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Abstract
With the rapid development of global maritime trade, ship trajectory prediction plays an increasingly important role 
in maritime safety, efficiency optimization, and the development of green shipping. However, the complexity of the 
marine environment, multi-factor influences, and automatic identification system (AIS) data quality issues pose 
significant challenges to trajectory prediction. This study proposes a ship trajectory prediction model based on the 
Crossformer architecture comprising three core components: Dimension-Segment-Wise embedding, Two-Stage 
Attention layer, and Hierarchical Encoder-Decoder structure, which efficiently captures spatiotemporal 
dependencies in ship movement patterns. Through experiments on public AIS datasets, we validate the model 
using two navigation scenarios (complex turning and smooth sailing) and conducted comprehensive comparisons 
with traditional models such as gated recurrent unit (GRU), long short-term memory (LSTM), and temporal graph 
convolutional network (TGCN). Experimental results demonstrate that Crossformer significantly outperforms the 
comparative models across multiple evaluation metrics including average Euclidean distance error (ADE), mean 
square error (MSE), root mean square error (RMSE), and mean absolute error (MAE), reducing average error by 
over 60% in complex scenarios and up to 70% in smooth scenarios. For Case 1, Crossformer achieved the lowest 
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values across metrics with ADE of 2.35 × 10-2, MSE of 7.00 × 10-4, RMSE of 2.58 × 10-2, and MAE of 2.35 × 10-2, 
substantially outperforming GRU, LSTM, and TGCN models. For Case 2, Crossformer similarly excelled with an 
ADE of 1.64 × 10-2, MSE of 4.00 × 10-4, RMSE of 2.06 × 10-2, and MAE of 1.64 × 10-2. The model maintains low error 
levels in predicting both latitude and longitude dimensions, exhibiting excellent multi-dimensional prediction 
capability and robustness. This research not only provides a high-precision solution for ship trajectory prediction 
but also establishes an important technical foundation for intelligent ship scheduling, maritime traffic management, 
and navigation safety assurance.

Keywords: Ship trajectory prediction, Crossformer model, spatial-temporal dependency, smart ship

1. INTRODUCTION
In the context of rapidly developing international maritime shipping, ship trajectory prediction plays a 
significant role in enhancing maritime safety and efficiency. Ship trajectory prediction is the process of 
scientifically estimating future navigation routes, ship speeds, and arrival times based on comprehensive 
utilization of historical voyage data and real-time information. Accurate trajectory prediction can effectively 
mitigate maritime accidents, optimize port resource allocation, and reduce ship fuel consumption and 
pollutant emissions, thereby promoting the development of green shipping. However, current ship 
trajectory prediction still faces numerous challenges. First, adverse weather conditions, ocean current 
variations, and navigational channel factors make prediction difficult. Second, due to the influence of 
multiple aspects including voyage planning, operational decision-making, and economic considerations, the 
maritime industry faces greater risks. Simultaneously, while the extensive automatic identification system 
(AIS) provides rich navigational information, it also encounters issues such as signal loss, noise interference, 
and data incompleteness[1].

To date, there are two relatively common approaches to ship trajectory prediction: traditional machine 
learning methods and neural network-based methods[2]. Murray et al. first proposed the neighborhood 
heading distribution method, introducing probabilistic models such as Gaussian mixture models to handle 
the multi-modal nature of maritime traffic[3]. On this basis, researchers have increasingly turned to neural 
network-based methods, harnessing the strengths of deep learning to capture the complex, nonlinear 
patterns inherent in AIS data. For instance, Dalsnes et al. developed bilinear autoencoders and hybrid 
neural network models, significantly enhancing the accuracy and robustness of trajectory prediction[4]. 
These developments reflect the steady progress in ship trajectory prediction, with each approach 
contributing new insights while also revealing limitations that guide future advancements. Zhen et al. 
developed a method combining ship trajectory clustering and Naive Bayes classification to detect 
anomalous ship behavior in maritime surveillance systems, enhancing situational awareness in coastal 
waters[5]. Although these methods have the advantages of low computational complexity and ease of 
interpretation, the fundamental limitation is that they assume that the ship’s motion is pre-designed, 
making it difficult to capture the complex nonlinear dynamics of the marine environment. Perera et al. 
proposed an extended Kalman filter method for estimating and predicting longitudinal ship trajectories in 
ocean navigation, implementing a curved motion model that successfully estimates ship position, velocity, 
and acceleration from noisy position measurements to enhance maritime safety and security systems[6]. 
However, this method is sensitive to noise and struggles with sudden maneuvers, limiting its effectiveness in 
complex navigation environments. Liu et al. introduced a support vector machine (SVM) prediction 
algorithm incorporating an adaptive chaotic differential evolution algorithm[7]. While this approach offers 
certain improvements in nonlinear modeling, its performance remains heavily dependent on the quality of 
feature engineering. Moreover, it faces challenges in capturing the inherent dependencies within high-
dimensional spatio-temporal data.
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The current traditional methods are not accurate enough for ship trajectory prediction, and now neural 
network-based methods are more advantageous. Suo et al. proposed a ship trajectory prediction framework 
utilizing gated recurrent unit (GRU) neural networks to process AIS data, establishing a long short-term 
memory (LSTM)-based ship trajectory prediction method with high prediction accuracy[8]. Borkowski 
proposed an algorithm that, through data fusion, considers measurements of a ship’s current position from 
multiple dual autonomous devices to improve prediction reliability and accuracy. The algorithm employs 
artificial neural networks with adaptive training using data strings of varying lengths to predict trajectories 
of other ships[9]. Gan et al. introduced an innovative algorithm based on a multilayer perceptron (MLP) 
network with optimized hidden neurons, which adjusts network parameters through particle swarm 
optimization methods, significantly improving the accuracy of long-term ship speed prediction[10]. Park 
et al. proposed a novel ship trajectory prediction method that innovatively combines spectral clustering 
techniques with bidirectional LSTM networks (Bi-LSTM), adopting the longest common subsequence 
(LCSS) distance metric to quantify similarity between trajectories[11]. Zhao et al. introduced graph attention 
networks (GAT) and LSTM for ship trajectory prediction. The GAT-LSTM constructs a ship trajectory 
graph network based on dependencies between ship trajectory data, using GAT to extract spatial features of 
ship trajectory data and introducing LSTM to learn temporal features of ship trajectory data[12]. Johansen 
et al. proposed a conceptual framework for a ship collision avoidance system based on model predictive 
control. The system generates a finite set of alternative control strategies by dynamically adjusting two key 
parameters: first, the offset adjustment to the autopilot guidance heading angle, and second, the 
modification to propulsion commands. The core mechanism of the system relies on precise simulation 
predictions of obstacle positions and potential ship trajectories[13].

Zhou et al. proposed a trajectory prediction method integrating AIS data with back propagation (BP) neural 
networks. Based on the fundamental principles of BP neural networks, this method innovatively uses a 
ship’s navigational behavior features at three consecutive time points as input variables and the behavioral 
features at the fourth time point as output variables, training the BP neural network through this pattern to 
achieve effective prediction of future ship navigation trajectories[14]. Gao et al. proposed a novel MP-LSTM 
method that combines the advantages of TPNet and LSTM, involving four components: AIS data 
preprocessing methods, solutions for target points and support points, and uncertainty analysis. This 
method demonstrates high prediction accuracy[15]. Graph neural network (GNN)-based methods are 
severely limited as they rely on predefined graph structures to capture static ship attributes, thus failing to 
consider dynamic interactions between ships[16]. Secondly, recurrent neural network (RNN)-based 
methods[17] show insufficient capability for modeling long-term temporal dependencies. Additionally, their 
complex recurrent architectures inhibit effective modeling of local (short-term) temporal dependencies, 
resulting in suboptimal inference efficiency. A novel gated spatio-temporal graph aggregation network (G-
STGAN) has been proposed, comprising a ship spatial gated encoder (SSGE) that integrates graph 
convolutional networks (GCN) with transformer architecture to model dynamic and static spatial 
interactions. This approach builds on previous advances in graph-based modeling, which focus on spatial 
dependencies, and transformer architectures, known for capturing long-range temporal patterns. By 
bringing these techniques together, G-STGAN overcomes the limitations of traditional GNNs and RNNs, 
offering a more complete and nuanced representation of ship trajectories. Thereby enhancing predictive 
performance for ships, while also featuring a spatial-temporal gated encoder (STGE) that utilizes gated 
transformers (GT) and temporal convolution (TC) to effectively capture short-term and long-term 
temporal dependencies. Spatial and temporal features extracted from the SSGE and STGE modules are 
subsequently aggregated through temporal convolutional networks (TCN) to generate comprehensive 
trajectory predictions[18]. To advance intelligent maritime navigation, Jiang et al. proposed a spatio-temporal 
multi-graph fusion network (STMGF-Net), designed to model the complex spatio-temporal interactions 
among multiple ships using AIS data[19]. The model constructs multiple interaction graphs - such as motion, 
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risk, and attribute graphs - and integrates them through a multi-modal fusion framework. By incorporating 
squeeze-and-excitation TC modules, STMGF-Net improves both prediction accuracy and computational 
efficiency. Similarly, Wang et al. introduced an enhanced version of STMGF-Net, further refining the 
modeling of spatial and temporal dependencies among vessels and demonstrating superior trajectory 
prediction performance over classical and state-of-the-art GNN-based approaches[20]. Additionally, Syed 
and Ahmed developed a 1D CNN-LSTM framework tailored for continuous AIS data, treating vessel 
trajectories as multivariate time series. This architecture effectively captures spatial patterns and long-term 
temporal dependencies, maintaining robust performance even when dealing with overlapping trajectories or 
missing data. Experimental evaluations on AIS datasets confirm that this approach outperforms comparable 
neural network models in tracking accuracy[21].

2. METHOD
2.1. Data preprocessing
AIS is a ship dynamic information collection system based on wireless communication technology, widely 
applied in maritime traffic monitoring and ship management. During AIS data transmission, factors such as 
signal instability or channel congestion can cause anomalies in the data, including duplicate records and 
erroneous data[22]. These anomalous data, if left unprocessed, would affect model performance in 
experiments. Therefore, this research conducts data cleaning prior to experimentation. The data cleaning 
process comprises five steps: anomaly detection, information extraction, data interpolation, equal-interval 
processing, and data standardization[23].

Anomaly detection and information extraction were accomplished by establishing rational standards for key 
fields such as maritime mobile service identity (MMSI), BaseDateTime, latitude (LAT), longitude (LON), 
course over ground (COG), and speed over ground (SOG). Rows with MMSI values not containing 9 digits 
were deleted, as were rows lacking BaseDateTime, LAT, or LON values. Additionally, only rows with COG 
values between 0 and 360 and SOG values between 0 and 30 were retained. To address the requirements for 
trajectory correlation analysis between different ships, segmented cubic spline interpolation was applied to 
interpolate LAT and LON at equal time intervals[24], as given in

where r1, r2, …, rn denote the characteristic points of the ship trajectory; the trajectory segment of every two 
neighboring characteristic points is a section of cubic polynomial curve and satisfies the smoothness 
constraints that the function values are continuous (C0-continuous) and the derivatives of the first and 
second orders are continuous (C1,C2-continuous) at the characteristic points. This method can effectively 
deal with the sampling problem of different time intervals during the ship navigation.

Finally, in order to eliminate the influence of different parameters on the data analysis, we normalize the 
data, and the normalized values are defined as

(1)

(2)
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where xstd is the normalized value, xraw is the original observation, xmax and xmin represents the maximum and 
minimum values of the data.

2.2. Model structure
In this research, as shown in Figure 1, Crossformer is a Transformer model specifically designed for 
multivariate time series prediction[25]. The model has three key components: Dimension-Segment-Wise 
(DSW) Embedding, Two-Stage Attention (TSA) Layer, and Hierarchical Encoder-Decoder (HED) 
structure. The structure of the model is illustrated in Figure 1.

2.2.1. DSW embedding
As shown in Figure 2, traditional Transformer methods concatenate all variables at the same time step into 
a single vector, which is then linearly mapped to obtain embeddings. This approach only focuses on cross-
temporal dependencies and fails to fully exploit the spatial correlations between different variables.

DSW Embedding is a new embedding method that processes the time series of each ship navigation variable 
(such as LAT and LON) by segmenting them. Each segment is transformed into a fixed-dimensional vector 
through a learnable linear mapping, while also incorporating the corresponding positional embedding E(pos) 
to preserve temporal position information. This generates a two-dimensional vector array that 
simultaneously carries information about both the ship’s navigation time and geographical coordinates, 
with the specific process given in

where Si,j
(seg) ∈ ℝ represents the i-th time period in the preprocessed AIS data variable j, with each period 

standardized through spline interpolation to L time steps at fixed 1-minute intervals.

Each standardized AIS data segment is encoded through linear projection and positional embedding, which 
is given in

This embedding approach is suitable for processing AIS data after anomaly detection, including cases with 
missing data, ensuring the quality of the data input to the model.

2.2.2. TSA layer
The TSA layer design takes into account the quasi-continuous nature of AIS data. In Figure 3, it includes 
two key stages:

The cross-time stage applies a multi-head self-attention mechanism to the dimensions (such as LAT and 
LON) in the AIS data, capturing the temporal patterns of ship movement, as given in

(3)

(4)

(5)

(6)

(7)
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Figure 1. Crossformer architecture diagram.

Figure 2. DSW embedding model. DSW: Dimension-Segment-Wise.

The other is the cross-dimension stage, which adopts a router mechanism that can efficiently establish 
connections between various dimensions of ship trajectory data, achieving information fusion among 
navigational parameters.
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Figure 3. Structure and workflow of TSA. TSA: Two-Stage Attention.

2.2.3. HED architecture
As illustrated in Figure 4, the diagram demonstrates how Crossformer processes normalized AIS trajectory 
data through a hierarchical approach for ship trajectory prediction. Beginning with the processing of AIS 
data at the bottom layer, each ascension to a higher layer involves the fusion of adjacent temporal segments, 
enabling higher layers to capture coarser-grained temporal dependencies in ship movement. This 
architecture effectively models route planning. Predictions are generated at multiple scales and aggregated 
to form the final prediction:

where Γl ∈ ℝL×d is the learnable projection matrix.

3. EXPERIMENTATION AND ANALYSIS
3.1. Data
In this study, we utilized AIS data publicly accessible from the MarineCadastre website, which provides free 
information on ship movements in U.S. waters from 2009 to 2023. The MarineCadastre database, 
maintained through collaboration between the Bureau of Ocean Energy Management (BOEM) and the 

(9)

(10)

(11)

(8)

(12)

where Q ∈ ℝL×c×dmodel  is c learnable router vector, and C ∈ ℝL×c×dmodel  is the aggregated ship information. The 
router mechanism establishes information exchange between dimensions by setting a fixed number of 
learnable vectors as routers.
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Figure 4. Hierarchical encoder structure model.

National Oceanic and Atmospheric Administration (NOAA). For this research, AIS data from March 2020 
were selected, specifically focusing on the coastal waters of the Western Seaboard with LAT ranging from 
33°N to 34°N, and LON ranging from 118°W to 120°W. In accordance with international coordinate 
standards, northern LATs and western LONs are represented as positive and negative values, respectively, 
maintaining consistency with navigational conventions.

3.2. Indicators for experimental evaluation
This study compares predicted AIS data with actual reference data using a statistically validated evaluation 
framework recognized in academic circles. The assessment employs average Euclidean distance error 
(ADE), final Euclidean distance error (FDE), mean square error (MSE), root mean square error (RMSE), 
and mean absolute error (MAE) as metrics to evaluate the accuracy of ship trajectory predictions. To 
evaluate the performance of the trajectory prediction models, several commonly used metrics are employed 
in this study. The ADE calculates the mean Euclidean distance between each predicted point and its 
corresponding ground truth across the entire trajectory. The FDE, on the other hand, measures the 
Euclidean distance between the predicted endpoint and the actual endpoint. Additionally, the MSE captures 
the average of the squared differences between predicted and true values, while the RMSE - as the square 
root of MSE - reflects the standard deviation of prediction errors. Finally, the MAE provides the average 
absolute difference between predictions and ground truth. In our study, these metrics collectively offer a 
comprehensive assessment of both the overall prediction quality and endpoint accuracy. ADE measures the 
average deviation between the entire predicted trajectory and the actual trajectory, while FDE quantifies the 
deviation between the predicted endpoint and the actual endpoint. MSE, RMSE, and MAE reflect the 
magnitude of prediction errors from different statistical perspectives. For all metrics, lower values indicate 
higher prediction accuracy of the ship trajectory model. These evaluation metrics provide a multi-
dimensional assessment framework that enables objective comparison between different prediction models. 
The comprehensive evaluation method ensures that both overall trajectory similarity and specific location 
accuracy are appropriately quantified.
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where N denotes the total number of predicted trajectory points. (xi
pred, yi

pred) and (xi
gt, yi

gt) represent the 
predicted and ground truth (reference) coordinates of the ship at the i-th time step, respectively. Similarly, 
yi

pred and yi
gt denote the predicted and ground truth values (e.g., LAT, LON) at the i-th time step. These 

statistical indicators serve as quantitative measures for evaluating the prediction accuracy of ship 
trajectories.

3.3. Experimental setup
In order to validate the performance of the proposed model in this study, we selected some existing ship 
trajectory prediction models as comparative models, including some established models, such as GRU[26,27], 
LSTM[28], and recent-developed temporal graph convolutional network (TGCN)[29].

All methods in this study were implemented in the PyTorch framework in Python, with training conducted 
on a single NVIDIA RTX 4060 GPU. The dataset was partitioned into training, validation, and test sets. 
From Table 1, we determined the optimal experimental parameters, with comparative results shown in the 
table. As indicated in the table, when the initial learning rate was set to 0.001, the model yielded the 
minimum evaluation metrics. Consistent experimental parameters were maintained across all experiments 
during the training phase[30].

To provide clear illustrations of the model’s effectiveness, we selected two representative ships from the 
dataset and presented their trajectories as examples in this paper. For convenience, these trajectories are 
referred to as Case 1 and Case 2. Case 1 represents a ship entering the port, with a trajectory containing 
multiple complex turning points, as illustrated. Case 2 depicts a ship departing the port, featuring a smooth 
trajectory during its progression, as shown. We observe the distribution of both ship trajectories, noting that 
the LAT and LON of the ships vary within a small range, indicating that the ships navigated back and forth 
within a confined area. However, several significant outliers are identified in the original ship trajectory 
data, necessitating preprocessing. The distribution diagrams presented in Figure 5 demonstrate the 
comparison between original data and cleaned data regarding LAT and LON parameters. This box plot 
visualization effectively illustrates the impact of the data preprocessing framework on spatial distribution 
characteristics.

For the LAT distribution shown in Figure 5A, the original data ranged approximately from 33.60°N to 
34.25°N. After cleaning, the standard deviation decreased by 7.6%, and the data range contracted from 0.98° 
to 0.82°, representing a reduction of 16.2%. The box plot indicates that the cleaning process removed certain 

(13)

(14)

(15)

(16)

(17)
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Table 1. Comparison of different learning rates

Learning rate 1 × 10-3 1 × 10-4 5 × 10-4 1 × 10-5

MSE 4.66 × 10-3 6.26 × 10-3 1.897 × 10-2 4.28 × 10-2

MAE 4.81 × 10-2 5.418 × 10-2 9.969 × 10-2 1.522 × 10-1

MSE: Mean square error; MAE: mean absolute error.

Figure 5. Difference between before and after data preprocessing.

high-LAT outliers, resulting in a more concentrated data distribution. Similarly, the LON distribution 
shown in Figure 5B demonstrates that after cleaning, the standard deviation decreased by 9.2%, and the data 
range narrowed by 8.6%. The chart exhibits a more regular distribution of LON data post-cleaning, with 
extreme values effectively eliminated. Following data preprocessing, the dataset is partitioned into training, 
testing, and validation sets in a ratio of 7:1:2.

3.4. Comparison between Crossformer and other models
To more comprehensively demonstrate and compare the performance of different prediction models in ship 
trajectory prediction, this study selected historical trajectory data from Case 1 and applied various 
prediction models. Subsequently, the actual trajectory (blue) was presented alongside the prediction results 
from Crossformer, GRU, LSTM, and TGCN models in Figure 6 for comparison, as illustrated. To ensure a 
fair comparison, we configured the baseline models with comparable complexity. Both the GRU and LSTM 
models were set with a hidden dimension of 512 and three layers, while the TGCN model used 64 hidden 
units across two graph convolutional layers. All models followed the same data preprocessing steps, shared 
identical input and output dimensions, and were trained using consistent procedures. As evident from 
Figure 6, under identical parameters and input data conditions, significant differences exist among the 
models in predicting LAT-LON variations and ship heading changes.

We can clearly observe from Figure 6 that the LSTM model’s prediction performance for Case 1 is relatively 
poor. Although this model can capture the overall trend of ship heading changes, substantial deviations 
persist between the predicted trajectory and the actual trajectory when the ship undergoes sharp turns. In 
contrast, the GRU and TGCN models demonstrate better prediction accuracy, both achieving closer 
alignment with the actual trajectory across most segments. However, when the ship executes substantial 
turns, the predicted trajectories from GRU and TGCN still exhibit a certain degree of deviation.



Chen et al. Intell. Robot. 2025, 5(3), 562-78 https://dx.doi.org/10.20517/ir.2025.29    Page 572

Figure 6. Multiple model results for predicting Case 1 trajectories.

The Crossformer model proposed in this study shows a high degree of congruence between its prediction 
results for Case 1 and the actual trajectory. It not only accurately captures the overall trend of ship heading 
changes but also maintains high prediction accuracy during turning phases. This superior performance is 
attributed to better integration of temporal and spatial factors during the modeling process, enabling 
Crossformer to ultimately demonstrate the highest prediction accuracy among all models.

As shown in Figure 6, the trajectory comparisons highlight key differences in how the models handle 
complex navigational scenarios. The large deviations in LSTM predictions, especially during sharp turns, 
are likely due to the vanishing gradient problem common in traditional RNNs. This limitation makes it 
difficult for them to capture the long-term spatial-temporal dependencies essential for maintaining 
trajectory continuity. In contrast, the Crossformer model performs noticeably better, largely thanks to its 
DSW embedding mechanism, which helps preserve the intricate relationships between LAT and LON 
during complex maneuvers. Its attention-based architecture allows the model to dynamically focus on 
relevant segments of past trajectories, particularly when sudden directional changes occur. These results are 
consistent with recent advances in transformer-based time series prediction, where attention mechanisms 
have repeatedly shown advantages over recurrent models in handling long-range dependencies.

This study also selects historical trajectory data from Case 2 for prediction and conducted comparative 
analysis using the proposed ship trajectory prediction models. The results illustrated in Figure 7 indicate 
that while different models can generally simulate the movement trajectory of Case 2 effectively, there are 
notable differences in their prediction accuracy. It is evident that the LSTM model underperforms in terms 
of prediction accuracy, showing significant deviation from the actual trajectory. Although this model can 
capture the general trend of trajectory changes, there remains considerable room for improvement 
regarding key point localization and local trajectory fitting. The TGCN model demonstrates good 
prediction performance in the initial stages but exhibits noticeable deviation in later prediction phases, 
suggesting that the model still requires further optimization for longer time spans or changes in data 
distribution. The GRU model performs relatively consistently overall, accurately depicting the ship’s 
movement trends during most time periods; however, comparative analysis reveals that prediction 
effectiveness of GRU is slightly inferior to that of Crossformer. The Crossformer model proves most 
effective in Case 2 trajectory prediction, showing the highest degree of overlap between its predicted 
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Figure 7. Multiple model results for predicting Case 2 trajectories.

trajectory and the actual trajectory. This indicates that the model can more thoroughly extract temporal and 
spatial information when processing relatively smooth ship tracks with less dramatic turns, thereby 
achieving more accurate prediction results.

Meanwhile, compared to the trajectory in Case 1, Case 2 does not exhibit significant directional changes 
throughout the entire prediction interval, with an overall smoother trajectory in Figure 7. All models are 
able to adequately reflect its navigational trend, with differences primarily manifested in prediction 
granularity and the ability to capture local inflection points. Based on the comparative analysis of trajectory 
prediction results for Case 1, it can be concluded that Crossformer provides more accurate prediction 
results when processing ship trajectory prediction (particularly in complex scenarios involving frequent 
heading changes). Crossformer maintained high prediction accuracy and stability in the Case 2 prediction 
task as well.

As shown in Table 2, the Crossformer model achieved the lowest values across the ADE, MSE, RMSE, and 
MAE metrics, with values of 2.35 × 10-2, 7.00 × 10-4, 2.58 × 10-2, and 2.35 × 10-2, respectively, indicating that 
this model significantly outperforms baseline models such as GRU, LSTM, and TGCN in terms of overall 
trajectory prediction accuracy. Notably, for the FDE metric, the GRU model exhibited the minimum error 
(9.20 × 10-3), slightly lower than the Crossformer model (3.55 × 10-2), suggesting that GRU possesses certain 
advantages in endpoint prediction accuracy for short-term forecasting. However, considering the overall 
prediction error, Crossformer demonstrated superior performance across multiple metrics, exhibiting 
stronger global predictive capability.

These results indicate that Crossformer can more precisely capture trajectory evolution patterns, reduce 
prediction errors, and particularly excel in overall trajectory accuracy control compared to traditional 
sequence modeling methods (such as GRU and LSTM) and GCN.

To more intuitively demonstrate the differences between models, this research introduced comparative 
diagrams of ADE and FDE for both LON and LAT, as shown in Figure 8. In Figure 8, the dimensional 
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Table 2. Predictive performance results of different models for Case 1

The values labeled with bold fonts demonstrate the best results. GRU: Gated recurrent unit; LSTM: long short-term memory; TGCN: temporal 
graph convolutional network; ADE: average Euclidean distance error; FDE: final Euclidean distance error; MSE: mean square error; RMSE: root 
mean square error; MAE: mean absolute error.

Figure 8. Comparison of model results based on various indicators in Case 1.

analysis offers valuable insights into how the models perform across spatial coordinates. Notably, 
Crossformer achieves much lower ADE values in both LON (3.36 × 10-2) and LAT (1.34 × 10-2), reflecting a 
well-balanced predictive accuracy across these geographic dimensions. Such balanced performance is 
critical in maritime navigation, where safety depends on precise positioning in both directions. The 
considerable gap between Crossformer and baseline models - often exceeding a 60% reduction in error - 
highlights the effectiveness of its HED architecture in capturing the intrinsic correlation between LAT and 
LON during vessel movement. In contrast, traditional sequential models struggle particularly with LON 
predictions, revealing challenges in modeling the complex interplay between temporal ship dynamics and 
spatial coordinate changes - an issue that the proposed TSA mechanism successfully overcomes.

This performance is consistent with the aforementioned overall metric comparison [Table 2], leading to the 
conclusion that the Crossformer model demonstrates significant advantages in processing complex 
spatiotemporal data. Its dimensional-segmented embedding technique and TSA mechanism effectively 
extract data features at both temporal and spatial levels, markedly reducing prediction errors. In contrast, 

Statistical indicator Proposed Crossformer GRU LSTM TGCN

ADE 2.35 × 10-2 9.38 × 10-2 2.53 × 10-2 1.00 × 10-1

FDE 3.55 × 10-2
9.20 × 10-3 5.58 × 10-2 5.32 × 10-2

MSE 7.00 × 10-4
9.10 × 10-3 8.00 × 10-4 1.02 × 10-2

RMSE 2.58 × 10-2
9.55 × 10-2 2.85 × 10-2 1.01 × 10-1

MAE 2.35 × 10-2
9.38 × 10-2 2.53 × 10-2 1.01 × 10-1
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while GRU, LSTM, and TGCN exhibit certain accuracy in local predictions, they remain somewhat 
inadequate in multi-dimensional error control, struggling to comprehensively accommodate prediction 
precision in both longitudinal and latitudinal directions. Through repeated verification and cross-
comparison in the above experiments, we can conclude that the Crossformer model demonstrates superior 
stability and robustness in predictions across different dimensions.

The quantitative results highlight a notable improvement over existing ship trajectory prediction methods. 
Crossformer achieves over a 60% reduction in error compared to baseline models, marking a significant step 
forward in prediction accuracy with clear benefits for maritime safety. Its consistently low error rates across 
various metrics demonstrate a robustness that makes it well-suited for supporting real-time decision-
making in autonomous navigation systems. When compared with recent approaches such as GAT-LSTM 
proposed by Zhao et al.[12] and MP-LSTM used by Gao et al.[15], Crossformer stands out by effectively 
combining dimension-wise processing with hierarchical temporal modeling. This advantage is especially 
evident given the challenging nature of the test cases - ranging from complex turning maneuvers in Case 1 
to smoother navigation patterns in Case 2 - which together reflect the diverse conditions encountered in 
real-world maritime navigation.

Table 3 presents comparative results of performance evaluation metrics for different models on Case 2. As 
shown in Table 3, the Crossformer model achieved superior results across all evaluation metrics, 
particularly in overall trajectory error (ADE, MAE) and MSE, where the error reduction magnitude reached 
over 70%. Although in terms of the FDE metric, Crossformer’s values were comparable to those of GRU and 
TGCN models, its advantages were more pronounced when compared to the LSTM model.

As shown in Figure 9, after comparing the MSE for both LON and LAT dimensions, it is evident that the 
Crossformer model achieved extremely small error values in both metrics, significantly outperforming 
comparative models such as GRU, LSTM, and TGCN. In terms of LON prediction, Crossformer’s MSE is 
merely 4 × 10-4, although the LSTM model exhibited an MSE of 1 × 10-4; however, regarding LAT prediction, 
LSTM model performed notably worse than the Crossformer model. Crossformer maintained a low MSE 
level (6 × 10-4), further demonstrating its advantages in capturing spatiotemporal dynamic characteristics of 
ship trajectories. Synthesizing the various comparative methods discussed previously, we can readily 
conclude that the model proposed in this paper outperforms other comparative models and can achieve 
high-precision ship trajectory prediction.

4. CONCLUSION
This research proposes a ship trajectory prediction method based on the Crossformer model. The 
Crossformer model features a triple architectural framework. It employs DSW embedding technology to 
segment ship AIS data, enabling it to simultaneously capture spatial features of LON and LAT variations; 
the TSA mechanism establishes data correlations across temporal and dimensional planes, effectively 
extracting complex dependencies in ship movement; the HED structure achieves precise control of 
navigational situations across various temporal spans through multi-scale modeling. Experimental results 
demonstrate that the Crossformer model exhibits significantly superior performance in ship trajectory 
prediction tasks. With ADE of 2.35 × 10-2, MSE of 7.00 × 10-4, RMSE of 2.58 × 10-2, and MAE of 2.35 × 10-2 in 
Case 1, and even better performance with ADE of 1.64 × 10-2, MSE of 4.00 × 10-4, RMSE of 2.06 × 10-2, and 
MAE of 1.64 × 10-2 in Case 2. Compared to traditional models such as GRU, LSTM, and TGCN, the 
Crossformer model reduced average prediction errors by over 60% in Case 1 and up to 70% in Case 2, 
demonstrating its superior capability in capturing spatiotemporal dependencies in ship movement patterns.
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Table 3. Predictive performance results of different models for Case 2

The values labeled with bold fonts demonstrate the best results. GRU: Gated recurrent unit; LSTM: long short-term memory; TGCN: temporal 
graph convolutional network; ADE: average Euclidean distance error; FDE: final Euclidean distance error; MSE: mean square error; RMSE: root 
mean square error; MAE: mean absolute error.

Figure 9. MSE comparison across models for Case 2 trajectory prediction. MSE: Mean square error.

To enhance model performance, the following directions could be further explored. The current model 
primarily focuses on single-ship trajectory prediction and has not fully considered interactive influences 
between ships or predictive capabilities under special scenarios such as extreme weather conditions and 
complex channels. Furthermore, the model’s real-time computational efficiency and operational resource 
consumption require further optimization to meet deployment requirements in actual maritime monitoring 
systems. Simultaneously, more powerful attention mechanisms could be introduced based on the existing 
architecture to further improve long-term trajectory prediction capabilities; additionally, optimization 
combinations of network layer structures could be improved, such as adjusting encoder-decoder layer 
counts or introducing specific functional layers to enhance the model’s expressive capacity. The 
Crossformer could also be combined with advanced technologies to further enhance its adaptability in 
dynamically complex environments; extending its application to multi-ship collaborative prediction holds 
promise for bringing more innovative solutions to smart port and intelligent shipping domains.

Statistical indicator Proposed Crossformer GRU LSTM TGCN

ADE 1.64 × 10-2 6.05 × 10-2 9.59 × 10-2 5.65 × 10-2

FDE 2.50 × 10-3 2.50 × 10-3 4.44 × 10-2 2.60 × 10-3

MSE 4.00 × 10-4 4.80 × 10-3 9.40 × 10-3 4.90 × 10-3

RMSE 2.06 × 10-2 6.95 × 10-2 9.70 × 10-2 6.24 × 10-2

MAE 1.64 × 10-2 6.05 × 10-2 9.59 × 10-2 5.65 × 10-2
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