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Abstract

In underwater environment, the study of object recognition is an important basis for imple-

menting an underwater unmanned vessel. For this purpose, abundant experimental data to

train deep learning model is required. However, it is very difficult to obtain these data

because the underwater experiment itself is very limited in terms of preparation time and

resources. In this study, the image transformation model, Pix2Pix is utilized to generate

data similar to experimental one obtained by our ROV named SPARUS between the pool

and reservoir. These generated data are applied to train the other deep learning model,

FCN for a pixel segmentation of images. The original sonar image and its mask image have

to be prepared for all training data to train the image segmentation model and it takes a lot of

effort to do it what if all training data are supposed to be real sonar images. Fortunately, this

burden can be released here, for the pairs of mask image and synthesized sonar image are

already consisted in the image transformation step. The validity of the proposed procedures

is verified from the performance of the image segmentation result. In this study, when only

real sonar images are used for training, the mean accuracy is 0.7525 and the mean IoU is

0.7275. When the both synthetic and real data is used for training, the mean accuracy is

0.81 and the mean IoU is 0.7225. Comparing the results, the performance of mean accuracy

increase to 6%, performance of the mean IoU is similar value.

Introduction

Recognition of objects underwater is essential for rescue or evidence search operations [1, 2].

However, cameras that are mainly used on land are difficult to use underwater for object rec-

ognition because the visibility is poor due to insufficient lighting and floats in water [3]. Unlike

cameras, underwater sonar can be used in water because its signals can reach a long distance

without being affected by the lighting or suspended solids [4, 5]. However, images obtained

from imaging sonar are difficult to use for object recognition because their resolution is not

high and they contain noises. Several object recognition methods have been proposed to
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address this issue [6]. For example, a spectral analysis method has been proposed for seafloor

sediment classification [7]. Another study proposed using a measure called lacunarity to clas-

sify the characteristics of the seafloor [8].

This paper expands on the results of the previous work and proposes a method that uses a

neural network (NN) model for image translation [9] to synthesize realistic underwater sonar

image (USI)s and then uses them in data augmentation. If image translation is used, it is possi-

ble to transform the style of the synthetic USI similar to that of the real USI. In the previous

work, the variability is limited. In contrast, in this paper, the variability of the results of image

translation is ensured, which is advantageous for data augmentation.

Furthermore, in the previous work, only the synthesis effect for the background noise can

be expected in a limited manner. In contrast, in this paper, the gradation effect of the back-

ground noise and the object shadowing effect are produced like real ones by image translation

according to the fan shape and location of the background noise, which are basic styles of mul-

tibeam imaging sonar images.

For the validation of the effectiveness of the proposed image translation-based data aug-

mentation, we evaluated the quantitative performance of the semantic segmentation NN

trained using the proposed method. Semantic segmentation can find not only the location of

the object but also the shape in a given image by performing pixel-level classification. As

semantic segmentation performs a more complex task than object classification or detection,

the number of parameters of the NN for semantic segmentation is greater than that for object

classification or detection. As more data are required to train the NN for semantic segmenta-

tion than other NNs, it is a good task for validating the effectiveness of the proposed image

translation-based data augmentation.

The remainder of this paper is structured as follows. Section 2 briefly introduces the pro-

posed image translation-based data augmentation and the pipeline that performs semantic

segmentation for the verification of its performance. Sections 3 and 4 describe the image trans-

lation-based data augmentation and image segmentation, respectively. Section 5 introduces

information related to the underwater sonar dataset and the training of the image translation

NN and semantic segmentation NN. Section 6 presents the experimental results and qualita-

tive performance evaluations, and Section 7 summarizes the conclusions of this paper and the

future work.

Related work

Recently, deep-learning-based object recognition methods have been suggested. For instance,

a method that uses a convolutional neural network(CNN) to extract features and then uses a

support vector machine to perform object classification has been proposed [10]. Furthermore,

some researchers have proposed methods that apply an end-to-end approach while using a

CNN to extract features for object detection or classification [11–13]. There is a critical limita-

tion when deep-learning-based methods are used underwater for object recognition. NN, the

most important part of deep learning, consists of numerous parameters, which are trained

based on data. If data are not sufficient, the parameters of the NN are not properly trained;

consequently, if overfitting occurs, a robust operation cannot be expected.

Unfortunately, it is a challenging task to collect data abundantly to train the NN due to the

characteristics of the underwater environment. First, although the underwater environment is

very large and has various characteristics, the region where data can be collected is limited.

Second, considerable amounts of time and resources are required for data collection in the

underwater environment. There are two solutions for training an NN with a small dataset:

using transfer learning [14, 15] and data augmentation. Transfer learning method reuses a
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pretrained model trained with a large dataset as a backbone of an NN for a specific task. The

lower layers of the NN copies parameters of a pretrained model, and then the NN trained with

a small dataset. Data augmentation refers to the transform of data in a dataset, such as a crop

or resize [16]. If transfer learning and data augmentation using a transform are performed, the

NN can be trained better; however, when the size of the dataset is small, these solutions may be

only a supplementation within a limited range.

Some researchers have proposed a method that performs data augmentation by synthesiz-

ing data instead of data augmentation using a transform [16, 17]. This method creates syn-

thetic data by transforming styles, such as the background patterns, as if the data have been

obtained underwater. Then, the synthetic data are used with the real underwater data together

when training the NN. In our previous work [18], we used a supervised style transfer to trans-

form styles, such as the background patterns of a synthetic USI generated via simulation, into

styles similar to those of the real USI; subsequently, we used them to augment the training data

of the NN for object detection.

Overview

As shown in Fig 1, the pipeline that performs underwater sonar semantic segmentation using

the proposed data augmentation method consists of two stages overall: (1) the training of the

image translation NN and the generation of a synthetic USI using the trained image translation

NN; (2) the training of the semantic segmentation NN using both the real USI and the syn-

thetic USI generated in the previous stage.

Data augmentation using image translation

Image translation model

The proposed method uses Pix2Pix, which is an image translation NN using cGAN [9, 19].

Pix2Pix consists of two sub-NNs: generator (G) and discriminator (D). G generates a fake

image y for the input source image x and the random noise z. D distinguishes whether the

input image is real or fake.

y ¼ Gðx; zÞ: ð1Þ

During the training of the image translation NN, G is trained to generate synthetic USI that

are difficult to distinguish from real images. Simultaneously, D is trained adversarially to dis-

tinguish real and synthetic USIs properly. In the proposed method, a synthetic USI image with

Fig 1. Pipeline of the proposed method.

https://doi.org/10.1371/journal.pone.0272602.g001

PLOS ONE Data augmentation using image translation for underwater sonar image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0272602 August 12, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0272602.g001
https://doi.org/10.1371/journal.pone.0272602


a binary mask is used as an input of G; the real USI and the synthetic USI generated by G are

used as the inputs of D as shown in Fig 2.

G has a structure similar to that of the U-Net model [20], in which multiple skip-connec-

tions exist in the encoder-decoder. Multiple skip-connections deliver contexts of multiple lev-

els from the encoder to the decoder directly, contributing to improving the quality of the

synthetic USI generated from G. D uses a PatchGAN model [9]. It is used to prevent the phe-

nomenon whereby the trend of updating the parameters of G during the training of the image

translation NN focuses more on deceiving D than making the synthetic USI similar to the real

USI. If this phenomenon occurs, G generates a blurry synthetic USI. When the PatchGAN

model compares the real USI and the synthetic USI, it does not compare the entire image but

compares in patch units of certain regions. When the PatchGAN model is used, G generates a

sharper synthetic USI.

When the G and D of the image translation NN are trained simultaneously, the following

two losses are used together: (1) adversarial loss; (2) L1 loss. The adversarial loss is used to

train G and D simultaneously, which are two sub-NNs that have adversarial goals in cGAN [9]:

LadvðG;DÞ ¼ Ex;y½logDðx; yÞ� þ Ex;y½logð1 � Dðx;Gðx; zÞÞÞ�: ð2Þ

The L1 loss is used together to not only deceive D when updating the parameters of G in the

training process but also generate synthetic USIs similar to the real USIs [9]:

LL1ðGÞ ¼ Ex;y;z½ky � Gðx; yÞk
1
�: ð3Þ

The final loss function can be defined as follows [9]:

G� ¼ argmax
G

min
D

LadvðG;DÞ þ l � LL1ðGÞ; ð4Þ

In the above equation, λ is a hyperparameter for controlling the influence of the L1 loss.

G consists of 8 encoder blocks and 8 decoder blocks each. In each block of the encoder, a

convolution layer is used, the method of normalization is a batch norm, and activation func-

tion is Leaky ReLU. In each block of the decoder, transposed convolution layer and dropout is

used, a method of normalization is the batch norm, and activation function is ReLU. D con-

sists of 3 blocks. Each block uses a convolution layer, batch norm as a method of normaliza-

tion, and Leaky ReLU as an activation function.

Fig 2. Image translation NN used in the proposed method. The generator generates a synthetic USI from the binary

mask; the discriminator distinguishes the real USI and the synthetic USI generated by the generator. The generator

and discriminator are trained together.

https://doi.org/10.1371/journal.pone.0272602.g002
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Underwater sonar image segmentation

Image segmentation model

Semantic segmentation performs the task of predicting each pixel’s class in a given image.

Therefore, if semantic segmentation is applied to the USI, we can determine which pixels in

the USI are occupied by the underground object that we want to find as shown in Fig 3. A fully

convolutional networks (FCN) [21] is applied for the USI segmentation. A FCN is built by

modifying VGG16 [22], a well-known NN used in image classification. The fully connected

layers in VGG16 [22] are removed, and then 1 × 1 convolution layers, upsampling layers, and

skip-connections [20] are added to facilitate dense prediction that outputs the pixel-level clas-

sification result with the same size as the input image.

Underwater sonar image dataset

Synthetic underwater sonar image generation

To train the image translation NN to generate synthetic USIs, we need a training dataset in

which the source images and the images targeted to be generated are paired. To create the

dataset, the real USIs are collected first, and then, the annotation tool is used to create the

binary masks for the objects that will be segmented as shown in Fig 4.

After training the image translation NN, G in the image translation NN is used to generate

a USI as shown in Fig 5. The G can synthesize USIs of the object with various poses and light-

ing conditions, which do not exist in the training dataset.

The dataset and the hyperparameters used to train the image translation NN will be

described in detail in “Experimental Results”.

Training using synthetic underwater sonar image

The NN for semantic segmentation has a larger number of parameters than object classifica-

tion and detection because it performs dense prediction. Therefore, a considerable amount of

data is required to train the semantic segmentation NN. Moreover, the task of annotating the

ground truth for semantic segmentation requires more effort than annotating the ground

truth used for image classification or object recognition on an image. To make a ground truth,

pixel-level labeling is required for semantic segmentation.

The real USI and the aforementioned USI synthesized using the image translation NN are

used together to train the NN for USI segmentation. The following are the advantages of using

a synthetic USI: (1) the effort required for additional experiments to obtain real USIs can be

Fig 3. USI segmentation using a fully convolutional neural network.

https://doi.org/10.1371/journal.pone.0272602.g003
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reduced; (2) in the case of a synthetic USI, a task of annotating the ground truth is not

required.

Environmental conditions of underwater sonar image dataset

We constructed datasets in two actual underwater environments using TELEDYNE BlueView

M900–90 sonar to train the image translation NN and the semantic segmentation NN. The

sonar had a frequency of 900 kHz, a beam width of 90˚ in the horizontal direction and 20˚ in

the vertical direction, and a detection range of 100 m.

The first underwater environment was a reservoir Fig 6A. In this environment, we sunk a

mannequin to the bottom of the reservoir, and then attached the sonar to the boat to obtain

Fig 4. Example of a training dataset. That has pairs to be used in the image translation NN training for USI

generation.

https://doi.org/10.1371/journal.pone.0272602.g004

Fig 5. Real USI and USIs generated by the generator after training the image translation NN. The generator of the

image translation can create USIs of the object with various poses and lighting conditions, which do not exist in the

training dataset.

https://doi.org/10.1371/journal.pone.0272602.g005
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the data. The second environment was a water pool Fig 6B. The pool had a width of 10 m, a

length of 12 m, and a depth of 1.5 m. After sinking a mannequin with other artificial objects,

such as a box and tire, to the bottom of the pool, we attached the sonar to SPARUS [23], an

unmanned underwater vehicle, to obtain the data. When acquiring data in each environment,

we adjusted the sensitivity of the sonar to create two conditions in each environment (reservoir

high sensitivity—RHS, reservoir low sensitivity—RLS, pool high sensitivity—PHS, and pool

low sensitivity—PLS) as shown in Fig 7.

NVIDIA T4 GPU and Keras package were used to train the image translation NN and

semantic segmentation NN. We trained four image translation NNs to generate the synthetic

USI for the datasets of the four conditions. In the training dataset for each environment, a

binary mask and a USI are paired up, as shown in Fig 4, and there are 200 paired images with a

size of 512 × 256. So, real USI used is a total of 800 pages. The synthetic USI generated is 200

pages for each type, for a total of 800 pages with a size of 640 × 480. The image translation NN

was trained using the training dataset with Adam optimizer for 150 epochs, and the hyperpara-

meters of the sub-NNs, G and D, were as shown in Table 1.

The semantic segmentation NN was trained to classify the pixels occupied by the object

from the background in the USI based on the real datasets of the four conditions and the syn-

thetic datasets of four conditions generated through the image translation NN. The training

dataset for each condition consisted of a set of paired binary masks and USI as shown in Fig 4.

Fig 6. Underwater environments and platforms. (A) Reservoir and boat, (B) Pool and underwater vehicle.

https://doi.org/10.1371/journal.pone.0272602.g006

Fig 7. Four datasets created in two environments. (A) Reservoir low sensitivity, (B) Reservoir high sensitivity, (C)

Pool low sensitivity, (D) Pool high sensitivity.

https://doi.org/10.1371/journal.pone.0272602.g007

PLOS ONE Data augmentation using image translation for underwater sonar image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0272602 August 12, 2022 7 / 15

https://doi.org/10.1371/journal.pone.0272602.g006
https://doi.org/10.1371/journal.pone.0272602.g007
https://doi.org/10.1371/journal.pone.0272602


There were 200 paired images, each having a size of 640 × 480. The following table shows the

description of the eight combined datasets used to train the semantic segmentation NN.

The semantic segmentation NN was trained using the eight training datasets with Adam

optimizer for 200 epochs, and the hyperparameters were shown in Table 2.

Based on the eight datasets Table 3, we constructed three training datasets Table 4 to vali-

date the effectiveness of the data augmentation using the synthetic USI, which were created

using the image translation NN.

The T_Real dataset is a combination of the real datasets of the four conditions, and

T_Synth is a combination of the synthetic datasets of the four conditions. On the other hand,

T_Aug is a combination of the real datasets and synthetic datasets. When the semantic seg-

mentation NN was trained using these datasets, the same number of paired images was used

through uniform sampling. When the semantic segmentation NN was trained using the three

Table 1. Hyperparameters of the image translation neural network.

G D
Learning rate 0.0004 0.0004

Batch size 1 1

β1 0.5 0.5

β2 0.999 0.999

Learning rate, batch size, β1 and β2 are the hyperparameters of the sub-NNs, G and D.

https://doi.org/10.1371/journal.pone.0272602.t001

Table 2. Hyperparameters of the semantic segmentation neural network.

FCN
Learning rate 0.001

Batch size 5

β1 0.9

β2 0.999

Learning rate, batch size, β1 and β2 are the hyperparameters of FCN.

https://doi.org/10.1371/journal.pone.0272602.t002

Table 3. Real and synthetic underwater sonar image datasets.

Name Environment Sensitivity Real/Synthetic

RHS_Real Reservoir High Real

RHS_Synth Reservoir High Synthetic

RLS_Real Reservoir Low Real

RLS_Synth Reservoir Low Synthetic

PHS_Real Pool High Real

PHS_Synth Pool High Synthetic

PLS_Real Pool Low Real

PLS_Synth Pool Low Synthetic

RHS, reservoir high sensitivity; RLS, reservoir low sensitivity; PHS, pool high sensitivity; PLS, pool low sensitivity; _Real, real underwater sonar image; _Synth, synthetic

underwater sonar image.

https://doi.org/10.1371/journal.pone.0272602.t003
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training datasets, the hyperparameters used were the same as those used when the eight train-

ing datasets shown in Fig 2 were used.

Experimental results

Synthetic underwater sonar image generation

Fig 8 shows samples of the results of generating the synthetic USI similar to the real USI of the

four conditions using the model for the image translation NN.

Fig 8 confirms that the image translation NN can generate a synthetic USI by reflecting the

characteristics of the real USI. The bottoms of the reservoir and pool are darker than the

underwater objects. The underwater objects are brighter than the bottoms of the reservoir and

pool, whereas there are brightness differences and shadows depending on the location of the

sonar. Furthermore, when Fig 8A and 8C are compared with Fig 8B and 8D, it is observed that

the effect of the sonar sensitivity on the USI can be determined from the image translation

NN.

Underwater sonar image segmentation

Fig 9 shows samples of the results of segmenting a real USI after training the semantic segmen-

tation NN using the synthetic USI created by the underwater image translation (UIT) NN.

Fig 9A–9C show that the pixels corresponding to the positions of the objects were segmented

properly. However, in the case of Fig 9D, which is a result of segmenting a USI collected by

increasing the sonar’s sensitivity in the pool environment, it is observed that the pixels corre-

sponding to the positions of the objects were not segmented properly, and the pixels corre-

sponding to some parts of the pool boundary were segmented incorrectly.

We used two indicators called mean accuracy and mean intersection over union (IoU) to

analyze the results of training the semantic segmentation NN quantitatively using the datasets

created using the synthetic USI. Table 5 shows the results of segmenting the real USI with the

semantic segmentation NN trained using the real USI datasets and synthetic USI datasets.

The performance values of the semantic segmentation NN trained using the real USI data-

sets and the synthetic USI datasets are shown in Table 5. This shows that there is no significant

difference in performance between the semantic segmentation NNs trained using the synthetic

USI datasets and those trained using the real USI datasets.

Data augmentation results

We conducted an experiment to investigate whether the performance of the semantic segmen-

tation NN can be improved when the synthetic USI generated by the proposed image transla-

tion NN is used for data augmentation. As shown in Fig 10, we used the dataset that contained

both real USI and synthetic USI (T_Aug) and the dataset that contained only the real USI

Table 4. Real, synthetic and augmented underwater sonar image datasets.

Combinations

T_Real RLS_Real + RHS_Real + PLS_Real + PHS_Real

T_Synth RLS_Synth + RHS_Synth + PLS_Synth + PHS_Synth

T_Aug T_Real + T_Synth

T_Real, dataset is a combination of the real datasets of the four conditions; T_Synth, dataset is a combination of the

synthetic datasets of the four conditions; T_Aug, dataset is a combination of the real datasets and synthetic datasets.

https://doi.org/10.1371/journal.pone.0272602.t004
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(T_Real) to train the semantic segmentation NN, and then compared the results of segmenting

real USIs. Table 6 shows the results of a quantitative analysis performed using the mean accu-

racy and mean IoU.

As shown in Table 6 the semantic segmentation NN trained using the real USI datasets and

synthetic datasets and the semantic segmentation NN trained using the synthetic USI can seg-

ment the real USI properly.

The semantic segmentation NN trained using both the real USI and synthetic USI showed

improved performance over that trained using only the real USI. However, when the real USIs

collected in the pool environment (PLS_Real and PHS_Real) were segmented, the mean IoUs

decreased slightly although the mean accuracies increased. Considering the characteristics of

the mean IoU calculation process, we concluded that this occurred because some pixels of the

USI were incorrectly segmented.

Fig 8. Results of synthetic underwater sonar image generation (left: Real underwater sonar image, right: Synthetic

underwater sonar image). (A) Reservoir low sensitivity, (B) Reservoir high sensitivity, (C) Pool low sensitivity, (D)

Pool high sensitivity.

https://doi.org/10.1371/journal.pone.0272602.g008
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During the experiment, we used the same number of USI and binary mask pairs in T_Real,

and T_Aug for the performance comparison. Nonetheless, when the generation of synthetic

USI using the proposed UIT is applied in practice, the performance of the semantic segmenta-

tion NN will be improved because the proposed method can generate a large number of syn-

thesized USIs for data augmentation.

Conclusions and future works

In this paper, we proposed a data augmentation method using a UIT NN that can improve the

semantic segmentation performance for object recognition in underwater environments

where data collection is limited. The UIT is able to generate synthesized USIs with various

poses and lighting conditions. If the proposed data augmentation method using the UIT is

used, a large amount of synthetic USIs that are similar to real USIs can be created to train the

semantic segmentation NN, even if the size of the real USI data is small. S1 Fig is the qualitative

semantic segmentation result of Tables 5 and 6. S1 and S2 Tables are quantitative semantic

Fig 9. Results of segmenting a real USI with the USI NN trained using the synthetic USI created by the PLS_Synth

model. (A) Reservoir low sensitivity, (B) Reservoir high sensitivity, (C) Pool low sensitivity, (D) Pool high sensitivity.

https://doi.org/10.1371/journal.pone.0272602.g009

Table 5. Semantic segmentation results using only one type of the real underwater sonar image datasets and syn-

thetic underwater sonar image datasets.

Train dataset Test dataset Mean accuracy Mean IoU

RLS_Real RLS_Real 0.77 0.75

RLS_Synth 0.76 0.63

RHS_Real RHS_Real 0.96 0.88

RHS_Synth 0.81 0.71

PLS_Real PLS_Real 0.87 0.76

PLS_Synth 0.59 0.57

PHS_Real PHS_Real 0.82 0.73

PHS_Synth 0.81 0.71

Training dataset: real underwater sonar images and synthetic underwater sonar images.

Results of segmenting a real underwater sonar image with the semantic segmentation neural network trained using

only one type of the real underwater sonar image datasets and synthetic underwater sonar image datasets.

https://doi.org/10.1371/journal.pone.0272602.t005
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segmentation results that extend Tables 5 and 6. S1 Fig shows the results of training the seman-

tic segmentation NN using the single types of training datasets separately. If the data used for

training and testing have the same ‘Environment’ and ‘Sensitivity’ among the data types, the

performance of Semantic Segmentation is good. On the other hand, when the types of data

were different, the results of semantic segmentation was that the object of interest could not be

recognized or the part that was not the object of interest was recognized as an object. These

results are obtained when training with single type data, and when augmented data as shown

in Table 4 is used for training, image segmentation performance is improved as shown in S1

Fig.

Additionally, if the semantic segmentation NN is trained using both the real USIs and syn-

thetic USIs, the performance of semantic segmentation can be improved compared with when

Fig 10. USI segmentation results (left: Semantic segmentation NN trained using real USI, right: Semantic

segmentation NN trained using real USI and synthetic USI). (A) Reservoir low sensitivity, (B) Reservoir high

sensitivity, (C) Pool low sensitivity, (D) Pool high sensitivity.

https://doi.org/10.1371/journal.pone.0272602.g010
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it is trained using only the real USIs. Furthermore, as shown in S1 Fig, S1 and S2 Tables,

semantic segment results are good even when using only synthetic USIs when training models,

showing the possibility that only synthetic USIs can be used as training data.

The UIT NN used in this paper has the limitation that it needs explicit pairs of binary

masks and USI. To mitigate this limitation, in the future, we can use a category-level UIT NN

with cycle consistency loss is applied [24]. Furthermore, as the UIT NN used in this paper can

generate a synthetic USI for one environment or condition, the parameters of the NN have to

be trained again to generate a synthetic USI for another environment or condition. To mitigate

this, we can use a UIT NN that can handle multiple domains at once [25].

Supporting information

S1 Fig. Results of image segmentation by type of datasets (horizontal axis: Type of test

datasets, vertical axis: Type of training datasets). (A) Reservoir low sensitivity_Real, (B) Res-

ervoir high sensitivity_Real, (C) Pool low sensitivity_Real, (D) Pool high sensitivity_Real, (E)

Reservoir low sensitivity_Synth, (F) Reservoir high sensitivity_Synth, (G) Pool low sensitivi-

ty_Synth, (H) Pool high sensitivity_Synth, (I) T_Real, (J) T_Synth, (K) T_Aug.

(TIF)

S1 Table. Mean accuracy results of image segmentation by type of datasets (horizontal

axis: Type of test datasets, vertical axis: Type of training datasets). (A) Reservoir low sensiti-

vity_Real, (B) Reservoir high sensitivity_Real, (C) Pool low sensitivity_Real, (D) Pool high sen-

sitivity_Real, (E) Reservoir low sensitivity_Synth, (F) Reservoir high sensitivity_Synth, (G)

Pool low sensitivity_Synth, (H) Pool high sensitivity_Synth, (I) T_Real, (J) T_Synth, (K)

T_Aug.

(TXT)

S2 Table. Mean IoU results of image segmentation by type of datasets (horizontal axis:

Type of test datasets, vertical axis: Type of training datasets). (A) Reservoir low sensitivi-

ty_Real, (B) Reservoir high sensitivity_Real, (C) Pool low sensitivity_Real, (D) Pool high sensi-

tivity_Real, (E) Reservoir low sensitivity_Synth, (F) Reservoir high sensitivity_Synth, (G) Pool

low sensitivity_Synth, (H) Pool high sensitivity_Synth, (I) T_Real, (J) T_Synth, (K) T_Aug.

(TXT)

Table 6. Semantic segmentation results using a training dataset of real underwater sonar images and synthetic

underwater sonar images.

Train dataset Test dataset Mean accuracy Mean IoU

T_Real RLS_Real 0.75 0.73

T_Aug 0.77 0.74

T_Real RHS_Real 0.77 0.75

T_Aug 0.84 0.76

T_Real PLS_Real 0.74 0.71

T_Aug 0.80 0.70

T_Real PHS_Real 0.75 0.72

T_Aug 0.83 0.69

Results of segmenting a real underwater sonar image with the semantic segmentation neural network trained using

the real underwater sonar image datasets and synthetic underwater sonar image datasets.

https://doi.org/10.1371/journal.pone.0272602.t006
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S3 Table. Abbreviation table.

(TXT)

S1 Dataset.

(Z01)

S2 Dataset.

(ZIP)
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