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Abstract: Side-Scan Sonar (SSS) is widely used in underwater rescue operations and the
detection of seabed targets, such as shipwrecks, drowning victims, and aircraft. How-
ever, the quality of sonar images is often degraded by noise sources like reverberation and
speckle noise, which complicate the extraction of effective features. Additionally, challenges
such as limited sample sizes and class imbalances are prevalent in side-scan sonar image
data. These issues directly impact the accuracy of deep learning-based target classification
models for SSS images. To address these challenges, we propose a side-scan sonar image
classification model based on joint image deblurring–denoising and a pre-trained feature
fusion attention network. Firstly, by employing transform domain filtering in conjunction
with upsampling and downsampling techniques, the joint image deblurring–denoising
approach effectively reduces image noise while preserving and enhancing edge and tex-
ture features. Secondly, a feature fusion attention network based on transfer learning
is employed for image classification. Through the transfer learning approach, a feature
extractor based on depthwise separable convolutions and densely connected networks is
trained to effectively address the challenge of limited training samples. Subsequently, a
dual-path feature fusion strategy is utilized to leverage the complementary strengths of
different feature extraction networks. Furthermore, by incorporating channel attention
and spatial attention mechanisms, key feature channels and regions are adaptively empha-
sized, thereby enhancing the accuracy and robustness of image classification. Finally, the
Gradient-weighted Class Activation Mapping (Grad-CAM) technique is integrated into the
proposed model to ensure interpretability and transparency. Experimental results show
that our model achieves a classification accuracy of 96.80% on a side-scan sonar image
dataset, confirming the effectiveness of this method for SSS image classification.

Keywords: side-scan sonar image classification; transfer learning; attention mechanism;
deblurring; denoising; explainable AI (XAI)

1. Introduction
Side-scan sonar (SSS) is extensively utilized in autonomous underwater vehicles

(AUVs), remotely operated vehicles (ROVs), and unmanned underwater platforms [1].
It enables the rapid acquisition of acoustic seabed imagery and plays a crucial role in
marine scientific research, seabed resource exploration, seabed mapping, maritime secu-
rity [2], underwater collaborative threat detection [3], and underwater target detection and
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recognition [4,5], as well as underwater rescue operations [6–11]. Compared to optical
images, sonar images offer distinct advantages [12–16], leading to increased interest in the
development of target classification methods based on side-scan sonar imagery.

Sonar images are generated through the reception and processing of echo signals by
sonar systems [17–19]. Unlike optical images, sonar images are significantly impacted by
the imaging mechanism and marine environment, resulting in substantial speckle noise [20].
This leads to issues such as edge blurring, reduced image contrast, and diminished feature
information in side-scan sonar images [21]. Furthermore, while high-frequency acoustic
signals can produce high-resolution sonar images, they experience rapid attenuation,
creating a trade-off between image resolution and the operational range of the sonar
system [22]. Low-resolution sonar images suffer from detail loss and blurred texture
features, which pose significant challenges for target feature extraction in sonar imagery [23].
Consequently, addressing the problems of low resolution, significant noise interference,
and poor texture quality is essential before achieving the effective automatic classification
of sonar images.

In traditional methods for underwater target classification and recognition, numer-
ous feature extraction-based approaches have been proposed. However, these methods,
which rely on manually designed features, suffer from subjectivity, low efficiency, and
poor generalization ability [24]. There is an urgent need for more advanced techniques to
address the limitations of these traditional methods. In recent years, deep learning has
gained prominence in underwater sonar image classification due to its powerful feature
extraction capabilities, high accuracy, and computational efficiency [25,26]. The inherent
characteristics of sonar images, such as low resolution and high noise levels, impose strin-
gent requirements on neural network feature extraction. Specifically, adaptively extracting
multi-scale detail features from side-scan sonar (SSS) images remains a significant challenge
in SSS image classification. Additionally, deep learning-based methods typically require
large datasets for training, but the high cost of acquiring SSS images results in limited and
imbalanced sample data [27,28], further complicating the classification task [29]. These
issues collectively limit the improvement of classification accuracy for SSS images.

To address these challenges and enhance the performance of SSS image classification,
this paper proposes a side-scan sonar image classification model based on joint image
deblurring–denoising and a pre-trained feature fusion attention network. The joint image
deblurring–denoising method restores edge and texture features through transform domain
filtering combined with upsampling and downsampling reconstruction, thereby mitigating
the adverse effects of noise and low resolution on classification performance. The pre-
trained feature fusion attention network leverages pre-trained Xception and DenseNet
networks on ImageNet as basic feature extractors, effectively addressing the challenges
posed by limited and imbalanced sample data. By adaptively fusing multi-scale detail
features extracted from SSS images via a dual attention mechanism, the model capitalizes
on the complementary strengths of Xception and DenseNet in capturing features at dif-
ferent levels. This approach enhances the model’s feature representation capability and
adaptability to complex underwater environments. The main contributions of this study
are as follows:

(1) A joint image deblurring–denoising method is proposed, which mitigates the
adverse effects of poor image quality, weak texture features, and blurred edges on model
performance. This is achieved through 3D transform domain filtering followed by RRDB
(Residual in Residual Dense Block)-based upsampling and Lanczos downsampling to
reconstruct detailed texture features.

(2) A transfer learning training strategy that selectively freezes certain weights is
applied to the dual-path feature extractor based on Xception and DenseNet. This approach
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alleviates the challenges posed by insufficient and imbalanced side-scan sonar target image
datasets, thereby improving classification accuracy.

(3) A feature fusion attention network is proposed, integrating the multi-scale feature
extraction capabilities of Xception and the feature reuse advantages of DenseNet via feature
fusion methods. To enhance feature representation, the model employs a dual-attention
mechanism—both channel-wise and spatial-wise—to adaptively adjust the weights of
complementary features obtained from different levels. This process extracts the most rep-
resentative features of target objects, thereby enhancing the model’s feature representation
ability and adaptability to complex underwater environments.

The remainder of this paper is organized as follows. Section 2 reviews the literature
on sonar image preprocessing and the application of deep learning in sonar image clas-
sification and recognition, analyzing the current research status and identifying existing
challenges. Section 3 provides a detailed overview of the proposed method, including the
overall architecture, image transform domain filtering and resampling techniques, transfer
learning principles, feature extraction and fusion processes, and the Gradient-weighted
Class Activation Mapping (Grad-CAM) technique. Section 4 describes the dataset, eval-
uation metrics, and implementation details, presents ablation studies and comparative
experiments, and discusses the results, while also analyzing the interpretability of the ex-
amples and the model. Finally, Section 5 summarizes the conclusions and outlines potential
directions for future work.

2. Related Work
In this section, we first provide a brief overview of the imaging principles and charac-

teristics of sonar images. Subsequently, we review the relevant research on sonar image
classification from both traditional methods and deep learning perspectives.

2.1. The Imaging Principle and Characteristics of Sonar Images

The working principle of side-scan sonar is analogous to that of radar. The sonar
system emits fan-shaped acoustic beams from a linear array. As the sonar device moves,
the array continuously transmits and receives acoustic signals, which are then converted
and amplified. The acquisition system subsequently displays the echo data row by row [30].
The complex underwater environment introduces significant speckle noise into sonar
images [31,32]. The inherent trade-off between high frequency and detection range limits
the achievable frequency and resolution of sonar images. Consequently, sonar images often
suffer from low resolution, substantial noise interference, and poor texture features.

Traditional noise suppression methods can be categorized into spatial domain filter-
ing and transform domain filtering. Spatial domain filtering techniques include adaptive
median filtering, bilateral filtering, Gamma-MAP filtering, anisotropic Lee filtering, Kuan
filtering, FROST filtering, etc. Transform domain filtering encompasses discrete cosine
transform (DCT) [33], block-matching 3D transform domain filtering [34], wavelet denois-
ing algorithms, etc. However, spatial domain filtering is susceptible to interference from
complex gradient information, making it difficult to accurately distinguish between texture
and noise. Transform domain filtering tends to attenuate high-frequency coefficients corre-
sponding to fine details, potentially leading to the loss of high-frequency components and
important image details.

In recent years, deep learning methods have gained prominence in image noise
suppression and texture restoration. The denoising convolutional neural network
(DnCNN) [35] employs residual learning and batch normalization to enhance denois-
ing performance but may not adequately address the underlying structure and texture of
images. Chen et al. [36] proposed an ANLResNet model that integrates SRResNet with
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asymmetric pyramid non-local blocks for effective speckle noise removal in sonar images.
Owing to the scarcity of clean and noisy datasets, sonar images are frequently denoised
through self-supervised approaches. Tian et al. [37] introduced the SSNet architecture,
which enables blind denoising of images. Tang et al. [38] proposed the MA-BSN network,
capable of mitigating the challenges associated with preserving spatial noise correlation
and overcoming the limitations of a restricted receptive field. Fan et al. [39] presented
Complementary-BSN, characterized by an efficient loss function that enhances the opti-
mization process. Zhou et al. [40] introduced a self-supervised denoising method tailored
for sonar images without requiring high-quality reference images.

Convolutional neural networks (CNNs) were first introduced into the super-resolution
(SR) field by Dong et al. Subsequently, advanced models such as enhanced deep SR
(EDSR) [41] and residual channel attention networks (RCAN) [42] have been developed for
improved image super-resolution. Since the introduction of SRGAN [43], various GAN-
based models have been applied to super-resolution image generation. Real-ESRGAN [44]
extends residual blocks to handle multiple degradation factors, thereby better address-
ing the challenges posed by complex real-world scenarios. Fine-grained attention GAN
(FASRGAN) [45] further enhances the generation of high-quality images through image-
scoring mechanisms.

Although deep learning-based denoising and super-resolution techniques have
achieved remarkable success in processing optical images, the unique imaging princi-
ples of sonar images and the complex underwater acoustic environment result in significant
differences in texture features and noise characteristics compared to optical images. Exist-
ing denoising algorithms tend to be relatively limited in functionality [46] and often fail to
adequately preserve fine details in sonar images. Furthermore, existing texture restoration
methods exhibit certain limitations. For example, EDSR demonstrates limited effectiveness
in texture restoration [47], while networks such as RCAN and SRGAN, although effective
in enhancing resolution, tend to amplify noise and generate artifacts.

2.2. Traditional SSS Image Classification Methods

In traditional methods for underwater target classification and recognition, various
feature extraction techniques have been proposed, including Short-Time Fourier Transform
(STFT) [14], Hilbert–Huang Transform (HHT) [15], and Wavelet Transform (WT) [16]. To
further enhance classification accuracy, Zhu et al. [48] constructed an AdaBoost model
using sample images and employed a nonlinear matching model for the rapid classification
of side-scan sonar (SSS) debris targets. Karine et al. [49] utilized wavelet coefficients to
extract texture features from sonar images and subsequently classified the images using the
k-nearest neighbor (k-NN) algorithm and support vector machine (SVM). Kumar et al. [50]
segmented bright and shadow regions in the images via clustering algorithms to leverage
shape information for SSS image classification. Zhu et al. [51] proposed a classification
method based on Principal Component Analysis (PCA) and Extreme Learning Machine
(ELM), which exhibits high stability and classification accuracy.

However, these manual feature-based methods exhibit limited capability in extracting
features from SSS images, leading to subjectivity and inefficiency [24]. The limitations of
traditional methods include the inadequate design of manual features, poor robustness
to noise and low signal-to-noise ratio (SNR) data, and the inability of shallow models
to handle high-dimensional and complex features. Consequently, traditional methods
perform suboptimally in dynamic and unpredictable underwater environments. Therefore,
there is an urgent need for more advanced technologies to address these shortcomings [52].
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2.3. Deep Learning-Based SSS Image Classification Method

In recent years, deep learning has been increasingly applied to underwater sonar
image classification due to its powerful feature extraction capabilities and high efficiency
and accuracy. Williams and Fakiris [53] were among the first to introduce convolutional
neural networks (CNNs) and combine them with image fusion algorithms for sonar image
classification. To further enhance classification performance, Peng et al. [54] proposed a
CBL-sinGAN method for side-scan sonar image data augmentation. The CBL module
integrates the CBAM (Convolutional Block Attention Module) attention mechanism with
the L1 loss function, effectively expanding the dataset of side-scan sonar images. The
attention mechanism has been extensively utilized in the domains of image classification.
Notably, the Bidirectional Attention and Graph Attention mechanisms warrant particular
consideration. Tang et al. [55] introduced bidirectional attention blocks that capture fine-
grained information via a novel bidirectional multimodal dynamic routing mechanism.
Wang et al. [56] developed the Adaptive Graph Attention (AGA) module to enhance
local information and further exploit the interactions between different feature channels.
DAI et al. [57] designed a novel GAN that replaces batch normalization (BN) with layer
normalization (LN) and uses PReLU activation functions instead of LeakyReLU, enabling
more effective image generation and dataset enhancement. SHI et al. [58] combined feature-
dense connections and squeeze-and-excitation (SE) modules to propose ShuffleNet-DSE, a
deep learning-based classification model that improves classification accuracy. GE et al. [59]
integrated RDSNet (Range Doppler heatmap Sequence Detect Network) with ShuffleNetV2
to construct the Shuffle-RDSNet model, which enhances the model’s ability to extract
useful features during the feature extraction process. LI et al. [7] proposed a texture feature
removal network that narrows the domain gap by discarding domain-specific features.
Xu et al. [60] developed an improved CNN model to increase the utilization of sonar
image features and reduce misclassification rates for similar categories. Yang et al. [61]
introduced MoCo self-supervised learning and used the Swin Transformer with global
feature extraction capabilities as a classifier for seabed substrate images, improving the
convergence speed and class accuracy.

Although the aforementioned methods have enhanced the classification accuracy
of sonar images, they predominantly rely on a single network architecture for feature
extraction, focusing primarily on specific features. Consequently, these approaches do
not adequately address the multi-scale and multi-level feature extraction requirements
essential for side-scan sonar imagery. Additionally, existing methods typically address
either low-resolution or high-noise issues but not both comprehensively. This can lead to
problems such as noise reduction degrading image quality or super-resolution generating
artifacts. Moreover, the limited and imbalanced nature of sonar image datasets continues to
restrict the improvement of classification accuracy due to the large amount of data required
for training deep learning models.

3. Methods
To further mitigate the adverse effects of poor image quality, weak texture features,

blurred edges, insufficient data volume, and sample imbalance on the performance of
side-scan sonar image classification, and to enhance the model’s feature representation
capability and adaptability to complex underwater environments, this paper proposes a
side-scan sonar image classification model based on joint image deblurring–denoising and
a pre-trained feature fusion attention network.

As illustrated in Figure 1, this model primarily comprises three key components: the
joint image deblurring–denoising method, the feature fusion attention network based on
transfer learning, and the technology of Explainable AI (XAI) Grad-CAM.
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3.1. Joint Image Deblurring–Denoising Method

The joint image deblurring–denoising method restores the edge and texture features of
images through 3D transform domain filtering combined with upsampling and downsam-
pling techniques. As illustrated in Figure 2, the process consists of three sequential stages:
(1) transform domain hard threshold filtering, (2) RRDB (Residual in Residual Dense Block)
upsampling followed by Lanczos downsampling, and (3) transform domain collaborative
Wiener filtering. The first stage of transform domain hard threshold filtering initially re-
duces noise. The second stage, involving RRDB upsampling and Lanczos downsampling
reconstruction, effectively restores the texture features of the image. Finally, the third stage
further refines the image by eliminating residual noise and addressing potential artifacts
introduced during the upsampling process through collaborative Wiener filtering with the
pre-upsampling image.

In the remainder of this section, the process of the two transform domain filtering
is firstly introduced. Subsequently, the processes of upsampling and downsampling
are presented.

For the input image, prior to performing transform domain filtering, block matching
and grouping must be conducted. Specifically, the original image is divided into multiple
reference blocks of a fixed size. For each reference block, similar blocks within its neighbor-
hood are identified by searching for blocks with an Euclidean distance below a predefined
threshold. For a reference block YxR of size Nht

1 × Nht
1 and a similarly sized block Yx within

the neighborhood, the Euclidean distance is calculated using Equation (1):

dideal(YxR , Yx) =
∥ YxR − Yx ∥2

2(
Nht

1
)2 . (1)
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Subsequently, each group of the divided blocks is transformed into the 3D domain.
After filtering in the 3D domain, the data are returned to the original domain via 3D inverse
transformation. The joint image deblurring–denoising method involves two transform
domain filtering operations. The first one is hard threshold filtering, and the second
is collaborative Wiener filtering. Hard threshold filtering uses the original image as its
input. Collaborative Wiener filtering, on the other hand, takes both the output from the
hard threshold filtering and the output from the resampling module as its inputs. All
of the filtering methods can be described by Formula (2). In Formula (2), T ht

3D denotes
3D transformation, Y represents filtering, T ht−1

3D denotes 3D inverse transformation, ZSht
xR

represents the three-dimensional groups formed after block matching, and Ŷht
Sht

xR
represents

the processed results of these three-dimensional groups.

Ŷht
Sht

xR
= T ht−1

3D

(
Y
(
T ht

3D

(
ZSht

xR

)))
(2)

The estimated blocks obtained from the aforementioned process have some overlap.
The final image is obtained by aggregating the block estimates using a weighted average
approach, as shown in Equation (3). Here, wht

xR
represents the weights, and χxm(x) takes a

value of 0 or 1 to indicate whether pixel x belongs to block xm.

ŷ(x) =
∑xR∈X ∑xm∈Sht

xR
wht

xR
Ŷht,xR

xm (x)

∑xR∈X ∑xm∈Sht
xR

wht
xR

χxm(x)
, ∀x ∈ X (3)

Between the two stages of transform domain filtering and aggregation, an adversarial
training module based on RRDB (Residual in Residual Dense Block) and a U-net discrim-
inator are introduced for upsampling–downsampling reconstruction to restore detailed
image features.
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The RRDB module is a residual network structure with dense connections. Within an
RRDB module, multiple convolutional layers are densely connected and external residual
connections are also present. The final output of the RRDB module is the sum of the original
input and the result after a series of convolution operations within the module. This residual
connection method facilitates easier training of deep networks by allowing gradients to
propagate rapidly through the residual connections, ensuring effective training of shallow
layers and mitigating the problem of gradient vanishing or rapid decay. Consequently, the
densely connected convolutional layers within the RRDB module can effectively extract
image features, thereby achieving high-quality image upsampling.

Given the scarcity of target samples in sonar images, the RRDB-based upsampling
module is trained using publicly available datasets sourced from the literature [44]. During
the training process, original images undergo multiple transformations including blurring,
downsampling, adding noise, and JPEG compression to generate low-resolution blurred
images. These processed images are then fed into the forward generator network.

After obtaining the output image from the generator network, these generated images
are paired with the original image and presented to the U-NET discriminator for evaluation.
If the U-NET discriminator struggles to differentiate between the real original image and
the generated image, it indicates that a well-trained generator network has been achieved.
The entire training process involves iteratively updating the parameters of the generator
network using a large number of image inputs. During this process, spectral normalization
is employed to stabilize the training. Upon the completion of training, an RRDB network
capable of performing upsampling can be obtained.

The downsampling process of the image is based on Lanczos resampling, which is
an interpolation method utilizing the sinc function (cardinal sine function). Specifically,
this algorithm employs a finite-length sinc function kernel to compute the value of each
new pixel. For image downsampling, it calculates weights within a local region of the
original image according to the sinc function kernel, then performs a weighted summation
of the original image’s pixels to obtain the pixel values in the new image. The influence of
each input sample on the interpolation is defined by the resampling kernel L(x), known
as the Lanczos kernel. This kernel is a normalized sinc function, and its definition is as
Equation (4).

L(x) =


1 if x = 0
asin(πx)sin(πx/a)

π2x2 if − a ≤ x < a and x ̸= 0

0 otherwise

(4)

The pixel grayscale value S(x, y) at coordinate point (x, y) after downsampling is the
weighted average of the pixel values within its local neighborhood. For downsampling,
when a = 2, the formula can be described by Equation (5):

S(x, y) =
⌊x⌋+a

∑
i=⌊x⌋−a+1

⌊y⌋+a

∑
j=⌊y⌋−a+1

sijL(x − i)L(y − j). (5)

Compared with simpler downsampling methods such as average pooling, the Lanczos
algorithm considers the spatial correlation of pixels in the original image. It employs a
sinc function kernel for weighted summation, using more sophisticated weighting schemes
to compute the pixel values. This approach better preserves image details and edge
information, thereby enhancing the quality of the downsampled image.

3.2. Feature Fusion Attention Network Based on Transfer Learning

This section first introduces the basic principles of transfer learning. It then briefly
presents the structures of the feature extraction neural networks Xception and DenseNet,
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followed by a detailed elaboration on the feature fusion process based on spatial and
channel attention mechanisms.

3.2.1. Transfer Learning Method

Transfer learning is a machine learning strategy that leverages knowledge acquired
from one or more source tasks to improve performance on a different but related target task.

The following presents the mathematical expression of transfer learning. Given a
domain D = {X, P(X)}, X is the feature space and P(X) is its probability distribution. Similarly,
a task T = {Y, P(Y|X)} can be obtained, where Y is the label space and P(Y|X) is the
conditional probability distribution of the label space under the condition of the feature
space. For the source domain Ds, its corresponding task Ts can be obtained. For the target
domain Dt, its corresponding task Tt can be obtained. The process of transfer learning is to
solve the problems in the target domain Dt and the target task Tt under the condition that
Ds ̸= Ts and Dt ̸= Tt by learning the relevant knowledge of the source domain Ds and the
source task Ts.

Traditional machine learning methods typically depend on extensive labeled datasets.
However, for tasks such as side-scan sonar image classification, the high cost of data
annotation limits the availability of large-scale labeled datasets. Training neural networks
with limited samples can result in issues like overfitting or model instability. The application
of transfer learning can effectively mitigate these challenges.

The methods for implementing transfer learning include fine-tuning, freezing layers,
training specific parts of the network, etc. For small sample classification problems like
those encountered in sonar image analysis, using complex neural networks with full
training can result in overfitting due to the high number of parameters. This paper employs
DenseNet and Xception networks, with their end pooling layers and fully connected layers
removed, for transfer learning. For DenseNet and Xception networks, pre-training is
initially conducted on the ImageNet dataset. Upon the completion of pre-training, the
global pooling layer and fully connected layer at the end of these networks are removed,
and the remaining portions are integrated into the proposed model as feature extractors.
During the subsequent training phase, the weights of the feature extraction components
in these networks are frozen, while the newly added layers are trained in the standard
manner. Through this approach, effective transfer learning is successfully implemented.
Xception excels in multi-scale feature extraction, while DenseNet mitigates overfitting
through feature reuse. By combining the complementary features extracted by these two
networks at different levels, the model’s feature representation ability and adaptability to
complex underwater environments are significantly enhanced.

3.2.2. Introduction of DenseNet and Xception

The core components of the DenseNet architecture are the denseblock and transition
modules. In the denseblock module, a dense connection strategy is employed, where each
layer’s output is concatenated with the inputs of all subsequent layers through channel-
wise concatenation. Dense blocks are interconnected via transition layers, which comprise
convolutional layers and pooling layers and can diminish the dimensions of feature maps.
Table 1 details the specific architecture of the network used in this paper. As a feature
extractor, this network eliminates the pooling layers and fully connected layers.
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Table 1. The detailed structure of DenseNet used in this paper.

Layers Output Size DenseNet-121

Convolution 112 × 112 7 × 7 conv, stride 2
Pooling 56 × 56 3 × 3 max pool, stride 2

Dense Block(1) 56 × 56
[

1 × 1conv
3 × 3conv

]
× 6

Transition Layer(1) 56 × 56 1 × 1conv
28 × 28 2 × 2 average pool, stride 2

Dense Block(2) 28 × 28
[

1 × 1conv
3 × 3conv

]
× 12

Transition Layer(2) 28 × 28 1 × 1conv
14 × 14 2 × 2 average pool, stride 2

Dense Block(3) 14 × 14
[

1 × 1conv
3 × 3conv

]
× 24

Transition Layer(3) 14 × 14 1 × 1conv
7 × 7 2 × 2 average pool, stride 2

Dense Block(4) 7 × 7
[

1 × 1conv
3 × 3conv

]
× 16

Traditional convolutional networks are limited by the unidirectional nature of inter-
layer feature transmission, which often results in the loss of shallow detail information at
deeper layers, particularly in blurry images. DenseNet addresses this issue through dense
cross-layer connections, enabling each layer to receive feature maps from all preceding
layers. This facilitates feature reuse and alleviates the vanishing gradient problem via multi-
path gradient propagation, thereby empowering the network to (1) extract robust features
from noisy data by leveraging complementary multi-level features to suppress local noise
and (2) enhance edge reconstruction in low-frequency blurry regions through the synergistic
optimization of shallow details and deep semantics. Additionally, DenseNet integrates
features via concatenation rather than addition, reducing parameter redundancy while
preserving richer feature information. For low SNR sonar images, this design prevents the
smoothing of high-frequency details during layer-wise transmission, making it especially
effective for target classification.

Depthwise separable convolution (DSC) decomposes the traditional convolution op-
eration into two distinct steps: depthwise convolution and pointwise convolution [62].
Depthwise convolution applies independent convolution operations to each channel of
the input image, generating a set of intermediate feature maps. Pointwise convolution
then combines these feature maps using 1 × 1 convolution kernels to integrate channel
information. In contrast to traditional convolution, where a single convolution kernel
operates across all input channels simultaneously, DSC first processes each channel in-
dependently with depthwise convolution and subsequently merges the results through
pointwise convolution. This approach significantly reduces the number of parameters and
decreases inter-layer coupling.

The Xception network is a neural network architecture that leverages depthwise
separable convolutions. It first applies spatial convolutions independently to each input
channel and then combines the channel information through pointwise convolutions. This
design effectively decouples channel-wise and spatial correlations, achieving a high level of
separation between these two aspects. By doing so, the Xception architecture significantly
reduces the number of model parameters while enhancing computational efficiency. In
terms of performance, Xception has demonstrated superior results on benchmark datasets.
Specifically, on the ImageNet dataset, Xception outperforms traditional convolutional
neural networks by improving accuracy and reducing computational costs.
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3.2.3. Feature Fusion Process Based on Spatial and Channel Attention Mechanisms

After feature extraction using the densely connected network and the depthwise sepa-
rable convolution network, the extracted features are concatenated. Subsequently, these
concatenated features undergo further fusion through a multi-attention mechanism, which
consists of a channel attention mechanism followed by a spatial attention mechanism. The
channel attention mechanism adaptively highlights channels that are more significant for
classification, while the spatial attention mechanism emphasizes specific spatial regions
of the feature map. After applying these two attention mechanisms sequentially, a re-
fined feature map is generated. Subsequently, average pooling is performed on this final
feature map, followed by passing it through a fully connected layer to obtain the final
classification result.

As for the channel attention mechanism, for each channel of the input feature layer
F, global max pooling and global average pooling are performed to obtain two vectors
of length equal to the number of channels. These vectors are then passed through fully
connected layers to produce two vectors of the same length. The sum of these vectors
is passed through an activation function (e.g., sigmoid) to generate the weights for the
channel attention mechanism. After obtaining these weights, they are multiplied element-
wise with the original input feature layer to implement the channel attention mechanism.
During backpropagation, the weights of the channel attention mechanism are optimized to
minimize the loss function, enabling the network to focus on the most significant channels
for classification.

For the spatial attention mechanism, the maximum and average values across all
channels at each spatial location of the input feature layer are computed to obtain a two-
channel feature map. This feature map is then processed by a convolutional layer which
reduces the number of channels to one. The output is passed through an activation function
to obtain the spatial attention weights. These weights are multiplied element-wise with
the original input feature layer to implement the spatial attention mechanism. During
backpropagation, the parameters of the convolutional kernel are optimized to enable the
neural network to focus on the most relevant spatial regions.

After applying the channel attention mechanism and the spatial attention mechanism,
the refined feature maps are subsequently processed through pooling and fully connected
layers to generate the final classification results.

3.3. Grad CAM

Grad-CAM (Gradient-weighted Class Activation Mapping) is a gradient-based tech-
nique designed to visualize the critical image regions that a convolutional neural network
(CNN) focuses on during prediction. By utilizing the gradient information of the target
class score with respect to the feature maps from the final convolutional layer, Grad-CAM
generates a heatmap that intuitively highlights the areas of the input image to which the
model assigns higher importance in its decision-making process. Specifically, let Ak rep-
resent the k-th feature map of the last convolutional layer and yc denote the pre-softmax
score for the target class c. Grad-CAM first computes the gradient of yc with respect to
Ak and subsequently applies global average pooling (GAP) to these gradients to derive
the weight αc

k for each feature map channel k. The calculation formula of αc
k is shown in

Equation (6), where Z denotes the product of the width and height of the feature map and
Ak

ij represents the activation value of the k-th feature map at position (i, j).

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(6)
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Next, the weights αc
k are applied to their corresponding feature maps Ak through a

weighted summation to obtain the initial Class Activation Map (CAM), as presented in
Equation (7). The ReLU function is subsequently employed to eliminate regions with nega-
tive contributions to the target class prediction, thereby emphasizing areas that positively
influence the classification outcome.

Lc
Grad−CAM = ReLU

(
∑
k

αc
k Ak

)
(7)

Through the aforementioned steps, the complete process of Grad-CAM (Gradient-
weighted Class Activation Mapping) is realized. Subsequently, the calculated weights
are fused with the corresponding feature maps via a weighted combination to generate a
heatmap. This heatmap is then superimposed onto the original image, thereby visualizing
the model’s decision-making process. This procedure visually highlights the critical regions
that the model focuses on, providing a robust foundation for enhancing the model’s
interpretability.

4. Results and Discussions
4.1. Data Description and Experimental Environment

The data used for evaluation in this study primarily originate from the “Seabed
Objects—KLSG Dataset” created by He et al. [63]. Given the absence of drowning victim
images in this dataset, a limited number of drowning victim images were selected from the
SCTD dataset developed by Zhang et al. [64] to supplement the study. The final dataset
is categorized into four categories, i.e., drowning victim, aircraft, shipwreck, and seafloor.
This dataset exhibits class imbalance, with a higher proportion of images for shipwrecks and
seabed objects compared to those for aircraft and drowning victims. Some representative
images are shown in Figure 3. The dataset was split into training and validation sets in a 7:3
ratio for experimentation. Table 2 details the number of images per category in the dataset.
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Table 2. The number of images per category in the dataset.

Categories Drowning Victim Aircraft Seafloor Shipwreck

Numbers 17 66 487 578

It is noteworthy that our experiments were conducted exclusively using the publicly
available datasets KLSG and SCTD. These datasets consist entirely of side-scan sonar
images collected during real underwater detection missions, featuring authentic noise
patterns and motion artifacts. This ensures the proposed method’s robust applicability to
practical field operations.

As is shown in Table 3, the experiments involved in this paper were conducted in the
following software and hardware environments.

Table 3. The hardware and software environment of the experiment.

Component Description

Processor 12th Gen Intel® Core™ i5—12400F (Intel
Corporation, Santa Clara, CA, USA)

Clock Speed 2.5 GHz
RAM 16 GB

Software Environment

Python version: 3.11.7 | packaged by Anaconda,
Inc. (Austin, TX, USA) | (main, 15 December 2023,

18:05:47) [MSC v.1916 64 bit (AMD64)]
TensorFlow version: 2.12.0

NumPy version: 1.23.5

4.2. Model Performance Metrics

In statistics and machine learning, several key metrics are commonly used to evaluate
classification performance. These include:

• True Positive (TP): Samples correctly identified as positive.
• True Negative (TN): Samples correctly identified as negative.
• False Positive (FP): Samples incorrectly identified as positive (actual negatives).
• False Negative (FN): Samples incorrectly identified as negative (actual positives).

Based on these fundamental metrics, additional evaluation metrics can be derived,
including Average Precision (AP), Average Recall (AR), the F1 score, Average Specificity
(AS), and Overall Accuracy (OA).

• Precision measures the accuracy of the model’s positive predictions, defined as the
proportion of true positives among all predicted positives.

• Recall measures the proportion of actual positives that were correctly identified by
the model.

• The F1 score is the harmonic mean of precision and recall, providing a balanced
measure of both.

• Specificity measures the proportion of actual negatives that were correctly identified
as negative.

• Overall Accuracy (OA) measures the proportion of all samples that were correctly classified.

The calculation formulas for each metric are as follows, where N denotes the total
number of samples and t denotes the total number of image categories.

AP =
TP

TP + FP
(8)
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AR =
TP

TP + FN
(9)

F1 =
2 × AP × AR

AP + AR
(10)

Speci f icity =
TN

FP + TN
(11)

OA =
∑t

i=1 Nii

N
(12)

4.3. Ablation Study

To investigate the contributions of the main modules in the proposed model to clas-
sification performance, a total of eight experiments were conducted. These experiments
examined the effects of using joint image deblurring–denoising, applying transfer learn-
ing, and incorporating the feature fusion attention network (FFA-Net). The results are
summarized in Table 4. To minimize the randomness of the experimental outcomes, each
experiment was repeated five times, and the average classification results were recorded.
The performance metrics used for evaluation included AP, AR, F1 score, OA, and AS, with
the results visualized as box plots in Figure 4.

Table 4. Comparison of the average results of different models.

Model Transfer
Learning

Deblurring–
Denoising OA AP AR F1 AS

Training
Time

(s/epoch)

Validation
Time

(ms/per image)

1 FFA-Net × × 87.56% 87.56% 88.16% 88.60% 92.47% 414 160
2 FFA-Net ×

√
89.13% 89.12% 89.91% 89.51% 93.37% 420 152

3 FFA-Net
√

× 95.21% 95.21% 95.25% 95.23% 96.71% 120 159
4 FFA-Net

√ √
96.80% 96.80% 96.87% 96.83% 98.07% 121 154

5 VGG16 × × 84.24% 84.24% 85.79% 84.96% 87.78% 340 143
6 VGG16 ×

√
88.02% 88.02% 88.90% 88.44% 94.42% 344 143

7 VGG16
√

× 89.42% 89.41% 89.22% 89.31% 92.15% 115 148
8 VGG16

√ √
91.86% 91.86% 92.09% 91.98% 93.78% 116 141

Electronics 2025, 14, x FOR PEER REVIEW 14 of 30 
 

 

𝐴𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (9) 

𝐹ଵ = 2 × 𝐴𝑃 × 𝐴𝑅𝐴𝑃 + 𝐴𝑅  (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝐹𝑃 +  𝑇𝑁 (11) 

𝑂𝐴 = ∑  ௧௜ୀଵ 𝑁௜௜𝑁  (12) 

4.3. Ablation Study 

To investigate the contributions of the main modules in the proposed model to clas-
sification performance, a total of eight experiments were conducted. These experiments 
examined the effects of using joint image deblurring–denoising, applying transfer learn-
ing, and incorporating the feature fusion attention network (FFA-Net). The results are 
summarized in Table 4. To minimize the randomness of the experimental outcomes, each 
experiment was repeated five times, and the average classification results were recorded. 
The performance metrics used for evaluation included AP, AR, F1 score, OA, and AS, with 
the results visualized as box plots in Figure 4. 

In this context, “transfer” indicates the application of transfer learning, “FFA-Net” 
denotes the feature fusion attention network based on dual-path feature extraction using 
Xception and DenseNet combined with a dual attention mechanism, and the “+” sign sig-
nifies the use of the joint image deblurring and denoising method. 

 

Figure 4. Plots of the classification results. Transfer + denotes transfer learning, and + denotes using 
“joint image deblurring–denoising”. 

  

Figure 4. Plots of the classification results. Transfer + denotes transfer learning, and + denotes using
“joint image deblurring–denoising”.



Electronics 2025, 14, 1287 15 of 29

In this context, “transfer” indicates the application of transfer learning, “FFA-Net”
denotes the feature fusion attention network based on dual-path feature extraction using
Xception and DenseNet combined with a dual attention mechanism, and the “+” sign
signifies the use of the joint image deblurring and denoising method.

The experimental results demonstrate that the introduction of transfer learning sig-
nificantly enhances model performance. Specifically, the accuracy of the third group of
experiments increased by 7.65% compared to the first group, and the accuracy of the fourth
group of experiments increased by 7.56% compared to the second group. In the VGG16
network, the accuracy of the seventh group of experiments increased by 5.18% compared
to the fifth group, and the accuracy of the eighth group of experiments increased by 3.84%
compared to the sixth group. This improvement can be attributed to the fact that large-scale
pre-training on the ImageNet dataset generates an efficient feature extractor capable of
effectively capturing general image features. Therefore, in small sample tasks, fine-tuning
only the pooling and fully connected layers can achieve high classification accuracy. In con-
trast, deep neural networks without pre-training, due to their large number of parameters
and limited training samples, often fail to adequately train network weights, leading to
insufficient feature extraction capabilities and a tendency towards overfitting. Additionally,
when the sample size is very small, these networks may not converge. The experimental
data also indicate that the VGG16 network without transfer learning exhibits significant
fluctuations in accuracy and poor model stability. Furthermore, the incorporation of trans-
fer learning has notably reduced the model’s training time. Regarding different network
architectures, the FFA-net model proposed in this paper achieves a significant improvement
in classification accuracy compared to VGG16, with only a marginal increase in training
cost (a few additional seconds per epoch).

The introduction of the joint image deblurring–denoising method further enhances
classification performance. The experimental data show that the accuracy of the second
group of experiments increased by 1.47% compared to the first group, and the accuracy of
the fourth group of experiments increased by 1.48% compared to the third group. In the
VGG network, the accuracy of the sixth group of experiments increased by 3.78% compared
to the fifth group, and the accuracy of the eighth group of experiments increased by 2.46%
compared to the seventh group. This improvement is mainly due to the method’s effective-
ness in addressing the high noise and low quality of side-scan sonar images. Specifically,
through transform domain filtering, combined with upsampling and downsampling re-
sampling techniques, the edge and texture features of the images are successfully restored,
reducing the negative impact of noise and blurring on classification performance. Initially,
the first transform domain filtering eliminates image noise, followed by the restoration
of image texture features via RRDB upsampling and Lanczos downsampling methods.
Finally, the second transform domain filtering removes image noise and artifacts generated
during the upsampling process, thereby obtaining high-quality side-scan sonar images.

The introduction of feature fusion and multi-attention mechanisms significantly im-
proves model performance. The experimental results show that the accuracy of the first
group of experiments increased by 3.32% compared to the fifth group, the accuracy of the
second group of experiments increased by 1.11% compared to the sixth group, the accuracy
of the third group of experiments increased by 5.79% compared to the seventh group,
and the accuracy of the fourth group of experiments increased by 5.83% compared to the
eighth group. This improvement is primarily attributed to the effective integration of the
multi-scale feature extraction capabilities of the Xception network with the high accuracy
and feature reuse advantages of the densely connected convolutional network through
feature fusion and multi-attention mechanisms. By adaptively adjusting the weights of
feature layers and image regions that significantly contribute to classification results, the
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classification effect is further optimized. This fusion mechanism not only improves the
efficiency of feature extraction but also effectively alleviates the overfitting problem, thereby
achieving a comprehensive enhancement in classification performance.

To assess the statistical significance of the proposed method, this paper conducted a
two-tailed paired T-test on the accuracy rates of the proposed method and seven other com-
parison methods. The test results are summarized in Table 5. All classifiers have p-values
significantly lower than 0.05 (p < 0.05). At a significance level of 0.05, we rejected the null
hypothesis that “there is no significant difference between the two groups of experiments”,
indicating that the proposed method exhibits statistically significant differences in accuracy
compared to the methods after the ablation of each module. This result further validates
the effectiveness and robustness of the proposed method.

Table 5. The two-tailed paired T-test on the accuracy rates of the proposed method and seven other
comparison methods.

Model VGG16 VGG16+ Transfer
+VGG16

Transfer+
VGG16+ FFA-Net FFA-Net+ Transfer+

FFA-Net

P 1.8 × 10−3 3.65 × 10−4 5.02 × 10−7 5.02 × 10−8 2.61 × 10−5 4.29 × 10−7 2.29 × 10−5

It is worth noting that although the VGG16 network without transfer learning has a
lower accuracy rate, its p-value is relatively higher (i.e., the probability that “there is no
significant difference between the two groups of experiments” is greater). This phenomenon
can be attributed to the larger variance in its accuracy rate, indicating significant fluctuations
in model performance. This result further confirms that the model without transfer learning
exhibits instability during training, which may lead to poor generalization ability on small
sample datasets. The introduction of transfer learning not only significantly improves
the accuracy of the model but also reduces the variance in model performance, thereby
enhancing the stability and reliability of the model.

To further verify the superiority of the proposed method in small sample classification
tasks, Figure 5 illustrates the change curve of validation set accuracy before and after pre-
training the neural network. The experimental results show that without transfer learning,
the accuracy curve converges more slowly and the final achieved accuracy is relatively
low. In contrast, with the introduction of transfer learning, the accuracy curve exhibits a
rapid convergence trend, leading to significantly improved final accuracy and more stable
network performance.
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In addition, Figure 6 presents the curves of the overall accuracy (OA) varying with
the number of epochs for the proposed method and the method using VGG16 instead of
FFA-Net as the feature extraction network. Both methods demonstrate high stability in
classification accuracy after introducing transfer learning. However, the proposed method
significantly outperforms the VGG16 network in terms of accuracy.
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Furthermore, Figure 7 compares the training time per epoch before and after the
introduction of transfer learning. The experimental results indicate that transfer learning
significantly accelerates the convergence speed of the network.
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As can be seen from Figures 8–10, as well as in Table 4, which summarizes the
classification accuracy, the pre-trained CNN not only completes the classification task
quickly and stably but also significantly improves the classification accuracy.
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4.4. Comparative Experiment

To further validate the effectiveness of the multi-attention mechanism and dual-path
feature fusion in the hybrid convolutional neural network (CNN), we conducted multiple
comparative experiments. Specifically, we replaced the FFA-Net in our proposed method
(transfer + FFA-Net) with other single networks. The experimental results are summarized
in Table 6.

Table 6. Classification performance of different models.

Model OA AP AR F1 AS

FFA-Net 96.80% 96.80% 96.87% 96.83% 98.07%
VGG16 91.86% 91.86% 91.68% 91.77% 94.27%

MobileNetV2 93.31% 93.31% 93.28% 93.30% 95.54%
DenseNet121 94.48% 94.47% 94.65% 94.56% 96.24%
InceptionV3 94.77% 94.77% 94.82% 94.80% 96.41%

To further validate the superiority of combining the Xception and DenseNet121 net-
works, we conducted additional experiments comparing the performance of various net-
work combinations. The results are summarized in Table 7. Furthermore, as illustrated in
Table 8, the evaluation results of our proposed model are compared against those of other
models using their respective confusion matrices.

Table 7. Classification performance of models using different dual-path feature extractors.

Model OA AP AR F1 AS

Xception+DenseNet121 96.80% 96.80% 96.87% 96.83% 98.07%
InceptionV3+MobileNetV2 94.77% 94.83% 94.80% 94.77% 96.10%

Xception+InceptionV3 95.35% 95.35% 95.40% 95.37% 96.64%
Xception+MobileNetV2 95.64% 95.64% 95.67% 95.65% 97.20%

DenseNet121+MobileNetV2 93.90% 93.89% 93.96% 93.93% 95.73%

The experimental results demonstrate that the combination of Xception and DenseNet121
exhibits high classification stability across all categories and achieves the highest overall
classification accuracy. When either Xception or DenseNet121 is individually replaced by
other networks, the classification accuracy of the hybrid model decreases. For instance,
InceptionV3 + MobileNetV2 and DenseNet121 + MobileNetV2 perform poorly in classifying
aircraft, with a significant number of aircraft being misclassified as shipwrecks. These
comparative experiments further confirm the complementary advantages of the Xception
and DenseNet121 networks in side-scan sonar image classification.

To further substantiate the efficacy of the proposed attention mechanism in this study,
a comparative analysis was conducted against other existing attention methods, including
the spatial attention method (SAM) and the channel attention method (CAM). The results
are shown in Table 9. The FFA-Net employs a spatial–channel joint attention mechanism,
which adaptively identifies and prioritizes the channels and image regions that contribute
most significantly to image classification. In comparison with standalone spatial or channel
attention mechanisms, the proposed approach demonstrates superior performance across
multiple evaluation metrics, including OA, AP, AR, F1, and AS. These results confirm the
superiority of the spatial–channel joint attention mechanism over its single-component
counterparts and provide robust validation for the effectiveness of the proposed method.



Electronics 2025, 14, 1287 20 of 29

Table 8. Comparison of our model with the confusion matrix of other models using different dual-
path feature extractors.

Model True Class

Predicted Class

Shipwreck Aircraft Seafloor Drowning
Victim

Xception+DenseNet121

Shipwreck 143 2 1 0
Aircraft 1 19 0 0
Seafloor 6 0 167 0

Drowning Victim 0 0 0 5

InceptionV3+MobileNetV2

Shipwreck 142 1 3 0
Aircraft 9 11 0 0
Seafloor 4 0 169 0

Drowning Victim 1 0 0 4

Xception+InceptionV3

Shipwreck 140 2 4 0
Aircraft 2 18 0 0
Seafloor 8 0 165 0

Drowning Victim 0 0 0 5

Xception+MobileNetV2

Shipwreck 142 2 2 0
Aircraft 5 15 0 0
Seafloor 6 0 167 0

Drowning Victim 0 0 0 5

DenseNet121+MobileNetV2

Shipwreck 142 2 2 0
Aircraft 9 11 0 0
Seafloor 8 0 165 0

Drowning Victim 0 0 0 5

Table 9. Classification performance of models using different attention methods.

Model OA AP AR F1 AS

proposed 96.80% 96.80% 96.87% 96.83% 98.07%
CAM 95.64% 95.64% 95.77% 95.70% 97.10%
SAM 96.22% 96.22% 96.31% 96.27% 97.53%

To further substantiate the superiority of the joint image deblurring–denoising method
proposed in this paper, comparative experiments were conducted using different denoising
techniques. Figure 8 shows the comparison of the processing results of the proposed
method with those of other methods. The results indicate that the joint image deblurring–
denoising method outperforms adaptive median filtering, wavelet denoising, and bilateral
filtering in multiple aspects. Specifically, compared with adaptive median filtering, the
proposed method achieves a more balanced presentation of image details, effectively
mitigating the over-sharpening of artifacts and enhancing the naturalness and realism of
image features. In contrast to wavelet denoising, the proposed method produces images
with a more uniform gray-level distribution, successfully reducing graininess caused
by residual noise and thereby improving visual quality. Furthermore, when compared
with bilateral filtering, the proposed method not only preserves edge information more
effectively but also demonstrates superior capability in suppressing background noise.

Taking specific examples, as shown in Figure 8, the “aircraft” image processed by
the proposed method exhibits a clearer and more distinguishable fuselage outline. For
the “shipwreck” image, the texture details of the hull are better preserved and presented.
Additionally, the proposed method significantly reduces noise interference in images such
as “seafloor”, resulting in a smoother background, while enhancing the distinction between
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targets and backgrounds in images like “drowning victim”. Overall, the images processed
by the proposed method are characterized by enhanced clarity and readability, providing a
more robust foundation for subsequent in-depth analysis and processing.

Moreover, Table 10 illustrates the comparative outcomes of classification performance.
The classification performance evaluations confirm that the application of the proposed
joint image deblurring–denoising method leads to a significant improvement in image
classification accuracy. In comparison, simple filtering algorithms such as adaptive mean
filtering and bilateral filtering yield unsatisfactory results, while wavelet filtering, although
producing acceptable outcomes, still lags behind the proposed method in terms of over-
all performance.

Table 10. Comparison of the classification performance of the joint image denoising–deblurring
method with those of other methods.

Model OA AP AR F1 AS

Proposed 96.80% 96.80% 96.87% 96.83% 98.07%
Adaptive mean filtering 93.60% 93.60% 93.77% 93.69% 95.63%

Bilateral filtering 92.15% 92.15% 92.62% 92.39% 94.54%
Wavelet filtering 95.64% 95.64% 95.62% 95.63% 97.05%

Furthermore, this paper conducts a comparative analysis with state-of-the-art meth-
ods. ConvNeXt, proposed by the Meta (formerly Facebook) AI team, is a convolutional
neural network architecture that integrates the strengths of traditional CNNs with modern
network design principles to modernize the ResNet series of networks. Swin Transformer,
developed by Microsoft Research Asia, is a visual model architecture based on the Trans-
former framework that reduces computational complexity via a hierarchical window-based
attention mechanism and effectively captures multi-scale image features. The proposed
method in this paper achieves superior performance compared to these advanced meth-
ods in terms of accuracy, recall, F1 score, and specificity, thereby further validating the
effectiveness of the proposed approach. The results are shown in Table 11.

Table 11. Classification performance of the proposed model and other state-of-the-art methods.

Model OA AP AR F1 AS

FFA-Net 96.80% 96.80% 96.87% 96.83% 98.07%
CovnNext [65] 95.93% 96.11% 95.93% 95.99% 97.82%

Swin Transformer [66] 95.06% 95.24% 95.06% 95.13% 97.37%

Extensive comparative experiments and multi-dimensional performance analyses
indicate that the method employed in this paper significantly outperforms other approaches
in terms of effectiveness. From the perspective of algorithmic complexity, our method is
comparable to existing alternatives.

Currently, while the method demonstrates excellent performance outcomes, there
remains room for improvement in image processing speed. To enhance the convenience
and real-time applicability of this method in actual use cases, it is imperative to optimize al-
gorithmic workflows, adopt more efficient data structures, or leverage advanced hardware
acceleration techniques to increase the processing speed of each image. This will better
meet the demands of practical applications.

4.5. Case Study and Grad-CAM Result

To further validate the effectiveness of our proposed model, we conducted a detailed
analysis using specific case studies. Table 12 presents the confusion matrices for four
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different configurations: the proposed method (pre-trained FFA-Net with joint image
deblurring–denoising), the method without joint image deblurring–denoising, the method
without transfer learning, and the method using VGG16 as the alternative to FFA-Net. The
experimental results demonstrate that introducing joint image deblurring–denoising along
with transfer learning significantly improves the classification performance. Additionally,
the feature fusion attention network (FFA-Net) proposed in this paper outperforms VGG16
in terms of classification accuracy.

Table 12. Comparison of our model with the confusion matrix of the model without joint image
deblurring–denoising, without transfer learning, or using VGG16 as an alternative to FFA-Net.

Model True Class

Predicted Class

Shipwreck Aircraft Seafloor Drowning
Victim

Proposed (pre-trained
FFA-Net with joint image

deblurring–denoising)

Shipwreck 143 2 1 0
Aircraft 1 19 0 0
Seafloor 6 0 167 0

Drowning Victim 0 0 0 5

Pre-trained FFA-Net
(without joint image

deblurring–denoising)

Shipwreck 141 2 3 0
Aircraft 7 13 0 0
Seafloor 5 0 168 0

Drowning Victim 1 0 0 4

FFA-Net with joint image
deblurring–denoising

(without transfer learning)

Shipwreck 145 1 0 0
Aircraft 16 2 2 0
Seafloor 14 0 159 0

Drowning Victim 3 0 0 2

Pre-trained VGG16 with
joint image

deblurring–denoising

Shipwreck 139 3 4 0
Aircraft 11 9 0 0
Seafloor 8 0 165 0

Drowning Victim 1 0 0 4

The introduction of the joint image deblurring–denoising method significantly im-
proved the classification accuracy for aircraft. Among a total of 20 aircraft samples, the
number of correct classifications increased from 13 to 19. As shown in Figure 9, before ap-
plying the joint image deblurring–denoising method, six aircraft images were misclassified.

After implementing the joint image deblurring–denoising method, these images were
correctly classified. As illustrated in Figure 10, the joint image deblurring–denoising
method effectively reduced image noise, restored texture features, and consequently en-
hanced the classification accuracy.

Furthermore, as is shown in Table 9, after the introduction of transfer learning, the
classification accuracy for aircraft and drowning victims has significantly improved. This
indicates that transfer learning is essential for addressing imbalanced datasets. Without
transfer learning, the model tends to overfit to the abundant data for shipwrecks and
seafloors while underfitting to the scarce samples of aircraft and drowning victims. Con-
sequently, it learns a large number of features for common categories but fewer features
for minority categories, leading to the misclassification of rare samples (such as aircraft
and drowning victims) as more common ones (like shipwrecks or seafloors). After intro-
ducing transfer learning, the model can better capture the features of minority categories,
thereby significantly improving classification accuracy. This improvement is attributed to
the excellent feature extractor obtained through pre-training on ImageNet, which effec-
tively mitigates the challenges posed by imbalanced datasets and enhances the model’s
generalization ability.
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To gain an intuitive understanding of the model’s feature extraction capabilities,
Figure 11 illustrates partial feature maps extracted by the first convolutional layer after
ablating different modules. Specifically, it compares the proposed method in this paper
with three ablated versions: without joint image deblurring–denoising, without transfer
learning, and using VGG16 as the alternative to FFA-Net.
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The experimental results show that the method proposed in this paper can significantly
enhance the saliency of the target contour during the feature extraction process, and
the extracted features have higher clarity and discriminability. The features extracted
by the method without the joint image deblurring–denoising have noise and blurring
phenomena. The feature maps extracted using the VGG16-based model exhibit insufficient
contrast, making it challenging to distinguish between the foreground and background. The
performance of the FFA-Net method without using transfer learning is close to that after
using transfer learning, but using transfer learning can still slightly improve the quality of
the extracted feature maps (the first feature map is clearer, and after swapping the positions
of the second and eighth feature maps, the clarity of the second to eighth feature maps is
similar). In summary, the method in this paper better retains the detailed information of
the target in the feature space, reduces the influence of noise and low resolution, and thus
provides more discriminative feature representations for subsequent classification tasks.
This further verifies the effectiveness of the joint image deblurring–denoising method,
FFA-Net, and transfer learning strategy in improving the feature extraction ability of
the model.

Grad-CAM (Gradient-weighted Class Activation Mapping), as an efficient inter-
pretability tool, can explain and verify the decision-making process of deep learning models
in a visual way. Through in-depth analysis of these visualization results, we can better
understand the basis of the model’s decision-making, thereby providing important support
for model performance optimization and the improvement of classification accuracy.

As shown in Figure 12, the heatmap generated by Grad-CAM is superimposed onto
the original sonar image. The heatmap is generated by analyzing the gradient of the
model’s prediction with respect to the pixel values of the input image. Through different
colors, the heatmap clearly distinguishes the regions that play a key role in the model’s
classification decision. Specifically, warm tones such as red and yellow indicate that these
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parts have a significant contribution to the model’s classification decision; while cold tones
such as blue and green mean that their influence on the classification decision is relatively
low. This superimposition method can visually correspond the key regions that the model
focuses on with the content of the original image, thereby enabling the rapid localization of
the model’s key focus areas and enhancing the model’s interpretability.
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Figure 12. The heatmap generated by Grad-CAM superimposed onto the original sonar image of
different categories.

The different colors in the figure are obtained through normalization processing
for each individual image, representing relative weights. Grad-CAM heat maps have
demonstrated strong interpretability across various image recognition tasks. In seafloor
images, it is typically challenging to precisely locate large target objects, resulting in
relatively uniform weights across the entire region. For shipwreck images, the model can
accurately delineate the contours due to the larger number of training samples. For images
related to aircraft and drowning victims, where the training set contains fewer samples, the
model can still determine the target locations.

Figure 13 shows the heatmap generated by Grad-CAM superimposed onto incorrectly
classified sonar images of different categories. The image numbered plane-022 was mis-
classified as a ship. Its contour is distinctive, primarily composed of numerous regular
straight lines. Visually, the constructed shape bears a high resemblance to common ship
shapes, with a prominent end to the contour. The image numbered ship-106 was incorrectly
labeled as seabed substrate due to poor image quality. The ship in the image is too blurry
to recognize clearly. Seafloor-031 was misclassified as a ship because the protruding parts
of the seabed resemble ship-like structures. The image numbered ship-120 was erroneously
classified as an aircraft. Analysis revealed that the ship’s unusual posture, specifically its
overturned state, caused its overall contour to resemble that of an aircraft, leading to the
model’s misjudgment.
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In the aforementioned images, for those misclassified as aircraft or ships, the heatmap
effectively highlights the regions to which the model pays significant attention. Conversely,
for images misclassified as seabed substrates, the heatmap exhibits a relatively uniform
weight distribution. Furthermore, these misclassified images inherently possess character-
istics that can mislead human judgment. Overall, the model exhibits strong interpretability.

Grad-CAM effectively enhances the interpretability and transparency of sonar image
classification in underwater rescue scenarios, ensuring that classification decisions are
grounded in key underwater target features. This capability is crucial for building trust in
AI applications within the underwater rescue domain. Understanding the rationale behind
model predictions provides a scientific basis for rescue decisions, thereby significantly im-
proving the efficiency of rescue operations. Additionally, high-weight regions highlighted
in the heat maps can alert rescue personnel to potential targets, increasing the likelihood of
successful rescue efforts.

5. Conclusions
To address the challenges posed by poor image quality, weak texture features, and

blurred edges during the feature extraction of side-scan sonar images, we propose a joint
image deblurring–denoising method. This method restores edge and texture details through
transform domain filtering, combined with upsampling and downsampling techniques.
Additionally, a transfer learning training strategy that selectively freezes certain weights
is applied to the dual-path feature extractor based on Xception and DenseNet to prevent
overfitting on small sample sizes. To further enhance classification accuracy, we introduce
the Feature Fusion Attention Network (FFA-Net). FFA-Net leverages the efficiency and
multi-scale feature extraction capabilities of depthwise separable convolutions, along
with the accuracy and feature reuse benefits of densely connected networks. FFA-Net
incorporates dual attention mechanisms to adaptively focus on specific channels and
feature map regions, effectively extracting key features from side-scan sonar images and
enhancing the importance of critical feature channels and regions.

The proposed model has shown significant improvement in performance metrics, with
OA, AP, AR, F1 score, and AS reaching 96.80%, 96.80%, 96.87%, 96.83%, and 98.07%, respec-
tively. The two-tailed paired t-test indicates that the proposed method exhibits statistically
significant differences in accuracy compared to the methods with each module ablated.

In the comparative experiments, the FFA-Net achieves significantly higher classifica-
tion accuracy than single networks (e.g., DenseNet) and combinations where the feature
extraction network was replaced by MobileNet, Inception, etc. This result demonstrates
the complementary strengths of Xception and DenseNet in feature extraction and the
significant advantage of using the attention mechanisms to achieve adaptive feature fusion.
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Furthermore, the comparisons of extracted feature maps and the interpretability
analysis using Grad-CAM confirm the strong interpretability of the proposed method.

In future research, we can further improve model performance by integrating more
advanced feature extraction networks such as GoogleNet and deeper ResNet architectures
and by expanding the dataset through the design of an effective image generation network
for side-scan sonar images, thereby enhancing classification accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
SSS Side-scan sonar
RRDB Residual in Residual Dense Block
FFA-Net Feature fusion attention network
F1-Score Harmonic mean of precision and recall
Precision The ratio of true positive observations to the total predicted positives
Recall The ratio of true positive observations to the total actual positives
Grad-CAM Gradient-weighted Class Activation Mapping
TP True positives
TN True negatives
FP False positives
FN False negatives
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