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Abstract

Owing to the many possible errors that may occur during real-world mapping, point set maps
often present a huge amount of outliers and large levels of noise. We present two robust surface
reconstruction techniques dealing with corrupted point sets without resorting to any prefiltering
step. They are based on building an unsigned distance function, discretely evaluated on an adap-
tive tetrahedral grid, and defined from an outlier-robust splat representation. To extract the sur-
face from this volumetric view, the space is partitioned into two subsets, the surface of interest
being at the boundary separating them. While both methods are based on a similar graph defini-
tion derived from the above-mentioned grid, they differ in the partitioning procedure. First, we
propose a method using S-T cuts to separate the inside and outside of the mapped area. Second,
we use a normalized cut approach to partition the volume using only the values of the unsigned
distance function. We prove the validity of our methods by applying them to challenging under-
water data sets (sonar and image based), and we benchmark their results against the approaches

in the state of the art.

1 | INTRODUCTION

Over the past few decades, underwater robotics have opened the
door to deep underwater exploration. Knowing the shape and struc-
ture of the seafloor at depths otherwise unreacheable by humans is of
paramount importance for the scientific community. To faithfully rep-
resent these environments, three-dimensional (3D) maps provide rich
and straightforward information.

In this context, recent advances in range-scanning technologies
have led to the widespread use of point cloud maps. These 3D point
sets represent discrete measurements taken at the surface of a rigid
scene and are the base data used to compose 3D maps. It is evi-
dent that the lack of connectivity between points leads to prob-
lems in data processing, as it prevents to easily take new mea-
surements using this representation, and also complicates visual-
ization, since from a given point of view it is difficult to discern
whether a given point should be visible or otherwise occluded by
other points in the set. Thus, useful 3D maps require recover-
ing a continuous surface representing the scanned object or scene.
The surface reconstruction problem deals with the creation of this
continuous surface from the discrete measures represented by the
points, normally in the form of a triangle mesh. Surface recon-
struction is specially relevant to provide robots with spatial aware-
ness capabilities when navigating in complex 3D and unstructured
environments.

A relevant issue is that in real-world applications, and regardless
of the type of scanner used, the retrieved point sets inherently suffer
from some corruption. The data tend to be outliers ridden and con-
tain noise of different magnitude within the same data set. We refer
to noise as the variations on the measurements mainly caused by the
precision and repeatability of the sensor, whereas outliers are purely
spurious measurements caused by errors during the scanning pro-
cess and that do not represent samples of the surface. In addition, the
problem of data corruption is aggravated by the underwater medium.
Underwater exploration mainly relies on two types of sensors for range
data collection. On the one hand, we find the acoustic sensors, pro-
viding range data based on the time of flight of emitted sound beams.
While they are well known on the area, their resolution is only good
for large area mapping. On the other hand, we have the imaging sen-
sors. In this case, due to the visibility limitations of the medium (i.e.,
light attenuation, low contrast, blurring, artificial lighting), these tech-
nigues attain a higher detail, at the expenses of small locality. By means
of computer vision techniques, correspondent feature points from dif-
ferent points of view of the scene are used to reconstruct a point set
model.

Regardless of the acquisition methodology used, it is difficult to
obtain reliable data. In this sense, data filtering and/or smoothing may
be needed prior to its further processing. However, a method able to
directly cope with unprocessed point set data would be preferred to
tackle the problem without the need of manual filtering or parameter
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tuning. In this paper, we face the problem of surface reconstruction on
data that is far from ideal. We use robust statistics methods to allow
the elimination of outliers while obtaining manifold surfaces of the sur-
veyed areas. Moreover, the methodology used in both methods avoids
the recurrent requirement of known normals at input points. As we
will present in later sections, per-point normal computation is an ill-
posed problem on itself. In addition, this allows the applicability of the
methods to a wider range of inputs other than robotics derived, where
the location of the scanning sensor may not be available. For instance,
this is the case for the range scanning examples shown in Section 8,
for which no additional data than the 3D point cloud were available.
Additionally, we face the problem of bounded surfaces, normally obvi-
ated by state-of-the-art solutions. Note that when observing a part of
the seafloor, we naturally describe a bounded surface, as we have clear
boundaries at the parts where we end or stop the survey. We demon-
strate the versatility of the proposed method by applying it to both in-
lab and underwater data sets.

2 | RELATED WORK

Despite the above-mentioned richness and usefulness of 3D maps,
their creation has gained little interest of the underwater mapping
community. Owing to the previously mentioned difficulty associated
with the processing of unconstrained 3D data, the widespread use of
downward-looking sensors on surveying platforms has promoted the
assumption of all range data being projectable on acommon plane. This
conjecture is used both in acoustic1~4 and image-based mapping,>~7 as
it reduces a 3D problem to asimpler 2.5D. In this case, the map creation
is oversimplified because one can benefit from the large set of tools in
the robotics community to retrieve smooth elevation maps even if the
data contain some level of corruption. It is also easy to then combine
both acoustic and image-based maps to reach further detail.8?

However, it is of high relevance to consider the full 3D structure
of the surveyed site. The observation of an area from unrestricted
viewpoints reveals the arbitrary concavities that a scene may contain,
presenting in this way the real shape of the zone to be mapped. As
pointed out in Ref. 10, there is a growing necessity for full 3D mapping
in robotics applications and recent advances in underwater robotics
work toward this unrestricted scenario.11-13 Thus, methods such as
the ones proposed in this article will render necessary in the near
future.

The problem at hand, surface reconstruction, has been an exten-
sively studied issue in the computer graphics and computational
geometry communities. For the case of almost-ideal data, where
the points are supposed to be measured exactly on the surface of
the object, interpolation-based approaches are the most commonly
used. In this class of methods, all or some of the input points are
part of the output surface vertices. On the one hand, procedures
may work with a surface-oriented view, by constructing the surface
incrementally by joining triplets of points into triangles, where these
triangles normally follow some properties.!4-18 On the other hand,

we find volume-oriented approaches, where the problem is defined

as separating the inner and an outer volume of the object or scene,
such that the surface we are interested in is found at the interphase
between both. Normally, the space partition is modeled inside a cell
decomposition of the space, such as the Delaunay triangulation or its
dual, the Voronoi diagram.19:20

On the contrary, when the points have some noise (i.e., they cannot
be assumed to be measured precisely on the surface), the approxima-
tion methods are more adequate. In this case, the problem is normally
cast to an implicit formulation. Thus, the surface is defined implicitly
using a distance function (signed or unsigned) or an indicator function.
From this model, we can gather a triangle mesh of the surface using iso-
surface extraction methods such as marching cubes?? or the restricted
Delaunay triangulation (RDT) mesher.22

In this direction, most methods create a signed distance function
(SDF) from the input points. This can be done by merging local prim-
itives into a global function. In the case of having a normal associ-
ated with each of the input points, each oriented point can be consid-
ered as a tangent plane to the surface, such that a simple SDF can be
defined by computing the mean distance from a query point to a set
of nearer planes.2324 There are also many methods using the radial
basis functions (RBF) mechanism to interpolate the SDF from the input
points and normals.2> Additionally, instead of using directly the RBF
to interpolate, they can also be used to weight the merging of differ-
ent local contributions, as in the multilevel partition of unity (MPU)
algorithm,2é where the local surfaces computed at the leafs of an
octree?? containing the points are then merged using this technique.
To alleviate computational costs, RBFs of compact support have also
been explored.?8 In a similar way, variational approaches involving the
coherency between the gradients of the SDF and the oriented points
have been proposed.2? Other techniques are those of moving least
squares (MLS), also known as point set surfaces (PSS), which was first
defined as a projection procedure that, given a point, projects it onto
the surface defined by the input set. It turns out that this projection
can be casted in most cases to an implicit formulation, which can then
be used to retrieve the meshed surface.3931 Finally, some methods rely
on the prior knowledge of 2.5D connectivity in a single range scan and
the known positioning of the sensor at the time of data acquisition to
attain a merging of the local contributions into a global SDF.3233 The
popularity of this last method is proven by the large acceptance of vari-
ants of these procedures in real-time mapping applications for land
robotics.343°

Besides, there are methods based on building an indicator function
to extract the surface from. An indicator function is a pure in/out func-
tion from where, again, the surface can be extracted at the interphase
between the two volumes. In this category, we find methods where the
points with their associated normals are seen as samples of a gradient
field, such that the indicator function can be recovered by means of
applying the fast Fourier transform (FFT),3¢ the Poisson equation,37-38
or wavelets.3?

Indeed, there is a clear dependence of most of the approximation-
based methods on the knowledge of per-point normals, which is
an information that may not be provided directly by the scanning
mechanism and that may have to be computed from the points

themselves. It should be noted that the problem of computing
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normals is expected to be as complex as the surface reconstruc-
tion problem itself. Indeed, the normal computation problem can
be split in two parts: normal direction estimation and normal
orientation.

On the one hand, the estimation of the normal direction of a point
consists of fitting a plane with data from its vicinity. These data, in
some cases, can be computed from a single scan depending on the
type of sensor. Imaging depth sensors provide the ability of comput-
ing the normal from a single scan since they have enough neighbor-
ing spatial information, derived from the base two-dimensional (2D)
image grid, for a given point (note that they may face problems when
dealing with occlusions and missing data). However, this is not always
the case in robotic applications, where single-stripe 3D scanning mech-
anisms may be used (e.g., multibeam sonar). In these cases, normal
direction computation relies on using data from merged scans in
time.14.2340-43

On the other hand, achieving a coherent normal orientation
throughout the scene is a complex problem. For the case where no
additional information is available, a widely used approach is to heuris-
tically propagate the orientation in the points following a minimum
spanning tree (MST).23 In robotic applications, where we have a notion
of where the sensor was at the time of taking the samples, we can force
the orientation of the normals to be coherent with that information.
Thus, normals making an obtuse dihedral angle with the vector joining
the point and the scan position are inverted. Still, when normal direc-
tions are computed from noisy data, and taking into account that the
scanning position may be uncertain, this method will fail in some cases
(see a real-world example in Fig. 11).

For these reasons, recent methods in the state of the art try to
overcome this limitation by working with raw data. In the case of
unknown normals (or unknown global orientation of those), one can
use unsigned distance functions (UDF). Note, however, that an UDF
cannot be directly meshed, as we require a positive and a negative vol-
ume to extract the surface at the zero level set. To deal with this prob-
lem, Hornung and Kobbelt** diffuse the contribution of each point in
space using simple dilate operations to build a pseudodistance func-
tion without the sign inside a regular grid. Then, with the assumption of
watertightness on the object to reconstruct, they use an S-T cut algo-
rithm to find the minimum cut in the grid and recover back the sign of
the implicit function.

As a matter of fact, the case of outlier-ridden data is dealt by very
few methods in the state of the art. However, the lack of available
methods is in contrast to the above-stated fact of real-world data
always containing outliers to some extent. Methods such as those of
Ref. 45 or 46 try to overcome this limitation by means of computing
a robust UDF which eliminates the effect of outliers in the final rep-
resentation. Then, using some heuristics, they recover the sign of the
function to extract the surface as the zero level set. A recent method*”
deals with large levels of noise and outliers using local surfaces com-
puted to answer the segment intersection queries required by a RDT
mesher. This method is based on building local surfaces of small extent
named splats around each input point, using robust statistic techniques
to disregard outliers, and then merges them together using a mod-

ified RDT meshing accepting this new input. A similar method, this
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time computing on-demand of the RDT mesher the local surfaces, is
presented in Ref. 48. Going back to interpolation-based approaches
but focusing on the outliers problem, the method of Kolluri and co-
workers?? relies on defining a spectral partitioning of a graph derived
from the Delaunay triangulation and the Voronoi diagram to divide the
inside from the outside volume disregarding outliers. Also based on
interpolation, the sensor position can be included to further refine the
graph cut in the presence of outliers.?0-52

The new methods proposed in this paper fall within those
approaches in the state of the art finding a cut surface in a UDF rep-
resentation extracted from the input points. However, they overcome
some of the limitations pointed out for the methods reviewed on the
state of the art and described in this section. First, they are designed
to cope with high levels of both noise and outliers in the data. Second,
they do not require any additional information (i.e., normal vectors) to
perform this task. Third, they provide a manifold surface. And finally,
we successfully address the usually obviated problem of bounded sur-
faces.

3 | MOTIVATIONS, OVERVIEW,
AND CONTRIBUTIONS

We decided to base our method on the splat representation presented
in Ref. 47 because of the superior performance this method has shown
when dealing with noise and outliers. However, only the first step of
the algorithm is used, that is, the splats creation. For each point in
the input set, we generate a local surface named splat with a given
small extend, by accounting for noise and disregarding outliers. The
second part of the method proposed in Ref. 47 tries to generate the
surface by directly meshing the splats using a tailored RDT surface
mesher.22

Given a set of points E on or near a surface, the RDT is a subcomplex
of the 3D Delaunay triangulation of E formed by the Delaunay trian-
gles whose dual Voronoi edges intersect the surface. Each RDT trian-
gle has a circumball centered on the surface and empty of all other E
points, named surface Delaunay ball. Boissonnat and Oudot?2 proved
that if the sampling E of the surface is dense enough with respect to
the local feature size of the surface, the RDT provides a good approx-
imation of the Hausdorff distance to the surface as well as a good
approximation of its normals, areas, and curvatures. The meshing algo-
rithm iteratively refines an initial 3D Delaunay triangulation until all
surface Delaunay balls meet some properties. More specifically, start-
ing from a small set of points on the surface, the method inserts the
center of a surface Delaunay ball at each iteration (i.e., the intersec-
tion between the Voronoi edge and the surface) until all the balls ful-
fill the following three criteria: The triangle inside the ball must have
all its angles larger than «a, the ball must have a radius lower than
a,, and the distance between the center of the ball and the circum-
center of the associated RDT triangle must be lower than ay. Tun-
ing a4, a,, and a4 changes the quality of the approximation and of
the output surface triangle mesh in terms of sizing and shape of its

triangles.
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Since the only requirement of RDT meshing is to be able to know
when an arbitrary segment intersects a given surface representation,
in Ref. 47 the splats were added to an axis-aligned bounding boxes
(AABB) tree®3 for rapid intersection query and the contribution of
the many splats that may be intersected was merged in a single point.
While this surface reconstruction method has been proven useful in a
wide range of scenarios, the reconstruction results suffer from some
limitations that we describe in the following.

First, each splat is computed inside a Random sample consensus
(RANSAC) procedure®* to account for outliers, but it is difficult to
remove outliers that fall too close to the surface with respect to the
desired RANSAC distance threshold. The robust computation of splats
has proven successful in removing the so called gross outliers, that is,
outliers far from the true surface, and whose distance to their near-
est neighbors is larger and thus are more sparsely distributed. Only in
cases where the outliers are close enough to the surface with respect
to the RANSAC threshold they are used to generate splats. However,
using these near-by outliers leads to a jagged, self-intersecting splat
representation. However, if we take the outliers that fall very close to
the true surface as part of the noise, the problem translates into a noise
reduction issue.

Second, the splats creation is purely local, and thus no coherence
is enforced between neighboring splats, which are supposed to rep-
resent a smooth continuous surface. Hence, splats may not fit com-
pletely with their neighbors. Moreover, in areas of high curvature, the
splats are likely to self-intersect. This method, as defined, works with
smooth surfaces. However, even in cases where a surface can be con-
sidered smooth, highly curved parts may distort the splat represen-
tation. Furthermore, the self-intersection problem is aggravated by
the naive splat sizing mechanism, which may lead to larger splats in
these sharper areas. In both cases, the result is a nonmanifold surface.
This is because the method is set to directly mesh this representation
using a modified RDT mesher. As stated above, this mesher requires
the representation to be meshed (in this case, the splats) to allow for
intersection queries with arbitrary segments. However, the smaller the
required output resolution of the mesh, the smaller the query seg-
ments required, and consequently the lower the possibility that some
splats are intersected during a query. This results in nonmanifold sur-
faces, as depicted in Figure 7. Having a nonmanifold surface is non-
realistic and complicates further processing applied to the resulting
mesh.

Consequently, our previous surface reconstruction solutions hav-
ing a local view*”*8 may require a postprocessing of the resulting sur-
face to recover from the nonmanifold configurations. Considering the
review of the state of the art presented in the preceding section, it
can be observed how in the case of having the surface represented by
local primitives, the common approach is to merge or blend them into
a global implicit SDF. Merging different contributions in a global rep-
resentation leads to significant noise reduction. Note that in our case,
we will use the robust splats computation to eliminate the gross out-
liers, leaving for the surface extraction step the problem of robustly
dealing with high noise. Thus, if the contributions of the possibly self-
intersecting splats are merged, this should provide a smooth distance

function easier to mesh afterwards. It is because of these reasons that
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(a) Signed (b) Unsigned

FIGURE 1 The problem of contouring a UDF. Imagine we cut a 2D
slice near the surface of the signed (a) and unsigned (b) versions of the
distance function defined in Eq. (1). In the signed version (a), there is a
clear zero value to isocontour located at the inflection point between
positive and negative values; whereas for the unsigned version, due to
roundoff errors, an absolute zero value is never found but only a local
minima of e. Note, however, that this e changes for different partsin the
3D distance function and thus cannot be fixed. If we try to isocontour
the surface at a value close to zero (green line), we will obtain two valid
isovalues, defining not just one surface but two, thus capturing not a
surface but a band of volume

inthis article we propose a global implicit setup, from which a manifold
surface can be extracted from the vicinity between two subvolumes,
attaining also further noise reduction.

Note, however, that most methods of the state of the art require a
priori knowledge of the orientation of the local primitives, usually as
known normals at input points, or the knowledge of other additional
information such as the sensor position at the time of acquisition. Yet,
our splats are not coherently oriented through the surface they define,
as we do not take into account their orientation at any step of the
splats generation process. This prevents a direct computation for the
distance function to be signed.

If we take a close look to how the state-of-the-art approaches
deal with this issue, we can see how there is a tendency toward try-
ing to correctly orient the local primitives globally, prior to merge
their contributions into an implicit SDF. For this purpose, and up to
date, the approaches dealing with this subject are mainly variants of
Hoppe's method.23 Hoppe's method consists of propagating the ori-
entation between neighboring primitives following the MST gener-
ated from the input points. In noise-free cases where there are small
variations in curvature, Hoppe's method has proven to provide satis-
factory results. However, in real-world data, the approach is likely to
fail.

Despite this lack of coherence in orientation, we can still use
the nonoriented splats to produce a UDF. Unfortunately, we cannot
directly extract a surface mesh from a UDF. Figure 1 shows a schematic
representation of this phenomenon. Owing to roundoff errors, the
exact zero value may never exist, and the surface is defined by local
minima on the implicit function. Thus, if we mesh for zero isovalue,
we will not obtain one 2D manifold, but two. This is so because we
need the isovalue to be a clear inflexion point in the SDF. Thus, we

have an unsigned distance field from which we need to extract the
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surface. After discarding the orientation propagation in the splats, the
best chance is to try to recover the sign of the SDF out of the UDF. In
essence, the process consists of dividing the object into its inside and
outside parts.

Note that we can refer to this subdivision as a clustering or a segmen-
tation. In fact, the problem of inside/outside labeling is a binary segmen-
tation problem. Inspired by the great results achieved by the computer
vision community for this task, we propose using a graph formulation
and use minimum cut algorithms for solving the inside/outside labeling
and, consequently, the surface reconstruction problem.

This paper proposes two new approaches differing in the cutting
procedure and the graph construction. However, the computation of
the UDF is the same in both cases. For completeness, we start by giv-
ing an overall review of the splats creation procedure in Section 4.
Then, in Section 5 we present the construction of the UDF. Further-
more, Sections 6 and 7 present the two different methodologies to
solve the binary labeling problem, along with the solutions to tackle
bounded surfaces. Finally, Section 8 shows the results and discussion
on the advantages and disadvantages of both cutting methods, and we
finalize this article with Section 9 where we present the conclusions

derived from the present work.

4 | SPLATS CREATION

In our case, a splat is defined as a surface of small extent that locally
describes the surface around a point. They are constructed using a
fixed k-neighborhood around each point. Inside this neighborhood, we
try to generate a local jet surface.>> This jet surface is a least-squares
approximation of a bivariate height function referenced in alocal frame
computed using principal component analysis (PCA). Hence, the accu-
racy of each splat is defined by the degree of the Taylor expansion
approximating the local bivariate function of degree d. Note, however,
that throughout this article, we use splats of d = 2 at most, that is local
bivariate quadrics (LBQ). Using LBQs provides smoother local approx-
imations of the surface than simpler planar primitives, without over-
fitting to the data as it would be the case when using higher order
ones.

To disregard outliers in the computations, the jet surface fit is per-
formed inside a RANSAC procedure.> This robust statistics method
allows to detect as outliers those points which are not supported by
the jet surface of most consensus generated from its neighborhood, or
those which did not generate a consensus surface at all. Finally, to give
an extent to the splat, we give it a radius equal to the mean distance to
the k nearest neighbors. This simple approach generates larger splats
in sparse areas and, on the contrary, generates small splats in densely
sampled parts.

This method provides two main advantages. First, it removes the
so-called gross outliers, that is those wrong measurements that are
far away from the correct points (even if noisy) and that are easily
spottable by a human when observing the data. Second, it provides
us with a first noise smoothing step. While this smoothing has proven

useful in the case of in-lab range scan data (see the results in the
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original reference?’), it is not sufficient for the type of data we expect,
for instance, in underwater optical mapping. Optical underwater data
suffer from multiple phenomena such as light attenuation, blurring,
low contrast, or nonuniform illumination. Thus, the gathered data
are noisy, and this noise is translated to any further processing to be
applied to these images, such as recovering the observed 3D structure.
Thus, when applying 3D optical reconstruction methods, the resulting
point sets are far noisier when using underwater images than when
the images are captured in-air or in a controlled environment [e.g., see
Fig. 14].

5 | UNSIGNED DISTANCE FUNCTION

The purpose of building a distance function is to blend the local
contributions into a global distance field. This permits the other-
wise noncoherent-related local surfaces to contribute to a consis-
tent global surface represented as the zero isolevel in the dis-
tance field. The steps to create a UDF from the splats representa-
tion are explained in the following; whereas some of the main con-
cepts are depicted in Figure 2, and the procedure is summarized in
Algorithm 1.

We use a variant of the implicit MLS definition®® to blend the splats
together. In the original definition, the contribution of oriented points
(seen as planar structures) was blended together to generate a SDF.
We update the formula by adding support for splats of degree 2 (i.e.,
LBQs) and by taking into account the unsigned distance to the local sur-
faces instead of the signed one. The UDF at a given query point pis then
computed as follows:

 Zses b5, (05 (p)

= , 1
U(p) ZS;GS ¢s,~ (D) ( )

where Sis the set of splats s;, fs‘, (p) is the algebraic projection of p onto

sj, and ¢, is a Gaussian of the following form:

llp-ill*
32

(D) = & (2)

—Ns )
where ¢; being the center of s; and N; is the total number of splats
involved in the computation. In fact, for each query point p, u(p) is
computed using the splats whose centers fall at a radial neighborhood
of size 6. These neighborhood relationships are efficiently obtained
through the use of a K-dimensional data structure (KD-tree).>” Con-
sequently, this distance function has a bounded support, that is only
defined on a limited extent of volume around the splats, at a distance of
o at most. Unfortunately, if we want the distance function to be defined
in a larger band, increasing ¢ values leads to an increase of the com-
putational cost. For this reason, we propose constructing a secondary
band governed by the parameter o,. In this ¢, band, we compute a
coarser approximation of the function defined in Eq. (1) by not tak-
ing into account the full radial neighborhood around the query point,
but only the first k,, nearest neighbors. This reduces the computational
effort and provides an acceptable approximation. Note that having a

coarser approximation of the UDF when far from the input points is
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(c)

(d)

FIGURE 2 UDF creation steps. The original point cloud is shown in (a). From these points, a splats representation is extracted as presented in
(b). A slice of the UDF derived from the splats is shown in (c), and in (d) we show the adaptive triangulation containing the function. More precisely,
(d) depicts a cut of the volumetric tetrahedralization using the same slicing plane as in (c)

not important in our case, since we are interested in the minimum of
the function, and this is located inside the finer ¢ band. We only use this
secondary band because it may be interesting in some cases to use this
low-quality version of the distance function, for instance, when a small
o resultsin holes appearing on the surface and we want our global func-
tion to fill them smoothly. In this sense, the larger the band we consider
the larger the global implicit function support and, consequently, the
larger the reconstructed surface area.

This UDF is a weighted mean of the individual distance contribu-
tions of the splats falling near a given query point. It is obvious that
the distance function presented does not take into account gross out-
liers, which are supposed to be eliminated by the splats creation pro-
cedure. Note also that we just use the centers of the splats and do
not take into account their size in the distance computation. Moreover,
we just limit their degree to be of d = 1 and d = 2, corresponding to
points with normals or LBQs, respectively, and they are assumed to be
unoriented.

Despite the use of a KD-tree for a rapid query of neighborhood rela-
tionships, computing the function at an arbitrary point in space is a
costly operation. To alleviate the computational burden of intensively
querying this implicit function, which is likely to be required during
the surface extraction step, we discretize our domain. At each of the
vertices in the partitioned domain, the UDF is computed using Eq. (1).
Then, for an arbitrary query point in R3, the function value is returned
using alinear interpolation of the values stored in those vertices. More-
over, instead of following the traditional approach of using a regular
grid, we lean toward using an irregular tetrahedral grid that adapts to
the density of the input points. This sampling-dependant data struc-
ture provides a memory-efficient way of storing the distance function,
more precise when closer to the original point set and less precise
when away from it.

We use 3D Delaunay refinement>8>? to obtain the tetrahedral grid
discretizing our working space. Starting from a Delaunay triangula-

tion containing, a set of base points, the tetrahedra are refined by

interleaving vertex insertion (to modify the connectivity of the mesh)
and energy minimization (to optimize the positioning of the ver-
tices) until a given set of user requirements are fulfilled. The tri-
angulation criterion we forced in our case is the ratio between the
edge of the minimum length and the circumradius of the tetrahe-
dra to be lower than the threshold «a,, (also referred as the radius-
edge ratio). Note that we are aiming at having a faithful approxima-
tion of the distance function near the centers of the splats (which
are located near the original points in the input P). By forcing
the radius-edge bound to be relatively low, the tetrahedra become
larger when far from the points, giving a rough approximation, and
smaller when closer to the input data, providing a more precise
approximation.

The set of base initial vertices used to trigger the 3D Delaunay
refinement step could be, for reasonably small data sets, the cen-
ters of the previously computed splats. However, when the num-
ber of points exceeds a few thousands of points, including all the
centers of the splats generates a too fine-grained tetrahedral mesh.
The extraction of a surface of a reasonable resolution does not
require the distance function to be extremely precise. Thus, we
start by decimating these base vertices to a representative set,
able to maintain a proper resolution for the distance function after
refinement, but not too dense so as to require plenty of mem-
ory resources for the creation of the refined tetrahedral mesh.
This is done with a simple octree simplification guided by a depth
threshold o.

As previously stated, the values of the distance function are com-
puted at the vertices of the triangulation. Thus, for an arbitrary query
point, the tetrahedron containing it is localized and the function value
is interpolated using the values at the vertices of the tetrahedra along
with the barycentric coordinates of the point. In the case where the
query point is outside the band, the value is undefined. We refer to the
vertices of this data structure as U and to its refined Delaunay struc-
ture as Del(U).
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function UDF(S, o, a..)

# Create data structures
Cs «— S.getCenters() # Centers of the Splats
O «— createOctree(Cs, 0) # Octree at depth o
T « createKDTree(Cy) # KD-Tree
# Get the mean points at the leafs of the octree
C, «— O.getLeafCenters()
# Build the Delaunay triangulation with these centers
Del(C,) « createDelaunayTriangulation(C,)
# Refine the Delaunay triangulation to fulfill the requirements
Del(U) « DelaunayRefinement(Del(C,), )
# Compute the distance function for each vertex in Del(U)
for v € U do
p = v.point # The 3D point associated with the vertex
d = T.getDistanceToNearestPoint(p)
if d <o then
Sy = T.getRadialNN(p) # All Splats falling in radial search
v.distance = udf(p, Sn) # UDF at p using Sy, see equation 1
else if d < oy then
Sy = T.getKNN(p, k) # K-Nearest Splats only
v.distance = udf(p, Sy) # UDF at p using Sy, see equation 1

else
v.distance = Undefined
end if
end for
return Del(U)
end function

6 | S-T CUT

Given the unsigned function described above, our goal is to recover its
sign. That is, we want to distinguish between the part of the volume
inside the object from the outside part and then simply apply the cor-
responding sign to each part to convert the original UDF into a SDF. You
can see a 2D depiction of the proposed approach in Figure 3 as well as
a summary of the method in the form of a pseudocode in Algorithm 2.
Certainly, this problem can be considered as a binary labeling problem:
We aim at partitioning the vertices U in the above-mentioned tetrahe-
dralization into the two labels in and out. Given the extensive use of the
S-T cut methods in binary optimization, our first proposal is to adapt
this method to perform the partition on our scenario.

An S-T cut divides a set of nodes in a specific type of graph into
two disjointed sets minimizing the cost associated with the removed
edges. Commonly referred to in the literature with the generic name
of graph cuts or, alternatively, the min-cut/max-flow algorithm, this
method obtains an exact minimization for binary optimization prob-
lems. This technique has been extensively used in a wide range of appli-
cations in computer vision and graphics.44>0.51.60-69

A graph G = (V, E) is composed of a set of vertices V and the set of
edges E joining them. In the specific case of S-T cut algorithms, the set
of nodes V contains two special nodes, s (source) and t (sink), referred to

as the terminal nodes, so that V = P U {s, t}, P being the rest of nonter-
minal nodes. Each edge joining vertices v; and vj stores a given weight
w(e;;). We differentiate between these edges by calling them terminal
edges if they join a terminal vertex with a nonterminal one, or non-
terminal edges if they only describe interactions between nonterminal
vertices.

AnS-T cut of the presented graph is a partitioning of the graph nodes
into two subsets, S and T, so that s € Sand t € T. The cost of cutting a
graph equals the sum of weights on the severed edges w(e;;), SO that
v; € Sand V;ET. Thus, the problem is then to find the minimum S-T cut
from all the possible cuts in the graph. A useful result in combinatorial
optimization is that the minimum S-T cut is dual to the problem of find-
ing a maximum flow from source s to sink t.”0

From the binary optimization point of view, the terminal nodes s and
trepresent our possible labels. Suppose we can define a cost for assign-
ing each node to a given label. Also, assume the labeling problem does
not depend only on the nodes themselves but also on the labels of their
neighbors. Thus, our problem requires an optimization of the labels
for each vertex in the graph, by enforcing spatial coherence between
neighbors. This results in the minimization of an energy function com-

posed of a data term and a smoothing term:

Ely=Y Tyl + Y Vylly Iy, (3)

peP ej €N
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FIGURE 3 2D depiction of the pipeline followed in the S-T cut method. Starting from an UDF evaluated in an adaptive grid (a), a graph structure
is built using the connectivity defined by the triangulation (b). Additionally, for the case of S-T cut, some of the vertices in the graph are connected
to two special nodes; s and t (c). After the graph optimization, we obtain a binary partition of the vertices in the graph (d), which is used to sign the
original UDF (e). Using the SDF, we can extract the surface, the curve in this case, at its zero-level set. Note that the normalized cut method passes
directly from (a) to (d), given that it does not require inside/outside knowledge

where T,(Ip) is the data penalty term, V,-J(Ii, Ij) is the interaction poten-

tial, and Ip is the binary labeling to optimize, defined as follows:

0ifv, €S
I = ifv, € @
lifv, €T

Note that, in our case, the O and 1 labels correspond to the inside and
outside of the object to be reconstructed.

Related to the above-mentioned interaction potentials, Ty, (l,) indi-
cates per-vertex labeling preferences, whereas VU(Ii, Ij) encourages

spatial coherence and penalizes discontinuities between neighboring

labels. Kolmogorov and Zabin 71 proved that a globally optimal label-
ing for the energy in Eq. (3) can be found using the minimum cut on
an S-T graph. As suggested in many other approaches,*+5051.68 e use
the algorithm presented by Boykov and Kolmogorov’? to solve for this
minimum cut.

We define our graph G using the same connectivity of Del(U), that
is, the vertices P of the graph correspond to U, and the edges in the
adaptive structure containing the UDF also define the relationships
between vertices in G. Additionally, some of the vertices in the graph
have a pair of edges joining them to both the s and t nodes. This leads to

the graph definition depicted in Figures 3(b) and 3(c) for the 2D case.
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function STCuT(S, Del(U), 3, §;, Nyays, BoundedSurfaceFlag)
# Graph structure created from vertices and edges in Del(U)

V—U

E <« Del(U).getEdges()
G=(V,E)

# Smooth weights matriz W,
for €; 5 € E do

) A\ B
Wy (i,7) = wn(ei ;) = (%) # As in equation 6

end for
# Wy and Wy vectors of terminal weights
A(S) = createAABBTree(S) # AABB tree of splats

# If we want to recover a bounded surface, prepare the spherical cap

if BoundedSurfaceFlag then
C = createSphericalCap(S)

end if

for pe U do
ieven =0
todd =0

for i = 0 to Nyqys do

r = createRandomRay(p) # Random ray with origin at p

n = getNumlIntersections(r, A(S))
if BoundedSurfaceFlag then
if rayIntersectsSphericalCap(r, C') then
n=n-4+1
end if
end if
if n mod 2 =0 then
Leven = feven + 1
else
lodd = lodd + 1
end if
end for
W, (Z) = Ws (P) = ie’uen/Nrays
Wt(z) = wt(p) = iodd/Nrays
end for
# Compute the cut
labels = STCut( W,,, Wy, W)

# Change the sign of the distances at vertices in Del(U) according to the label

for [ € labels do

if 1 = 0 then
v = vertexCorrespondingToLabel(Del(U), 1)
v.distance = —v.distance
end if
end for

return Del(U)
end function

To apply the optimization method to the U nodes in our space par-
tition, two main steps are required. On the one hand, we have to infer
a confidence for each p; € U to be inside or outside the shape. On the
other hand, we need to devise an internodes weighting. Equivalently,
we need to define both terminal and smooth weights.

On the one hand, for the terminal weights composing T, (l,), we take

advantage of our splat representation. Recall that this representation

is already a good approximation of the surface of the object. In the orig-
inal paper,*’ the authors defined a robust intersection method using
RANSAC to be able to query for intersection tests given the segments
required by a RDT mesher. Consequently, we have a way of inducing an
intersection test against the splats approximation.

An intuitive approach to knowing whether an arbitrary point
in space is inside or outside an object is to count the number of
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intersections between a ray with its origin at this point and the surface
of the object. When the number of intersections is odd, the point is
inside the object, and when even outside. Thus, we use a procedure
similar to that presented in Ref. 45 but adapted to our representation.
We induce the confidence of a point as being inside or outside the
object by throwing random rays originating from that point in multiple
directions and counting the number of intersections with the splat
representation. By throwing multiple rays, we are accounting for
the possible unreliability of the ray-intersection procedure due to
noisy and/or self-intersecting splat representations, as explained
above.

For each vertex/point p in the triangulation, we throw a given num-
ber of rays, N,,s, with a starting point at p in random directions and
count the number of intersections. Given all these intersections, we
count those resulting in an even number, ig, ., and those giving an odd
number, iy4q. Note that we do not throw a single ray, taking into account
that the ray-splats intersection query may fail in some cases. Using all
these tests, the confidence for a given point to be part of the inside or

the outside, and, consequently, its weight with the s and t nodes is

W = 'even/Nrays

Wit

(5)

iodd/NrayS'

Note that, in this case, we have fixed the s node, and consequently the
S set of the cut, to represent the outside of the object, whereas t (resp.
T) represents the inside.

In fact, for the tested data sets, the robust ray-splats intersection
query has been empirically proven to work on large scales, that is, far
from the splats, but on the contrary is not reliable within small scales,
that is, near the splats. Consequently, the vertices in U outside the ¢
band are more suitable for reliable stochastic ray signing as presented
above. Furthermore, despite the fact that the ray-splats intersection
query is optimized using AABB trees, its repeated use could lead to a
drop in time performance for the method. To alleviate computational
complexity, we simply apply the stochastic ray confidence computation
to the points at the interphase of the ¢ band. That is, we just compute
the confidence for a vertex if at least one of its adjacent neighbors is
inside the band. This means that only a small subset of vertices has a
terminal weight, and, for the rest of the vertices, no terminal edge is
added. Thus, points with no terminal weights obtain the final label due
to the propagation ruled by the smooth weights.

On the other hand, smooth weights are derived directly from the
unsigned distance function values. Thus, each e;; € N has a weight
W,(e;;), Which corresponds to the direct evaluation of the unsigned dis-
tance function along the edge. Since our vertices in the graph coincide

with those in Del(U), we set the weight to

) NP
U(p,)+U(p,)> , )

Wnleip) = < 2

which is the mean value of the function value at the endpoints of the
edge, and where the power g is a user parameter allowing the emphasis
of the minimum of the distance function as suggested in other unsigned
reconstruction approaches.*+73 Using this definition for the smooth

weights enforces the minimum cut to pass through the minimum of

the UDF. Note that our distance function is defined just on a narrow
sigma band near the centers of the splats. Thus, smooth weights Wp(ejj)
are only defined inside this band. For the rest of the edges, a default
constant value is added, enforcing the propagation of labels from the
nearby neighbors in the band.

6.1 | Extension to bounded surfaces

It is obvious that the above-presented S-T cut approach has a clear
flaw regarding our application area. As described in Section 1, the 3D
reconstruction of a part of the seafloor often corresponds to a bounded
surface. We have seen that most of the methods in the state of the
art assume the underlying surface described by the input points to
be closed (i.e., watertight). This is motivated by the broad application
domain, which mainly consist of the range scanning of objects, which
can be scanned from arbitrary viewpoints in a laboratory or in-air envi-
ronment. However, when exploring the seafloor, there are clear bound-
aries defined in the places where the survey ends, and it is a very rare
case to be able to observe and scan a shape from arbitrary viewpoints
due to the restrictions in the surveying vehicle, even if observing small-
scale structures (e.g., corals). Thus, we cannot assume that there is an
inside notion and, consequently, the inside/outside confidence proce-
dure as previously presented does not apply. We adapted our method
to work in this scenario by simulating the surface to be closed.

We start by computing a global plane using PCA with the centers
of the splats. Then, we compute the bounding sphere containing these
centers and use the previously computed plane to chop it off into two
spherical caps. In this way, one of the caps is used as the reference to
virtually define an inside/outside part of the shape. To do so, during the
inside/outside labeling through stochastic ray throwing, we count any
intersection with the selected spherical cap as a valid intersection. This
process is intuitively depicted in the 2D schematic in Figure 4.

Note that we do not distinguish which part is which, that is we ran-
domly label one of the two spherical caps resulting from stabbing the
bounding sphere by the global plane as inside or outside. Since just
the surface is required, the retrieved solution is valid up to a possi-
ble global orientation change of the resulting triangle mesh after the
surface extraction step. Nevertheless, due to the insertion of this vir-
tual spherical cap into the system, the retrieved surface is closed. Thus,
we create some parts of the surface that are, in fact, not part of the
real bounded surface. These parts of the surface should be eliminated,
using the approach that will be presented for the normalized cut case in

subsequent sections.

7 | NORMALIZED CUT

We have seen that the S-T cut technique requires providing a notion
for some of the points to be inside or outside the shape. This proce-
dure is necessary with several state-of-the-art methods that also try to
find the optimal separation of inside/outside volumes. However, in our
specific case, this knowledge is just a by-product, since the final goal
is to recover the interface between the two volumes, that is, the sur-

face of the object. Given that we are just interested in this separating
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FIGURE 4 2D schematic of the extension for the S-T cut method to handle bounded surfaces. The curve in (a) is not closed, and consequently it
does not define an inside or an outside. We compute a global frame using PCA and use it to chop a bounding sphere into two caps, as depicted in
(b). One of the spherical caps is used to virtually close the surface as presented in (c), so that we can disambiguate the inside/outside computation

surface, in this section we propose a method to partition the volume
into two, but disregarding which part is the inside or the outside. For
this purpose, we use another commonly referred to graph-based tech-
nique applied in solving the binary segmentation problem: the normal-
ized cut.

Spectral methods are extensively used in clustering and segmen-
tation in image processing.”4-7? It is also worth noticing that, even if
originally described using graph theory, normalized cuts have a direct
formulation as a random walk,2° or as a separation using hyperplanes
(similar to support vector machines),81 among other interpretations.

Moreover, normalized cut has been used with minor changes in
surface reconstruction by Kolluri et al4? Note, however, that their
method is interpolation based, and thus its definition is completely dif-
ferent from ours. While they were concerned with the outlier rejection
problem, we are more concerned with the attenuation of noise. That
is, in their approach, the spectral cut was used to disregard outliers,
whereas, in our case, we use it to partition a volume from an implicitly
defined UDF.

Allin all, the question we want to answer is: Can we solve the parti-
tioning problem without having to rely on a specific labeling? Taking a
look back at Eq. (3), this results in removing the data term, leaving the

energy to minimize as follows:

Ehy=Y Vil 1. (7)

ejj€N

Thus, we have to deal with the general definition of a minimum cut: The
graph has to be partitioned into two groups, regardless of their label, so
that the edges of the same group have a high weight, and, on the con-
trary, edges between different groups have low weights. Since they do
not have a specific meaning in this case, we rename our binary regions
as A and B, so that the cut can be defined as follows:

cut(A,B) = 2 w(e;j), (8)
i€AjeB

which means that the minimum cut corresponds to the one minimizing
the total weight of the edges removed.

However, as pointed out by Wu and Leahy,32 minimizing the cut
directly, as described in Eq. (8), favors the cut of a small set of edges,
that is, severing a few edges often leads to a minimization of the

cut. Conceptually, we want the groups in this partition to be rela-

tively large with respect to the total number of nodes. The normal-
ized cut method tries to overcome this problem by forcing the sum
of weights in both parts to be similar. This is obtained by normaliz-
ing the cost of the cut relative to the cost of all the edges in each
region:

cut(A, B)
cost(A)

cut(A, B)

NCut(A, B) = “cost(B) ’

(9

where cost(X) is a sum of the weights of the edges contained in the set
X. This definition promotes the two sets A and B to be larger and of sim-
ilar cost.

As pointed out in the original article by Shi and Malik,”*

solving
this problem is NP-hard. However, if we change the labeling from pure
binary to continuous, the problem can be reformulated into a minimiza-
tion that can be solved exactly.

In fact, the underlaying graphs of the two techniques proposed
in this article are very similar, just the links to S-T sites are miss-
ing in the normalized cuts case. Thus, the filling of the graph and
the creation of the weights are exactly the same. In this case, since
there is no additional labeling hint, the parameter g, used to stress
the UDF minimum, has more relevance than in the case of the S-T
cut.

Note, however, that the small ¢ band used in the S-T cut case may
not be sufficient for the present case. If this band is too small, the cut
criterion could lead to problems like the one posed in Figure 5. If the
o band is too narrow, the cut that minimizes the cost, and also bal-
ances the sum of edge weights in each partition, may separate the
edges into two parts that do not necessarily pass through the mini-
mum of u(x). To force the cut to pass through the minimum of the UDF,
we need a larger ¢ band, so that the weights on each side of the band
take greater importance in the balancing factor [i.e., the term cost(X) in
Eq.(9)].

Hence, in this case, the 6, band is more important, as it allows defin-
ing a coarsely approximated larger band of the UDF, promoting this
way the cut to have large sum of weights on each side and to cut edges
that are nearer to the minimum of our UDF. It is also worth mentioning
that it may be interesting in some cases to use this low-quality version
of the distance function in the S-T cuts case, for instance, whenasmall ¢
results in holes appearing on the surface and we want our global func-

tion to fill them smoothly. In this sense, the larger the band we consider,
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(a) Sample point set

(b) Smaller band result

(c) Larger band result

FIGURE 5 Relevance of the ¢ (or o,) band size for the normalized cut method, depicted on a data set of a small coral reef. When applied to a
narrower band (b), the normalized cut may be minimized by a cut that does not pass through the minimum of the UDF. By enlarging the ¢ band (c),
the weight of the edges on each side of the partition increases, forcing the cut to pass through the minimum in UDF

the larger the global implicit function support and, consequently, the
larger the reconstructed surface area.

After obtaining the cut, we flip the sign of one of the regions, A
or B (it does not matter which), and extract the surface using a sur-
face mesher on the resulting SDF. Finally, the results presented in
Section 8 demonstrate that the differences between the S-T cut and
the normalized cut methods are not that great. What is important to
emphasize is that, in this second case, we do not use labeling hints
at all. This can be seen in Algorithm 3, which basically mimics the
computation of the smooth weights in Algorithm 2 and applies a dif-
ferent partitioning strategy to the graph (which also equals to pass-
ing from (a) to (d) directly in Fig. 3). Thus, we prove that solving the
surface reconstruction by partitioning the working volume does not
require the knowledge of a specific labeling but just the partition itself,
that is, swapping the sign in the SDF does not impact the recovered

surface.

ALGORITHM 3 Normalized cut algorithm

7.1 | Removing hallucinated triangles

The partition presented above takes place only in the ¢ band. Thus, we
give a sign to a slab of volume and, consequently, the retrieved surface
mesh does not contain only the part we are interested in, that is, near
the input splats, but also some triangles corresponding to the closing
of this volume [see Fig. 6(d)]. Following the nomenclature proposed by
Jancosek and Pajdla,>2 we refer to hallucinated triangles as those which
are part of the reconstructed surface obtained so far, but that do not
correspond to the real surface (i.e., they are far from the input splats in
this case). To remove these artifacts, we eliminate the hallucinated tri-
angles by using the u(x) value of their vertices in the original UDF. An
example of the reconstructed surface before and after removing hallu-
cinated triangles is presented in Figure 6.

We have a large number of vertices having a u(x) close to zero, cor-
responding to the part of the mesh close to the surface, and another
large part having u(x) values that progressively increase the farther

away from zero they are, corresponding to the hallucinated part.

function NorRMALIZEDCUT(Del(U), ()

# Graph structure created from vertices and edges in Del(U)

V—U

E « Del(U).getEdges()
G=(V,E)

# Smooth weights matriz W,
for € € E do

) I\ B
Wi, j) = wnl(eiy;) = (%) # As in equation X

end for
# Compute the cut
labels = NormalizedCut(W,,)

# Change the sign of the distances at vertices in Del(U) according to the label

for [ € labels do

if 1 = 0 then
v = vertexCorrespToLabel(Del(U), 1)
v.distance = —v.distance
end if
end for

return Del(U)
end function
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(a) Point set

(b) UDF slice

(¢) SDF slice

(e) After filtering

(d) Hallucinated triangles

FIGURE 6 Theeffect of hallucinated triangles on the normalized cut method. Note how the reconstruction in (d) is covered by the meshed part of
one of the volume slabs that has been meshed. This is due to our procedure giving a coherent sign only inside the 6, band. This phenomenon can be
seenin (b) and (c), showing a 2D slice of the unsigned and signed versions of the 3D distance function, respectively. After the automatic hallucinated

triangle removal, we can see the underlying surface in (e)

Therefore, we need to infer if a vertex is part of the surface by check-
ing if its u(x) is close enough to zero. However, this notion of close is
not defined for a given data set. For this purpose, we use the modified
selective statistical estimator method (MSSE)83 to detect such a gap
between u(x) values close to zero and the rest.

The MSSE is a scale estimation method that works by detecting a
big jump in the sorted residuals of a model. In our case, residuals are
defined as the u(x) values evaluated for all the vertices of the resulting
mesh. Starting at a low position in this sorted list, fixed to the 10% of
the number of values in all the presented cases, we can run over the list
and update the scale measure iteratively until we find a big jump. When
moving through the list of sorted residuals, it is supposed that we will
find this big jump when the values of the implicit function get larger
and larger, corresponding to the u(x) of vertices in the mesh away from
input points. Thus, the scale can be estimated as the first value ¢; in the

list not following the inequality below:

2
D1 >T2—1
EE

(10)

where g; is the standard deviation of the u(x) values considered up to
the j index in the sorted list and T is a constant factor that we set to
2.5. So, we iteratively move the j-sorted u(x) a position and compare
withthatinj— 1toseeif thereis a too large step, which would indicate
that this value could be considered as from another distribution, that
is, from the part away from the input points.

Then, we simply remove the triangles having a vertex whose u(x) is
bigger than 2.5¢; from the surface mesh. Note that, as previously men-
tioned, we also apply this method when using the S-T cut method in
the case of bounded surfaces. Needless to say, since in this case the
labeling only happens in the 6/5, band, this procedure also handles the

bounded surfaces problem [e.g., see Fig. 6(e)].

8 | RESULTS

In this section, we present the results obtained using the two graph
cutting techniques described above. We list the parameters used to

obtain the presented results for each method in Table 1, along with the

running times required for each experiment. In this section, we focus
on the application of both methods in noisy underwater data sets, using
both acoustic and optical data. Finally, we provide a qualitative and
quantitative review of the behavior of the methods against the state
of the art.

Once the SDF has been retrieved, we can use any contouring algo-
rithm to extract the surface in the form of a triangle mesh. For instance,
we could apply the widely used marching cubes. However, given the
advantages of RDT meshing?2 in terms of the quality of the triangles
(close to regular sized), we use this one for all the results contained in
this section.

Note that we are able to obtain manifold surfaces using both meth-
ods, which makes them amenable to further postprocessing. Take as
example the simple underwater data set consisting of a rocky area in
shallow water presented in Figure 7 and note the nonmanifold con-
figurations generated by the original splats mesher method*’ in con-
trast with the results obtained by our methods and how the differences
between the results obtained by both the S-T and normalized cut algo-
rithms are imperceptible.

As pointed out in Section 5, we also open the door to the use of
directed points (i.e., points with unoriented normals) in our frame-
work. Many proposals in the literature deal with the problem of finding
robust but unoriented normals.#0-43 |n each of these cases, the prob-
lem is what to do with this directed but unoriented point set to obtain
the surface. Using our normalized cut for this purpose, we can retrieve
a manifold surface. For the case of the S-T cuts method, we would
require splats of d = 1 with a limited extension to use this approach.
This reduces to using the linear approximation of the directed point as
local surface and compute its extent, for instance, as explained in Sec-
tion 4. The results in Figure 8 were obtained using this kind of linear
primitives. We provide in this figure the application of both methods to
anin-lab range scanned data set consisting of an amphora.

Regarding range scanning applied underwater, it is well known that
acoustic range sensing is the preferred tool for mapping large under-
water areas, thanks to their long working distance.18485 For this rea-
son, we test our methods against some data sets acquired by a DeltaT
multibeam echosounder mounted in the Girona500 AUV (see Fig. 9).
Problems like reflections and the inherent low resolution of acoustic

sensors result in the point cloud retrieved using this technology being
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TABLE 1 Details of the parameters used and the running times required to generate the results for the S-T and normalized cut algorithms

Parameters Run Times (s)
Name Number of points Figure c oy k, 8, B a,/ay UDF SDF Mesh
ST Shallow Water 1,856,271 7(c) 3 0 1 4 0.05 85.44 435.62 60.20
Amphora 829,039 8(c) 3 0 0.7 4 0.5 234.73 3177.66 67.14
Tour Eiffel 1,368,115 13(a) 7 0 0.5 4 0.05 361.61 2807.2 55.39
Normalized Risu3 43,535 6(c) 5 10 5 - 4 0.1 23.74 8.38 33.42
Coral Reef 1,656,413 5(c) 6 250 25 - 8 0.05 86.22 31.29 218.24
Shallow Water 1,856,271 7(d) 6 100 25 - 8 0.05 148.44 93.88 49.00
Amphora 829,039 8(d) 3 25 5 - 4 0.5 247.73 302.13 92.89
Mound 394,071 10 15 50 50 - 9 0.05 1784.31 71.44 232.77
Cave 55,876 12(c) 3 20 5 - 8 0.5 58.59 79.45 16.50
Tour Eiffel 1,368,115 13(b) 6 150 25 = 7 0.05 313.17 99.61 2571
LaLune (1) 1,137,820 14(a) 15 50 150 - 85 0.05 2361.61 96.33 194.35
La Lune (2) 832,009 15(c) 15 50 50 = 8 0.05 3884.01 103.25 101.82

Regarding parameters, ¢ and ¢, are expressed in terms of the average spacing between points (with k = 6), k, is the number of nearest neighbors taken into
account to compute the UDF in the ¢, band, §, is the RANSAC distance threshold (only used in S-T cut), and a,/a, are the meshing parameters goberning the
resolution of the output mesh. Some of the parameters presented in the text have been fixed for all the data sets: the octree depth o = 10 (except for the
Cave data set, for which no octree was used), a,, = 1.5, N, s = 25. All results were generated on a Intel Core i7-3770 CPU with 32 Gb of RAM. Regarding
runtimes, UDF, SDF, and Mesh refer to the time spent on the creation of the unsigned distance function, its signing and its meshing, respectively.

(b) Splats mesher

(a) Splats (c) S-T cut (d) Normalized cut

FIGURE 7 Using the same splat representation shown in (a), we present a comparison of the splats mesher4” (b) and the two methods proposed
in this article: (b) for S-T cut and (c) for normalized cut. One of the main problems of the splats mesher method presented in Campos et al.*” are the
nonmanifold configurations when the query segment becomes small enough to not merge contributions of more than a single splat. We marked in
red each triangle containing a nonmanifold edge. Since the robust intersection detection this method is based on requires redundancy, that is, more
than a single intersection point, to consider an intersection as valid, the intersection becomes invalid when the query segment becomes too small

to intersect more than one splat. Note how this happens in areas of high curvature, where splats have less coherence between one another

quite noisy. Additionally, underwater mapping using a multibeam sonar
requires very accurate navigation estimates to align all the range scans
into a single reference frame. When a lightweight low-cost underwa-
ter robot is used, the poor navigation data cause several double con-
tours in unprocessed point sets. Having outliers and double contours
generally creates a noisy splats representation with self-intersecting

splats not amenable to the RANSAC intersection procedure?”

we use
for the S-T cut case. This renders the S-T cut useless, and, conse-
quently, we only test acoustic range data sets using the normalized cut
method.

The first acoustic data set presents a point set obtained using a
multibeam sonar scanning an underwater Mound (hill) rising at a depth
from 40 to 27 m located near the harbor of Sant Feliu de Guixols, on
the Costa Brava of Catalonia, Spain (see Fig. 10). With the sonar set in
aslanted orientation toward the hill, the point cloud was automatically
obtained with an adaptive replanning strategy that uses stochastic tra-

jectory optimization to reshape the nominal path to cope with the

actual target structure perceived in real time during the exploration.13
As it can be observed in Figure 10, despite the outliers and double
contours (i.e., parts of the object that are doubled due to bad posi-
tioning of the sensor) present in the final retrieved data, the normal-
ized cut is able to obtain a consistent surface. We will use this data
set to observe the behavior of normal computation on a complex real-
world example and its implications on surface reconstruction meth-
ods requiring per-point normals. Figure 11 presents the two commonly
used approaches for normal computation, and the result of using them
as input to the well-known Poisson surface reconstruction method.38
In both cases, the normals were computed using PCA plane estima-
tion on each point given their K = 100 neighbors (an empirical value
set based on the amount of noise in the data). However, they differ
in the orientation procedure. In Figure 11(a), we exploited the known
position of the vehicle at the time of capturing the data to reorient the
points. As you can observe, the orientation of the points is not coherent

insome areas (black spots in the shaded model), which leads to awrong
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(a) Point set (b) Splats

(c) S-T cut (d) Normalized cut

FIGURE 8 Examplesof the methods' behavior when applied to a range scan data set. From left to right, input points, splats (d = 1), and the results
of the S-T cut and normalized cut methods. Note how both methods retrieve similar surfaces

FIGURE 9 Deployment of Girona500 AUV

surface reconstruction in Figure 11(b). The more generic orientation
propagation following a MST23 is used to obtain the results in

Figure 11(c). The more coherent orientation leads to an improved

surface reconstruction [Fig. 11(d)]. Still, when compared to the results
of our method in Figure 10(b), we can observe some off surfaces and
unrealistic overhanging parts in the recovered scene. Additionally, note
how the irregular sampling of this scanning methodology presents
some artifacts in the Poisson reconstruction, resembling the linear
stripes of the original individual scans, which are otherwise smoothed
out with our approach. These results prove the superior performance
of our approach.

The second acoustic data set corresponds to a profiling sonar sur-
vey of the interior of an underwater cave located in L'Escala, also on
the Costa Brava. During the survey, the monobeam rotating sonar head
was positioned orthogonally to the cave, so that a single scan provides
a 360° view of its walls. Additionally, in this case the trajectory was
optimized a posteriori through a SLAM approach.8é Figure 12 shows
the data set along with two close-up views allowing the understand-
ing of the shape of the interior of the cave. Note that, regardless of the
sparse sampling this data set poses, small details, such as the small tun-
nel visible in the upper part of Figure 12 (c), are faithfully recovered.
Additionally, this example proves the usefulness of the methods

(a) Point set

(b) Normalized cut

FIGURE 10

Underwater Mound retrieved with a multibeam survey (a) and the reconstructed surface using normalized cuts (b)
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(a) Oriented Point Set (w.r.t. Trajectory)

(c) Oriented point set (w.r.t. MST)

(d) Poisson surface (w.r.t. MST)

FIGURE 11 Normal estimation methods exploiting the information from the robot trajectory (a) and the MST propagation (c) and their conse-
quences on Poisson surface reconstruction for the underwater Mound data set (b, d). Shadow casting is applied to the point sets to visualize the

orientation of the normals, that is, black spots denote wrong orientation

presented with data sampled from confined environments, a hot topic
in the underwater robotics community.1112

Regarding optical underwater data sets, Figure 13 illustrates the
Tour Eiffel data set acquired by the remotely operated vehicle (ROV)
Victor6000 (Ifremer). The Tour Eiffel is an underwater hydrothermal
vent located at about 1,700m depth in the mid-Atlantic ridge, and
which has been the objective of many science expeditions in the past
decade.8” Observe in Figure 13 (a) how the corrupted point set leads
to a splat representation containing a large number of primitives that
intersect with their neighbors. It should be noted that often ROVs rely
on local navigation based on the visual feedback that the pilot receives
from ROV's cameras; therefore, the navigation sensors carried by

the robot are very limited. Even in this case, we are able to retrieve a

perfectly manifold surface approximating the shape of this underwater
chimney. However, we can see in Figures 13(c) and 13(d) how a larger
part of the object is retrieved in the normalized cut case. This is due
to the sparse sampling paired with high noise of the left-most part of
the input point set, presented in Figure 13(b), which results in splats
being more incoherent in this area. Thus, this area is not amenable to
the inside/outside guess of the S-T cut method, dooming the global
optimization to consider it as part of the outside of the shape and,
hence, not reconstructed. Nevertheless, both methods accomplish a
high level of detail.

We end the empirical evaluation of the methods with two data sets
collected during the survey of La Lune shipwreck.? This shipwreck of

the 17th century is an interesting archeological site located near the
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Z (m)

FIGURE 12 Profiling sonar survey of an underwater cave in (a). One can see the reconstruction obtained by the normalized cut algorithm in (b),
with close-ups of the two main tunnels highlighted in (c). The view direction is also marked on the right part

FIGURE 13 Results for the Tour Eiffel data set. In (a) we show the splats representation of the scene, in (c) the results of the S-T cut, and in (d)
the normalized cut algorithm, along with its texture-mapped version in (e). Finally, we show in (b) the original point set with the gross outliers with
respect to the surface highlighted in red to depict the level of corruption of this data set

coast of Toulon, France. The bad conditions during the original image
acquisition (analog, interlaced, low-resolution, grayscale camera) con-
tributed to the reconstructed point set containing a large set of out-
liers, noise, and also double contours. We present two data sets corre-
sponding to in-detail explorations of small areas in Figures 14 and 15.
In both cases, the shapes of the objects in the scene are indistinguish-
able either in the point set or in the splat representation [two first sub-
figures in the lower part of Fig. 14, Fig. 15(a), and 15(b)], but they are
clearly visible in the surface reconstruction obtained with the normal-
ized cut [third subfigure in lower part of Fig. 14 and Fig. 15(c)]. As pre-
viously noted, our robust intersection test fails when applied to highly
nonconforming splats, which prevents the use of the S-T cut method in
this case. Note also, in Figure 14, that we reach a far finer scale and,
consequently, a more detailed model than using the method in Campos
et al.,*8 which also tackles this data set.

As previously mentioned, the parameters used for achieving the
results presented so far are listed in Table 1. Indeed, it may seem that
there are a number of parameters involved in the computation of the
methods. Thus, we want to briefly discuss the parameter selection in
the presented cases, to provide a notion of appropriate parameter
tuning depending on the properties of the data set. On the one hand,

parameters o, 5, and § are the ones governing the S-T cut. The S-T cut
only considers the first ¢ band, which defines the volume on our grid
assigned to the UDF, and, thus, depends on the amount of noise in the
data. Thisis the reason why Shallow Waters and Amphora data sets use
a small ¢ = 3, whereas the noisier Tour Eiffel uses a larger sigma = 7.
The §, parameter accounting for the RANSAC threshold has to be more
precisely tuned depending on the noise in the data. Also, this parame-
ter isdefined in the units of the data, so it is easier to tune if the data are
metric and we have known reference of the scale of the model. Note
that the tested data sets have different scales, so the values listed on
the table are just for reference and not directly comparable. Then, as
already commented, and as can be seen in the table, the g value is not
that relevant in this case and is set to g = 4 by default as suggested in
Hornung and Kobbelt.”® On the other hand, the normalized cut method
uses o, 09, k,;, and p parameters. The first ¢ is defined as in the S-T case.
Then, the second ¢, band is just used for balancing the cut, so we want
to make it larger but not so large so as to add complexity to the cre-
ation of the UDF and the cut. Thus, it is a trade-off between the correct
balancing and the computational effort needed for the cut. The num-
ber of k,, required to compute this second ¢, band depends on the den-
sity, sampling rate, and amount of noise in the data. Dense and nicely
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FIGURE 14 La Lune survey. On the top, we can see a mosaic of the shipwreck area,” where we marked the two areas surveyed in 3D. In blue,
and depicted in the lower part of the figure, we find from left to right: the retrieved point set, the splats representation, and the reconstructed
surface (with a close-up of a cauldron). Note that the large amount of noise and outliers poses the splat representation to contain a large set of self-
intersecting primitives. Nevertheless, we are able to recover areliable reconstruction, showing the cannon and two cauldrons, using our normalized

cut method

(a) Point set

(b) Splats

(c) Normalized cut

FIGURE 15 Lalune,seconddataset(markedingreeninthe upper part of Fig. 14). The point set in (a) and its splat representation in (b) show how
this data set reproduces the same level of corruption of the first data set. The normalized cut surface (c) reveals two cauldrons located on either

side of acannon
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—+— 1. S-T Cut (STC) —6— 2. Normalized Cut (NC)
—¥%— 3. Point Set Mesher (PSM) (Campos et al., 2015) —%— 4. Splats Mesher (SM) (Campos et al., 2013)
—H&— 5. Poisson (P) (Kazhdan et al., 2006) —— 6. Screened Poisson (SP) (Kazhdan and Hoppe, 2013)
AN 7. FFT (Kazhdan, 2005) 8. Wavelets (W) (Manson et al., 2008)
9. Smooth SDF (SSD) (Calakli and Taubin, 2011) 10. PSS (Alexa et al., 2003)
11. Implicit MLS (IMLS) (Kolluri, 2008) 12. Algebraic PSS (APSS) (Guennebaud and Gross, 2007)

13. MRF (Paulsen et al., 2010)
#—— 15. Smooth PU (SPU) (Nagai et al., 2009)
—+—— 17. Integrating (I) (Ohtake et al., 2005)
—#—— 19. Power Crust (PC) (Amenta et al., 2001)

FIGURE 16
and its main reference

sampled data sets (e.g., Risu3 or Amphora data sets) use very few k,
samples to compute the distance. On the contrary, noisier data sets
(e.g., LaLune (1) data set) require a larger number of samples to be less
sensitive to outliers. Then, in this case the g parameter is more sensi-
tive and related to the noise in the data. To constrain the cut to pass
by the minimum of the UDF we need to emphasize this minimum val-
ley, and this is done by increasing the g parameter. The noisier the data
set is, the larger this value. Finally, the o, and ay parameters are part
of the surface mesher step and just tuned based on aesthetic reasons.
Recall that, once the SDF has been reconstructed, we can extract a sur-
face with different properties in terms of approximation quality, com-
plexity, and shape regularity of the triangles in the mesh by just tun-
ing these parameters. This is interesting, for instance, to create sev-
eral meshes at different resolutions for the same SDF for visualization
purposes.

Finally, we compare the behavior of our method against the state
of the art. First, we apply a representative number of methods of
the state of the art to the Shallow Water data set, presented in Fig-
ure 17(a). In Figure 16, one can see the list of methods evaluated, along
with their acronym and their references. To simplify, when referring a
method in the text, we will use the acronym form. Thus, to perform this
test, we follow the approach of Kazhdan and Hoppe.38 We randomly
divide the input points into two equally sized sets, so that one of the
sets is used for evaluation whereas the second is used for validation. In
this way, we use the evaluation set as input to the algorithms and the
validation set to compute the distances to this reconstructed surface.
Figure 17 enables a qualitative comparison of the different methods
in the state of the art, while also shows the mean distances obtained
for each evaluated method [see the chart on Fig. 17(u)]. Given the fact
that the Shallow Water data set describes a bounded surface, some
of the results on Figure 17 present made-up parts as a consequence
of the methods trying to find a watertight surface. Nevertheless, all
mean distances are very similar. This is caused by the good sampling
provided by the point set. The ones obtaining the worst measures are
FFT, wavelets, and RC. On the contrary, the best results are obtained
by SPoisson and PC. Our methods, STC and NC, compare favorably to
the state of the art in this simple test. Note that we are not taking into
account the manifoldness of the recovered surface, and, for instance,
the SM method obtains a decent mean but the resulting surface is far

from manifold [as shown in Fig. 7(b)]. Bear in mind that, since we are

14. MPU (Ohtake et al., 2003a)

—¥ 16. Multilevel RBF (MRBF)(Ohtake et al., 2003b)
—C— 18. Robust Cocone (RC) (Dey and Goswami, 2006)

List of methods compared in the Results section, depicting for each algorithm its name, marker, color, the acronym used in the text,

using real data, the input point sets contain some noise, and the tests
measure how good the reconstruction is when compared to this noisy
data. Thus, we evaluate the overall behavior of the method against the
input data, but we cannot draw global conclusions as no ground truth is
available.

To properly quantify the results provided by the methods proposed
against more complex data sets, and with the proper ground truth ref-
erencing, we use the benchmark of Berger and colleagues.88 While the
authors provide a significant number of examples to test the algorithms
against, we think the level of corruption present in these point sets
is more similar to in-lab captures and far from that contained in data
acquired in real-world environments, specially in participating media,
such as underwater. The authors also provide tools to generate new
simulations of scans, using a virtual laser scanner. Thus, these tools
were used to generate a new set of 44 shapes by varying some spe-
cific parameters we found directly related to noise. More precisely,
and following the nomenclature of the original reference, we mod-
ify the noise magnitude from O to 0.5, with increments of 0.05, and
the laser's field of view from 2.5 to 10, with increments of 2.5. Fig-
ure 18 presents some examples of the corrupted point sets tested, so
that their noise magnitude can be compared to those on Berger and
colleagues.88

Notice that our evaluation extends that in the original article88 not
just in the level of corruption considered but also in the number of
methods tested. It is also worth noting that, following the tendency of
most methods in the state of the art, all of the methods in the origi-
nal evaluation required per-point normals, which is not the case for the
methods proposed in this article. In this direction, we also tested some
methods not requiring the use of per-point normals. The names of the
algorithms tested are presented in Figure 16, and they are separated
in Figure 19(a) into those requiring normals, or otherwise working on
raw point sets. For all the algorithms, we have respected the param-
eters recommended by the authors, when available, and tuned them
when necessary to achieve a better reconstruction quality, based on
visual examination of the results. We further dealt with each point set
individually, that is we tuned the parameters to obtain the best result
on each case instead of resorting to a fixed parameterization for all the
point sets.

Given a reconstruction, the evaluation creates a bidirectional

distance map from the recovered surface to a large densely sampled
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(a) Eval Pts (b) SD S-T

(f) Poisson (g) SPoisson

(k) PSS (1) IMLS

(p) SPU (q) Multi-RBF

(c) SDN

(h) FFT

(m) APSS

(d) PSM

(i) Wavelets

(s) RC (t) PC
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Multi-RBF §

(u) Mean distance

FIGURE 17 State-of-the-art evaluation using the Shallow Water data set (1,856,266 points). The evaluation set (928,133 points) is shown in (a),
whereas the results for the different methods tested are shown in (b)-(t). In (u), we depict the mean distance from the validation point set to the
reconstructed surfaces, where the values are with respect to the diagonal of the bounding box enclosing the original point set

version of the base reference shape. From this distance map, we
compute the mean and maximum (i.e., Haussdorf) distance values.
Additionally, also the mean divergence between normals at the surface
and normals at the reference are computed. With this information,
Figure 19(a) shows these results using box plots. Through these plots
named error distribution plots in the original evaluation, one can
feel the overall behavior of the methods under varying noise levels.
Regarding mean/max errors, the MPU method is clearly the one
obtaining the worst results and seems unable to handle large amounts

of noise. Nevertheless, the SPU method, which is a broad smoothing
on the primitives of the original MPU approach, obtains very good
estimations. Additionally, the SC, RC, and PC methods, all working
with raw point sets, do not achieve good results. The gradient-based
methods (i.e., P, SP, FFT, W, and SSD), as well as the MRBF, all behave
acceptably well. However, the SSD method attains a larger variability
in this case. Additionally, due to its stiffness to the input points, the
SP variant reproduces a box a little wider (i.e., more variable errors)

than the original P method, since its known smoothing resolves the
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(b) noise = 0.45,

(a) noise = 0.2,

fov =25

fov =5 (c) noise =0,

WiLEY--

fov =175 (d) noise = 0.5,  fov =10

FIGURE 18 Four sample point sets of the Max Planck shape, from a total of 44. Under each figure, we detail the level of noise magnitude (noise)
and laser's field-of-view size (fov). Normals are used to apply shadow casting to the model

noise issue better. From the MLS methods (PSS, IMLS, and APSS), the
one behaving the worst is the IMLS. Regarding PSM and SM methods,
they both behave erratically, obtaining a wide box despite having a low
median. On the contrary, our STC and NC methods behave favorably,
achieving the best results in terms of variance in the plots, with NC
obtaining values a bit larger for the Hausdorff distances. If we then
focus on the mean angle deviation, our methods STC and NC, working
on raw point sets, obtain an extremely good measure, comparable to
those of P, W, PSS, APSS and SPU, all of which work with the additional
knowledge of per-point normals. On the contrary, methods achieving
larger variation in this error measure are PSM, SM, MPU, SC and
PC.

On the other hand, Figure 19(b) plots the errors in a sorted manner,
increasing the two parameters related to noise: from left to right for
the noise magnitude and from top to bottom for the field of view. Con-
trary to the previous box plot representation, this sorted plot allows
to detect the amount of noise that a method is able to attain. This is
depicted with a large step increment of the errors (either mean or max-
imum), and we leave the larger values out of the graphic for clarity.
Using these plots, we can clearly see how an increase in noise progres-
sively degrades the results obtained, which is worsened at each incre-
mental step of the laser's field of view. Surprisingly enough, we can
detect how some specific configurations cause some of the reconstruc-
tion methods to fail for a given point set, to then obtain more favor-
able results in even noisier data sets. This is depicted in the peaks vis-
ible for some methods in the line charts, and |, FFT or SPU are some
examples. For the smaller laser field-of-view values, the decrease in
performance, that is, the increase in mean/max error values, tends
to increase steadily for most of the methods (disregarding the men-
tioned peaks). This raising in the curves step matches the previous
results for the above-presented error distribution plots: more vari-
able error distribution plots grow faster in these line charts. Finally,
another important aspect to observe is the noise level due to which
some methods totally fail. This is shown with a large step in the error
measures with values that get out of the chart. Nevertheless, we can
observe that our methods, STC and NC, obtain the smallest step curves,
always at the bottom of the graph and almost undistinguishable at this
scale.

9 | CONCLUSIONS AND FUTURE WORK

We have presented two volumetric surface reconstruction methods
based on minimum cuts on graphs. By making an analogy with a binary
partitioning problem, we use the minimum cut along an unsigned
distance function to promote its signing. This UDF is defined from
the splat representation presented in a previous article?” and is dis-
cretized in a tetrahedral grid adapted to the density of the input points.
Merging the different contributions of the splats in a global view allows
the mitigation of spurious splats that may remain near the surface, and
extracting the surface as the zero isovalue in a well-defined volume
results in the retrieved surface being manifold. Furthermore, and as
opposed to most methods in the state of the art, both our proposals are
designed to handle bounded surfaces. Additionally, we outperform the
state of the art by not requiring any other additional information than
the input points to work, which is clearly an advantage when using a
lightweight AUV carrying inexpensive navigation sensors.

While sharing the distance function definition, we divided the meth-
ods according to their graph cutting technique. In both cases, the base
graphrepresentationis derived from the adaptive grid storing the UDF.
First, we have presented the S-T cut method, which needs an initial
guess for inside/outside for some of the vertices in the graph to then
propagate these labels following the smooth weights governed by the
UDF. Second, we have introduced the normalized cut method, which
only uses the smooth weights to define a minimum cut balancing the
cost of the two volumes after the partition. In both cases, we have
shown with many examples that the retrieved surfaces are similar.

When comparing both proposals, we have proven that the normal-
ized cut method is more versatile, as it does not require any additional
knowledge such as the inside/outside guess for the S-T cut case. We
have noticed that when using normalized cut, we can overcome the
limitation posed by noisy self-intersecting splats that prevented the
method by Campos et al.4” to provide a coherent surface. However,
this type of data is still not solvable using the S-T cut method, as it
depends on the same RANSAC-based robust intersection detection
procedure than the original splats mesher method did. On the contrary,
parameter tuning is more sensitive for normalized cut than for S-T cut
(as depicted in Table 1).
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FIGURE 19 Noise test of the Max Planckdata set, using the benchmark of Berger et al.88 (a) Box plot form of the mean and maximum (i.e., Haus-
dorff) distances, and the mean angle deviation for each method when applied to 44 synthetic scans with varying noise scales. (b) Results using
incremental values for the parameters of the virtual scanner related to the noise

We also performed a quantitative evaluation of the methods against A drawback of both methods when compared to those in the state
the state of the art. This survey brought into relief the resilience to of the art is their increase in memory requirements. Despite the fact
noise that our methods provide when compared to other algorithms, that we use several data structures to speed up the processing of the
outperforming even those requiring per-point normals. Additionally, intensive parts of the algorithms (adaptive tetrahedral grid, octree,
and to the best of our knowledge, this evaluation is the first to consider AABB trees, etc.), in both cases the storage of the distance func-

such large levels of noise. tion in a tetrahedralization represents a large amount of memory.
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Furthermore, there is an inherent redundancy of splats in our repre-
sentation, inherited from the redundancy requirements of the algo-
rithm in Campos and co-workers.4” In our case, redundant splats could
be simplified to alleviate the computational cost of computing the UDF.
Thus, simplification strategies for the splat representations are left
as future work. Moreover, the methods suffer from data-dependant
parameter tuning. This should be alleviated in future work by automat-
ically setting them based on measures such as noise levels and data
sampling rate or density. Note, however, that this is not trivial, as noise
is difficult to quantify in the presence of outliers, and neither noise nor
sampling need to be uniform in a given data set.
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