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Abstract
Owing to the many possible errors that may occur during real-world mapping, point set maps

often present a huge amount of outliers and large levels of noise. We present two robust surface

reconstruction techniques dealing with corrupted point sets without resorting to any prefiltering

step. They are based on building an unsigned distance function, discretely evaluated on an adap-

tive tetrahedral grid, and defined from an outlier-robust splat representation. To extract the sur-

face from this volumetric view, the space is partitioned into two subsets, the surface of interest

being at the boundary separating them. While both methods are based on a similar graph defini-

tion derived from the above-mentioned grid, they differ in the partitioning procedure. First, we

propose a method using S-T cuts to separate the inside and outside of the mapped area. Second,

we use a normalized cut approach to partition the volume using only the values of the unsigned

distance function. We prove the validity of our methods by applying them to challenging under-

water data sets (sonar and image based), and we benchmark their results against the approaches

in the state of the art.

1 INTRODUCTION

Over the past few decades, underwater robotics have opened the

door to deep underwater exploration. Knowing the shape and struc-

ture of the seafloor at depths otherwise unreacheable by humans is of

paramount importance for the scientific community. To faithfully rep-

resent these environments, three-dimensional (3D) maps provide rich

and straightforward information.

In this context, recent advances in range-scanning technologies

have led to the widespread use of point cloud maps. These 3D point

sets represent discrete measurements taken at the surface of a rigid

scene and are the base data used to compose 3D maps. It is evi-

dent that the lack of connectivity between points leads to prob-

lems in data processing, as it prevents to easily take new mea-

surements using this representation, and also complicates visual-

ization, since from a given point of view it is difficult to discern

whether a given point should be visible or otherwise occluded by

other points in the set. Thus, useful 3D maps require recover-

ing a continuous surface representing the scanned object or scene.

The surface reconstruction problem deals with the creation of this

continuous surface from the discrete measures represented by the

points, normally in the form of a triangle mesh. Surface recon-

struction is specially relevant to provide robots with spatial aware-

ness capabilities when navigating in complex 3D and unstructured

environments.

A relevant issue is that in real-world applications, and regardless

of the type of scanner used, the retrieved point sets inherently suffer

from some corruption. The data tend to be outliers ridden and con-

tain noise of different magnitude within the same data set. We refer

to noise as the variations on the measurements mainly caused by the

precision and repeatability of the sensor, whereas outliers are purely

spurious measurements caused by errors during the scanning pro-

cess and that do not represent samples of the surface. In addition, the

problem of data corruption is aggravated by the underwater medium.

Underwater explorationmainly relies on two typesof sensors for range

data collection. On the one hand, we find the acoustic sensors, pro-

viding range data based on the time of flight of emitted sound beams.

While they are well known on the area, their resolution is only good

for large area mapping. On the other hand, we have the imaging sen-

sors. In this case, due to the visibility limitations of the medium (i.e.,

light attenuation, low contrast, blurring, artificial lighting), these tech-

niques attain a higher detail, at the expenses of small locality. Bymeans

of computer vision techniques, correspondent feature points from dif-

ferent points of view of the scene are used to reconstruct a point set

model.

Regardless of the acquisition methodology used, it is difficult to

obtain reliable data. In this sense, data filtering and/or smoothing may

be needed prior to its further processing. However, a method able to

directly cope with unprocessed point set data would be preferred to

tackle the problem without the need of manual filtering or parameter
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tuning. In this paper, we face the problem of surface reconstruction on

data that is far from ideal. We use robust statistics methods to allow

the elimination of outlierswhile obtainingmanifold surfaces of the sur-

veyed areas. Moreover, the methodology used in both methods avoids

the recurrent requirement of known normals at input points. As we

will present in later sections, per-point normal computation is an ill-

posed problem on itself. In addition, this allows the applicability of the

methods to a wider range of inputs other than robotics derived, where

the location of the scanning sensor may not be available. For instance,

this is the case for the range scanning examples shown in Section 8,

for which no additional data than the 3D point cloud were available.

Additionally, we face the problem of bounded surfaces, normally obvi-

ated by state-of-the-art solutions. Note that when observing a part of

the seafloor, we naturally describe a bounded surface, as we have clear

boundaries at the parts where we end or stop the survey. We demon-

strate the versatility of the proposed method by applying it to both in-

lab and underwater data sets.

2 RELATED WORK

Despite the above-mentioned richness and usefulness of 3D maps,

their creation has gained little interest of the underwater mapping

community. Owing to the previously mentioned difficulty associated

with the processing of unconstrained 3D data, the widespread use of

downward-looking sensors on surveying platforms has promoted the

assumptionof all rangedata being projectable on a commonplane. This

conjecture is used both in acoustic1–4 and image-basedmapping,5–7 as

it reduces a3Dproblem toa simpler 2.5D. In this case, themap creation

is oversimplified because one can benefit from the large set of tools in

the robotics community to retrieve smooth elevation maps even if the

data contain some level of corruption. It is also easy to then combine

both acoustic and image-basedmaps to reach further detail.8,9

However, it is of high relevance to consider the full 3D structure

of the surveyed site. The observation of an area from unrestricted

viewpoints reveals the arbitrary concavities that a scene may contain,

presenting in this way the real shape of the zone to be mapped. As

pointed out in Ref. 10, there is a growing necessity for full 3Dmapping

in robotics applications and recent advances in underwater robotics

work toward this unrestricted scenario.11–13 Thus, methods such as

the ones proposed in this article will render necessary in the near

future.

The problem at hand, surface reconstruction, has been an exten-

sively studied issue in the computer graphics and computational

geometry communities. For the case of almost-ideal data, where

the points are supposed to be measured exactly on the surface of

the object, interpolation-based approaches are the most commonly

used. In this class of methods, all or some of the input points are

part of the output surface vertices. On the one hand, procedures

may work with a surface-oriented view, by constructing the surface

incrementally by joining triplets of points into triangles, where these

triangles normally follow some properties.14–18 On the other hand,

we find volume-oriented approaches, where the problem is defined

as separating the inner and an outer volume of the object or scene,

such that the surface we are interested in is found at the interphase

between both. Normally, the space partition is modeled inside a cell

decomposition of the space, such as the Delaunay triangulation or its

dual, the Voronoi diagram.19,20

On the contrary, when the points have some noise (i.e., they cannot

be assumed to be measured precisely on the surface), the approxima-

tion methods are more adequate. In this case, the problem is normally

cast to an implicit formulation. Thus, the surface is defined implicitly

using a distance function (signed or unsigned) or an indicator function.

From thismodel, we can gather a trianglemeshof the surface using iso-

surface extractionmethods such asmarching cubes21 or the restricted

Delaunay triangulation (RDT) mesher.22

In this direction, most methods create a signed distance function

(SDF) from the input points. This can be done by merging local prim-

itives into a global function. In the case of having a normal associ-

ated with each of the input points, each oriented point can be consid-

ered as a tangent plane to the surface, such that a simple SDF can be

defined by computing the mean distance from a query point to a set

of nearer planes.23,24 There are also many methods using the radial

basis functions (RBF)mechanism to interpolate the SDF from the input

points and normals.25 Additionally, instead of using directly the RBF

to interpolate, they can also be used to weight the merging of differ-

ent local contributions, as in the multilevel partition of unity (MPU)

algorithm,26 where the local surfaces computed at the leafs of an

octree27 containing the points are then merged using this technique.

To alleviate computational costs, RBFs of compact support have also

been explored.28 In a similar way, variational approaches involving the

coherency between the gradients of the SDF and the oriented points

have been proposed.29 Other techniques are those of moving least

squares (MLS), also known as point set surfaces (PSS), which was first

defined as a projection procedure that, given a point, projects it onto

the surface defined by the input set. It turns out that this projection

can be casted in most cases to an implicit formulation, which can then

beused to retrieve themeshed surface.30,31 Finally, somemethods rely

on the prior knowledge of 2.5D connectivity in a single range scan and

the known positioning of the sensor at the time of data acquisition to

attain a merging of the local contributions into a global SDF.32,33 The

popularity of this lastmethod is proven by the large acceptance of vari-

ants of these procedures in real-time mapping applications for land

robotics.34,35

Besides, there are methods based on building an indicator function

to extract the surface from. An indicator function is a pure in/out func-

tion from where, again, the surface can be extracted at the interphase

between the two volumes. In this category, we findmethodswhere the

points with their associated normals are seen as samples of a gradient

field, such that the indicator function can be recovered by means of

applying the fast Fourier transform (FFT),36 the Poisson equation,37,38

or wavelets.39

Indeed, there is a clear dependence of most of the approximation-

based methods on the knowledge of per-point normals, which is

an information that may not be provided directly by the scanning

mechanism and that may have to be computed from the points

themselves. It should be noted that the problem of computing
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normals is expected to be as complex as the surface reconstruc-

tion problem itself. Indeed, the normal computation problem can

be split in two parts: normal direction estimation and normal

orientation.

On the one hand, the estimation of the normal direction of a point

consists of fitting a plane with data from its vicinity. These data, in

some cases, can be computed from a single scan depending on the

type of sensor. Imaging depth sensors provide the ability of comput-

ing the normal from a single scan since they have enough neighbor-

ing spatial information, derived from the base two-dimensional (2D)

image grid, for a given point (note that they may face problems when

dealing with occlusions and missing data). However, this is not always

the case in robotic applications,where single-stripe3Dscanningmech-

anisms may be used (e.g., multibeam sonar). In these cases, normal

direction computation relies on using data from merged scans in

time.14,23,40–43

On the other hand, achieving a coherent normal orientation

throughout the scene is a complex problem. For the case where no

additional information is available, a widely used approach is to heuris-

tically propagate the orientation in the points following a minimum

spanning tree (MST).23 In robotic applications, wherewe have a notion

ofwhere the sensorwas at the time of taking the samples, we can force

the orientation of the normals to be coherent with that information.

Thus, normals making an obtuse dihedral angle with the vector joining

the point and the scan position are inverted. Still, when normal direc-

tions are computed from noisy data, and taking into account that the

scanning position may be uncertain, this method will fail in some cases

(see a real-world example in Fig. 11).

For these reasons, recent methods in the state of the art try to

overcome this limitation by working with raw data. In the case of

unknown normals (or unknown global orientation of those), one can

use unsigned distance functions (UDF). Note, however, that an UDF

cannot be directly meshed, as we require a positive and a negative vol-

ume to extract the surface at the zero level set. To deal with this prob-

lem, Hornung and Kobbelt44 diffuse the contribution of each point in

space using simple dilate operations to build a pseudodistance func-

tionwithout the sign inside a regular grid. Then,with the assumption of

watertightness on the object to reconstruct, they use an S-T cut algo-

rithm to find the minimum cut in the grid and recover back the sign of

the implicit function.

As a matter of fact, the case of outlier-ridden data is dealt by very

few methods in the state of the art. However, the lack of available

methods is in contrast to the above-stated fact of real-world data

always containing outliers to some extent. Methods such as those of

Ref. 45 or 46 try to overcome this limitation by means of computing

a robust UDF which eliminates the effect of outliers in the final rep-

resentation. Then, using some heuristics, they recover the sign of the

function to extract the surface as the zero level set. A recentmethod47

deals with large levels of noise and outliers using local surfaces com-

puted to answer the segment intersection queries required by a RDT

mesher. This method is based on building local surfaces of small extent

named splats around each input point, using robust statistic techniques

to disregard outliers, and then merges them together using a mod-

ified RDT meshing accepting this new input. A similar method, this

time computing on-demand of the RDT mesher the local surfaces, is

presented in Ref. 48. Going back to interpolation-based approaches

but focusing on the outliers problem, the method of Kolluri and co-

workers49 relies on defining a spectral partitioning of a graph derived

from theDelaunay triangulation and the Voronoi diagram to divide the

inside from the outside volume disregarding outliers. Also based on

interpolation, the sensor position can be included to further refine the

graph cut in the presence of outliers.50–52

The new methods proposed in this paper fall within those

approaches in the state of the art finding a cut surface in a UDF rep-

resentation extracted from the input points. However, they overcome

some of the limitations pointed out for the methods reviewed on the

state of the art and described in this section. First, they are designed

to cope with high levels of both noise and outliers in the data. Second,

they do not require any additional information (i.e., normal vectors) to

perform this task. Third, they provide a manifold surface. And finally,

we successfully address the usually obviated problem of bounded sur-

faces.

3 MOTIVATIONS, OVERVIEW,

AND CONTRIBUTIONS

Wedecided to base ourmethod on the splat representation presented

in Ref. 47 because of the superior performance this method has shown

when dealing with noise and outliers. However, only the first step of

the algorithm is used, that is, the splats creation. For each point in

the input set, we generate a local surface named splat with a given

small extend, by accounting for noise and disregarding outliers. The

second part of the method proposed in Ref. 47 tries to generate the

surface by directly meshing the splats using a tailored RDT surface

mesher.22

Given a set of points E on or near a surface, the RDT is a subcomplex

of the 3D Delaunay triangulation of E formed by the Delaunay trian-

gles whose dual Voronoi edges intersect the surface. Each RDT trian-

gle has a circumball centered on the surface and empty of all other E

points, named surface Delaunay ball. Boissonnat and Oudot22 proved

that if the sampling E of the surface is dense enough with respect to

the local feature size of the surface, the RDT provides a good approx-

imation of the Hausdorff distance to the surface as well as a good

approximation of its normals, areas, and curvatures. Themeshing algo-

rithm iteratively refines an initial 3D Delaunay triangulation until all

surface Delaunay balls meet some properties. More specifically, start-

ing from a small set of points on the surface, the method inserts the

center of a surface Delaunay ball at each iteration (i.e., the intersec-

tion between the Voronoi edge and the surface) until all the balls ful-

fill the following three criteria: The triangle inside the ball must have

all its angles larger than 𝛼a, the ball must have a radius lower than

𝛼r , and the distance between the center of the ball and the circum-

center of the associated RDT triangle must be lower than 𝛼d. Tun-

ing 𝛼a, 𝛼r , and 𝛼d changes the quality of the approximation and of

the output surface triangle mesh in terms of sizing and shape of its

triangles.
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Since the only requirement of RDT meshing is to be able to know

when an arbitrary segment intersects a given surface representation,

in Ref. 47 the splats were added to an axis-aligned bounding boxes

(AABB) tree53 for rapid intersection query and the contribution of

the many splats that may be intersected was merged in a single point.

While this surface reconstruction method has been proven useful in a

wide range of scenarios, the reconstruction results suffer from some

limitations that we describe in the following.

First, each splat is computed inside a Random sample consensus

(RANSAC) procedure54 to account for outliers, but it is difficult to

remove outliers that fall too close to the surface with respect to the

desired RANSAC distance threshold. The robust computation of splats

has proven successful in removing the so called gross outliers, that is,

outliers far from the true surface, and whose distance to their near-

est neighbors is larger and thus are more sparsely distributed. Only in

cases where the outliers are close enough to the surface with respect

to the RANSAC threshold they are used to generate splats. However,

using these near-by outliers leads to a jagged, self-intersecting splat

representation. However, if we take the outliers that fall very close to

the true surface as part of the noise, the problem translates into a noise

reduction issue.

Second, the splats creation is purely local, and thus no coherence

is enforced between neighboring splats, which are supposed to rep-

resent a smooth continuous surface. Hence, splats may not fit com-

pletely with their neighbors. Moreover, in areas of high curvature, the

splats are likely to self-intersect. This method, as defined, works with

smooth surfaces. However, even in cases where a surface can be con-

sidered smooth, highly curved parts may distort the splat represen-

tation. Furthermore, the self-intersection problem is aggravated by

the naive splat sizing mechanism, which may lead to larger splats in

these sharper areas. In both cases, the result is a nonmanifold surface.

This is because the method is set to directly mesh this representation

using a modified RDT mesher. As stated above, this mesher requires

the representation to be meshed (in this case, the splats) to allow for

intersection querieswith arbitrary segments. However, the smaller the

required output resolution of the mesh, the smaller the query seg-

ments required, and consequently the lower the possibility that some

splats are intersected during a query. This results in nonmanifold sur-

faces, as depicted in Figure 7. Having a nonmanifold surface is non-

realistic and complicates further processing applied to the resulting

mesh.

Consequently, our previous surface reconstruction solutions hav-

ing a local view47,48 may require a postprocessing of the resulting sur-

face to recover from the nonmanifold configurations. Considering the

review of the state of the art presented in the preceding section, it

can be observed how in the case of having the surface represented by

local primitives, the common approach is to merge or blend them into

a global implicit SDF. Merging different contributions in a global rep-

resentation leads to significant noise reduction. Note that in our case,

we will use the robust splats computation to eliminate the gross out-

liers, leaving for the surface extraction step the problem of robustly

dealing with high noise. Thus, if the contributions of the possibly self-

intersecting splats are merged, this should provide a smooth distance

function easier to mesh afterwards. It is because of these reasons that

0

(a) Signed

ε

0

(b) Unsigned

F IGURE 1 The problem of contouring a UDF. Imagine we cut a 2D
slice near the surface of the signed (a) and unsigned (b) versions of the
distance function defined in Eq. (1). In the signed version (a), there is a
clear zero value to isocontour located at the inflection point between
positive and negative values; whereas for the unsigned version, due to
roundoff errors, an absolute zero value is never found but only a local
minimaof 𝜖. Note, however, that this 𝜖 changes for different parts in the
3D distance function and thus cannot be fixed. If we try to isocontour
the surface at a value close to zero (green line), wewill obtain two valid
isovalues, defining not just one surface but two, thus capturing not a
surface but a band of volume

in this article we propose a global implicit setup, fromwhich amanifold

surface can be extracted from the vicinity between two subvolumes,

attaining also further noise reduction.

Note, however, that most methods of the state of the art require a

priori knowledge of the orientation of the local primitives, usually as

known normals at input points, or the knowledge of other additional

information such as the sensor position at the time of acquisition. Yet,

our splats are not coherently oriented through the surface they define,

as we do not take into account their orientation at any step of the

splats generation process. This prevents a direct computation for the

distance function to be signed.

If we take a close look to how the state-of-the-art approaches

deal with this issue, we can see how there is a tendency toward try-

ing to correctly orient the local primitives globally, prior to merge

their contributions into an implicit SDF. For this purpose, and up to

date, the approaches dealing with this subject are mainly variants of

Hoppe's method.23 Hoppe's method consists of propagating the ori-

entation between neighboring primitives following the MST gener-

ated from the input points. In noise-free cases where there are small

variations in curvature, Hoppe's method has proven to provide satis-

factory results. However, in real-world data, the approach is likely to

fail.

Despite this lack of coherence in orientation, we can still use

the nonoriented splats to produce a UDF. Unfortunately, we cannot

directly extract a surfacemesh fromaUDF. Figure 1 shows a schematic

representation of this phenomenon. Owing to roundoff errors, the

exact zero value may never exist, and the surface is defined by local

minima on the implicit function. Thus, if we mesh for zero isovalue,

we will not obtain one 2D manifold, but two. This is so because we

need the isovalue to be a clear inflexion point in the SDF. Thus, we

have an unsigned distance field from which we need to extract the
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surface. After discarding the orientation propagation in the splats, the

best chance is to try to recover the sign of the SDF out of the UDF. In

essence, the process consists of dividing the object into its inside and

outside parts.

Note thatwe can refer to this subdivision as a clustering or a segmen-

tation. In fact, theproblemof inside/outside labeling is abinary segmen-

tation problem. Inspired by the great results achieved by the computer

vision community for this task, we propose using a graph formulation

and useminimum cut algorithms for solving the inside/outside labeling

and, consequently, the surface reconstruction problem.

This paper proposes two new approaches differing in the cutting

procedure and the graph construction. However, the computation of

the UDF is the same in both cases. For completeness, we start by giv-

ing an overall review of the splats creation procedure in Section 4.

Then, in Section 5 we present the construction of the UDF. Further-

more, Sections 6 and 7 present the two different methodologies to

solve the binary labeling problem, along with the solutions to tackle

bounded surfaces. Finally, Section 8 shows the results and discussion

on the advantages and disadvantages of both cutting methods, and we

finalize this article with Section 9 where we present the conclusions

derived from the present work.

4 SPLATS CREATION

In our case, a splat is defined as a surface of small extent that locally

describes the surface around a point. They are constructed using a

fixed k-neighborhood around each point. Inside this neighborhood, we

try to generate a local jet surface.55 This jet surface is a least-squares

approximationof abivariateheight function referenced in a local frame

computed using principal component analysis (PCA). Hence, the accu-

racy of each splat is defined by the degree of the Taylor expansion

approximating the local bivariate function of degree d. Note, however,

that throughout this article, we use splats of d = 2 at most, that is local

bivariate quadrics (LBQ). Using LBQs provides smoother local approx-

imations of the surface than simpler planar primitives, without over-

fitting to the data as it would be the case when using higher order

ones.

To disregard outliers in the computations, the jet surface fit is per-

formed inside a RANSAC procedure.54 This robust statistics method

allows to detect as outliers those points which are not supported by

the jet surface of most consensus generated from its neighborhood, or

those which did not generate a consensus surface at all. Finally, to give

an extent to the splat, we give it a radius equal to the mean distance to

the k nearest neighbors. This simple approach generates larger splats

in sparse areas and, on the contrary, generates small splats in densely

sampled parts.

This method provides two main advantages. First, it removes the

so-called gross outliers, that is those wrong measurements that are

far away from the correct points (even if noisy) and that are easily

spottable by a human when observing the data. Second, it provides

us with a first noise smoothing step. While this smoothing has proven

useful in the case of in-lab range scan data (see the results in the

original reference47), it is not sufficient for the type of data we expect,

for instance, in underwater optical mapping. Optical underwater data

suffer from multiple phenomena such as light attenuation, blurring,

low contrast, or nonuniform illumination. Thus, the gathered data

are noisy, and this noise is translated to any further processing to be

applied to these images, such as recovering the observed 3D structure.

Thus, when applying 3D optical reconstruction methods, the resulting

point sets are far noisier when using underwater images than when

the images are captured in-air or in a controlled environment [e.g., see

Fig. 14].

5 UNSIGNED DISTANCE FUNCTION

The purpose of building a distance function is to blend the local

contributions into a global distance field. This permits the other-

wise noncoherent-related local surfaces to contribute to a consis-

tent global surface represented as the zero isolevel in the dis-

tance field. The steps to create a UDF from the splats representa-

tion are explained in the following; whereas some of the main con-

cepts are depicted in Figure 2, and the procedure is summarized in

Algorithm 1.

We use a variant of the implicit MLS definition56 to blend the splats

together. In the original definition, the contribution of oriented points

(seen as planar structures) was blended together to generate a SDF.

We update the formula by adding support for splats of degree 2 (i.e.,

LBQs) andby taking into account theunsigneddistance to the local sur-

faces insteadof the signedone. TheUDFat a givenquerypoint p is then

computed as follows:

u(p) =
∑

si∈S 𝜙si (p)fsi (p)∑
si∈S 𝜙si (p)

, (1)

where S is the set of splats si, fsi (p) is the algebraic projection of p onto
si, and𝜙si is a Gaussian of the following form:

𝜙si (p) =
e
−‖p−ci‖2

𝜎2

Ns
, (2)

where ci being the center of si and Ns is the total number of splats

involved in the computation. In fact, for each query point p, u(p) is
computed using the splats whose centers fall at a radial neighborhood

of size 𝜎. These neighborhood relationships are efficiently obtained

through the use of a K-dimensional data structure (KD-tree).57 Con-

sequently, this distance function has a bounded support, that is only

defined on a limited extent of volume around the splats, at a distance of

𝜎 atmost. Unfortunately, if wewant the distance function to bedefined

in a larger band, increasing 𝜎 values leads to an increase of the com-

putational cost. For this reason, we propose constructing a secondary

band governed by the parameter 𝜎2. In this 𝜎2 band, we compute a

coarser approximation of the function defined in Eq. (1) by not tak-

ing into account the full radial neighborhood around the query point,

but only the first k𝜎 nearest neighbors. This reduces the computational

effort and provides an acceptable approximation. Note that having a

coarser approximation of the UDF when far from the input points is
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F IGURE 2 UDF creation steps. The original point cloud is shown in (a). From these points, a splats representation is extracted as presented in
(b). A slice of the UDF derived from the splats is shown in (c), and in (d) we show the adaptive triangulation containing the function. More precisely,
(d) depicts a cut of the volumetric tetrahedralization using the same slicing plane as in (c)

not important in our case, since we are interested in the minimum of

the function, and this is located inside the finer𝜎 band.Weonly use this

secondary band because it may be interesting in some cases to use this

low-quality version of the distance function, for instance, when a small

𝜎 results in holes appearingon the surface andwewantour global func-

tion to fill them smoothly. In this sense, the larger the bandwe consider

the larger the global implicit function support and, consequently, the

larger the reconstructed surface area.

This UDF is a weighted mean of the individual distance contribu-

tions of the splats falling near a given query point. It is obvious that

the distance function presented does not take into account gross out-

liers, which are supposed to be eliminated by the splats creation pro-

cedure. Note also that we just use the centers of the splats and do

not take into account their size in the distance computation.Moreover,

we just limit their degree to be of d = 1 and d = 2, corresponding to

points with normals or LBQs, respectively, and they are assumed to be

unoriented.

Despite the use of aKD-tree for a rapid query of neighborhood rela-

tionships, computing the function at an arbitrary point in space is a

costly operation. To alleviate the computational burden of intensively

querying this implicit function, which is likely to be required during

the surface extraction step, we discretize our domain. At each of the

vertices in the partitioned domain, the UDF is computed using Eq. (1).

Then, for an arbitrary query point inℝ3, the function value is returned

using a linear interpolationof thevalues stored in thosevertices.More-

over, instead of following the traditional approach of using a regular

grid, we lean toward using an irregular tetrahedral grid that adapts to

the density of the input points. This sampling-dependant data struc-

ture provides a memory-efficient way of storing the distance function,

more precise when closer to the original point set and less precise

when away from it.

We use 3DDelaunay refinement58,59 to obtain the tetrahedral grid

discretizing our working space. Starting from a Delaunay triangula-

tion containing, a set of base points, the tetrahedra are refined by

interleaving vertex insertion (to modify the connectivity of the mesh)

and energy minimization (to optimize the positioning of the ver-

tices) until a given set of user requirements are fulfilled. The tri-

angulation criterion we forced in our case is the ratio between the

edge of the minimum length and the circumradius of the tetrahe-

dra to be lower than the threshold 𝛼re (also referred as the radius-

edge ratio). Note that we are aiming at having a faithful approxima-

tion of the distance function near the centers of the splats (which

are located near the original points in the input P). By forcing

the radius-edge bound to be relatively low, the tetrahedra become

larger when far from the points, giving a rough approximation, and

smaller when closer to the input data, providing a more precise

approximation.

The set of base initial vertices used to trigger the 3D Delaunay

refinement step could be, for reasonably small data sets, the cen-

ters of the previously computed splats. However, when the num-

ber of points exceeds a few thousands of points, including all the

centers of the splats generates a too fine-grained tetrahedral mesh.

The extraction of a surface of a reasonable resolution does not

require the distance function to be extremely precise. Thus, we

start by decimating these base vertices to a representative set,

able to maintain a proper resolution for the distance function after

refinement, but not too dense so as to require plenty of mem-

ory resources for the creation of the refined tetrahedral mesh.

This is done with a simple octree simplification guided by a depth

threshold o.

As previously stated, the values of the distance function are com-

puted at the vertices of the triangulation. Thus, for an arbitrary query

point, the tetrahedron containing it is localized and the function value

is interpolated using the values at the vertices of the tetrahedra along

with the barycentric coordinates of the point. In the case where the

query point is outside the band, the value is undefined.We refer to the

vertices of this data structure as U and to its refined Delaunay struc-

ture as Del(U).



CAMPOS AND GARCIA 497

ALGORITHM1 Create UDF

6 S-T CUT

Given the unsigned function described above, our goal is to recover its

sign. That is, we want to distinguish between the part of the volume

inside the object from the outside part and then simply apply the cor-

responding sign toeachpart to convert theoriginalUDF intoaSDF.You

can see a 2D depiction of the proposed approach in Figure 3 as well as

a summary of the method in the form of a pseudocode in Algorithm 2.

Certainly, this problem can be considered as a binary labeling problem:

We aim at partitioning the vertices U in the above-mentioned tetrahe-

dralization into the two labels in and out. Given the extensive use of the

S-T cut methods in binary optimization, our first proposal is to adapt

this method to perform the partition on our scenario.

An S-T cut divides a set of nodes in a specific type of graph into

two disjointed sets minimizing the cost associated with the removed

edges. Commonly referred to in the literature with the generic name

of graph cuts or, alternatively, the min-cut/max-flow algorithm, this

method obtains an exact minimization for binary optimization prob-

lems. This technique has been extensively used in awide range of appli-

cations in computer vision and graphics.44,50,51,60–69

A graph 𝖦 = ⟨𝖵,𝖤⟩ is composed of a set of vertices 𝖵 and the set of

edges 𝖤 joining them. In the specific case of S-T cut algorithms, the set

of nodes𝖵 contains twospecial nodes, 𝗌 (source) and 𝗍 (sink), referred to

as the terminal nodes, so that 𝖵 = 𝖯 ∪ {𝗌, 𝗍}, 𝖯 being the rest of nonter-
minal nodes. Each edge joining vertices 𝗏𝗂 and 𝗏𝗃 stores a given weight

w(𝖾i,j). We differentiate between these edges by calling them terminal

edges if they join a terminal vertex with a nonterminal one, or non-

terminal edges if they only describe interactions between nonterminal

vertices.

AnS-Tcutof thepresentedgraph is apartitioningof thegraphnodes

into two subsets, 𝖲 and 𝖳, so that 𝗌 ∈ 𝖲 and 𝗍 ∈ 𝖳. The cost of cutting a

graph equals the sum of weights on the severed edges w(𝖾i,j), so that

𝗏𝗂 ∈ 𝖲 and 𝗏𝗃 ∈ 𝖳. Thus, the problem is then to find theminimumS-T cut

from all the possible cuts in the graph. A useful result in combinatorial

optimization is that theminimum S-T cut is dual to the problem of find-

ing amaximum flow from source 𝗌 to sink 𝗍.70

From thebinary optimization point of view, the terminal nodes 𝗌 and

𝗍 represent our possible labels. Supposewe can define a cost for assign-

ing each node to a given label. Also, assume the labeling problem does

not depend only on the nodes themselves but also on the labels of their

neighbors. Thus, our problem requires an optimization of the labels

for each vertex in the graph, by enforcing spatial coherence between

neighbors. This results in the minimization of an energy function com-

posed of a data term and a smoothing term:

E(l) =
∑
p∈𝖯

Tp(lp) +
∑
𝖾i,j∈𝖭

Vi,j(li, lj), (3)
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F IGURE 3 2D depiction of the pipeline followed in the S-T cut method. Starting from an UDF evaluated in an adaptive grid (a), a graph structure
is built using the connectivity defined by the triangulation (b). Additionally, for the case of S-T cut, some of the vertices in the graph are connected
to two special nodes; 𝗌 and 𝗍 (c). After the graph optimization, we obtain a binary partition of the vertices in the graph (d), which is used to sign the
original UDF (e). Using the SDF, we can extract the surface, the curve in this case, at its zero-level set. Note that the normalized cut method passes
directly from (a) to (d), given that it does not require inside/outside knowledge

where Tp(lp) is the data penalty term, Vi,j(li, lj) is the interaction poten-
tial, and lp is the binary labeling to optimize, defined as follows:

lp =

{
0 if 𝗏𝗉 ∈ 𝖲

1 if 𝗏𝗉 ∈ 𝖳.
(4)

Note that, in our case, the 0 and 1 labels correspond to the inside and

outside of the object to be reconstructed.

Related to the above-mentioned interaction potentials, Tp(lp) indi-
cates per-vertex labeling preferences, whereas Vi,j(li, lj) encourages
spatial coherence and penalizes discontinuities between neighboring

labels. Kolmogorov and Zabin 71 proved that a globally optimal label-

ing for the energy in Eq. (3) can be found using the minimum cut on

an S-T graph. As suggested in many other approaches,44,50,51,68 we use

the algorithm presented by Boykov and Kolmogorov72 to solve for this

minimum cut.

We define our graph 𝖦 using the same connectivity of Del(U), that
is, the vertices 𝖯 of the graph correspond to U, and the edges in the

adaptive structure containing the UDF also define the relationships

between vertices in 𝖦. Additionally, some of the vertices in the graph

have a pair of edges joining them to both the 𝗌 and 𝗍 nodes. This leads to

the graph definition depicted in Figures 3(b) and 3(c) for the 2D case.
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ALGORITHM2 S-T cut algorithm

To apply the optimization method to the U nodes in our space par-

tition, two main steps are required. On the one hand, we have to infer

a confidence for each pi ∈ U to be inside or outside the shape. On the

other hand, we need to devise an internodes weighting. Equivalently,

we need to define both terminal and smooth weights.

On the one hand, for the terminal weights composing Tp(lp), we take
advantage of our splat representation. Recall that this representation

is already a good approximation of the surface of the object. In the orig-

inal paper,47 the authors defined a robust intersection method using

RANSAC to be able to query for intersection tests given the segments

required by a RDTmesher. Consequently, we have away of inducing an

intersection test against the splats approximation.

An intuitive approach to knowing whether an arbitrary point

in space is inside or outside an object is to count the number of
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intersections between a ray with its origin at this point and the surface

of the object. When the number of intersections is odd, the point is

inside the object, and when even outside. Thus, we use a procedure

similar to that presented in Ref. 45 but adapted to our representation.

We induce the confidence of a point as being inside or outside the

object by throwing random rays originating from that point in multiple

directions and counting the number of intersections with the splat

representation. By throwing multiple rays, we are accounting for

the possible unreliability of the ray-intersection procedure due to

noisy and/or self-intersecting splat representations, as explained

above.

For each vertex/point p in the triangulation, we throw a given num-

ber of rays, Nrays, with a starting point at p in random directions and

count the number of intersections. Given all these intersections, we

count those resulting in an even number, ieven, and those giving an odd

number, iodd.Note thatwedonot throwasingle ray, taking into account

that the ray–splats intersection query may fail in some cases. Using all

these tests, the confidence for a given point to be part of the inside or

the outside, and, consequently, its weight with the 𝗌 and 𝗍 nodes is

ws = ieven∕Nrays

wt = iodd∕Nrays.
(5)

Note that, in this case, we have fixed the 𝗌 node, and consequently the

𝖲 set of the cut, to represent the outside of the object, whereas 𝗍 (resp.

𝖳) represents the inside.

In fact, for the tested data sets, the robust ray–splats intersection

query has been empirically proven to work on large scales, that is, far

from the splats, but on the contrary is not reliable within small scales,

that is, near the splats. Consequently, the vertices in U outside the 𝜎

band are more suitable for reliable stochastic ray signing as presented

above. Furthermore, despite the fact that the ray–splats intersection

query is optimized using AABB trees, its repeated use could lead to a

drop in time performance for the method. To alleviate computational

complexity, we simply apply the stochastic ray confidence computation

to the points at the interphase of the 𝜎 band. That is, we just compute

the confidence for a vertex if at least one of its adjacent neighbors is

inside the band. This means that only a small subset of vertices has a

terminal weight, and, for the rest of the vertices, no terminal edge is

added. Thus, points with no terminal weights obtain the final label due

to the propagation ruled by the smooth weights.

On the other hand, smooth weights are derived directly from the

unsigned distance function values. Thus, each ei,j ∈ 𝖭 has a weight

wn(ei,j), which corresponds to the direct evaluation of the unsigned dis-
tance function along the edge. Since our vertices in the graph coincide

with those in Del(U), we set the weight to

wn(ei,j) =
(u(pi) + u(pj)

2

)𝛽

, (6)

which is the mean value of the function value at the endpoints of the

edge, andwhere the power 𝛽 is a user parameter allowing the emphasis

of theminimumof thedistance function as suggested in other unsigned

reconstruction approaches.44,73 Using this definition for the smooth

weights enforces the minimum cut to pass through the minimum of

the UDF. Note that our distance function is defined just on a narrow

sigma band near the centers of the splats. Thus, smoothweightswn(ei,j)
are only defined inside this band. For the rest of the edges, a default

constant value is added, enforcing the propagation of labels from the

nearby neighbors in the band.

6.1 Extension to bounded surfaces

It is obvious that the above-presented S-T cut approach has a clear

flaw regarding our application area. As described in Section 1, the 3D

reconstructionof apart of the seaflooroften corresponds toabounded

surface. We have seen that most of the methods in the state of the

art assume the underlying surface described by the input points to

be closed (i.e., watertight). This is motivated by the broad application

domain, which mainly consist of the range scanning of objects, which

can be scanned from arbitrary viewpoints in a laboratory or in-air envi-

ronment.However,whenexploring the seafloor, there are clear bound-

aries defined in the places where the survey ends, and it is a very rare

case to be able to observe and scan a shape from arbitrary viewpoints

due to the restrictions in the surveying vehicle, even if observing small-

scale structures (e.g., corals). Thus, we cannot assume that there is an

inside notion and, consequently, the inside/outside confidence proce-

dure as previously presented does not apply. We adapted our method

to work in this scenario by simulating the surface to be closed.

We start by computing a global plane using PCA with the centers

of the splats. Then, we compute the bounding sphere containing these

centers and use the previously computed plane to chop it off into two

spherical caps. In this way, one of the caps is used as the reference to

virtually define an inside/outside part of the shape. To do so, during the

inside/outside labeling through stochastic ray throwing, we count any

intersectionwith the selected spherical cap as a valid intersection. This

process is intuitively depicted in the 2D schematic in Figure 4.

Note that we do not distinguish which part is which, that is we ran-

domly label one of the two spherical caps resulting from stabbing the

bounding sphere by the global plane as inside or outside. Since just

the surface is required, the retrieved solution is valid up to a possi-

ble global orientation change of the resulting triangle mesh after the

surface extraction step. Nevertheless, due to the insertion of this vir-

tual spherical cap into the system, the retrieved surface is closed. Thus,

we create some parts of the surface that are, in fact, not part of the

real bounded surface. These parts of the surface should be eliminated,

using the approach that will be presented for the normalized cut case in

subsequent sections.

7 NORMALIZED CUT

We have seen that the S-T cut technique requires providing a notion

for some of the points to be inside or outside the shape. This proce-

dure is necessarywith several state-of-the-artmethods that also try to

find the optimal separation of inside/outside volumes. However, in our

specific case, this knowledge is just a by-product, since the final goal

is to recover the interface between the two volumes, that is, the sur-

face of the object. Given that we are just interested in this separating
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F IGURE 4 2D schematic of the extension for the S-T cut method to handle bounded surfaces. The curve in (a) is not closed, and consequently it
does not define an inside or an outside. We compute a global frame using PCA and use it to chop a bounding sphere into two caps, as depicted in
(b). One of the spherical caps is used to virtually close the surface as presented in (c), so that we can disambiguate the inside/outside computation

surface, in this section we propose a method to partition the volume

into two, but disregarding which part is the inside or the outside. For

this purpose, we use another commonly referred to graph-based tech-

nique applied in solving the binary segmentation problem: the normal-

ized cut.

Spectral methods are extensively used in clustering and segmen-

tation in image processing.74–79 It is also worth noticing that, even if

originally described using graph theory, normalized cuts have a direct

formulation as a random walk,80 or as a separation using hyperplanes

(similar to support vector machines),81 among other interpretations.

Moreover, normalized cut has been used with minor changes in

surface reconstruction by Kolluri et al.49 Note, however, that their

method is interpolation based, and thus its definition is completely dif-

ferent fromours.While theywere concernedwith the outlier rejection

problem, we are more concerned with the attenuation of noise. That

is, in their approach, the spectral cut was used to disregard outliers,

whereas, in our case, we use it to partition a volume from an implicitly

defined UDF.

All in all, the question wewant to answer is: Can we solve the parti-

tioning problem without having to rely on a specific labeling? Taking a

look back at Eq. (3), this results in removing the data term, leaving the

energy tominimize as follows:

E(l) =
∑
𝖾i,j∈𝖭

Vi,j(li, lj). (7)

Thus, we have to dealwith the general definition of aminimumcut: The

graphhas to bepartitioned into twogroups, regardless of their label, so

that the edges of the same group have a high weight, and, on the con-

trary, edges between different groups have low weights. Since they do

not have a specific meaning in this case, we rename our binary regions

as A and B, so that the cut can be defined as follows:

cut(A, B) =
∑

i∈A,j∈B
w(𝖾i,j), (8)

whichmeans that theminimum cut corresponds to the oneminimizing

the total weight of the edges removed.

However, as pointed out by Wu and Leahy,82 minimizing the cut

directly, as described in Eq. (8), favors the cut of a small set of edges,

that is, severing a few edges often leads to a minimization of the

cut. Conceptually, we want the groups in this partition to be rela-

tively large with respect to the total number of nodes. The normal-

ized cut method tries to overcome this problem by forcing the sum

of weights in both parts to be similar. This is obtained by normaliz-

ing the cost of the cut relative to the cost of all the edges in each

region:

NCut(A, B) = cut(A, B)
cost(A)

+ cut(A, B)
cost(B)

, (9)

where cost(X) is a sum of the weights of the edges contained in the set

X. This definition promotes the two setsA andB to be larger and of sim-

ilar cost.

As pointed out in the original article by Shi and Malik,74 solving

this problem is NP-hard. However, if we change the labeling from pure

binary to continuous, theproblemcanbe reformulated intoaminimiza-

tion that can be solved exactly.

In fact, the underlaying graphs of the two techniques proposed

in this article are very similar, just the links to S-T sites are miss-

ing in the normalized cuts case. Thus, the filling of the graph and

the creation of the weights are exactly the same. In this case, since

there is no additional labeling hint, the parameter 𝛽 , used to stress

the UDF minimum, has more relevance than in the case of the S-T

cut.

Note, however, that the small 𝜎 band used in the S-T cut case may

not be sufficient for the present case. If this band is too small, the cut

criterion could lead to problems like the one posed in Figure 5. If the

𝜎 band is too narrow, the cut that minimizes the cost, and also bal-

ances the sum of edge weights in each partition, may separate the

edges into two parts that do not necessarily pass through the mini-

mum of u(x). To force the cut to pass through the minimum of the UDF,

we need a larger 𝜎 band, so that the weights on each side of the band

take greater importance in the balancing factor [i.e., the term cost(X) in
Eq. (9)].

Hence, in this case, the 𝜎2 band ismore important, as it allows defin-

ing a coarsely approximated larger band of the UDF, promoting this

way the cut to have large sum of weights on each side and to cut edges

that are nearer to theminimumof our UDF. It is also worthmentioning

that it may be interesting in some cases to use this low-quality version

of thedistance function in theS-T cuts case, for instance,whena small𝜎

results in holes appearing on the surface and we want our global func-

tion tofill themsmoothly. In this sense, the larger the bandwe consider,
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F IGURE 5 Relevance of the 𝜎 (or 𝜎2) band size for the normalized cut method, depicted on a data set of a small coral reef. When applied to a
narrower band (b), the normalized cut may be minimized by a cut that does not pass through the minimum of the UDF. By enlarging the 𝜎 band (c),
the weight of the edges on each side of the partition increases, forcing the cut to pass through theminimum in UDF

the larger the global implicit function support and, consequently, the

larger the reconstructed surface area.

After obtaining the cut, we flip the sign of one of the regions, A

or B (it does not matter which), and extract the surface using a sur-

face mesher on the resulting SDF. Finally, the results presented in

Section 8 demonstrate that the differences between the S-T cut and

the normalized cut methods are not that great. What is important to

emphasize is that, in this second case, we do not use labeling hints

at all. This can be seen in Algorithm 3, which basically mimics the

computation of the smooth weights in Algorithm 2 and applies a dif-

ferent partitioning strategy to the graph (which also equals to pass-

ing from (a) to (d) directly in Fig. 3). Thus, we prove that solving the

surface reconstruction by partitioning the working volume does not

require the knowledge of a specific labeling but just the partition itself,

that is, swapping the sign in the SDF does not impact the recovered

surface.

ALGORITHM3 Normalized cut algorithm

7.1 Removing hallucinated triangles

The partition presented above takes place only in the 𝜎 band. Thus, we

give a sign to a slab of volume and, consequently, the retrieved surface

mesh does not contain only the part we are interested in, that is, near

the input splats, but also some triangles corresponding to the closing

of this volume [see Fig. 6(d)]. Following the nomenclature proposed by

Jancosek and Pajdla,52 we refer to hallucinated triangles as those which

are part of the reconstructed surface obtained so far, but that do not

correspond to the real surface (i.e., they are far from the input splats in

this case). To remove these artifacts, we eliminate the hallucinated tri-

angles by using the u(x) value of their vertices in the original UDF. An

example of the reconstructed surface before and after removing hallu-

cinated triangles is presented in Figure 6.

We have a large number of vertices having a u(x) close to zero, cor-
responding to the part of the mesh close to the surface, and another

large part having u(x) values that progressively increase the farther

away from zero they are, corresponding to the hallucinated part.
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F IGURE 6 The effect of hallucinated triangles on the normalized cutmethod.Note how the reconstruction in (d) is covered by themeshed part of
one of the volume slabs that has beenmeshed. This is due to our procedure giving a coherent sign only inside the 𝜎2 band. This phenomenon can be
seen in (b) and (c), showing a 2D slice of the unsigned and signed versions of the 3Ddistance function, respectively. After the automatic hallucinated
triangle removal, we can see the underlying surface in (e)

Therefore, we need to infer if a vertex is part of the surface by check-

ing if its u(x) is close enough to zero. However, this notion of close is

not defined for a given data set. For this purpose, we use the modified

selective statistical estimator method (MSSE)83 to detect such a gap

between u(x) values close to zero and the rest.
The MSSE is a scale estimation method that works by detecting a

big jump in the sorted residuals of a model. In our case, residuals are

defined as the u(x) values evaluated for all the vertices of the resulting
mesh. Starting at a low position in this sorted list, fixed to the 10% of

the number of values in all the presented cases, we can run over the list

and update the scalemeasure iteratively until we find a big jump.When

moving through the list of sorted residuals, it is supposed that we will

find this big jump when the values of the implicit function get larger

and larger, corresponding to the u(x) of vertices in themesh away from

input points. Thus, the scale can be estimated as the first value𝜑j in the

list not following the inequality below:

𝜑2
j+1

𝜑2
j

>
T2 − 1
j − 2

, (10)

where 𝜑j is the standard deviation of the u(x) values considered up to

the j index in the sorted list and T is a constant factor that we set to

2.5. So, we iteratively move the j-sorted u(x) a position and compare

with that in j − 1 to see if there is a too large step, whichwould indicate

that this value could be considered as from another distribution, that

is, from the part away from the input points.

Then, we simply remove the triangles having a vertex whose u(x) is
bigger than 2.5𝜑j from the surfacemesh. Note that, as previouslymen-

tioned, we also apply this method when using the S-T cut method in

the case of bounded surfaces. Needless to say, since in this case the

labeling only happens in the 𝜎/𝜎2 band, this procedure also handles the

bounded surfaces problem [e.g., see Fig. 6(e)].

8 RESULTS

In this section, we present the results obtained using the two graph

cutting techniques described above. We list the parameters used to

obtain the presented results for eachmethod in Table 1, alongwith the

running times required for each experiment. In this section, we focus

on theapplicationof bothmethods innoisyunderwater data sets, using

both acoustic and optical data. Finally, we provide a qualitative and

quantitative review of the behavior of the methods against the state

of the art.

Once the SDF has been retrieved, we can use any contouring algo-

rithm to extract the surface in the formof a trianglemesh. For instance,

we could apply the widely used marching cubes. However, given the

advantages of RDT meshing22 in terms of the quality of the triangles

(close to regular sized), we use this one for all the results contained in

this section.

Note that we are able to obtain manifold surfaces using both meth-

ods, which makes them amenable to further postprocessing. Take as

example the simple underwater data set consisting of a rocky area in

shallow water presented in Figure 7 and note the nonmanifold con-

figurations generated by the original splats mesher method47 in con-

trastwith the results obtainedbyourmethods andhow thedifferences

between the results obtained by both the S-T and normalized cut algo-

rithms are imperceptible.

As pointed out in Section 5, we also open the door to the use of

directed points (i.e., points with unoriented normals) in our frame-

work.Many proposals in the literature deal with the problemof finding

robust but unoriented normals.40–43 In each of these cases, the prob-

lem is what to do with this directed but unoriented point set to obtain

the surface. Using our normalized cut for this purpose, we can retrieve

a manifold surface. For the case of the S-T cuts method, we would

require splats of d = 1 with a limited extension to use this approach.

This reduces to using the linear approximation of the directed point as

local surface and compute its extent, for instance, as explained in Sec-

tion 4. The results in Figure 8 were obtained using this kind of linear

primitives.We provide in this figure the application of bothmethods to

an in-lab range scanned data set consisting of an amphora.

Regarding range scanning applied underwater, it is well known that

acoustic range sensing is the preferred tool for mapping large under-

water areas, thanks to their long working distance.1,84,85 For this rea-

son, we test our methods against some data sets acquired by a DeltaT

multibeam echosounder mounted in the Girona500 AUV (see Fig. 9).

Problems like reflections and the inherent low resolution of acoustic

sensors result in the point cloud retrieved using this technology being
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TABLE 1 Details of the parameters used and the running times required to generate the results for the S-T and normalized cut algorithms

Parameters Run Times (s)

Name Number of points Figure 𝝈 𝝈2 k𝝈 𝜹r 𝜷 𝜶r/𝜶d UDF SDF Mesh

S-T ShallowWater 1,856,271 7(c) 3 0 0 1 4 0.05 85.44 435.62 60.20

Amphora 829,039 8(c) 3 0 0 0.7 4 0.5 234.73 3177.66 67.14

Tour Eiffel 1,368,115 13(a) 7 0 0 0.5 4 0.05 361.61 2807.2 55.39

Normalized Risu3 43,535 6(c) 5 10 5 – 4 0.1 23.74 8.38 33.42

Coral Reef 1,656,413 5(c) 6 250 25 – 8 0.05 86.22 31.29 218.24

ShallowWater 1,856,271 7(d) 6 100 25 – 8 0.05 148.44 93.88 49.00

Amphora 829,039 8(d) 3 25 5 – 4 0.5 247.73 302.13 92.89

Mound 394,071 10 15 50 50 – 9 0.05 1784.31 71.44 232.77

Cave 55,876 12(c) 3 20 5 – 8 0.5 58.59 79.45 16.50

Tour Eiffel 1,368,115 13(b) 6 150 25 – 7 0.05 313.17 99.61 25.71

La Lune (1) 1,137,820 14(a) 15 50 150 – 8.5 0.05 2361.61 96.33 194.35

La Lune (2) 832,009 15(c) 15 50 50 – 8 0.05 3884.01 103.25 101.82

Regarding parameters, 𝜎 and 𝜎2 are expressed in terms of the average spacing between points (with k = 6), k𝜎 is the number of nearest neighbors taken into
account to compute the UDF in the 𝜎2 band, 𝛿r is the RANSAC distance threshold (only used in S-T cut), and 𝛼r/𝛼d are the meshing parameters goberning the
resolution of the output mesh. Some of the parameters presented in the text have been fixed for all the data sets: the octree depth o = 10 (except for the
Cave data set, for which no octree was used), 𝛼re = 1.5, Nrays = 25. All results were generated on a Intel Core i7-3770 CPU with 32 Gb of RAM. Regarding
runtimes, UDF, SDF, andMesh refer to the time spent on the creation of the unsigned distance function, its signing and its meshing, respectively.

F IGURE 7 Using the same splat representation shown in (a), we present a comparison of the splats mesher47 (b) and the twomethods proposed
in this article: (b) for S-T cut and (c) for normalized cut. One of themain problems of the splats meshermethod presented in Campos et al.47 are the
nonmanifold configurations when the query segment becomes small enough to not merge contributions of more than a single splat. Wemarked in
red each triangle containing a nonmanifold edge. Since the robust intersection detection thismethod is based on requires redundancy, that is, more
than a single intersection point, to consider an intersection as valid, the intersection becomes invalid when the query segment becomes too small
to intersect more than one splat. Note how this happens in areas of high curvature, where splats have less coherence between one another

quite noisy. Additionally, underwatermapping using amultibeamsonar

requires very accurate navigation estimates to align all the range scans

into a single reference frame. When a lightweight low-cost underwa-

ter robot is used, the poor navigation data cause several double con-

tours in unprocessed point sets. Having outliers and double contours

generally creates a noisy splats representation with self-intersecting

splats not amenable to the RANSAC intersection procedure47 we use

for the S-T cut case. This renders the S-T cut useless, and, conse-

quently, we only test acoustic range data sets using the normalized cut

method.

The first acoustic data set presents a point set obtained using a

multibeam sonar scanning an underwaterMound (hill) rising at a depth

from 40 to 27 m located near the harbor of Sant Feliu de Guíxols, on

the Costa Brava of Catalonia, Spain (see Fig. 10). With the sonar set in

a slanted orientation toward the hill, the point cloudwas automatically

obtainedwith an adaptive replanning strategy that uses stochastic tra-

jectory optimization to reshape the nominal path to cope with the

actual target structure perceived in real time during the exploration.13

As it can be observed in Figure 10, despite the outliers and double

contours (i.e., parts of the object that are doubled due to bad posi-

tioning of the sensor) present in the final retrieved data, the normal-

ized cut is able to obtain a consistent surface. We will use this data

set to observe the behavior of normal computation on a complex real-

world example and its implications on surface reconstruction meth-

ods requiring per-point normals. Figure 11presents the two commonly

used approaches for normal computation, and the result of using them

as input to the well-known Poisson surface reconstruction method.38

In both cases, the normals were computed using PCA plane estima-

tion on each point given their K = 100 neighbors (an empirical value

set based on the amount of noise in the data). However, they differ

in the orientation procedure. In Figure 11(a), we exploited the known

position of the vehicle at the time of capturing the data to reorient the

points. As you canobserve, the orientationof thepoints is not coherent

in someareas (black spots in the shadedmodel), which leads to awrong
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F IGURE 8 Examples of themethods' behaviorwhen applied to a range scan data set. From left to right, input points, splats (d = 1), and the results
of the S-T cut and normalized cut methods. Note how bothmethods retrieve similar surfaces

F IGURE 9 Deployment of Girona500 AUV

surface reconstruction in Figure 11(b). The more generic orientation

propagation following a MST23 is used to obtain the results in

Figure 11(c). The more coherent orientation leads to an improved

surface reconstruction [Fig. 11(d)]. Still, when compared to the results

of our method in Figure 10(b), we can observe some off surfaces and

unrealistic overhangingparts in the recovered scene.Additionally, note

how the irregular sampling of this scanning methodology presents

some artifacts in the Poisson reconstruction, resembling the linear

stripes of the original individual scans, which are otherwise smoothed

out with our approach. These results prove the superior performance

of our approach.

The second acoustic data set corresponds to a profiling sonar sur-

vey of the interior of an underwater cave located in L'Escala, also on

theCostaBrava.During the survey, themonobeamrotating sonar head

was positioned orthogonally to the cave, so that a single scan provides

a 360◦ view of its walls. Additionally, in this case the trajectory was

optimized a posteriori through a SLAM approach.86 Figure 12 shows

the data set along with two close-up views allowing the understand-

ing of the shape of the interior of the cave. Note that, regardless of the

sparse sampling this data set poses, small details, such as the small tun-

nel visible in the upper part of Figure 12 (c), are faithfully recovered.

Additionally, this example proves the usefulness of the methods

F IGURE 10 UnderwaterMound retrieved with amultibeam survey (a) and the reconstructed surface using normalized cuts (b)
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F IGURE 11 Normal estimation methods exploiting the information from the robot trajectory (a) and the MST propagation (c) and their conse-
quences on Poisson surface reconstruction for the underwater Mound data set (b, d). Shadow casting is applied to the point sets to visualize the
orientation of the normals, that is, black spots denote wrong orientation

presented with data sampled from confined environments, a hot topic

in the underwater robotics community.11,12

Regarding optical underwater data sets, Figure 13 illustrates the

Tour Eiffel data set acquired by the remotely operated vehicle (ROV)

Victor6000 (Ifremer). The Tour Eiffel is an underwater hydrothermal

vent located at about 1,700m depth in the mid-Atlantic ridge, and

which has been the objective of many science expeditions in the past

decade.87 Observe in Figure 13 (a) how the corrupted point set leads

to a splat representation containing a large number of primitives that

intersect with their neighbors. It should be noted that often ROVs rely

on local navigation based on the visual feedback that the pilot receives

from ROV's cameras; therefore, the navigation sensors carried by

the robot are very limited. Even in this case, we are able to retrieve a

perfectlymanifold surface approximating the shape of this underwater

chimney. However, we can see in Figures 13(c) and 13(d) how a larger

part of the object is retrieved in the normalized cut case. This is due

to the sparse sampling paired with high noise of the left-most part of

the input point set, presented in Figure 13(b), which results in splats

being more incoherent in this area. Thus, this area is not amenable to

the inside/outside guess of the S-T cut method, dooming the global

optimization to consider it as part of the outside of the shape and,

hence, not reconstructed. Nevertheless, both methods accomplish a

high level of detail.

We end the empirical evaluation of the methods with two data sets

collected during the survey of La Lune shipwreck.9 This shipwreck of

the 17th century is an interesting archeological site located near the
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F IGURE 12 Profiling sonar survey of an underwater cave in (a). One can see the reconstruction obtained by the normalized cut algorithm in (b),
with close-ups of the twomain tunnels highlighted in (c). The view direction is alsomarked on the right part

F IGURE 13 Results for the Tour Eiffel data set. In (a) we show the splats representation of the scene, in (c) the results of the S-T cut, and in (d)
the normalized cut algorithm, along with its texture-mapped version in (e). Finally, we show in (b) the original point set with the gross outliers with
respect to the surface highlighted in red to depict the level of corruption of this data set

coast of Toulon, France. The bad conditions during the original image

acquisition (analog, interlaced, low-resolution, grayscale camera) con-

tributed to the reconstructed point set containing a large set of out-

liers, noise, and also double contours. We present two data sets corre-

sponding to in-detail explorations of small areas in Figures 14 and 15.

In both cases, the shapes of the objects in the scene are indistinguish-

able either in the point set or in the splat representation [two first sub-

figures in the lower part of Fig. 14, Fig. 15(a), and 15(b)], but they are

clearly visible in the surface reconstruction obtained with the normal-

ized cut [third subfigure in lower part of Fig. 14 and Fig. 15(c)]. As pre-

viously noted, our robust intersection test fails when applied to highly

nonconforming splats, which prevents the use of the S-T cut method in

this case. Note also, in Figure 14, that we reach a far finer scale and,

consequently, amore detailedmodel than using themethod inCampos

et al.,48 which also tackles this data set.

As previously mentioned, the parameters used for achieving the

results presented so far are listed in Table 1. Indeed, it may seem that

there are a number of parameters involved in the computation of the

methods. Thus, we want to briefly discuss the parameter selection in

the presented cases, to provide a notion of appropriate parameter

tuning depending on the properties of the data set. On the one hand,

parameters 𝜎, 𝛿r and 𝛽 are the ones governing the S-T cut. The S-T cut

only considers the first 𝜎 band, which defines the volume on our grid

assigned to the UDF, and, thus, depends on the amount of noise in the

data. This is the reasonwhyShallowWaters andAmphoradata sets use

a small 𝜎 = 3, whereas the noisier Tour Eiffel uses a larger sigma = 7.

The 𝛿r parameter accounting for theRANSAC threshold has to bemore

precisely tuned depending on the noise in the data. Also, this parame-

ter is defined in theunits of thedata, so it is easier to tune if thedata are

metric and we have known reference of the scale of the model. Note

that the tested data sets have different scales, so the values listed on

the table are just for reference and not directly comparable. Then, as

already commented, and as can be seen in the table, the 𝛽 value is not

that relevant in this case and is set to 𝛽 = 4 by default as suggested in

HornungandKobbelt.73 On theotherhand, thenormalized cutmethod

uses 𝜎, 𝜎2, k𝜎 , and 𝛽 parameters. The first 𝜎 is defined as in the S-T case.

Then, the second 𝜎2 band is just used for balancing the cut, so wewant

to make it larger but not so large so as to add complexity to the cre-

ation of theUDF and the cut. Thus, it is a trade-off between the correct

balancing and the computational effort needed for the cut. The num-

ber of k𝜎 required to compute this second 𝜎2 band depends on the den-

sity, sampling rate, and amount of noise in the data. Dense and nicely
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F IGURE 14 La Lune survey. On the top, we can see a mosaic of the shipwreck area,9 where we marked the two areas surveyed in 3D. In blue,
and depicted in the lower part of the figure, we find from left to right: the retrieved point set, the splats representation, and the reconstructed
surface (with a close-up of a cauldron). Note that the large amount of noise and outliers poses the splat representation to contain a large set of self-
intersecting primitives.Nevertheless,we are able to recover a reliable reconstruction, showing the cannonand twocauldrons, using our normalized
cut method

F IGURE 15 La Lune, seconddata set (marked in green in the upper part of Fig. 14). The point set in (a) and its splat representation in (b) showhow
this data set reproduces the same level of corruption of the first data set. The normalized cut surface (c) reveals two cauldrons located on either
side of a cannon
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F IGURE 16 List of methods compared in the Results section, depicting for each algorithm its name, marker, color, the acronym used in the text,
and its main reference

sampled data sets (e.g., Risu3 or Amphora data sets) use very few k𝜎
samples to compute the distance. On the contrary, noisier data sets

(e.g., La Lune (1) data set) require a larger number of samples to be less

sensitive to outliers. Then, in this case the 𝛽 parameter is more sensi-

tive and related to the noise in the data. To constrain the cut to pass

by the minimum of the UDF we need to emphasize this minimum val-

ley, and this is done by increasing the 𝛽 parameter. The noisier the data

set is, the larger this value. Finally, the 𝛼r and 𝛼d parameters are part

of the surface mesher step and just tuned based on aesthetic reasons.

Recall that, once the SDFhas been reconstructed, we can extract a sur-

face with different properties in terms of approximation quality, com-

plexity, and shape regularity of the triangles in the mesh by just tun-

ing these parameters. This is interesting, for instance, to create sev-

eral meshes at different resolutions for the same SDF for visualization

purposes.

Finally, we compare the behavior of our method against the state

of the art. First, we apply a representative number of methods of

the state of the art to the Shallow Water data set, presented in Fig-

ure 17(a). In Figure 16, one can see the list ofmethods evaluated, along

with their acronym and their references. To simplify, when referring a

method in the text, wewill use the acronym form. Thus, to perform this

test, we follow the approach of Kazhdan and Hoppe.38 We randomly

divide the input points into two equally sized sets, so that one of the

sets is used for evaluationwhereas the second is used for validation. In

this way, we use the evaluation set as input to the algorithms and the

validation set to compute the distances to this reconstructed surface.

Figure 17 enables a qualitative comparison of the different methods

in the state of the art, while also shows the mean distances obtained

for each evaluated method [see the chart on Fig. 17(u)]. Given the fact

that the Shallow Water data set describes a bounded surface, some

of the results on Figure 17 present made-up parts as a consequence

of the methods trying to find a watertight surface. Nevertheless, all

mean distances are very similar. This is caused by the good sampling

provided by the point set. The ones obtaining the worst measures are

FFT, wavelets, and RC. On the contrary, the best results are obtained

by SPoisson and PC. Our methods, STC and NC, compare favorably to

the state of the art in this simple test. Note that we are not taking into

account the manifoldness of the recovered surface, and, for instance,

the SM method obtains a decent mean but the resulting surface is far

from manifold [as shown in Fig. 7(b)]. Bear in mind that, since we are

using real data, the input point sets contain some noise, and the tests

measure how good the reconstruction is when compared to this noisy

data. Thus, we evaluate the overall behavior of the method against the

input data, butwe cannot drawglobal conclusions as no ground truth is

available.

To properly quantify the results provided by themethods proposed

against more complex data sets, and with the proper ground truth ref-

erencing, we use the benchmark of Berger and colleagues.88 While the

authorsprovidea significantnumberof examples to test thealgorithms

against, we think the level of corruption present in these point sets

is more similar to in-lab captures and far from that contained in data

acquired in real-world environments, specially in participating media,

such as underwater. The authors also provide tools to generate new

simulations of scans, using a virtual laser scanner. Thus, these tools

were used to generate a new set of 44 shapes by varying some spe-

cific parameters we found directly related to noise. More precisely,

and following the nomenclature of the original reference, we mod-

ify the noise magnitude from 0 to 0.5, with increments of 0.05, and

the laser's field of view from 2.5 to 10, with increments of 2.5. Fig-

ure 18 presents some examples of the corrupted point sets tested, so

that their noise magnitude can be compared to those on Berger and

colleagues.88

Notice that our evaluation extends that in the original article88 not

just in the level of corruption considered but also in the number of

methods tested. It is also worth noting that, following the tendency of

most methods in the state of the art, all of the methods in the origi-

nal evaluation required per-point normals, which is not the case for the

methods proposed in this article. In this direction, we also tested some

methods not requiring the use of per-point normals. The names of the

algorithms tested are presented in Figure 16, and they are separated

in Figure 19(a) into those requiring normals, or otherwise working on

raw point sets. For all the algorithms, we have respected the param-

eters recommended by the authors, when available, and tuned them

when necessary to achieve a better reconstruction quality, based on

visual examination of the results. We further dealt with each point set

individually, that is we tuned the parameters to obtain the best result

on each case instead of resorting to a fixed parameterization for all the

point sets.

Given a reconstruction, the evaluation creates a bidirectional

distance map from the recovered surface to a large densely sampled
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F IGURE 17 State-of-the-art evaluation using the ShallowWater data set (1,856,266 points). The evaluation set (928,133 points) is shown in (a),
whereas the results for the different methods tested are shown in (b)–(t). In (u), we depict the mean distance from the validation point set to the
reconstructed surfaces, where the values are with respect to the diagonal of the bounding box enclosing the original point set

version of the base reference shape. From this distance map, we

compute the mean and maximum (i.e., Haussdorf) distance values.

Additionally, also themean divergence between normals at the surface

and normals at the reference are computed. With this information,

Figure 19(a) shows these results using box plots. Through these plots

named error distribution plots in the original evaluation, one can

feel the overall behavior of the methods under varying noise levels.

Regarding mean/max errors, the MPU method is clearly the one

obtaining the worst results and seems unable to handle large amounts

of noise. Nevertheless, the SPU method, which is a broad smoothing

on the primitives of the original MPU approach, obtains very good

estimations. Additionally, the SC, RC, and PC methods, all working

with raw point sets, do not achieve good results. The gradient-based

methods (i.e., P, SP, FFT, W, and SSD), as well as the MRBF, all behave

acceptably well. However, the SSD method attains a larger variability

in this case. Additionally, due to its stiffness to the input points, the

SP variant reproduces a box a little wider (i.e., more variable errors)

than the original P method, since its known smoothing resolves the
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F IGURE 18 Four sample point sets of theMax Planck shape, from a total of 44. Under each figure, we detail the level of noise magnitude (noise)
and laser's field-of-view size (fov). Normals are used to apply shadow casting to themodel

noise issue better. From the MLS methods (PSS, IMLS, and APSS), the

one behaving the worst is the IMLS. Regarding PSM and SMmethods,

they both behave erratically, obtaining a wide box despite having a low

median. On the contrary, our STC and NC methods behave favorably,

achieving the best results in terms of variance in the plots, with NC

obtaining values a bit larger for the Hausdorff distances. If we then

focus on the mean angle deviation, our methods STC and NC, working

on raw point sets, obtain an extremely good measure, comparable to

those of P,W, PSS, APSS and SPU, all of which work with the additional

knowledge of per-point normals. On the contrary, methods achieving

larger variation in this error measure are PSM, SM, MPU, SC and

PC.

On the other hand, Figure 19(b) plots the errors in a sortedmanner,

increasing the two parameters related to noise: from left to right for

the noise magnitude and from top to bottom for the field of view. Con-

trary to the previous box plot representation, this sorted plot allows

to detect the amount of noise that a method is able to attain. This is

depictedwith a large step increment of the errors (eithermean ormax-

imum), and we leave the larger values out of the graphic for clarity.

Using these plots, we can clearly see how an increase in noise progres-

sively degrades the results obtained, which is worsened at each incre-

mental step of the laser's field of view. Surprisingly enough, we can

detect how some specific configurations cause someof the reconstruc-

tion methods to fail for a given point set, to then obtain more favor-

able results in even noisier data sets. This is depicted in the peaks vis-

ible for some methods in the line charts, and I, FFT or SPU are some

examples. For the smaller laser field-of-view values, the decrease in

performance, that is, the increase in mean/max error values, tends

to increase steadily for most of the methods (disregarding the men-

tioned peaks). This raising in the curves step matches the previous

results for the above-presented error distribution plots: more vari-

able error distribution plots grow faster in these line charts. Finally,

another important aspect to observe is the noise level due to which

some methods totally fail. This is shown with a large step in the error

measures with values that get out of the chart. Nevertheless, we can

observe thatourmethods, STCandNC,obtain the smallest step curves,

always at the bottom of the graph and almost undistinguishable at this

scale.

9 CONCLUSIONS AND FUTURE WORK

We have presented two volumetric surface reconstruction methods

based onminimum cuts on graphs. By making an analogy with a binary

partitioning problem, we use the minimum cut along an unsigned

distance function to promote its signing. This UDF is defined from

the splat representation presented in a previous article47 and is dis-

cretized in a tetrahedral grid adapted to the density of the input points.

Merging the different contributions of the splats in a global viewallows

themitigation of spurious splats thatmay remain near the surface, and

extracting the surface as the zero isovalue in a well-defined volume

results in the retrieved surface being manifold. Furthermore, and as

opposed tomostmethods in the state of the art, both our proposals are

designed to handle bounded surfaces. Additionally, we outperform the

state of the art by not requiring any other additional information than

the input points to work, which is clearly an advantage when using a

lightweight AUV carrying inexpensive navigation sensors.

While sharing thedistance functiondefinition,wedivided themeth-

ods according to their graph cutting technique. In both cases, the base

graph representation is derived fromtheadaptive grid storing theUDF.

First, we have presented the S-T cut method, which needs an initial

guess for inside/outside for some of the vertices in the graph to then

propagate these labels following the smooth weights governed by the

UDF. Second, we have introduced the normalized cut method, which

only uses the smooth weights to define a minimum cut balancing the

cost of the two volumes after the partition. In both cases, we have

shownwithmany examples that the retrieved surfaces are similar.

When comparing both proposals, we have proven that the normal-

ized cut method is more versatile, as it does not require any additional

knowledge such as the inside/outside guess for the S-T cut case. We

have noticed that when using normalized cut, we can overcome the

limitation posed by noisy self-intersecting splats that prevented the

method by Campos et al.47 to provide a coherent surface. However,

this type of data is still not solvable using the S-T cut method, as it

depends on the same RANSAC-based robust intersection detection

procedure than theoriginal splatsmeshermethoddid.On the contrary,

parameter tuning is more sensitive for normalized cut than for S-T cut

(as depicted in Table 1).
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F IGURE 19 Noise test of theMax Planckdata set, using the benchmark of Berger et al.88 (a) Box plot form of themean andmaximum (i.e., Haus-
dorff) distances, and the mean angle deviation for each method when applied to 44 synthetic scans with varying noise scales. (b) Results using
incremental values for the parameters of the virtual scanner related to the noise

Wealsoperformedaquantitative evaluationof themethodsagainst

the state of the art. This survey brought into relief the resilience to

noise that our methods provide when compared to other algorithms,

outperforming even those requiring per-point normals. Additionally,

and to the best of our knowledge, this evaluation is the first to consider

such large levels of noise.

A drawback of both methods when compared to those in the state

of the art is their increase in memory requirements. Despite the fact

that we use several data structures to speed up the processing of the

intensive parts of the algorithms (adaptive tetrahedral grid, octree,

AABB trees, etc.), in both cases the storage of the distance func-

tion in a tetrahedralization represents a large amount of memory.
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Furthermore, there is an inherent redundancy of splats in our repre-

sentation, inherited from the redundancy requirements of the algo-

rithm in Campos and co-workers.47 In our case, redundant splats could

be simplified to alleviate the computational cost of computing theUDF.

Thus, simplification strategies for the splat representations are left

as future work. Moreover, the methods suffer from data-dependant

parameter tuning. This should be alleviated in futurework by automat-

ically setting them based on measures such as noise levels and data

sampling rate or density. Note, however, that this is not trivial, as noise

is difficult to quantify in the presence of outliers, and neither noise nor

sampling need to be uniform in a given data set.

ACKNOWLEDGMENTS

The authors wish to thank the AIM@SHAPE consortium (the ISTI-CNR

Visual Computing Laboratory) for providing the range scannedmodels

used in this paper.

This work was partially funded through MINECO (grant number

CTM2013-46718-R) and the EU VII Framework Programme as part

of the Eurofleets2 (grant number FP7-INF-2012-312762) and Robo-

cademy (grant number FP7-PEOPLE-2013-ITN-608096) projects.

ORCID

Ricard Campos http://orcid.org/0000-0003-4718-468X

REFERENCES

1. Roman C, Singh H. A self-consistent bathymetric mapping algorithm. J
Field Robot. 2007;24(1–2):23–50.

2. Johnson-Roberson M, Pizarro O, Willams S. Towards large scale opti-

cal and acoustic sensor integration for visualization. In:OCEANS 2009-
EUROPE. Bremen, Germany: IEEE; 2009:1–4.

3. YoergerDR, KelleyDS, Delaney JR. Fine-scale three-dimensionalmap-

ping of a deep-sea hydrothermal vent site using the jason rov system.

Int J Robot Res. 2000;19(11):1000–1014.

4. Barkby S, Williams S, Pizarro O, Jakuba M. Bathymetric particle fil-

ter SLAM using trajectory maps. Int J Robot Res. 2012;31(12):1409–
1430.

5. Pizarro O, Eustice R, Singh H. Large area 3-D reconstructions from

underwater optical surveys. IEEE J Ocean Eng. 2009;34(2):150–169.

6. Nicosevici T, Gracias N, Negahdaripour S, Garcia R. Efficient

three-dimensional scene modeling and mosaicing. J Field Robot.
2009;26:759–788.

7. Johnson-Roberson M, Pizarro O, Williams SB, Mahon I. Generation

and visualization of large-scale three-dimensional reconstructions

from underwater robotic surveys. J Field Robot. 2010;27(1):21–51.

8. Bryson M, Johnson-Roberson M, Pizarro O, Williams S. Colour-

consistent structure-from-motion models using underwater imagery.

In: RoyN,NewmanP and Srinivasa S, eds.Robotics: Science and Systems.
Cambridge,Massachusetts: MIT Press; 2013:33–40.

9. Gracias N, Ridao P, Garcia R, et al. Mapping the moon: Using a

lightweight AUV to survey the site of the 17th century ship “La Lune.”

In: OCEANS – Bergen, 2013 MTS/IEEE. Bergen, Norway: IEEE; 2013:1–
8.

10. BülowH, Birk A. Spectral registration of noisy sonar data for underwa-

ter 3Dmapping. Auton Robot. 2011;30(3):307–331.

11. am Ende BA. 3D mapping of underwater caves. IEEE Comput Graph.
2001;21(2):14–20.

12. Fairfield N, Kantor G, Wettergreen D. Real-time slam with octree

evidence grids for exploration in underwater tunnels. J Field Robot.
2007;24(1–2):03–21.

13. Galceran E, Campos R, Palomeras N, Ribas D, Carreras M, Ridao P.

Coverage path planning with real-time replanning and surface recon-

struction for inspection of three-dimensional underwater structures

using autonomousunderwater vehicles. J Field Robot, 2014;32(7):952–
983.

14. AmentaN,BernM. Surface reconstructionbyvoronoi filtering. In:14th
Annual Symposium on Computational Geometry, SCG '98. New York, NY:

ACM; 1998:39–48.

15. Amenta N, Choi S, Dey TK, Leekha N. A simple algorithm for homeo-

morphic surface reconstruction. In: 16th Annual Symposium on Compu-
tational Geometry, SCG '00. NewYork, NY: ACM; 2000:213–222.

16. Bernardini F, Mittleman J, Rushmeier H, Silva C, Taubin G. The ball-

pivoting algorithm for surface reconstruction. IEEE Trans Vis Comput
Graph. 1999;5(4):349–359.

17. Cohen-Steiner D, Da F. A greedy Delaunay-based surface reconstruc-

tion algorithm.Visual Comput: Int J Comput Graphic Arch. 2004;20(1):4–
16.

18. Ohtake Y, Belyaev A, Seidel H-P. An integrating approach to meshing

scattered point data. In:ACMSymposium on Solid and Physical Modeling,
SPM '05. NewYork, NY: ACM; 2005:61–69.

19. Amenta N, Choi S, Kolluri R. The power crust. In: 6th ACM Sympo-
sium on Solid Modeling and Applications, SMA '01. New York, NY: ACM;

2001:249–266.

20. Dey TK, Goswami S. Provable surface reconstruction from noisy sam-

ples. Comput Geom Theor Appl. 2006;35(1):124–141.

21. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D sur-

face construction algorithm. SIGGRAPH Comput Graph. 1987;21:163–
169.

22. Boissonnat J-D, Oudot S. Provably good sampling and meshing of sur-

faces.GraphModels. 2005;67:405–451.

23. Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface

reconstruction from unorganized points. SIGGRAPH Comput Graph.
1992;26(2):71–78.

24. Paulsen RR, Baerentzen JA, Larsen R. Markov random field sur-

face reconstruction. IEEE Trans Vis Comput Graph. 2010;16(4):636–
646.

25. Carr JC, Beatson RK, Cherrie JB, et al. Reconstruction and represen-

tation of 3D objects with radial basis functions. In: 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH '01.

NewYork, NY: ACM; 2001:67–76.

26. Ohtake Y, Belyaev A, AlexaM, Turk G, Seidel H-P. Multi-level partition

of unity implicits. ACM Trans Graph. 2003;22(3):463–470.

27. de Berg M, van Kreveld M, Overmars M, Schwarzkopf OC. Quadtrees.
Berlin: Springer; 2008:307–322.

28. Ohtake Y, Belyaev A, Seidel H-P. A multi-scale approach to 3D scat-

tered data interpolation with compactly supported basis functions. In:

Proceedings of the Shape Modeling International. Washington, DC: IEEE

Computer Society; 2003:153.

29. Calakli F, Taubin G. SSD: Smooth signed distance surface reconstruc-

tion. Comput Graph Forum. 2011;30(7):1993–2002.

30. Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva TC. Comput-

ing and rendering point set surfaces. IEEE Ttans Visual Comput Graph.
2003;9(1):3–15.

31. Guennebaud G, Gross M. Algebraic point set surfaces. ACM Trans
Graph. 2007;26(3):23.1–23.9.

32. Curless B, Levoy M. A volumetric method for building complex

models from range images. In: 23rd Annual Conference on Computer

http://orcid.org/0000-0003-4718-468X
http://orcid.org/0000-0003-4718-468X


514 CAMPOS AND GARCIA

Graphics and Interactive Techniques, SIGGRAPH '96. New York, NY:

ACM; 1996:303–312.

33. Fuhrmann S, Goesele M. Fusion of depth maps with multiple scales.

ACM Trans Graph. 2011;30(6):148:1–148:8.

34. Newcombe RA, Izadi S, Hilliges O, et al. Kinectfusion: real-time dense

surface mapping and tracking. In: Proceedings of the 2011 10th IEEE
International Symposium on Mixed and Augmented Reality, ISMAR '11.

Washington, DC: IEEE Computer Society; 2011:127–136.

35. Whelan T, Kaess M, Johannsson H, Fallon M, Leonard JJ, McDonald

J. Real-time large-scale dense rgb-d slam with volumetric fusion. Int J
Robot Res. 2015;34(4-5):598–626.

36. Kazhdan M. Reconstruction of solid models from oriented point sets.

In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing.
Aire-la-Ville, Switzerland: Eurographics Association; 2005:73–82.

37. Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. In:

Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP
'06. Aire-la-Ville, Switzerland: Eurographics Association; 2006:61–

70.

38. Kazhdan M, Hoppe H. Screened poisson surface reconstruction. ACM
Ttans Graph. 2013;32(3):29:1–29:13.

39. Manson J, Petrova G, Schaefer S. Streaming surface reconstruc-

tion using wavelets. Comput Graph Forum (SGP). 2008;27(5):1411–
1420.

40. Mitra NJ, Nguyen A, Guibas L. Estimating surface normals in noisy

point cloud data. In: Int J Comput Geom Appl. 2004;14(4-5):261–276.

41. Dey TK, Sun J. An adaptive MLS surface for reconstruction with guar-

antees. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Pro-
cessing, SGP '05. Aire-la-Ville, Switzerland: Eurographics Association;

2005;43–52.

42. Alliez P, Cohen-Steiner D, Tong Y, Desbrun M. Voronoi-based varia-

tional reconstructionof unorientedpoint sets. In:5thEurographics Sym-
posium onGeometry Processing. Aire-la-Ville, Switzerland: Eurographics
Association; 2007:39–48.

43. Li B, Schnabel R, Klein R, Cheng Z, Dang G, Shiyao J. Robust nor-

mal estimation for point clouds with sharp features. Comput Graph.
2010;34(2):94–106.

44. Hornung A, Kobbelt L. Robust reconstruction of watertight 3D mod-

els from non-uniformly sampled point clouds without normal informa-

tion. In: 4th Eurographics/ACM SIGGRAPH Symposium on Geometry Pro-
cessing, SGP'06. Aire-la-Ville, Switzerland: Eurographics Association;

2006:41–50.

45. Mullen P, Goes FD, Desbrun M, Cohen-Steiner D, Alliez P. Signing the

unsigned: robust surface reconstruction from raw pointsets. Comput
Graph Forum. 2010;29(5):1733–1741.

46. Giraudot S, Cohen-Steiner D, Alliez P. Noise-adaptive shape recon-

struction from raw point sets. Comput Graph Forum. 2013;32(5):229–
238.

47. Campos R, Garcia R, Alliez P, Yvinec M. Splat-based surface recon-

struction fromdefect-laden point sets.GraphModels. 2013;75(6):346–
361.

48. Campos R, Garcia R, Alliez P, Yvinec M. A surface reconstruction

method for in-detail underwater 3D optical mapping. Int J Robot Res.
2015;34(1):64–89.

49. Kolluri R, Shewchuk JR, O'Brien JF. Spectral surface reconstruction

fromnoisy point clouds. In: Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, SGP '04. NewYork, NY: ACM; 2004:11–21.

50. Labatut P, Pons J-P, Keriven R. Efficient multi-view reconstruction of

large-scale scenes using interest points, Delaunay triangulation and

graph cuts. In: 2007 IEEE 11th International Conference on Computer
Vision. Rio de Janeiro, Brazil: IEEE; 2007:504–511.

51. Labatut P, Pons JP, Keriven R. Robust and efficient surface recon-

struction from range data. Comput Graph Forum. 2009;28(8):2275–
2290.

52. Jancosek M, Pajdla T. Hallucination-free multi-view stereo. In: 11th
European Conference on Trends and Topics in Computer Vision, ECCV'10.

Berlin: Springer-Verlag; 2012:184–196.

53. Ericson C. Real-Time Collision Detection. Boca Raton, FL: CRC Press;

2004.

54. Fischler MA, Bolles RC. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated car-

tography. Commun ACM. 1981;24(6):381–395.

55. Cazals F, PougetM. Estimating differential quantities using polynomial

fitting of osculating jets. In: Eurographics/ACMSIGGRAPH Symposium on
Geometry Processing, SGP '03. Aire-la-Ville, Switzerland: Eurographics

Association; 2003:177–187.

56. Kolluri R. Provably good moving least squares. ACM Trans Algorithms.
2008;4:18:1–18:25.

57. de Berg M, van Kreveld M, Overmars M, Schwarzkopf OC. Orthogonal
Range Searching. Berlin: Springer; 2008:95–120.

58. Alliez P, Cohen-Steiner D, Yvinec M, Desbrun M. Variational tetrahe-

dral meshing. ACM Trans Graph. 2005;24(3):617–625.

59. Tournois J, Wormser C, Alliez P, Desbrun M. Interleaving Delaunay

refinement and optimization for practical isotropic tetrahedron mesh

generation. ACM Trans Graph. 2009;28(3):75:1–75:9.

60. Greig DM, Porteous BT, Seheult AH. Exact maximum a posteriori

estimation for binary images. J R Stat Soc B Met. 1989;51(2):271–
279.

61. Roy S, Cox IJ. A maximum-flow formulation of the n-camera stereo

correspondenceproblem. In:Sixth International Conference onComputer
Vision. Bombay, India: IEEE; 1998:492–499.

62. Kolmogorov V, Zabih R. Computing visual correspondence with occlu-

sions using graph cuts. In: IEEE International Conference on Computer
Vision (ICCV), vol. 2. Vancouver, BC, Canada: IEEE; 2001:508–515.

63. Kolmogorov V, Zabih R. Multi-camera scene reconstruction via graph

cuts. In: 7th European Conference on Computer Vision (ECCV), ECCV '02.

London, UK: Springer-Verlag; 2002:82–96.

64. Kwatra V, Schodl A, Essa I, Turk G, Bobick A. Graphcut textures: image

and video synthesis using graph cuts. ACM Trans Graph, SIGGRAPH
2003. 2003;22(3):277–286.

65. Rother C, Kolmogorov V, Blake A. “GrabCut”: interactive fore-

ground extraction using iterated graph cuts. ACM Trans Graph.
2004;23(3):309–314.

66. Paris S, Sillion FX, Quan L. A surface reconstruction method using

global graph cut optimization. Int J Comput Vis. 2006;66(2):141–161.

67. Lempitsky V, Boykov Y. Global optimization for shape fitting. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Min-

neapolis, MN, USA: IEEE; 2007:1–8.

68. Hiep VH, Keriven R, Labatut P, Pons J-P. Towards high-resolution

large-scale multi-view stereo. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Miami, FL, USA: IEEE; 2009:1430–

1437.

69. Jancosek M, Pajdla T. Multi-view reconstruction preserving weakly-

supported surfaces. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). Colorado Springs, CO, USA: IEEE; 2011:3121–
3128.

70. Ford L, FulkersonD.Flows in networks. Princeton,NJ: PrincetonUniver-
sity Press; 1962.

71. Kolmogorov V, Zabin R. What energy functions can be minimized via

graph cuts? IEEE Trans Pattern Anal. 2004;26(2):147–159.



CAMPOS AND GARCIA 515

72. Boykov Y, Kolmogorov V. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. IEEE Trans
Pattern Anal (PAMI). 2004;26(9):1124–1137.

73. Hornung A, Kobbelt L. Hierarchical volumetric multi-view stereo

reconstruction of manifold surfaces based on dual graph embed-

ding. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), vol. 1. New York, NY, USA: IEEE; 2006:503–

510.

74. Shi J,Malik J. Normalized cuts and image segmentation. IEEE Trans Pat-
tern Anal. 2000;22(8):888–905.

75. Malik J, Belongie S, Leung T, Shi J. Contour and texture analysis for

image segmentation. Int J Comput Vis. 2001;43(1):7–27.

76. Cour T, Benezit F, Shi J. Spectral segmentation with multiscale graph

decomposition. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2. San Diego, CA, USA: IEEE; 2005:1124–

1131.

77. Eriksson A, Olsson C, Kahl F. Normalized cuts revisited: A refor-

mulation for segmentation with linear grouping constraints. In: 11th
IEEE International Conference on Computer Vision (ICCV). Rio de Janeiro,
Brazil: IEEE; 2007:1–8.

78. Kim TH, Lee KM, Lee SU. Learning full pairwise affinities for spec-

tral segmentation. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). San Francisco, CA, USA: IEEE; 2010:2101–

2108.

79. Maji S, Vishnoi NK,Malik J. Biased normalized cuts. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO,
USA: IEEE; 2011;0:2057–2064.

80. Maila M, Shi J. A random walks view of spectral segmentation. In: AI

and STATISTICS (AISTATS). 2001.

81. Rahimi A, Recht B. Clustering with normalized cuts is clustering with a

hyperplane. In: ECCV 2004Workshop on Statistical Learning in Computer
Vision. Prague, Czech Republic: 2004.

82. Wu Z, Leahy R. An optimal graph theoretic approach to data cluster-

ing: theory and its application to image segmentation. IEEE Trans Pat-
tern Anal. 1993;15(11):1101–1113.

83. Bab-Hadiashar A, Suter D. Robust segmentation of visual data using

ranked unbiased scale estimate. Robotica. 1999;17(6):649–660.

84. de Moustier C. Beyond bathymetry: Mapping acoustic backscat-

tering from the deep seafloor with sea beam. J Acoust Soc Am.
1986;79(2):316–331.

85. Mayer LA, Calder BR, Schmidt JS, Malzone C. Providing the third

dimension: high-resolution multibeam sonar as a tool for archaeolog-

ical investigations-an example from the D-day beaches of Normandy.

In: U.S. Hydrographic Conference (US HYDRO). Biloxi, MS, USA: The

Hydrographic Society of America; 2003:0–16.

86. Mallios A, Ridao P, Ribas D, Hernández E. Scan matching SLAM in

underwater environments. Auton Robot. 2013;35(1):1–20.

87. Langmuir C, Humphris S, Fornari D, et al. Hydrothermal vents near a

mantle hot spot: the lucky strike vent field at 37n on the mid-atlantic

ridge. Earth Planet Sci Lett. 1997;148(1–2):69–91.

88. Berger M, Levine J, Nonato L, Taubin G, Silva C. A benchmark for sur-

face reconstruction. ACM Trans Graph. 2013;32(2):20:1–20:17.

How to cite this article: Campos R, Garcia R. Surface mesh-

ing of underwater maps from highly defective point sets.

J Field Robotics. 2018;35:491–515. https://doi.org/10.1002/

rob.21758

View publication statsView publication stats

https://doi.org/10.1002/rob.21758
https://doi.org/10.1002/rob.21758
https://www.researchgate.net/publication/320594391

