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Abstract

The classification of submarine topography and geomorphology is essential for marine
resource exploitation and ocean engineering, with wide-ranging implications in marine
geology, disaster assessment, resource exploration, and autonomous underwater navigation.
Submarine landscapes are highly complex and diverse. Traditional visual interpretation
methods are not only inefficient and subjective but also lack the precision required for
high-accuracy classification. While many machine learning and deep learning models
have achieved promising results in image classification, limited work has been performed
on integrating backscatter and bathymetric data for multi-source processing. Existing
approaches often suffer from high computational costs and excessive hyperparameter
demands. In this study, we propose a novel approach that integrates pruning-enhanced
ConDenseNet with label smoothing regularization to reduce misclassification, strengthen
the cross-entropy loss function, and significantly lower model complexity. Our method
improves classification accuracy by 2% to 10%, reduces the number of hyperparameters
by 50% to 96%, and cuts computation time by 50% to 85.5% compared to state-of-the-
art models, including AlexNet, VGG, ResNet, and Vision Transformer. These results
demonstrate the effectiveness and efficiency of our model for multi-source submarine
topography classification.

Keywords: seafloortopography; backscatter data; label smoothing regularization; feature
pruning; ConDenseNet

1. Introduction
The seabed represents a crucial geological interface where the lithosphere, hydro-

sphere, and biosphere converge. The multibeam system captures intricate details of the
interactions among these layers on the ocean floor, providing essential data for studies in
paleoclimatology, paleoenvironment, geology, geomorphology, and plate tectonics [1–3].

Submarine landforms, the solid surfaces of the Earth submerged beneath seawater,
have long been challenging to observe directly due to their underwater location. The nature
of these landforms remained largely unknown until the 1920s, when the German vessel
“Meteor” pioneered the use of sonar sounding, revealing the dramatic features of the ocean
floor. Contrary to prior assumptions, the submarine landscape is as varied and complex
as terrestrial terrains, featuring towering seamounts, undulating sea hills, and vast ridges.
The seabed also hosts deep trenches and smooth abyssal plains [4,5].
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1.1. Marine Observations and Technology

Covering more than 70% of the Earth’s surface, the ocean floor exhibits a rich diversity
of geomorphic features. These include continental shelves and slopes gently descending
from the continental margin to the deep sea, expansive and flat abyssal plains, and massive
sedimentary formations known as continental rises. In addition, steep trenches and mid-
ocean ridges, which are prominent in the middle of the ocean, add to the complexity
of submarine topography. The exploration of the seabed and detailed analysis of its
topography are vital for advancing our understanding of the ocean and the Earth. This
research is integral to marine environmental science, developing and utilizing marine
resources, ocean engineering, and national defense [6–9].

Unlike the land terrestrial landforms, identifying marine landforms is considerably
more challenging [8]. Since the 1990s, advancements in technologies like multibeam
bathymetry systems, which reveals how seafloor materials scatter and reflect acoustic
waves, making it an essential tool for identifying and mapping seafloor substrates [10–15].
Backscatter data and bathymetric measurements derived from multibeam systems are now
extensively used to analyze the spatial distribution of seabed topography, characterize
seafloor materials, and identify various geomorphic features [16–18].

Side-scan sonar operates similarly to multibeam sonar. Its strength lies in identifying
features with distinct shapes, making it widely used in underwater detection, route surveys,
and marine archaeology. However, it only provides relative elevation data and cannot
deliver precise bathymetric measurements [19–21].

The shallow strata profiler uses acoustic waves to detect the structure of shallow
underwater strata, primarily applied in submarine pipeline surveys [22], marine geological
exploration, ocean engineering, and the detection of buried underwater objects [23,24].

Synthetic aperture sonar, a newer high-resolution imaging technology, offers the advan-
tage of resolution independence from sonar frequency and detection distance, although it
also lacks precise bathymetric capability [25–27].

Of these technologies, only multibeam sonar can extract key topographic features by
combining depth data with topographical mapping. It also leverages backscatter data to
identify geomorphic characteristics based on the varying reflection intensities of differ-
ent substrates, thereby improving classification accuracy [28]. Consequently, this study
selects multibeam-sounding data as the primary source for submarine topography and
geomorphology detection, as it best aligns with the research objectives.

1.2. Submarine Landform Classification Development

With the emergence of concepts like “Digital Earth” and “Digital Ocean” [29,30],
digitalization and automation have become essential drivers in earth sciences. As a result,
the automatic classification of submarine landforms has garnered increasing attention
across related disciplines [31].

Early research on submarine landform classification primarily relied on visual inter-
pretation, which are descriptive, manually derived classifications. However, due to the
complexity of submarine geomorphology, manual identification is time-consuming and
significantly increases research costs [30]. Fu et al. (2023) [32] summarized the current
limitations of underwater data, including the complexity of marine objects and challenging
underwater environments, such as haze-like effects and color casts.

It is important to highlight that the quality of the submarine sonar-derived data has a
direct impact on classification outcomes. Multibeam systems, side-scan sonar, and synthetic
aperture sonar can introduce significant noise, geometric distortion, and ambiguities due
to water column variability, seafloor roughness, or platform motion. These factors degrade
feature consistency and compromise inter-class separability, particularly in complex or
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low-contrast environments. Inaccurate or inconsistent labels further exacerbate these chal-
lenges, reducing the reliability of training datasets. Guan et al. (2024) [33] implemented
a conditional denoising diffusion probabilistic model, named DiffWater, to enhance un-
derwater images, which is also a very important issue for underwater images. Deng et al.
(2025) [34] emphasize the need for data refinement in remote sensing applications where
source overlap and signal interference are common.

With the rapid development of machine learning and deep learning, researchers
explored the machine learning approaches for classifying seafloor sediments and land-
forms, such as random forest (RF), Support Vector Machine (SVM), K-means clustering,
Extreme Gradient Boost (XGB) and have reported promising results [23,35–39]. For exam-
ple, Tran et al. (2024) [40] combined meta-heuristic optimization with machine learning
(RF, SVM, XGB, Light Gradient Boosting Machine and KTBoost (KTB)) on Bathymetry
data from Landsat 9 imagery. However, these conventional approaches depend heavily
on manual feature extraction and are sensitive to hyperparameter tuning. Their limited
automation and the complexity of feature engineering restrict their ability to keep pace
with the expanding demands of modern research [41].

In contrast, deep learning has emerged as a powerful alternative, offering several
key advantages. It enables the automatic extraction of diverse image features, supports
robust parallel processing, and shows strong resilience to noise. As a result, deep learning
has become the preferred choice for intelligent classification and recognition of the ocean
floor. For example, Cui et al. (2020) [42] proposed a deep learning model optimized using
FR fuzzy ranking features, leveraging the Deep Belief Network (DBN) method to build
a supervised classification model for submarine sediments. This approach, trained with
optimized features and real sediment samples, improved the predictive power of acoustic
data for sediment classification. Zhu et al. (2020) [43] applied transfer learning to sonar-
based seabed recognition. Wan et al. (2022) [44] developed a decision fusion algorithm
that combines voting strategies and fuzzy membership rules, effectively integrating the
strengths of both deep and shallow learning models. Dai et al. (2022) [45] introduced a
fusion deep learning model that incorporates transfer learning and fine-tuning of classical
CNNs to enhance seabed classification and recognition. Qin et al. (2022) [46] proposed a
network structure based on SegNet and U-Net, which can process side scan sonar data for
more accurate mapping.

Jiao et al. (2022) [47] investigated the limitations of class rebalancing schemes in
transfer learning through an empirical study. They introduced a two-stage decoupled
training approach for sonar image classification and proposed a pipeline called balanced
ensemble transfer learning (BETL), which addresses the issues of long-tailed feature shift.
Arosio et al. (2023) [48] were the first to apply fully convolutional neural networks (FCNNs)
to marine morphology, using ResNet50 and VGG13. Du et al. (2023) [49] applied GoogleNet
for submarine pipeline detection and identified the importance of pre-training data in model
performance. Anokye et al. (2024) [50] proposed a novel combination of the Parametric
Uniform Manifold Approximation and Projection (PUMAP) feature optimization technique
with CNNs, leading to significant improvements in classification accuracy and efficiency.

Huang et al. (2024) [51] adopted DeepLabV3 to enhance submarine landslide identifi-
cation. Xie et al. (2024) [52] introduced a physics-informed convolutional neural network
(PI-CNN) that incorporates radiative transfer data into the model, significantly improving
bathymetric map accuracy. Qiu et al. (2024) [53] reported a multi-channel neural network
method for marine gravity recovery. Geisz et al. (2024) [54] classified lakebed geologic
substrates using random forest and deep neural networks for underwater unmanned vehi-
cle applications. Meng et al. (2024) [55] applied deep learning techniques to multibeam
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echosounder data. Sun et al. (2024) [56] employed YOLOv5 on small-sized polymetallic
nodules using seafloor hyperspectral data.

Vision Transformer (ViT) [57] has also been reported to achieve solid performance
in image classification. It is based on attention mechanisms and adopts a transformer
architecture. Instead of processing images as spectral bands or pixel-level information,
ViT transforms them into patches or tokens. These patches are assigned positions, which
significantly reduces the input dimensionality. While considered an alternative to CNNs,
the transformer itself is rooted in architectures like ResNet, and ViT often incorporates
variations from CNNs to form hybrid models. It has not been reported applied to submarine
data, but we tried it, as it is theoretically applicable.

Although deep learning has been widely adopted in image classification and has great
potential, its progress in submarine topography and geomorphology remains limited [58].
This gap was caused by challenges unique to marine environments, including the scarcity
of labeled datasets, the complexity of sonar-derived imagery, and the subtlety of geomor-
phological features. It is not necessary to apply the latest CNN model but rather explore
the unique, not commonly examined factor, e.g., Zavala-Romero et al. (2025) [59] applied
the original CNN on The HYbrid Coordinate Ocean Model (HYCOM) for a data asimilarity
study and reported a training window influence. And CNNs suffer from computational
complexity due to their hyperparameter nature [60]. There is a need for lightweight, ac-
curate, and domain-adapted architectures that can generalize well in data-scarce settings
while effectively distinguishing complex underwater features. Our work addresses this
gap by applying and refining advanced the ConDenseNet with improved pruning and
label smoothing to enhance performance on multibeam sonar data.

We propose an enhancement to the ConDenseNet model, an efficient architecture that
leverages learned group convolutions while maintaining strong representational power
through dense connectivity. We evaluated our approach using a multi-source dataset
derived from multibeam sonar data collected in the waters of Morro Bay and Pochon Point,
California [61], comparing it against AlexNet, VGG, ResNet and ViT as stated in Zhao et al.
(2024) [62], these are the most popular models. Our key contributions and findings are as
follows: An improved pruning strategy integrated into ConDenseNet, combined with label
smoothing regularization (LSR). The pruning approach refines channel selection for greater
efficiency, while LSR mitigates overfitting and improves performance, especially in small-
batch training scenarios. A comprehensive cross-model comparison of LSR performance
across multiple architectures. A detailed comparison of hyperparameters and relative
computation times across models to highlight the efficiency of our approach.

2. Materials and Methods
2.1. Dataset

The study area is situated along the California coast, on the Pacific coast of the Western
United States, encompassing the offshore waters near Morro Bay (35.37°N, 120.85°W) and
Pochon Point (34.72°N, 120.61°W) [61]. The dataset includes panels displaying (from left to
right) backscatter data, bathymetric topographic data, and landform category label data,
providing a comprehensive representation of the spatial and geological characteristics of
each area, which is shown in Figure 1.
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Figure 1. The dataset includes panels displaying (from top to bottom) backscatter data, bathymetric
topographic data, and landform category label data, Morro Bay (left) and Point Buchon (right).

After processing, the original multibeam data is divided into three components:
backscatter, bathymetric measurements, and geomorphic labels. This data, collected by



Remote Sens. 2025, 17, 2686 6 of 20

Fugro Pelagos (San Diego, CA, USA) in 2008, was acquired using multibeam echo sounding
systems including the 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111
(Teledyne RESON, Slangerup, Denmark), all providing a 2-meter resolution. The dataset is
classified into five main geomorphic categories: continental shelf, rock outcrop, depression,
waterway, and ocean ridge (Figure 2). Images are formatted at a resolution of 64 × 64 pixels.

Figure 2. Seabed classification samples: (a) Continental shelf, (b) Rock, (c) Depression, (d) Waterway,
(e) Ocean ridge. All images are formatted with a 64 × 64 pixel size.

2.2. Models and Methods

The seabed topography is complex and varied, with overlapping and transitional
zones between landform types. This diversity results in some boundaries between land-
forms being blurred or challenging to delineate accurately. In particular, when similar
features appear in different geomorphic categories, there is a high degree of inter-class sim-
ilarity. For example, as shown in Figure 3, the “scour depressions” within the “depressions”
category display geomorphologic features that closely resemble those of “waterways”, as
both exhibit linear scour patterns. While raised peripheries and concave centers charac-
terize ordinary depressions, scour depressions show high inter-class variability due to
frequent tidal erosion, making them even more similar to ‘waterways’. This similarity poses
significant challenges for accurately classifying seabed landforms. Therefore, effectively
extracting the distinct features of each geomorphic category, establishing relationships
between these features, and addressing the high similarity between categories are critical
for improving classification accuracy.

We propose a fine-tuning pruned ConDenseNet with label smoothing regulariza-
tion (LSR) to effectively address these classification challenges, enhancing accuracy and
robustness in distinguishing between similar geomorphic categories.

2.2.1. AlexNet, VGG and ResNet

Krizhevsky et al. (2012) [63] introduced AlexNet, a pioneering deep convolutional
neural network that achieved a Top-5 error rate of 15.4% on a large-scale image dataset. This
network employs the rectified linear unit (ReLU) as the activation function, accelerating
model convergence. The dropout mechanism is used to mitigate overfitting, and the GPU
replaces the CPU for computation, significantly enhancing training speed.
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(a) scour depressions (b) waterways
Figure 3. Inter-class similarity sample: the “scour depressions” (a) display geomorphological features
close to “waterways” (b).

Simonyan and Zisserman (2014) [64] explored the impact of network depth on CNN
performance and developed the Visual Geometry Group (VGG) network, a deep model
constructed using simple, repeated building blocks.

Building on the VGG architecture, He et al. [65] addressed the challenge of reduced
accuracy with increased network depth by introducing residual blocks, leading to the
development of ResNet. By incorporating residual blocks, ResNet allows for creating
neural network layers that skip over connections to subsequent layers, reducing the impact
of overly strong connections and facilitating the training of much deeper networks. ResNet
has demonstrated strong performance and established itself as a benchmark for compar-
ison with subsequent networks, including GoogleNet [66], Inception v3 [67] and v4 [68],
MobileNet [69], SqueezeNet [70], and ShuffleNet [71].

2.2.2. DenseNet and ConDenseNet

Huang et al. (2017) [72] introduced DenseNet, building on the principles of ResNet.
Unlike ResNet, DenseNet employs a more radical dense connectivity mechanism, where
every layer is connected to all previous layers. Specifically, each layer receives the outputs
of all preceding layers as additional inputs as illustrated in Figure 4. This dense connectivity
promotes feature reuse, enhancing the network’s efficiency and improving performance by
reducing the parameters required to achieve high accuracy. DenseNet achieves comparable
accuracy to ResNet on the ImageNet classification dataset while requiring less than half
the number of parameters and about one-third of the computational resources to reach the
same performance. In DenseNet, the features extracted from each layer serve as nonlinear
transformations of the input data (Figure 5), with the complexity of these transformations
increasing as the network depth grows (due to the accumulation of nonlinear functions).
Unlike traditional neural networks, which rely on the most complex features from the
final layer, DenseNet leverages features from earlier layers with lower complexity. This
allows DenseNet to create a smoother decision function, leading to better generalization
performance. DenseNet exhibits strong resistance to overfitting, making it particularly
suitable for datasets with limited samples.

The DenseNet architecture addresses previous challenges by building a deeper, densely
connected network. In this network, each hidden layer generates multiple feature maps.
DenseNet refers to each hidden layer as a Dense Block (Figure 5), with the number of
feature maps (X layers) produced by a layer (H layers) being defined as the growth rate,
denoted by the lowercase letter k. For example, when each layer generates four feature
maps, k = 4. The dense block, the core component of DenseNet, is designed to maximize
information flow between network layers.
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Figure 4. The brief structure of DenseNet, where Xi are the concatenated feature layers and Hi are
the transform outputs layers.

Figure 5. Schematic diagram of dense block module, where each previous feature layer (Xi layer)
contributes to all the rest of the layers.

In the DenseNet structure, the information added to the network differs significantly
from the information retained. Each convolutional layer in a dense block is narrow (e.g.,
using 12 filters per layer) and only adds a small number of feature maps to the network’s
collective knowledge, which are then retained throughout the layers. Unlike traditional net-
work structures, where layers have unidirectional connections, DenseNet employs multiple
connections between layers, resulting in (L + 1)/2 connections for L layers. The convo-
lution operation in the dense block is represented by xL = TL([x0, x1, . . . , xl−1]), where
x0, x1,. . . , xl−1 is the convolution layer of the preceding l layer, xL is the output, and TL is
the set containing nonlinear transformation, including convolution, pooling, and ReLU
as illustrated in Figure 6. Each dense block consists of a series of 1 × 1 and 3 × 3 convolution
layers with the same padding for cascading operations.

Although DenseNet uses a pattern of dense connections, it requires fewer parameters
than traditional convolutional networks. This network structure reduces redundant infor-
mation learning and minimizes the parameters needed, improving parametric efficiency.
Furthermore, the continuous connections between layers allow for faster gradient flow
from the raw input data and the loss function, helping mitigate the vanishing gradient prob-
lem. This feature reuse method enables the construction of deeper networks to effectively
capture the deep semantic relationships between features.

While pre-trained DenseNet effectively identifies complex multivariate data and ex-
tracts diverse features, its internal connections may exhibit redundancy. Early features,
for example, do not always need to be reused by later layers. To address this, Con-
DenseNet [73] introduces a pruning operation that specifies the network during training
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called the Learned Group Convolution (LGC) approach as shown in Figure 7, which is
used in pruning to select an optimal pattern of input-output connections, enabling the
network to learn which essential features can be pruned automatically. However, due to the
complex nature of underwater terrain data, pruning important features could negatively
impact the results. During training, convolutional kernels are pruned based on their L1

norm, facilitating group convolution learning. This pruning occurs early in the training
process rather than after the model is fully trained, allowing the network weights to be
smoothed over time. Compared to DenseNet, ConDenseNet automatically selects the
optimal input–output connection mode, ultimately converting the network into a more
efficient convolutional structure. The ConDenseNet reduces the computational load to
approximately one-tenth while maintaining the same accuracy. The pruning process in
ConDenseNet is controlled by the Condensation Procedure parameter across each of its C1

condensing stages, with 1/C of weights pruned at each stage. By the end of training, only
1/C of the weights in each convolutional group remain, allowing the network to gradually
eliminate redundant connections throughout training. This process accurately prunes and
smooths the network’s weights, enhancing efficiency. A permute layer is added during
training to implement channel interchange, thereby mitigating any adverse effects from the
1× 1 LGC layers. This adjustment, performed during training, helps ensure optimal results.

Figure 6. Dense block and condense block during training/testing (where Xi represents the features
of layer i, downward arrows indicate feature map replication, Li multiple connections between layers,
and oblique arrows represent convolution layers).

Figure 7. ConDenseNet network structure diagram.
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2.2.3. Cross-Entropy Loss Function and Label Smoothing Regularization

Cross-entropy measures the similarity between two probability distributions, p and
q, where p represents the true distribution, and q represents an alternative distribution.
Cross-entropy quantifies the expected encoding length needed to represent data following
the true distribution p but encoded according to q. Specifically, if p is used as the true
distribution and q as the alternative, the expected number of bits required to encode an
event is represented by H(p, q), defined as Equation (1):

H(p) = ∑
i

p(i) · log
(

1
p(i)

)
(1)

If the wrong distribution q is used to represent the average encoding length from the
true distribution p, then

H(p, q) = ∑
i

p(i) · log
(

1
q(i)

)
(2)

Cross-entropy can be calculated for discrete variables by summing over all classes
(Equation (2)); for continuous variables, it requires integration (Equation (3)). In the
context of machine learning, cross-entropy serves as a loss function where p represents
the distribution of actual labels and q is the distribution of predicted labels from a model.
Minimizing cross-entropy loss optimizes the model to align q with p, improving accuracy:

−
∫

X
P(x) log Q(x)dr(x) = Ep[− log Q] (3)

Label smoothing regularization (LSR), introduced in Rethinking the Inception Archi-
tecture for Computer Vision (2016) by Google Brain researchers [67], is a regularization
technique designed to prevent models from becoming overly confident during training. It
is commonly used for classification tasks to improve generalization and reduce overfitting.
Label smoothing replaces “hard” one-hot labels with “soft” labels that assign a small prob-
ability to incorrect classes. This modification is achieved by blending one-hot labels with a
uniform distribution over all labels, resulting in “smoothed” labels.

For a K-class classification, the one-hot label y is smoothed as Equation (4):

ysmooth = (1 − θ) · y +
θ

K
(4)

where θ is the smoothing strength. This shift introduces slight uncertainty in the true
label, reducing the likelihood of the model becoming too confident about a specific label
and encouraging it to generalize better. By reducing the difference between the predicted
positive and negative sample outputs, label smoothing improves classification performance,
particularly in cases with high-class similarity, as it mitigates overfitting and enhances the
model’s adaptability to new data.

Given the importance of LSR, researchers have investigated its effects on training deep
neural networks. Müller et al. [74] empirically demonstrated that LSR improves model
calibration by making category clusters more compact, increasing the distance between
classes, reducing interclass distances, enhancing generalization and improving overall
model calibration. For certain tasks, such as classifying submarine landforms, the high
similarity between different geomorphic categories introduces challenges in accurate classi-
fication. By incorporating label smoothing, the model accounts for cross-entropy in a way
that emphasizes correct class predictions while moderating the loss for other classes.
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Specifically, LSR can be defined by modifying the standard cross-entropy function as
follows in Equation (5):

H
(
q′, p

)
= (1 − ε)ce(i) + ε ∑

ce(j)
N

(5)

where ce(i) represents the standard cross-entropy loss of i, epsilo is a small positive num-
ber called the smoothing factor, i is the correct class, and N is the number of classes,
uniformly distributed.

From Equation (5), we can find that in the training process, the loss function will
consider the loss of the correct category and the loss of other categories. By including the
loss of similar categories, the model becomes less susceptible to high interclass similarity,
reducing its negative impact on feature representation.

2.2.4. Our Methods: Fine-Tuning Pruned ConDenseNet with Label Smoothing Regulation

We identified a promising synergy within CondenseNet, particularly in its pruning
process, which becomes even more effective when combined with the LSR approach. This
integration optimizes the cross-entropy loss function for classifying intricate submarine
landforms, addressing challenges like interclass similarity with precision.

Our refined method was tested on datasets incorporating backscattering and bathymet-
ric topographic data, utilizing their multi-source potential to boost representational power
without substantially increasing model parameters. The input data flows through an initial
7 × 7 convolutional layer, followed by a 3 × 3 max-pooling layer, which leads to dense
connection layers. Transition layers, equipped with 1 × 1 convolutions and average pool-
ing with a stride of 2, adaptively downsample feature maps. Downsampling occurs three
times within the network using CondenseNet’s structure. This strategic design maintains
computational efficiency while preserving key spatial features. Finally, the enhanced LSR
based cross-entropy loss function minimizes interclass similarity issues, refining feature
extraction and significantly improving classification accuracy.

The workflow, visualized in Figure 8, exemplifies how dense network architectures, en-
riched with label smoothing, handle complex classifications for environmental monitoring,
demonstrating their versatility across disciplines with data-intensive challenges.

Figure 8. Schematic diagram of a densely connected network based on LSR.

3. Results
3.1. Comparison Results Across Models

The accuracy evaluation metrics utilized in this study include Precision, Recall, F1-
Score, Intersection over Union (IoU), and the confusion matrix. Precision measures the
proportion of correctly predicted positive cases out of all predicted positives, calculated
as Precision = TP

TP+FP (TP: true positive; FP: false positive), reflecting the model’s ability
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to avoid false positives, particularly when evaluating classification performance on actual
images. In contrast, Recall (i.e., true positive rate) assesses the proportion of correctly
predicted positive cases out of all actual positives, expressed as Recall = TP

TP+FN (FN: false
negative), highlighting the model’s sensitivity to detecting true positives. Precision and
Recall often exhibit a trade-off: prioritizing high Precision may lower Recall, and vice versa.
While the ideal scenario maximizes both, this is challenging due to their interdependence.
To balance this trade-off, the F1-Score, a harmonic mean of Precision and Recall, is com-
monly used, and a Precision–Recall (P-R) curve can visually represent their relationship
across different thresholds. The confusion matrix, or error matrix, provides a standard
framework for accuracy assessment.

To demonstrate the effectiveness of our innovative synergy of ConDenseNet with
LSR, our approach was tested on California bathymetric topographic data and compared
with current mainstream methods such as AlexNet, VGG, ResNet, ViT, and ConDenseNet
without LSR.

The dataset was split into training, testing, and validation sets in a 3:1:1 ratio. Ablation
experiments were conducted under two distinct scenarios: the first utilized only backscatter
data as input, while the second incorporated multisource data, combining backscatter and
bathymetric topographic data.

This analysis examines the distribution of correctly and incorrectly classified instances
across classes and identifies patterns of misclassification between categories. To ensure
robust and reliable results, the dataset was randomly partitioned, and the experiments were
repeated 20 times. The final evaluation was based on the mean and standard deviation of
overall accuracy across these iterations, reducing the impact of randomness and enhancing
the reliability of the results.

From Table 1, it is evident that ConDenseNet builds upon the foundational concept of
residual connections in ResNet but introduces a more interconnected architecture. While
ResNet connects each layer to a limited number of preceding layers (typically 2–3) through
element-wise addition, ConDenseNet establishes dense connections by concatenating each
layer’s output with all preceding layers along the channel dimension, providing richer in-
puts for subsequent layers. This dense connectivity not only promotes feature reuse but also
enables ConDenseNet to achieve superior performance compared to ResNet, with fewer pa-
rameters and reduced computational overhead. However, training ConDenseNet exhibited
overfitting issues, likely due to the dense connectivity amplifying noise in the data. By in-
corporating label smoothing during training, the network’s optimization process became
more robust and compact, mitigating overfitting and delivering significantly improved and
reliable results.

Table 1. Accuracy comparison between AlexNet, VGG, ResNet, ConDenseNet, ViT, and our approach
(ConDenseNet+LSR).

Method Precision [%] Recall [%] F1-Score [%] IoU

AlexNet 65.46 ± 0.62 39.05 ± 0.78 35.60 ± 0.59 33.28 ± 0.67
VGG 67.87 ± 0.74 38.27 ± 0.82 37.76 ± 0.81 34.43 ± 0.83
ResNet 70.13 ± 0.58 45.77 ± 0.67 45.18 ± 0.73 42.46 ± 0.76
ConDenseNet 71.83 ± 0.84 47.77 ± 0.63 48.62 ± 0.69 40.34 ± 0.68
ViT 61.92 ± 0.38 29.98 ± 0.64 28.60 ± 0.52 31.32 ± 0.42
Our 73.13 ± 0.69 48.40 ± 0.72 54.74 ± 0.63 43.28 ± 0.56

Figure 9 presents the confusion matrix generated from the classification results of
AlexNet, VGG, ResNet, DenseNet, and CondenseNet integrated with the improved LSR
with backscatter data only and with both backscatter and bathymetric data. AlexNet,
VGG and ResNet all have some failures indicated as blank in Figure 9, e.g., the Ocean
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ridge. The results indicate that the classification accuracy for the Continental shelf, rock,
and depression exceeds 50%, with “shelf” and “depression” achieving notable accuracies
of 80% and 83%, respectively. However, other categories exhibit lower classification accu-
racy, which can be attributed to the relatively smaller sample sizes compared to “shelf”
and “depression”. To address this imbalance, future improvements could involve weight
adaptation and data augmentation techniques to enhance the model’s ability to classify
underrepresented categories.

Figure 9. The confusion matrix of AlexNet, VGG, ResNet (Top, left to right) and DenseNet, Con-
DenseNet with LSR with Backscatter data only and with Backscatter and bathymetric data (Bottom,
left to right). (0) Continental shelf, (1) Rock, (2) Depression, (3) Waterway, (4) Ocean ridge.

3.2. Ablation Experiments

To further evaluate each module’s contribution to the proposed network, ablation
experiments were conducted using backscatter data as the sole input, which is shown
in Table 2. Table 2 compares the classification performance of the entire network and its
variants, including configurations without pruning the densely connected network and
without improved label smoothing.

Table 2. Ablation experiments of different ConDenseNet variants: without pruning, without LSR,
and with both pruning and LSR, on seabed topographic and geomorphic datasets.

Method Precision [%] Recall [%] F1-Score [%] IoU [%]

ConDenseNet without pruning 71.34 ± 0.56 50.53 ± 0.47 53.28 ± 0.44 35.17 ± 0.35
ConDenseNet without LSR 70.45 ± 0.52 48.43 ± 0.37 52.61 ± 0.55 34.46 ± 0.48
ConDenseNet+LSR 71.74 ± 0.69 50.62 ± 0.72 53.34 ± 0.43 35.28 ± 0.56

3.3. Different Models Adopt LSR

The LSR had a significant impact on the improvement, but it also seems to be an inde-
pendent component which may be able to be stripped from our approach. We performed a
series of comparisons adopting the LSR with other models, such as AlexNet, VGG, ResNet
and ViT with LSR.

The results are shown as Table 3. This result is better combined with Table 1. We
calculated the differences of each model with and without LSR, and the result is illustrated
in Figure 10.
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Table 3. Accuracy comparison between AlexNet+LSR, VGG+LSR, ResNet+LSR, ViT+LSR, and our
approach (ConDenseNet+LSR).

Method Precision [%] Recall [%] F1-score [%] IoU [%]

AlexNet+LSR 66.59 ± 0.56 38.68 ± 0.64 37.08 ± 0.58 35.86 ± 0.56
VGG+LSR 66.21 ± 0.85 36.85 ± 0.37 37.56 ± 0.72 35.19 ± 0.45
ResNet+LSR 69.63 ± 0.23 41.76 ± 0.57 43.67 ± 0.36 40.67 ± 0.38
ViT+LSR 58.92 ± 0.74 25.47 ± 0.43 23.62 ± 0.61 27.58 ± 0.51
ConDenseNet+LSR 73.13 ± 0.69 48.40 ± 0.72 54.74 ± 0.63 36.38 ± 0.56

Figure 10. The gain/loss plots of AlexNet (AlexN), VGG, ResNet (ResN), ConDenseNet (CDN) and
ViT with and without LSR in Precision, Recall, IoU and F1-Score.

4. Discussion
4.1. The Benefit of Adopting Pruned ConDenseNet+LSR (Our Method)

Our method utilizes ConDenseNet as the backbone network, which is pruned and
fine-tuned, thereby improving channel selection. It incorporates LSR, which enhances
the detection of small objects and reduces overfitting. This design concatenates features
across Dense Blocks and employs downsampling through pooling operations to handle
varying feature map sizes as illustrated in Figure 9. Furthermore, our approach produces an
exponential growth rate, where higher-level features play a crucial role in deeper networks.
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By increasing the number of channels in later layers, the model achieves greater accuracy,
underscoring the significance of feature richness at higher levels.

From Table 1, the results indicate that even without the LSR, our backbone network,
ConDenseNet, outperformed most existing methods and demonstrated strong feature
extraction capabilities. However, some areas can be improved. The pruning implements
the channel selection adaptation, which results in efficiency and flexibility improvement,
contributing an additional 0.33% increase in accuracy. That may not sound like much.
The pruning would reduce the hyperparameter volume from 4.8 M to about 3 M, as shown
in Table 4, which cuts about 50% of the computation time. These findings highlight the
complementary benefits of pruning and the improved loss function in enhancing the
network’s overall classification accuracy. Incorporating the LSR that optimizes the loss
function further enhanced classification accuracy by an additional 0.94%. This improvement
can be attributed to the loss function’s ability to effectively reduce interclass similarity,
particularly among submarine landform and geomorphic categories, thereby refining
feature representation. The LSR replaced the standard batch normalization, which provides
group normalization and, as a result, better handling of small batch sizes or deployment
on edge devices due to the reduction in overfitting. The LSR requires slightly more
computation time for all models.

Our proposed approach, which incorporates a fine-tuned pruned ConDenseNet with
LSR, achieved a classification accuracy of 71.14%. This outperformed AlexNet, VGG,
ResNet, ConDenseNet, and ViT, as shown in Table 1. Specifically, the proposed method
achieved approximately 2% higher accuracy than ResNet and nearly 1% higher than Con-
DenseNet. These results demonstrated the superior classification performance of densely
connected networks for submarine topography and geomorphology and demonstrated the
effectiveness of the improved label smoothing loss function in mitigating interclass simi-
larity. The improvement might seem marginal in terms of accuracy, but it is worth noting
that the F1-score is much higher, at 9.56% and 6.12%, respectively. Our method is also sig-
nificantly more robust and has a much smaller parameter volume and lower computation
time as shown in Table 4. We firmly believe the progress is both solid and meaningful.

Table 4. Relative hyperparameter volume and computation time comparison (pruned ConDenseNet
as the benchmark).

Method Parameters Computation Time Notes

Pruned ConDenseNet 1× (3 M) 1× ConDenseNet-121
ConDenseNet 1.6× (4.8 M) 1.5× ConDenseNet-121
AlexNet 12.7× (61 M) 0.9×
VGG 28× (138 M) 7× VGG16
ResNet 5.3× (25.6 M) 1.4× ResNet50
ViT 18× (86 M) 4× patch = 16
Our 1× (3 M) 1× Benchmark + LSR

4.2. LSR Impact

The general expectation is that LSR can improve the performance of most models we
compared and does not cost any significant additional computation time. Our experiences
show that all the models with and without LSR have almost the same computation time.
However, the impact is not consistent across all equally. Comparing the results from Table 1
and Table 3, we observe that LSR does not always lead to improvements, for example,
in VGG, ResNet, and ViT. VGG experienced a precision drop of about 1.66%, and ResNet
decreased by approximately 0.5%. For AlexNet, the gain from LSR is marginal at only
1.13%. In contrast, ConDenseNet benefits the most, showing an improvement of around
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1.3%. The primary advantages of LSR lie in its ability to mitigate label noise and reduce
overfitting, particularly in small-batch training scenarios. That said, it comes at a cost: it
introduces additional model complexity and computational overhead, especially in models
with large parameter counts like VGG and ViT.

In our experiments, LSR works particularly well when combined with our pruned
ConDenseNet. There appears to be a strong synergy between pruning and LSR. While
pruning removes redundant channels and simplifies the network, LSR stabilizes the training
process and promotes more generalized outputs. Hence, they result in better regularization
and more efficient feature learning without sacrificing accuracy. This suggests that the
effectiveness of LSR can be amplified when the model architecture is first optimized through
structural simplification.

The effects of LSR on AlexNet and VGG were as expected. For AlexNet, the main
limitation is its low capacity for generalization, and LSR cannot overcome that fundamental
issue. VGG, with its large number of parameters, is already prone to overfitting. Adding
LSR in this case seems to make training even more unstable. The performance gains are
minimal, while the extra cost in training time and the increased sensitivity to hyperparame-
ters outweigh the benefits. This suggests that LSR may not be suitable for older or deeper
architectures that lack built-in regularization.

One interesting point is that both AlexNet (+1.13%) and ConDenseNet (+1.3%)
showed small improvements in accuracy with LSR. However, it is important to note
that ConDenseNet achieved a much larger improvement in F1-score, with gains of 1.48%
(AlexNet) and 6.12% (ConDenseNet). It also performed better in terms of computation
time and robustness. Based on these results, we believe it is worthwhile to adopt LSR in
ConDenseNet as proposed.

We also expected LSR to integrate well with ResNet. Theoretically, LSR should enhance
robustness by reducing overfitting and preventing the model from prematurely locking
onto incorrect labels during training, especially important when dealing with high inter-
class similarity. However, our results show that precision dropped by approximately
0.5%, and the F1-score declined by about 1.51%. We believe that this is caused by LSR
overcompensating for overfitting on our relatively small dataset. This highlights that the
benefits of LSR are context-dependent and may require careful calibration based on dataset
size and class distribution.

For ViT, it has potential with LSR, but its impact is highly dependent on dataset
size. ViT is inherently designed for large datasets through its image-to-token embedding
mechanism and dimensionality reduction. When applied to smaller datasets, it tends to
underperform due to limited training diversity. In such cases, LSR can serve as a useful
regularizer by stabilizing training and mitigating overfitting. However, in our experiments,
the benefits were not significant, likely due to the sensitivity of ViT to data volume and
its already regularized architecture. A more comprehensive evaluation on larger datasets
would be necessary to fully assess the potential of ViT with LSR. It is also worth mentioning
the overwhelming computational cost of applying ViT with LSR. It is simply not worth it
for small datasets.

5. Conclusions
Seabed landforms exhibit diverse geomorphic features, but their classification poses

significant challenges due to the limited amount of available data and the subtle similarities
between certain categories, such as depressions and waterways shaped by seawater erosion.
Traditional virtual interpretation and existing neural networks struggle to fully extract
and differentiate these complex features, leading to suboptimal classification accuracy.
Addressing these challenges requires exploring an effective approach that can extract
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and represent key geomorphic features, establish relationships among them, and enhance
classification performance.

This paper proposes a novel fine-tuning pruning ConDenseNet with LSR designed
to improve the classification of submarine landforms. Our approach can also incorporate
bathymetric terrain data alongside backscatter data as multi-source inputs. The feature
space improves the representational power of the input data. Our approach efficiently
extracts and connects multi-layered topographic features, while the LSR optimizes the
entropy of the loss function, which mitigating overfitting and reducing the impact of
interclass similarity on classification results.

Extensive experiments on a custom submarine geomorphic dataset from Morro Bay
and Pochon Point, California, demonstrated our approach’s superiority compared to
other networks, such as AlexNet, VGG, ResNet, and DenseNet. Our approach achieves
higher accuracy with fewer parameters, making it less prone to overfitting. The results
validate the effectiveness of label smooth regulation and fine-tuning pruning in capturing
essential seabed topographic features, particularly for confusable categories with high
interclass similarity.

In conclusion, our proposed fine-tuning pruning ConDenseNet with LSR represents
a solid advancement in submarine landform classification, and significantly reduces hy-
perparameter volume and computation time. It addresses the limitations of traditional
interpretation methods and other deep learning approaches, achieving higher precision
and robustness in challenging datasets. This approach offers a promising framework for
improving geomorphic analysis and advancing research in seabed classification.

In future work, it would be valuable to explore adaptive or dynamic label smooth-
ing techniques that adjust the smoothing factor based on model confidence or learning
progress, such as dropout, mixup, or knowledge distillation, which may offer more robust
improvements, particularly for models like ResNet and ViT where standard LSR falls short.

We also found that some minority classes, such as “Ocean ridge”, suffered more
due to the small sample size from an already limited dataset. We will investigate en-
hancement approaches to handle such cases, such as adjusting class weights or applying
data augmentation.
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