs operate under a decentralized communication scheme. During the mis-
sion, they periodically exchange essential information, including their current pose
(xi(t), yi(t), zi(t), ψi(t)), assigned goal, and newly sensed coverage and elevation cells.
This exchange ensures that the shared coverage map Ct and elevation estimate T̂t remain
consistent across the team. These brief broadcasts, performed at each cycle through un-
derwater acoustic links [49], are sufficient for maintaining inter-vehicle separation and
cooperative coverage while avoiding the need for a central coordinator.
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Figure 3. Illustration of LoS occlusion between the AUV and a grid cell within the camera’s FoV. The
red solid line indicates the LoS from the AUV to the selected grid cell.

2.2. Problem Statement

The aim of this paper is to achieve a specified target coverage of the region of interest A
over an unknown and uneven seafloor, while ensuring safe terrain clearance and avoiding
inter-vehicle collisions among the AUVs. The coverage ratio at time t is defined as

Q(t) =
1
|G| ∑

(xa ,yb)∈G
Ct(xa, yb), (8)

where |G| denotes the total number of grid cells. Given a target coverage fraction
λtarget ∈ (0, 1), the objective is to navigate a team of AUVs, moving according to the
kinematic model in (2) and subject to the constraints (3)–(5), such that the closed loop
system achieves the target coverage λtarget under the FoV constraints (6) and (7) within the
occlusion-aware camera model. Formally, the problem is to achieve a finite time t = τhit

such that

Q(τhit) ≥ λtarget. (9)

Achieving this condition ensures that a desired fraction of the region is reliably ob-
served despite seafloor irregularities and occlusion effects, thereby enabling effective and
safe multi-AUV video sensing of unknown environments.

2.3. Proposed Solution

We propose an occlusion-aware sweep video sensing algorithm to guide multiple
AUVs in achieving the target coverage λtarget of the underwater region A situated over an
unknown and uneven seafloor. The method operates online in sense-assign-track cycles
with event-triggered goal reassignment. In each cycle, every AUV performs LoS-occlusion-
aware scanning using its onboard camera, updating both the coverage map and the eleva-
tion estimate T̂t within its FoV. From the updated map, frontiers, uncovered cells adjacent
to covered ones, are extracted and utilized as candidate goals.

Frontier allocation is performed using a greedy strategy designed to minimize travel
distance while avoiding conflicts between assigned goals. For each assigned goal, a safe
viewing depth is computed based on the nearest known elevation in T̂t associated with
that frontier. Each AUV then executes a short-horizon MPC to track its assigned goal
while satisfying the vehicle kinematics and safety constraints defined in (3)–(5). Goals are
reassigned only after arrival, meaning that an AUV keeps its current goal until it reaches
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the specified tolerance. Once the goal is reached, a new frontier is allocated, and the process
continues until the desired coverage is achieved. The complete procedure is summarized
in Algorithm 1.

Algorithm 1. Occlusion-Aware Multi-AUV sweep coverage

Inputs: Number of AUVs (M); grid (G); camera parameters (θ, R); safety parameters
(hsafe,εsafe, Zmin, Zmax); target coverage (λtarget); control limits (umax, wmax, wmin, rmax);
prediction horizon (H); sampling period (δ); footprint scale (η); goal-reaching
tolerance (ϵ)
Outputs: coverage map (Ct); elevation estimate (T̂t); coverage history (Q(t)); hitting
time (τhit)
1 Init: pi(t),ψi(t); Ct := 0; T̂t := NaN; ξi(t) = 1 for i = 1, . . . , M; t : = 0;G(t) : = ∅
2 while Q(t) < λtarget do
3 Sense and update (per AUV i):
4 for each (xa, yb) ∈ G do
5 if Visiblei(xa, yb; θ,R) = 1 then
6 Ct(xa, yb) : = 1; T̂t(xa, yb) : = T(xa, yb)

7 end if
8 end for
9 Frontiers:
10 Ft = {(xa, yb) ∈ G| Ct(xa, yb) = 0 and ∃ 4-nbr

(
xa′ , yb′

)
with Ct

(
xa′ , yb′

)
= 1

}
11 Assign goals and altitude:
12 for each AUV i where ξi(t) = 1 do
13 gi : = arg min

fn∈F (t)∖G(t)
κi,n, κi,n = ∥(xi, yi)− fn∥ s.t.

∥∥ fn − gj
∥∥ ≥ εsafe,

∀gj ∈ G(t)
14 if gi exist then
15 G(t) := G(t)

⋃
{gi}

16
∼
Tt(gi) := nearestKnown

(
gi, T̂t

)
17 ρdes : = ηR sin(θ/2); ζ = max

{
hsafe,

ρdes
tan(θ/2)

}
18 zi,goal : =

∼
Tt(gi) + ζ

19 ωi : =
(
xi,goal, yi,goal, zi,goal

)
20 end if
21 end for
22 Track and trigger:
23 for each AUV i with ωi do
24 solve MPC (Horizon H); apply first input
25 If ∥(xi, yi, zi)− ωi∥ ≤ ϵ then ξi(t) : = 1 else ξi(t) : = 0
26 end if
27 end for
28 t : = t + δ

29 end while
30 Return: Ct; T̂t; Q(t); τhit

At the beginning of each cycle at time t, every AUV scans the seafloor using its
onboard camera. Any grid cell within the FoV that maintains an unoccluded LoS to the
AUV is classified as visible [see Figure 4]. The coverage map Ct is then updated by setting
Ct(xa, yb) = 1 for each visible cell, and the corresponding elevation estimate T̂t(xa, yb) is
updated accordingly, as illustrated in Figure 5a,b.
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(a) (b) (c) 

Figure 4. Covere. seafloor regions after AUV scanning, outlined in white with current AUV positions
shown as red dots. (a) 2D view; (b,c) 3D views.

 
(a) (b) 

Figure 5. Results after the initial scan. (a) coverage map showing visible cells; (b) estimated elevation
map based on local sensing.

Using this updated coverage map, the frontier set is extracted and defined as the set of
uncovered boundary cells that share a four-neighborhood with at least one covered cell [50]:

Ft = {(xa, yb) ∈ G| Ct(xa, yb) = 0 and ∃ 4-nbr(xa′ , yb′) with Ct(xa′ , yb′) = 1}. (10)

These frontier cells represent locations where new information can be obtained, as
depicted in Figure 6.

 

Figure 6. Frontier Cells shown as green dots on the coverage map.
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For each AUV i, at time t, let ξi(t) denotes an indicator variable that determines
whether the AUV requires a goal assignment. It is defined as

ξi(t) =

{
1, I f no goal is latched or µi(t) ≤ ϵ

0, Otherwise,
, (11)

where µi(t) represents the 3D Euclidean distance from the current position of AUV i,
pi(t), and its assigned goal, while ϵ denotes the goal-reaching tolerance. Only AUVs with
ξi(t) = 1 request a new goal assignment.

For each AUV requiring a new goal, a distinct frontier goal is assigned using a greedy
nearest-neighbor strategy subject to spacing constraints. Let the current set of N frontiers
at time t, indexed by n = 1, . . . , N, be defined as

F (t) = { f1, . . . , fN}, fn = (xn
a , yn

b ). (12)

For AUV i located at the horizontal position (xi, yi), the distance to a frontier fn is
given by

κi,n =

√
(xi − xn

a )
2 +

(
yi − yn

b
)2. (13)

Let G(t) denotes the set of goals already allocated to other AUVs during the current
cycle. The assigned goal gi for AUV i is determined as

gi ∈ arg min
fn∈F (t)∖G(t)

κi,n, (14)

subject to the spacing constraint∥∥ fn − gj
∥∥ ≥ εsafe, ∀gj ∈ G(t). (15)

Here, εsafe denotes the minimum allowable separation distance as in (5) to promote
safe assignment. After each assignment, the newly selected goal gi is added to the set G(t).
Consequently, the latched goal set for all AUVs at time t is expressed as

G(t) = {g1, . . . , gM},
∥∥gi − gj

∥∥ ≥ εsafe, ∀i ̸= j. (16)

For each selected horizontal goal gi =
(

xi,goal, yi,goal
)
, the seafloor height

∼
Tt(gi) at

that point is estimated from the nearest known cell in the current elevation map T̂t. If
several cells are equally near, the one with the highest elevation is used to provide the
conservative estimate. This approximation relies on the assumption that the seafloor surface
is locally continuous and varies smoothly at the grid resolution used, which makes the
nearest covered neighbor cell a reasonable estimate of the unknown elevation. In addition,
the enforced minimum clearance hsafe further ensures reliability even in the presence of
moderate local discontinuities. Let

(
xnear

a , ynear
b

)
denote the nearest cell to

(
xi,goal, yi,goal

)
in

terms of Euclidean distance. Then, the seafloor height at the goal is computed as
∼
Tt(gi) = T̂t(xnear

a , ynear
b ), (17)

which provides the estimated depth of the goal, as illustrated in Figure 7.
Let the desired footprint radius be defined as

ρdes = ηR sin(θ/2), η ∈ (0, 1), (18)

and introduce the safe viewing offset

ζ = max{hsafe,
ρdes

tan(θ/2)
}. (19)

In (19), the maximum operator ensures that the viewing offset is assigned to the greater
of the minimum safety clearance and the desired height, hence ensuring a safe selection
above the seafloor. The computed goal depth is then given by
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zi,goal =
∼
Tt(gi) + ζ. (20)

In this design, η is a parameter that scales the desired footprint radius relative to the
sensor’s maximum possible footprint.

Figure 7. Assigned frontiers for each AUV on the seafloor with corresponding depth estimates.

Equation (20) defines a viewpoint for each goal such that the resulting footprint
remains informative, within sensor range, and at a safe distance from the terrain. The final
set of 3D goal positions for all AUVs at time t is expressed as [see Figure 8]

W(t) = {ω1, . . . , ωM}, ωi =
(

xi,goal, yi,goal, zi,goal
)
. (21)

Each goal ωi is latched to its corresponding AUV, and an AUV only requests a new
goal once it has arrived within the tolerance ϵ of its currently latched goal.

Figure 8. The 3D latched goals assigned to each AUV.

Given a latched goal ωi, each AUV solves a short-horizon MPC problem to track
the goal while maintaining a safe clearance from the current elevation estimate T̂t. For
this purpose, we discretize the continuous-time kinematic model in (2) to obtain the
discrete-time prediction model. With the state vector Xi = [xi, yi, zi, ψi]

T , control input
Ui = [ui, wi, ri]

T , and sampling period δ, the discrete-time prediction model is given by
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Xi[k + 1] =


xi[k] + δui[k]cosψi[k]
yi[k] + δui[k]sinψi[k]

zi[k] + δwi[k]
ψi[k] + δri[k]

, (22)

Ui[k] =

ui[k]
wi[k]
ri[k]

, (23)

with the following input bounds enforced at each step k = 0, . . . H − 1:

0 ≤ ui[k] ≤ umax, wmin ≤ wi[k] ≤ wmax, −rmax ≤ ri[k] ≤ rmax, (24)

where H denotes the prediction horizon.
Given the position vector pi[k] = [xi[k], yi[k], zi[k]]

T of AUV i, we formulate the MPC
cost function as:

L(Xi[k], Ui[k]) = (pi[k]− ωi)
TQp(pi[k]− ωi) + Ui[k]

TS Ui[k] + γ
[
T̂t(xi[k], yi[k]) + hsafe − zi[k]

)
]
2
+

, (25)

where [c]+ = max {0, c}, Qp is a diagonal weight penalizing 3D position tracking errors, S
weights control effort, and the third term softly enforce a terrain-clearance constraint.

At each cycle, for each AUV i, we solve the following finite-horizon optimization problem:

min
{ui [k]}H−1

k=0

∑ H−1
k=0 L(Xi[k], Ui[k]), (26)

subject to constraints (3) and (5), discrete dynamics (22), and the input bounds specified in
(24). After solving, we apply the first control Ui[1], update the vehicle state, and repeat this
process until a reach tolerance ϵ is satisfied. This sense-assign-track cycle is repeated until
the coverage criterion Q(t) ≥ λtarget is achieved.

3. Results and Discussion
This section presents simulation results obtained in MATLAB R2022b to evaluate

the performance of the proposed occlusion-aware multi-AUV sweep coverage method.
The method is tested across multiple seafloor profiles to assess its adaptability to varying
terrain conditions. In all scenarios, the algorithm successfully achieves the specified target
coverage, while the generated AUV trajectories maintain safe clearance from the seafloor.
The results include final coverage maps and vehicle paths, showing that the planned
motions consistently satisfy safety constraints. To provide a comparative assessment, the
proposed method is benchmarked against a commonly used sweep coverage strategy, with
performance is evaluated in terms of hitting time, achieved coverage, path length, and
terrain clearance.

The proposed method is implemented using the following system parameters:
M = 3, σ = 1, δ = 1 s, λtarget = 99.5%, θ = 60

◦
, R = 30 m, hsafe = 5 m,

Zmax = −5 m, Zmin = −30 m, H = 3, umax = 2 m/s, wmin = −0.5 m/s, wmax = 0.5 m/s,
rmax = π/4 rad/s, ϵ = 1 m, and εsafe = 5 m. These parameters were selected after pre-
liminary testing to provide a practical balance between safety, trajectory smoothness, and
computational efficiency in the simulated environments. The chosen values demonstrated
consistent stability and satisfactory performance across different seafloor profiles, ensuring
sufficient terrain clearance, smooth trajectory generation, and reliable inter-vehicle separa-
tion. A detailed analysis of how variations in these parameters influence coverage quality,
mission time, path efficiency, and overall operational safety is beyond the current scope
and will be considered in future work.

Three AUVs are initialized in a circular formation of radius 10 m centered at the
midpoint of the region of interest A. Each vehicle begins at a depth of −10 m, from which the
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proposed method determines subsequent safe operating depths. The seafloor is modeled
as a 2.5D elevation map over the domain A = [0, 100]× [0, 100] m. A flat baseline depth
of − 50 m is perturbed by a random number of Gaussian hills with amplitudes ranging
from 5 m and 20 m and spreads between 5 m and 15 m. This produces uneven seafloors
with varying elevation and spatial distribution of features, ensuring diverse coverage
conditions. Two representative seafloors, shown in Figure 9a,b, are randomly selected from
this procedure for evaluation. The differences between the two arise from variations in the
number and height of hills, the characteristics of the peaks, and the irregular placement of
terrain features across the domain. These two environments serve as test cases for assessing
the adaptability of the proposed method under different seafloor conditions.

(a) 

(b) 

Figure 9. Underwater regions considered. (a) Seafloor 1; (b) Seafloor 2.

The proposed algorithm achieves the target coverage on both seafloors despite their
different elevation characteristics. Figure 10 shows coverage progression for both cases. On
Seafloor 1 [see Figure 9a], characterized by broader hills, coverage increases smoothly and
reaches 99.5% in about 245 s. On Seafloor 2 [refer to Figure 9b], which features higher and
sharper peaks, coverage progresses more slowly and completes in about 290 s, as the AUVs
must adapt more frequently to maintain LoS visibility and safe clearance.

The corresponding trajectories for both cases, illustrated in Figure 11a,b, show that
the vehicles are efficiently distributed across the domain, avoid unnecessary overlap, and
maintain the required separation. Longer detours are observed on Seafloor 2 due to steep
terrain. The estimated terrain maps for both cases, shown in Figure 12a,b, closely match
the ground truth, capturing the main peaks and valleys with sufficient accuracy. Overall,
these results demonstrate the effectiveness of the proposed method in achieving reliable
coverage and safe operation across both seafloors.
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Figure 10. Coverage progression over time. The solid blue line corresponds to seafloor 1 and the
dashed red line corresponds to seafloor 2.

  
(a) 

  
(b) 

Figure 11. Final 3D and 2D trajectories of the three AUVs using the proposed method. Dots indicate
the start and x-marks represent the end. (a) seafloor 1; (b) seafloor 2.
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(a) 

 
(b) 

Figure 12. Resulting estimated elevation maps for (a) seafloor 1; (b) seafloor 2.

To further evaluate its performance, the proposed method is compared with a widely
used classical baseline. Specifically, it is benchmarked against the lawnmower coverage pat-
tern, which is a standard reference in coverage path planning tasks [28,51–53]. The choice
is justified since the lawnmower strategy provides a deterministic and well-understood
baseline, allowing performance gains to be attributed directly to the proposed algorithm.
Moreover, it was shown in [54] that, on flat terrains, the lawnmower strategy is asymp-
totically optimal, meaning that as the size of the investigated region grows, it provides a
time optimal complete sweep coverage by a team of collaborating autonomous vehicles.
Although more advanced coverage methods exist, many depend on environment-specific
modeling, proprietary submodules, or computational frameworks that are not directly com-
parable to the conditions considered in this study [55–58]. Using the lawnmower baseline
therefore ensures a fair and reproducible comparison and highlights the advantages of the
proposed method in handling uneven seafloor conditions, where fixed-pattern strategies
provide a meaningful contrast.

Both methods use the same sensor model and environment configuration. In the base-
line, the domain is partitioned into vertical strips traversed in boustrophedon order, and
strips are assigned to the three AUVs in a round-robin manner. Vehicles follow waypoints
at a fixed survey depth of zsurvey = −30 m and forward speed vsurvey = 2 m/s. We evalu-
ate two lawnmower settings that differed only in strip spacing: a baseline spacing with
10% overlap and a shorter spacing obtained by scaling the baseline strip width by 0.60 to
increase sampling density and mitigate occlusion effects. Strip width is derived from the
sensor footprint at the survey altitude, with ρsurvey = min{h survey,R · cos(θ/2)} · tan(θ/2)
and spacing 2ρsurvey(1 − overlap). Runs terminate upon reaching λtarget or when no further
increase in coverage is observed. Across all methods, we record coverage over time, path
length per AUV, average clearance, and minimum clearance versus time, enabling direct
comparison of hitting time, coverage, efficiency, and safety.
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On the seafloor shown in Figure 13, the proposed method outperforms the lawnmower
baselines across all evaluation metrics. It achieves 99.5% coverage within 235 s, while the
10% overlap lawnmower stops increasing at 66.7% after 302 s, and the reduced-spacing
variant attains only 79.2% after 406 s [see Figure 14]. These results highlight the persistent
difficulty of fixed strip patterns in handling occlusions, even when sampling density is
increased, whereas the proposed method effectively adapts its trajectories to close gaps and
ensure the completion of the desired coverage.

Figure 13. The seafloor elevation map used for benchmark comparisons.

Figure 14. Coverage progression over time for the proposed method (solid blue line), the lawnmower
with 10% overlap (dashed red line), and the lawnmower with shorter spacing (dotted yellow line).

Trajectory plots in Figure 15 further illustrate this distinction. The proposed method
allows the AUVs to distribute themselves adaptively across the domain and adjust their
depths in response to local terrain, in contrast to the rigid strip following behavior of the
lawnmower baselines. The clearance results in Figures 16 and 17 reinforce this observation,
showing that the proposed method consistently maintains higher minimum clearance
margins and greater average clearance, whereas both lawnmower settings frequently
violate safety constraints.
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Figure 15. Final 3D and 2D trajectories of the three AUVs for the proposed method (solid), the
lawnmower with 10% overlap (dashed), and the lawnmower with shorter spacing (dotted).

Figure 16. Minimum clearance over time for the proposed method (solid blue line), the lawnmower
with 10% overlap (dashed red line), and the lawnmower with shorter spacing (dotted yellow line).

Figure 17. Average clearance margin per AUV for each method.

Path length comparisons in Figure 18 confirm the efficiency of the proposed method,
which achieves the desired coverage with shorter trajectories per AUV than either lawn-
mower variants. Although the reduced spacing lawnmower produces significantly longer
paths, it still fails to achieve the target coverage. This demonstrates that denser sampling
alone is insufficient without terrain-adaptive planning. This is evident from the elevation
reconstructions in Figure 19a–c, where the proposed method produces a reliable seafloor
map, while both lawnmower baselines leave extensive unobserved regions.
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Figure 18. Path length per AUV for the proposed method and lawnmower baselines.

 
(a) 

 

(b) 

 

(c) 

Figure 19. Estimated elevation maps reconstructed by (a) the proposed method; (b) the lawnmower
with 10% overlap; (c) the lawnmower with shorter spacing.
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Overall, the results demonstrate that the proposed method achieves higher coverage in
less time while maintaining safer clearance and more efficient trajectories. By contrast, the
lawnmower baselines are constrained by occlusion and repetitive paths. These limitations
highlight the advantage of online planning in complex underwater environments.

4. Conclusions
This work presents an occlusion-aware multi-AUV sweep coverage method for un-

known and uneven seafloor environments. By integrating frontier-based exploration with
MPC trajectory planning under an occlusion-aware sensor model and safe constraints, the
approach adaptively guides multiple vehicles to achieve reliable coverage while avoiding
collisions and maintaining minimum clearance above the terrain. Simulation results show
that the proposed method consistently reaches the target coverage in shorter times with
safer and more efficient trajectories compared to classical lawnmower baselines. Fixed-strip
strategies, even with denser sampling, struggle to handle occlusions, leading to incomplete
coverage, longer paths, and frequent clearance violations. These findings highlight the
importance of adaptive and online planning in challenging underwater conditions.

Future research will focus on extending the proposed framework in several directions.
First, scalability will be examined by testing larger AUV teams, and adaptive parameter
adjustments will be investigated to enhance flexibility across varying underwater envi-
ronments. Furthermore, the robustness of the framework under sensing and localization
uncertainties will be analyzed, alongside quantitative evaluations to assess the consistency
and stability of its performance under diverse operating conditions. Finally, experimental
validation using real or laboratory-scale AUVs will be conducted to verify the framework’s
practicality under realistic hydrodynamics and sensing conditions.
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