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ABSTRACT Visual seafloor imaging using autonomous underwater vehicles (AUVs) has become an
established method for seafloor mapping and monitoring. With AUVs now achieving multi-week endurance
and several hundred kilometres of range on a single charge, image quality assessment on-board vehicles
in the field is necessary for robust data acquisition given the sensitivity of underwater imaging surveys
to environmental conditions. This research develops a metric to assess seafloor image quality in situ, and
demonstrates its use for quality assurance during a 21-day, shore-launched AUV campaign that visited 3
sites up to 170km from shore. The metric was transmitted via satellite communication along with vehicle
telemetry to shore-based AUV operators during regular surfacing intervals without relying on physical
vehicle recovery. The method was implemented on the seafloor laser scan and strobed imaging system
BioCam, deployed on the Autosub Long Range AUV (a.k.a. Boaty McBoatface) in the North Sea. Several
tens of hectares of seafloor imagery were collected, and image quality scores were transmitted. This
information was used to re-task the AUV and maximise the quality of acquired images within operational
constraints. Data products generated from the collected imagery show the improvements achieved that
would otherwise have been missed. This highlights the importance of remote awareness of data quality to
facilitate longer and consecutive mapping missions without reliance on physical vehicle recovery.

INDEX TERMS Autonomous underwater vehicles, environmental monitoring, image quality, low-
bandwidth communication, photogrammetry

I. Introduction

The past ~40 years have seen the development of various
AUV mapping techniques [1], [2] to enable large-scale, high-
resolution monitoring of seafloor environments. In particular,
camera-equipped AUVs operating several metres off the
seafloor can gather millimetre-resolution images in which
human-made objects and benthic organisms can be identi-
fied, over multi-hectare regions of the seafloor. These are
valuable for surveying marine protected areas (MPAs) that
require regular monitoring of their ecosystem health, and

for inspecting the increasing amount of seafloor infras-
tructure that exists, with growing recognition of the need
to monitor their environmental impacts. The push towards
offshore renewables, demand for subsea cables to support
the internet and legal requirements for decadal monitoring of
decommissioned offshore oil and gas infrastructure suggest
the need for seafloor imaging surveys will continue for
the foreseeable future [3]. While traditional methods using
sampling and drop cameras provide information that cannot
be replicated using AUVs, they do not scale well to large-
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area surveys as they rely on ships and manual labour.
Seafloor imaging lends itself better to automation, where
images gathered by AUVs can be post-processed to generate
products such as mosaics [4], [5] and 3D reconstructions [6]—
[8] that show areas larger than a single image footprint.
Further analysis by human experts or machine learning
algorithms [9], [10] can determine seafloor substrate type,
taxonomy and distributions of seafloor organisms, as well
as detect anthropogenic influences such as litter, sabotage
or degradation of infrastructures. High-resolution imaging
surveys can also capture temporal changes through precisely
targeted repeat area surveys that are non-invasive and achieve
sufficient cover to guarantee spatial overlap despite navi-
gational uncertainties [11]. Laser scan microbathymetry is
an effective complement to strobed colour photography as
it can simultaneously map topography at millimetre-order
resolution alongside visual features to capture fine details
such as cables, natural depressions and trawl marks that often
are hard to spot in strobed colour images [12].

Offshore AUV surveys typically deploy from crewed ships
that use several orders of magnitude more energy than an
AUYV, accounting for most of the cost, logistical challenges
and carbon footprint of monitoring. AUVs have also been de-
ployed from autonomous surface vehicles (ASVs) [13], [14],
with recent investments in full ocean-going lean crewed ships
with AUV payloads [15]. However, autonomous launch and
recovery adds complexity and limits operations to relatively
calm weather windows. Recently, long-range and endurance
AUVs have demonstrated shore-launched offshore surveys
without the use of a support vessel for transport [16]-[19].
Such AUVs open the opportunity for ship-free seafloor visual
mapping of sites hundreds of kilometres offshore. In addition
to cost and carbon savings, shore deployed long-range AUVs
are more robust to poor weather conditions. Close to shore
the wave height and wind speed are generally lower than on
the open sea, and once deployed, AUVs can shelter at depth
if necessary to avoid strong winds and waves that can prevent
traditional ship-based deployment and recovery operations.
However, such missions introduce several new challenges
for data acquisition, analysis and robust operation without
physical intervention.

The impact of water turbidity on image quality makes
camera surveys more sensitive to environmental conditions
than acoustic survey methods (e.g., side-scan sonar, multi-
beam sonar). Typically, turbidity is not known before deploy-
ment and can vary locally and temporally, making the choice
of observation altitude in long-range, long-endurance surveys
a challenge. This is compounded by long-range flight-style
AUVs being less manoeuvrable, and travelling faster than
the hover capable AUVs typically used for detailed imaging
surveys [20]-[26]. They therefore need to operate at higher
altitudes to reduce the risk of collisions and cannot accu-
rately follow complex terrains at a constant target altitude.
Both factors increase the variability of image quality and

sensitivity of data they acquire to environmental variables
(i.e., terrain complexity, water turbidity).

Various approaches have been developed to correct for at-
tenuation, colour shift and backscatter in underwater images
[6], [10], [27]-[29]. Although these improve tolerance to
image degradation, they cannot compensate for information
that is lost through attenuation or masked by backscatter
of the light from vehicle mounted strobes if the water
turbidity and/or the mapping altitude is too high, or if the
camera signal is weak or not resolved sufficiently high. With
these requirements in mind, the University of Southampton
and Sonardyne International developed the BioCam [30]
mapping device with high-power strobes (2 x 200,000
lumen) and line lasers (2 x 1 W), and cameras with a high
dynamic range (79.7dB). This allows data to be collected
from higher altitudes than conventional imaging systems
and improves robustness to the impact of the large range
of altitudes expected when mapping from high-endurance
flight-style AUVs such as the Autosub Long Range (ALR;
also known as Boaty McBoatface) developed by the National
Oceanography Centre (NOC) in Southampton, UK [18],
[19].

In addition to hardware design, it is also necessary to
modify operational workflows. During traditional ship-based
AUV imaging, operators often assess the quality of images
between deployment cycles and can adjust camera param-
eters (camera exposure, strobe intensity) and target altitude
if navigational data indicates it is safe to do so. This also
identifies hardware failures (e.g., of the illumination sources)
to avoid taking unnecessary risk and effort by continuing to
deploy a compromised setup.

To achieve similar goals with long-range AUV campaigns,
it is necessary to assess the gathered data between dives
and regularly feed it back to remotely located AUV pi-
lots, who can in turn adjust mapping altitude or device
settings, or navigate it back to shore early if there is any
failure of hardware (e.g., illumination light sources). This
also requires indicators about navigational performance to
determine whether changes in observation altitude would be
safe. While for ship-based missions or deployments close
to shore full image and navigation data can be downloaded
and assessed between dives, this is not possible in offshore
missions without a support vessel. Data can be transmitted
via satellite when the AUV is at the surface; however, with
uplink speeds of pressure tolerant communication antennae
typically in the order of kilobits per second and often
intermittent connections, it is not practical to transmit entire
uncompressed images and vehicle data.

Various approaches have been proposed for compressing
underwater images for transmission over low-bandwidth
communication links, such as acoustic modems. Early on,
[31] and [32] proposed using the discrete wavelet trans-
form (DWT) for compressing subsea photos and videos for
transmission over an acoustic uplink. [33] demonstrated an
algorithm for selecting representative images while collect-
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ing seafloor photos to be sent to a surface vessel, along
with semantic maps. [34] presented broadcasting of auto-
matically selected, progressively compressed photographic
and SONAR images, as well as sensor data over networks
of underwater acoustic relays. [35] demonstrated image
selection and dropout-resistant image compression using a
reduced-size colour palette for transmission over acoustic
links. These methods enable adaptive, remote-supervised
missions for mapping particular types of substrates or objects
of interest on the seafloor, as seafloor images are available
to operators in near real-time. While these show what has
been observed, the quality of the gathered imagery can
be difficult to assess, due to the effects of compression,
and the number of transmitted images can be low in case
of slow or intermittent communication. For applications
where the area to be mapped is defined from the outset,
or if the communication throughput is very low or unstable,
transmitting the quality of the gathered imagery together with
compressed navigational data is more suitable.

Traditionally, the Mean Opinion Score (MOS) based on
the judgment of several human observers has been regarded
as the best method for assessing the quality of images
[36]. However, apart from being time consuming and not
suited to autonomous applications, the MOS is subjective
and therefore not generally repeatable. To overcome these
limitations, various image quality assessment (IQA) algo-
rithms have been developed. Some of these, so-called full-
reference IQA algorithms, compare images to a perfect, not
distorted version of the image as reference, while blind or
no-reference IQA algorithms compute a score without such
reference, only based on a single image.

The Blind Image Quality Index (BIQI) [37] is a two-
stage no-reference IQA algorithm that identifies the types
of distortions in an image and combines their respective
impacts on quality based on natural scene statistics (NSS).
Distortion Identification-based Image Verity and INtegrity
Evaluation (DIIVINE) [38] extends BIQI with a larger set
of NSS, demonstrating comparable correlation with human
perception to full-reference IQA algorithms. The Learning
based Blind Image Quality measure (LBIQ) [39] uses ma-
chine learning to map natural image measures and texture
statistics to subjective image quality scores, achieving good
correlation with human judgment based scores. The popu-
lar Blind / Referenceless Image Spatial QUality Evaluator
(BRISQUE) algorithm [40] computes statistics of pixel in-
tensity distributions and determines how natural an image is
by comparing its coefficients to those of a model generated
from training images. The Natural Image Quality Evaluator
(NIQE) [41] like BRISQUE also uses a space domain
NSS model, but does not rely on human judged images
for training or modelling of image distortions. Perception-
based Image Quality Evaluator (PIQUE) [42] is an opinion-
unaware no-reference IQA method that estimates the quality
for blocks of pixels while also computing and over-all score
by pooling the separate block scores. While these algo-
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rithms were developed considering degradation influences
characteristic for images taken in air, underwater images
also suffer from shifts in colour balance, changing lighting
across the scene depending on the distance from the camera,
haze from backscatter, and marine snow. These influences
are often stronger than image compression artefacts, sensor
noise and blur of objects outside the depth of field, typically
considered in conventional IQA algorithms. For this reason,
IQA algorithms specially for underwater images have been
developed.

Many earlier underwater IQA algorithms are based on fea-
ture engineering, where a combination of features designed
by humans are assessed and combined to generate a score.
The Underwater Color Image Quality Evaluation (UCIQE)
algorithm [43] combines statistical measures of chroma,
contrast and saturation to compute a score. The Underwater
Image Quality Measure (UIQM) [44] and the Frequency
Domain UIQA Metric (FDUM) [45] each define a quality
measure using the colourfulness, sharpness and contrast of
underwater images. The Colorfulness, Contrast, Fogdensity
(CCF) [46] algorithm further accounts for backscatter. The
No-reference underwater IQA based on Multi-feature Fusion
in Color Space (NMFC) [47] method uses morphological and
statistical parameters of distributions of intensity and colour,
and the Contrast, Sharpness and Naturalness index (CSN)
method [48] uses multiple contrast, sharpness and locally
mean subtracted contrast normalized coefficients to deter-
mine image quality. More recent methods have used feature
learning, where features are algorithmically identified from
patterns in the data. The cross-spatial feature interactions
and the cross-scale information complementarity (SISC)
[49] method uses the ResNet CNN to analyse underwater
images at different resolutions to compute a quality score.
Prior-Based Underwater enhanced Image Quality Assess-
ment (PBUIQA) [50] uses a convolutional neural network to
estimate ambient light, water depth, absorption and scattering
coefficients, as well as the object-camera distance map from
a raw image to assess the quality of the colour image
obtained after colour correction.

Many underwater IQA algorithms assess the quality of
images after colour correction, rather than raw images [43]—
[50]. This leads to a coupling between raw image quality
and the performance of the colour correction algorithms,
which is undesirable for real-time applications where the
aim is to maximise the quality of raw data being acquired.
Many algorithms are also geared towards the typical scenes
a diver would photograph; often naturally lit and taken
from oblique perspectives with an animal or object as its
subject. However, images acquired using AUVs typically
look vertically down on the seafloor and are illuminated
using vehicle mounted strobes. Such images may also lack
distinct objects, showing just the substrate of the seafloor.
This makes many established IQA methods unsuitable for
systematically obtained wide-area photo surveys. In addition,
marine snow increases the measured contrast and spectrum
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of intensities in artificially lit images, raising the issued score
of many published methods, even though it degrades the
quality of seafloor imagery.

To address these challenges, a simple but robust algo-
rithm was developed that works with downward looking
raw strobed and laser scan seafloor imagery. It aims to
express image quality information of such images with a
few bytes of data. We demonstrate its use when sent via
satellite communication along with filtered navigation data to
provide sufficient information for making informed decisions
for AUV piloting. Baseline data was collected using the ALR
AUV equipped with the BioCam seafloor imaging system
during the DY 152 cruise in the Celtic Sea in July 2022 [12].
The image assessment algorithm was first used to inform
decisions on a shore-launched science campaign as part of
the AT-SEA project in September and October 2022 in the
North Sea, where two decommissioned oil exploration sites
and one MPA were mapped. The campaign comprised two
deployments of the same setup as during the DY 152 cruise,
each lasting approximately 10 days, covering a total distance
of over 1000 km with no support vessel.

In the remainder of this paper the image quality metric is
described in section II and data post-processing algorithms
are explained in section III. The seafloor mapping device and
AUV used to demonstrate the effectiveness of the proposed
image metric are introduced in section IV, along with
details on the software integration and the data flow. Results
from the 21-day shore-launched campaign are provided in
section V, followed by a discussion and conclusions in
section VI.

Il. In-situ image quality metric

A. Considerations of light propagation in water

The limiting factor for the quality (and so largest range) of
strobe-lit underwater images is typically backscatter, which
is optical noise from light scattered towards the camera in
the volume of water where the camera’s field of view and the
light cones from the strobes overlap, as shown in figure 1.
Scattering occurs when light interacts with water molecules
or suspended particles, where the latter can have a much
larger contribution to the total amount of scattering. This is
typically the case in waters near continents where particle
density is high due to sediment influx from river run-off,
industrial discharge or ship traffic in shallow waters. Light is
scattered in all directions, at varying proportions depending
on the particle size and wavelength. For imaging applications
the impact is three-fold: Light scattered out of the light
source-object-camera path (out-scatter) does not reach the
camera and so leads to a reduction in the direct signal. Light
scattered towards the camera before reaching the seafloor
(backscatter) is added to the image of the scene, appearing
as haze or fog; or bright spots if reflected off large particles
of marine snow. Light scattered at small angles (forward
scatter) also contributes to the image of the scene, however,
due to the change in direction of the light path it blurs the

FIGURE 1. lllustration of various paths emitted light from an underwater
strobe or sheet laser can take to the lens of a camera. The rays from the
direct light path project the underwater scene on the camera sensor,
whereas backscatter adds spurious light, reducing the signal-to-noise
ratio of the image. Backscatter occurs where the camera’s field of view
and the volume illuminated by a light source overlap. The orange hatched
area marks the overlap of the camera’s field of view with the light cone of
a strobe and the purple area shows the overlap with the volume of water
illuminated by a sheet laser.

image. From that follows the image formation model for the
irradiance at the camera [51]:

Etotal = Edi'r‘ect + Eforwardscatter + Ebackscatter (l)

While blurring from forward scattering limits the achievable
optical resolution and can impact the performance of high-
resolution camera systems, the reduced signal-to-noise ratio
from the decreased direct signal compared to haze from
backscatter is the more limiting factor for most imaging
systems unless the water turbidity is very low. The intensity
of the direct signal decreases with increasing distance to the
seafloor due to absorption and out-scattering in water, but
also due to the spreading of light according to the inverse
square law.

Underwater laser scanners, where a laser line is projected
onto the seafloor and observed from a camera separated by a
certain distance, are also subject to the effects of scattering.
However, because of the smaller overlap of the camera’s field
of view with the laser light sheet as opposed to the light cone
in case of strobed photos (see figure 1), the relative amount
of backscatter is significantly smaller. For setups where both
types of images are taken sequentially, strobed images are
more sensitive to environmental factors, and so constrain the
maximum altitude from which sufficient quality data can be
acquired.

B. Definition of metrics

To estimate the image quality, we propose a laser projection
image derived quality metric. We assume that the line laser
projector(s) is/are aligned with the the camera as shown
in figure 2a, so that the laser line projections appear as
horizontal lines across the images when scanning a flat area
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of seafloor. Because turbidity affects the laser line images
mainly through out-scatter and less through backscatter, the
brightness of the laser line is representative of the water
turbidity and reflectivity of the seafloor. It is therefore an
indicator for the expected quality of strobed images, as well
as the laser line images themselves that can be acquired by
a given system and mapping altitude. In contrast to optical
backscatter (OBS) point turbidity sensors, the proposed
method measures the direct rather than the backscattered
component of light reaching the sensor. Although these
properties are related, they depend on the particle size, which
is normally not known. In addition, OBS sensors do not
take the reflectivity of the seafloor into account, which also
influences the signal-to-noise ratio in seafloor photos.

We define the quality score for the laser-projection-based
Underwater IQA (LUIQA) as the maximum value in a region
of interest (ROI) covering the entire height and the central d
pixel columns in an image of a raw (unprocessed) laser line
projection image Ijqser:

q= (Ilaser(uy 'U))a )
]

where w is the width of the image (aligned with the across-
track direction of the vehicle), d the width of the ROI, and
u and v designate the pixel coordinates across and down
relative to the top left corner of the image, as shown in
figure 2. While the vertical position of the laser line in the
images depends on the vehicle altitude and the bathymetry,
using the entire height of the image guarantees that the laser
line is captured (as long as it is not occluded, e.g. due to
steep terrain features). This provides a direct quality estimate
of laser images and indirectly also of strobed images taken
at roughly the same time (for the system considered in this
research there is a laser line image taken within 0.1s for
every strobed image). However, the quality score does not
pick up on potential physical problems with the strobed
image collection, such as saturation or failure of the strobes
to trigger. To convey this type of information for remote
operations, an engineering score e for strobed images is
defined as

e = mean

ue[“’T_d,“’T"'d](IStTObed(uvv))’ 3
Yv

where Igtropeq 1S @ raw strobed image, assumed to have the

same dimension as images of the laser projection.

While the ROI covers the entire height of the image, the
width is limited to the d columns in the centre, as the area
below the vehicle’s axis is illuminated most evenly and so
leads to a uniform performance across different altitudes, and
to reduce the computational load. The impact of the width
of the ROI on the quality measure was investigated using
a set of randomly sampled images acquired by the AUV-
camera system described in section IV in the Greater Haig
Fras MPA during RRS Discovery’s DY152 cruise whilst

maintaining a constant altitude from the seabed. With the
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FIGURE 2. Considered mapping system setup with examples of a laser
line image and a strobed image. (a) Configuration of image acquisition
system with the camera field of view shown in blue, the laser projections
in green, and strobes in yellow, as well as an example of a monochrome
image of the laser projections and an example of a strobed colour photo
(after debayering and colour correction). (b) Monochrome image of the
laser line projections with a ROl with d = 100 indicated in green and the
image coordinate system and dimension in brown. (c) Raw strobed image
(colour image prior to debayering) with a ROI with d = 100 indicated in
green and the image coordinate system and dimension in brown.
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quality score ¢ defined as the maximum brightness inside
the RO, it is designed to identify the brightness of a pixel
showing the laser line projection. If the ROI is narrow,
chances of particles suspended in the water occluding the
laser line projection are increased. On the other hand, larger
particles in the water can also appear as bright spots in the
image if they happen to be in the plane illuminated by the
laser, and in the camera’s field of view (FOV). Widening
the ROI increases the chances of picking up such outliers.
Figure 3a shows that the quality scores are stable for narrow
ROI widths of around 10 pixels (i.e., covering 0.32° across),
with outliers appearing increasingly for widths larger than
100 pixels (i.e., covering 3.2° across).

As the engineering score e for strobed images is based on
the average brightness within the ROI, it is less sensitive to
outliers but as figure 3b shows, changing the width of the
ROI leads to a scaling effect. The reason for the reduction
in the mean brightness and so of the engineering score when
widening the ROI is that lens vignetting causes the brightness
of the images to fall off with increasing distance from the
centre of the image. However, the shape of the result is the
same within reasonable approximation, and as long as the
same ROI width is used for reference and real-time collected
data, the conclusions that can be drawn are not affected. For
these reasons the width d of the ROI was set to 10 pixels for
both types of score, as it reduces the probability of picking
up bright outliers in the laser line images while also being
robust against occlusions and keeping the computational load
low for real-time computation.

While the strobed images are in general uniformly illu-
minated, the laser line projections are narrow visual features
originating from a point source. This makes them susceptible
to occlusions, e.g. due to fish or large particles in the water
column blocking part of the light path, or terrain features
obstructing the view of the camera onto the laser projection.
Such occlusions often only affect part of the laser projection.
By applying the maximum operator on the entire ROI, the
score picks up on the unobstructed part of the laser line in
the event that part of it is blocked, whereas a measure using
an averaging operator (e.g. mean-of-maximum-per-column)
would lead to conflating brightness values from obstructed
and non-obstructed areas. While it can still happen that the
laser projection is not visible at all or an object in the
water column leads to a bright spot inside the ROI, the
unexpectedly low or high scores would stand out clearly as
outliers in a time series and so could be ignored by operators.

C. Reference scores

Reference data from two locations in the Southwest Ap-
proaches with different water turbidities was collected with
the ALR-BioCam setup during the DY152 research cruise
in the Greater Haig Fras MPA with medium' level of water

IFor the sake of simplicity we refer to the different turbidities at the
surveyed sites discussed in this paper as “low”, "medium” and "high”. These

are used as relative classifiers.
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FIGURE 3. Quality and engineering scores for a set of images using
different widths d of the ROI used to compute the score. (a) Image quality
scores based on laser line images. (b) Image engineering scores based
on strobed images.

turbidity and South West Deeps (East) MPA with a low level
of turbidity. Figure 4 shows the image scores from both
sites plotted against the image acquisition altitude above the
seafloor. For both types of scores there is a clear trend for
decreasing scores with increasing altitudes, as expected, as
light spreads and gets attenuated with increasing light path
length and so reduces the signal from the seafloor. However,
the level of turbidity strongly influences the rate at which
images degrade with increasing altitude, as is apparent in
the images from the different sites and which is correctly
reflected in the quality scores. Meanwhile the engineering
scores are indicating that the strobes were working correctly,
without overexposing the photos, as all scores are well above
readout noise levels (approximately 300 for the cameras
used), yet far from saturation (65535). Unlike the laser line
image based quality scores, the strobe based engineering
scores are not as distinctly different in water of different
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clarity, because in turbid waters where the direct signal is
lower, increased backscatter adds to the average brightness.

The photos in the lower half of figure 4 show that
images taken at the same altitude (A and D) have vastly
different image qualities depending on the turbidity of the
water with sharp, bright laser line projections (A) and clear
views of sand ripples and shells in one location, but at
the same altitude in a different location faint blurred laser
line projections (D) and strobed images which are bright
on average, but dominated by marine snow and turbidity
throughout the image. On the other hand, images taken from
different altitudes (B and C) but in waters of different clarity
can be similar in quality with intermediate brightness of the
laser line projections and strobed colour images that despite
some marine snow, appearing as bright dots, offer relatively
clear views of the seafloor. Hence the laser-based image
quality metric is an effective indicator of image quality for
both strobed and laser line illuminated images.

While the method generalises to any seafloor mapping
system collecting laser projections and strobed imagery, the
correlation of image score to image quality is characteristic
for each setup. Based on the scores for the data collected
during the DY152 cruise, these values were determined
for the BioCam on ALR setup used to demonstrate the
proposed method. Figure 5 shows strobed images with the
corresponding quality scores indicated. The figure shows
that for values around 500 the images are very turbid and
so are not usable to identify any objects or creatures in
them. For values around 700 structures can be recognised, in
particular around the centre of the image, but marine snow
is dominant. For scores around 1000 structures such as sand
ripples and objects such as rocks are clearly visible across the
entire image. Small objects such as shells can be recognised,
but marine snow is also present, in particular around the
borders of the image. For scores around 2000 structures and
objects are well visible across the entire image, with some
marine snow. For scores around 5000 and above images are
clear with negligible effects of turbidity. The images in the
figure were colour corrected with the algorithm described in
section B.

lll. Data post-processing

A. Generation of digital 3D reconstructions of the
seafloor

While images are assessed for quality in real time, they are
processed to generate data products in post-processing. The
algorithm described in [8] is used to generate digital 3D
reconstructions of the scanned seafloor based on the laser
line and the strobed colour photos. It uses the images of the
laser line projection to compute high-resolution bathymetry
and the shape of objects on the seafloor, and therefore
relies on the line projections being sufficiently clear. After
converting the raw strobed photos to colour images with
the algorithm described below, they are used to map the
colour information to the 3D reconstruction of the seafloor.
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While the algorithm itself does not depend on the quality
of the strobed colour photos, it is important for users of
those reconstructions that the strobed photos are of sufficient
quality for organisms, objects and properties of the seafloor
substrates to be discernible in the texture maps that the
algorithm generates.

B. Colour balancing of strobed photos

The colour images are debayered, attenuation corrected and
colour balanced based on the method described in [52]. It
applies the grey world assumption over the entire image
dataset while accounting for the individual distance to the
seafloor for every pixel using the 3D reconstructions to
compensate for wavelength dependent attenuation over the
distance the light has travelled in water.

C. Automatic classification of strobed images

In order to automatically classify the mapped areas into
areas of same types of substrate, demersal communities,
or areas with similar types of artificial objects, the colour
photos are classified using the algorithm described in [9]. It
ingests the colour balanced seafloor photos and is tolerant
to limited amounts of image noise, but its ability to reliably
classify images degrades with decreasing quality of photos
that it is presented with. The algorithm identifies clusters in
the latent space representation of the images resulting from
applying a convolutional neural network CNN, and based
on this prompts the user to label a number of images that
allow it to best delineate the boundaries between classes of
similar images. Provided with this information it trains a
kernel support vector machine (SVM) with a radial basis
function (RBF) to assign labels to all images based on their
latent space representation [53].

IV. Seafloor mapping device and AUV

A. BioCam

The seafloor mapping device “BioCam” described in [30]
with specifications noted in table 1 and pictured in figure 6
was used to demonstrate the algorithms. It consists of a
main housing, two LED strobes, two sheet lasers and a
laser safety float switch. It is designed to be mounted to
an AUV supplying power and communication for sending
start and stop commands, while strobed images and images
of the laser line projection are recorded internally. During
data collection the lasers are triggered simultaneously at
10Hz and the projected lines are captured by a monochrome
camera. The strobes are triggered every 3s and the images
are recorded with both mnochrome and colour cameras.
During exposures when the strobes fire, the lasers are not
triggered to avoid the laser projections appearing in the
strobed images. The high dynamic range cameras make it
possible to correct for strongly varying lighting conditions in
post-processing without having to adapt the exposure or gain
during image collection. The duration of both the strobes
and lasers can be varied to adapt to different operating
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FIGURE 4. Quality and engineering scores from two different sites (medium turbidity: Greater Haig Fras MPA and low turbidity: South West Deeps
(East) MPA). The images below the plots show examples from 4 locations, where neighbouring laser line and strobed images are from the same
location. The enlargements of the strobed photos show the varying levels of marine snow appearing as blurred white or reddish spots, with a high
density in image Ds and lower densities in Bs and Cs. The sharp white spots in As are fragments on the seafloor, rather than floating particles.
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FIGURE 5. Examples of strobed colour photos taken under different conditions. The quality scores when these images were taken were 502, 710, 1007,
2025, 5020 (from left to right). The enlargements show decreasing levels of blurred bright spots from marine snow with increasing quality scores.

FIGURE 6. BioCam setup on ALR. The main housing containing the the
cameras and electronics is mounted centrally. Sheet lasers and LED
strobes are mounted one each at front and the back of the vehicle.

conditions. BioCam communicates with the AUV either
via serial (RS232) communication or Ethernet to receive
commands, send status updates, and synchronise clocks. The
status update that is sent once a minute contains the latest
image scores, as well as the number of images, current mode,
remaining disk space, and the CPU and camera temperatures.
This information can be used by the AUV, or forwarded
to AUV pilots during communication windows, to ensure
correct operation of the camera system and monitor data
quality.

B. Autosub Long Range

Autosub Long Range is a class of ultra-long range AUVs
developed at the National Oceanography Centre, that can
operate for weeks to months in the ocean, depending on their
payload. There is a 6000 m depth rated variant, ALR6000,
with up to two months’ endurance [18] and a 1500 m depth
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rated variant, ALR1500, with an endurance of up to 6 months
[19]. The vehicles are 3.5 m long, 0.8 m diameter and weigh
approximately 1.2 tonnes. The ALR6000 is built around two
0.71 m outer diameter forged aluminium pressure vessels, the
forward of which houses the batteries and the aft contains
the primary electronics. Surrounding the pressure vessels
is a polypropylene boat frame skinned in a free flooding
glass-reinforced plastic fairing, to provide a hydrodynamic
shape. In the free flooding areas forward, aft and between
the pressure vessels there is volume available for science
payloads.

C. Mechanical integration of BioCam into ALR

BioCam was integrated into the 6000 m rated version of
ALR. The polypropylene boat frame was redesigned to per-
mit the BioCam camera unit to be installed centrally in the
floodable space between the two main pressure spheres, in
order to maximise the separation between the main housing
and the strobes and lasers. To maintain the stiffness charac-
teristics of the ALR replacement and additional syntactic
foam was designed to counteract the low slung mass of
the BioCam. Bespoke hydrodynamic fairings were produced
to minimise drag penalties associated with the installation
of the BioCam. In addition, an ADCP was mounted in a
forwards looking configuration, to provide information on
terrain in front of the AUV. Fairings installed between the
forwards looking ADCP and the forward strobe assembly, on
the ALR abort drop weight, and a Perspex cover over the rear
strobe reduce the total drag by almost 10%, compared to not
having the fairing, which is important to enable large range
deployments to be planned with the desired contingency
margin.

With minimum hotel load the 6000 m rated ALR has a
range of up to 1800km and an endurance of 2 to 3 months.
Equipped with BioCam these values are reduced, but by
turning BioCam on only when ALR has reached the area
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TABLE 1. BioCam specifications.

Weight (in air / in water)
Depth rating

Power consumption (typical)
Communication

Cameras

Lens

Camera FOV in water (each)
Camera resolution (each)

Image acquisition frequency (typical)

Mapping altitude

Storage

CPU

Strobe brightness

Sheet laser optical power and wavelength

359kg / 20.2kg

4000 m

1.2A at 48V

RS232 and Ethernet

pco.edge 5.5 (1 x monochrome, 1 x colour)
2 x ZEISS Dimension 2/12, Focal length: 12 mm
69.3° x 60.5°

2560 x 2160 pixels

Laser line projection: 10 Hz

Strobed: 0.33 Hz

4-10m

2TB (60h of continued data collection)
Intel Pentium N4200, 1.1/2.5 GHz

2 x 200,000 lumen

2x 1W at 525nm

Laser safety

Resolution of 3D reconstructions
(for alt.=5m, v=0.75m/s)

Float switch (— disabled out
of water), Watchdog timer

75 mm along track, 2.8 mm across,
2.5mm vertical

of interest, mapping sites several hundred kilometres from
the launch and recovery location can be reached.

D. ALR onboard control system and integrtion with
BioCam

The ALR onboard control system (OCS) has been developed
using the Robot Operating System (ROS) middleware [54].
It adopts a conventional three-layer control architecture,
comprising of a supervisory layer consisting of a mission
executive, mission layer responsible for converting mission
goals to instantaneous control demands and the vehicle layer
which performs real time control and communicates with
hardware devices.

ALR has been developed to support a range of science
applications and has been successfully operated both from
research vessels and launched from shore. To support this
variety of operating modes the vehicle is equipped with three
communication channels, WiFi for near operator command
and control (C2) on the surface, acoustic communications
for near operator C2 subsurface and Iridium satellite com-
munications for over the horizon C2 when the AUV is
on the surface utilising Iridium short burst data (SBD)
messages. Iridium SBD messages are utilised for satellite
communication because of their short transmission time,
which makes them robust for AUVs operating in rough
conditions where antenna wash over is a regular occurrence.
However, reliance of SBD messages for over the horizon
operation does restrict the available bandwidth; the ALRs
9522B modem provides 1860 bytes uplink and 1920 bytes
downlink in a single message. For each communication
method the human machine interface is provided by the
Oceanids C2 system [55].

Across all communication channels four distinct message
types are currently supported. While designed primarily for
the Iridium channel, the size of the message can be tailored
to match the available channel constraints:

e Instant commands (uplink): used to manage payload
power and settings and trigger specific pre-programmed
behaviours (e.g. surface, stop or abort).

e Mission scripts (uplink): contain a sequence of manoeu-
vres that the AUV will conduct sequentially. Typically
a mission script will comprise of a dive, followed
by a sequence of tracks defining a trajectory between
two waypoints for the AUV to traverse at a specific
depth/altitude followed by a surface manoeuvre.

e Status Messages (downlink): status messages provide
an instantaneous snapshot of the AUVs state including
parameters such as the pose of the vehicle or the
distance to the current target during a mission. A limited
amount of space can also be used to send deployment-
specific payload data. Status messages are transmitted
periodically by the vehicle on all the available chan-
nels (WiFi, acoustic, and satellite), with independently
configurable transmission period and content for each
channel.

e Mission Summary (downlink): this message is automat-
ically generated and sent on completion of a mission.
As the name suggests, it provides a summary of the
behaviour of the AUV during a mission, and one of
its main aims is to provide the operator with a quick
and effective means to assess the performance of the
vehicle during a mission when piloting over the horizon
(i.e. when access to the complete onboard logs is not
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FIGURE 7. Flow of information for image scores transmitted via summary
messages.

available). Mission summaries contain both statistics
of engineering and payload data collected throughout
the whole mission (such as the maximum depth or the
average battery voltage), and an additional series of
statistics computed over smaller time intervals obtained
by subdividing the total mission into 54 sections of
equal length. The number of sections was determined to
maximise the data slices that can fit into a single Iridium
message, which together offer sufficiently fine-grained
resolution for simple remote analysis of the vehicle be-
haviour. Both the average and minimum altitude in each
section are transmitted to facilitate efficient assessment
of the safety of low altitude mapping operations. The
altitudes are encoded in a custom format where the
resolution is dropped to 10cm, which is sufficient for
safety-relevant assessment, but reduces the number of
bits occupied in the transmitted bitstream. Fields are
reserved to enable integration of deployment specific
data. On missions where BioCam is used, these fields
are populated with the latest BioCam image scores for
each of the 54 time windows. These are retrieved from
the logged scores that BioCam sends to ALR once per
minute throughout the mission, and transmitted with the
other vehicle data, as illustrated in figure 7.

VOLUME ,

E. Over horizon operation overview

During operations, the AUV is programmed to carry out
a mapping dive, where the mapping altitude is set by
identifying the most suitable trade-off between swath-width
of the camera’s field of view and resolution per pixel for
the mission, factoring in expected visibility but also vehicle
safety to ensure the AUV does not collide with the seafloor
or objects on it. If after the dive the spread of the image
scores received via satellite communication are at satisfying
levels compared to the reference scores in section C and the
minimum altitudes are close (within approximately 0.5 m) to
the set altitude, the following dives can be carried out with
the same settings. However, if the image quality scores are
low, the mapping altitude may be lowered for the next dive,
if there is sufficient margin in the altitude keeping and other
information about the dive site suggests it is safe to do so. On
the other hand, if the altitude data shows unexpectedly low
values or if image scores suggest lighting hardware failure,
the AUV may be sent back to shore early for analysis of the
full data.

V. Results

In September and October 2022 ALR-BioCam was deployed
on two shore-launched deplyoments from Lerwick on Shet-
land, UK, to monitor two decommissioned oil extraction sites
and one MPA. The aim of the campaign was to demonstrate
gathering data for environmental monitoring of offshore sites
without a support vessel. The survey areas were up to 170 km
from the launch site. The campaign was split into two legs,
where the surroundings of the decommissioned rig at the
North West Hutton oilfield was visited on the first leg and
the decommissioned production site at the Miller oilfield,
as well as the Braemar Pockmarks MPA in a second leg,
as shown in figure 8. Multiple dives were carried out at
each decommissioned site, between which ALR transmitted
data via Iridium SBD packages while at the surface. Dives
were planned based on multibeam echosounder (MBES)
bathymetry maps collected during a survey by MRV Scotia
operated by Marine Scotland Science in June 2021 and charts
provided by BP. Since artificial structures still protruded
from the seafloor in the areas of interest, missions were
initially planned with a mapping altitude of 5m above the
seafloor. This was relatively high considering the expected
visibility at the sites, but was set to minimise the risk of the
AUV getting stuck with no ship in the vicinity to track the
vehicle position underwater or salvage the AUV.

After being towed out of the harbour by a small boat, ALR
transited at 30 m depth at an in-water speed of between 0.5
and 0.6 m/s towards the dive sites, and surfaced once per day
to obtain a GPS fix, report telemetry to the pilots and take
updates for the next waypoint. On leg 1 of the campaign it
reached the remains of the North West Hutton oil platform
after 4 days. After completion of the first 12-hour long
mapping dive (M78), the mission summary containing the
subsampled BioCam image quality and engineering scores
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FIGURE 8. AUV track of the two-legged deployment out of Lerwick,
Shetland. The crosses indicate where the AUV was at 0:00 of the indicated
date (month-day in 2022).

as well as telemetry data of the AUV were transmitted by
satellite communication, shown in the enlargement at the
bottom left in figure 9. The telemetry data showed good
altitude keeping with the minimum recorded altitudes within
expected bounds, giving confidence in the performance of the
AUV. The image scores showed that the lasers and strobes
were working fine, but that the image quality was below ideal
levels. If possible, the mapping altitude would be lowered in
such a case. However, because of the presence of artificial
objects protruding vertically from the seafloor in the area,
the same mapping altitude was kept for the remaining dives
at that site (M79 to M82) for safety reasons.

After successfully completing all three planned grid map-
ping dives, ALR returned to Shetland after 8 days and
18 hours of continuous operation and 453 km of distance
travelled. It was recovered, recharged and the full AUV
navigation and BioCam imagery data was downloaded. Fig-
ure 10a shows the image quality scores transmitted via
satellite communication while at site, which are consistent
with the scores from the full dataset downloaded after
recovery of the AUV (also shown in table 3 discussed further
down). It also shows that for a given mapping altitude the
quality scores are in general lower than for the medium
turbidity reference data and significantly lower than those
for the low turbidity reference data. Water turbidity at a
given location changes due to influences such as weather
and tidal currents, which explains why the average quality
scores change between dives despite the dive sites and the
data acquisition altitudes being the same. The full AUV

navigation data were also downloaded, which showed good
altitude keeping throughout all dives, confirming what the
heavily downsampled data transmitted via satellite had al-
ready indicated.

ALR-BioCam were then deployed on the second leg where
they first mapped another former oil exploration site at
the Miller oilfield, before mapping several transects in a
single dive in the Braemar Pockmarks MPA. At the time
of deployment a large storm with predicted 100 km/h wind
speeds and 7m wave height was approaching Shetland. The
AUV was deployed before the weather window shut while
the sea was still calm and programmed to head towards the
survey site, but to stay at depth while the storm passed. The
dark blue shaded area in figure 9 highlights the time window
of the storm, with the depth-below-sea surface measurements
varying slightly during this period, due to the large waves
at the surface. The summary of image scores received via
satellite communication after the first dive (M93) from an
altitude of 5 m at Miller shown as blue crosses in figure 10b
again reported lower than ideal image quality scores. As the
navigation data confirmed reliable altitude keeping, with the
lowest recorded distance over ground consistently larger than
4.4m as the purple markers for dive M93 in figure 9 show,
the mapping altitude was set to 4.6m for the second dive
(M94) and to 4 m for the third dive (M95) at the site. While
the first reduction in altitude did not lead to a noticeable
difference in reported image quality, which could be due
to small changes in the water turbidity, the second, bigger
reduction in altitude led to a clear improvement as the pink
markers in figure 10b show.

ALR was then piloted to a third site, Braemar Pockmarks,
where it conducted another dive (M97), mapping at a Sm
requested altitude. The AUV ended the dive early, and the
satellite transmitted data showed the AUV had flown below
the minimum acceptable altitude for longer than the 10s
persistence triggering an early surface, which, as became
clear after downloading the data post recovery, was due
to the sudden change in topography at a deep pockmark.
The satellite-transmitted compressed navigation data showed
good altitude keeping and performance up until the sud-
den altitude underrun. The limited data at the spatial and
temporal resolution that could be transmitted by satellite
communication did not provide sufficient detail to remotely
identify the cause of the unexpected behaviour and no further
dives were conducted at the site, as per the protocol outlined
in section E. ALR was piloted back to Shetland where it
was recovered after having covered 560 km in 12 days and
19 hours and conducted 4 dives, on top of the 5 dives from
the first leg, as listed in table 2, bringing the total mapped
area to over 89 hectares.

Table 3 shows the means (u) and standard deviations (o)
of the quality and engineering scores when the AUV was
at depth during the main mapping dives (not including M79
and MS81, which were transits between grid-survey areas).
The Student’s t-test values () show that the distributions
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FIGURE 9. Plot of navigational data and image scores transmitted by the AUV over satellite communication and full data downloaded post recovery of
the vehicle. The enlargement on the left shows details of the first dive at the NW Hutton site and the enlargement on the right data from the 3 dives at

the Miller site.

TABLE 2. Statistics of ALR-BioCam dives. NWH: North West Hutton, MIL: Miller, BPM: Braemar Pockmarks MPA.

Dive Location Duration Nq. strobed .No.. laser =~ Mapping Mappe;i
images line images  alt. (m) area (m~)
M78 NWH 12h 16min 48s 13198 386681 5 190672
M79 NWH 1h 47min 24s 947 27758 5 11344
MS80 NWH 12h 37min 48s 13655 400014 5 186404
MS81 NWH 1h 39min 36s 660 19363 5 8165
MS82 NWH 7h 22min 12s 7325 214711 5 98277
M93 MIL 8h 10s 8684 254534 5 118270
M94 MIL 7h 44min 37s 8456 247771 4.6 111348
MO95 MIL 7h 46min 48s 7776 228112 4 93796
M97 BPM 6h 52s 6049 177263 5 73062
Total - 65h 16min 15s 66750 1956207 - 891338
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FIGURE 10. Laser image scores for two sites mapped during the INSITE
AT-SEA deployment. The crosses are the values transmitted via satellite
communication, with the larger crosses indicating their average. The dots
are the full data downloaded post recovery of the AUV. (a) Scores from 3
dives at the NW Hutton site. (b) Scores from 3 dives at the Miller site.

of the transmitted score samples align with the distributions
of the much larger number of scores logged on the device.
Although the standard deviation of the transmitted score
samples is in general higher than for the logged scores,
this is expected, as the standard deviation decreases with
increasing number of samples. While a narrow distribution
of image scores implies uniform conditions, a high variance
is indicative of diverse seafloor cover or multiple substrate
types that are well visible in the camera images. For example,
scattered shells on a silty seafloor as observed at the Miller
site (figure 11) can lead to this. This effect is more pro-
nounced for the quality score, as only a small area of seafloor
is illuminated by the sheet laser, and presence or absence
of bright objects in this area has a significant influence on
the score for a particular image. It is also more pronounced
in clearer imaging conditions, as turbidity has the effect of
lowering the image contrast. Provided that the transmitted

scores show no obvious signs of outliers, its average score
is therefore a reasonable indicator even when the variance is
relatively high.

Figure 11 shows a top view of the reconstruction of the
Miller site generated based on the data from the 3 dives
at the site, generated from the full data downloaded after
recovering the AUV. Photos taken of the same location from
different mapping altitudes show the change in image quality
reflected in the level of detail visible and the amount of
marine snow in the final processed images, highlighting the
importance of ensuring the raw collected data is of sufficient
quality.

While the strobed colour photos from the NW Hutton
dive site suffered from higher levels of noise than at the
Miller site, its strong visual features, including artificial
structures, pipes and large organisms found at the site are
clearly discernible also in the less optimal conditions as
figure 12 shows. Additionally, the 3D relief of the seafloor
and the objects on it was more pronounced and was mapped
by the laser line based 3D reconstruction algorithm in high
detail, virtually undisturbed by the higher level of turbidity,
as the laser line images are less affected by it. The 3D
reconstruction shows a guide base from the decommissioned
oil and gas infrastructure, as well as several tens of metres of
pipes, but also scores of ~1m length common ling (Molva
molva) nesting in the area. While it is not obvious from
the photos alone, the 3D reconstruction shows that the fish
live in burrows with diameters up to 1.5 m and depths of up
to 20 cm. Other features observed at the site were boulders
from rock dumps, discoloured sediments and seafloor cables,
among others.

As an example of automated information extraction from
mapping data, the algorithm described in section C was
used to automatically classify the seafloor photos. The geo-
referenced results are shown at the top-centre of figure 12
with representative images for each class shown below. This
enables further data analysis and statistics of the mapped
area. The pie chart in the top-right of the figure shows an
example where the relative distribution of identified classes
at different distances from a point (in this case the former
location of the oil platform) are identified. Data is split into
bands of distance, each of which covers a range of 400 m and
is represented by one ring of the chart. The orange and light
green classes, which both represent sediments, are dominant
in the entire mapped area, but closer to the former location
of the platform the algorithm identified a significantly higher
ratio of images belonging to the black class representing
discoloured sediments, as well as images belonging to the
blue and turquoise classes, representing boulders and man-
made objects such as pipes, respectively. It has previously
been shown that the ability of CNN-based image classi-
fiers to correctly label data degrades with increasing image
noise [56]-[58]. This highlights the importance of quality-
controlling the imagery during data collection to generate
these kind of results.
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TABLE 3. Comparison of transmitted image scores to those logged on the device.

Dive Quality scores Engineering scores
Htransm.  Otransm. Hlogged Ologged Htransm.  Otransm. Hlogged Ologged t

M78 469.0 46.4 467.8 38.2 -0.2 5237.2 571.1 5315.2 188.0 1.0
MBS0 500.4 89.2 500.7 86.8 0.0 5173.1 606.6 5232.6 2194 0.7
M82 558.2 80.3 568.3 71.0 0.8 5048.9 606.4 5129.7 150.9 0.9
M93 485.7 60.5 484.5 58.9 -0.1 4452.6 5104 4512.4 172.7 0.8
M94 474.2 67.7 479.7 67.2 0.6 51454 627.9 5232.1 241.2 1.0
M95 626.8 112.1 629.1 125.0 0.1 6489.9 873.3 6642.0 369.0 1.2
M97 N/A N/A 433.5 38.4 N/A N/A N/A 4893.0 274.8 N/A

During the 21-day-long campaign covering 1013km in
total, the AUV consumed 21.3 kWh of battery power, corre-
sponding to approximately the energy contained by 2 litres
of diesel. An equivalent survey deploying an AUV from a
research vessel (2000 to 4000 tonne class) would complete
the survey faster, approximately 5 days including transit be-
tween sites provided the weather conditions are favourable,
but at the same time would use in the order of 10,000
litres of fuel per day [59] to power the ship. The shore-
launched deployment reduced the fuel consumption and COq
emissions by approximately 3 orders of magnitude, and
while this reduced the ability for real-time data assessment,
the satellite transmitted stats were sufficient to make the
correct mission-critical decisions.

VI. Conclusions and discussion

Data from the 21-day-long seafloor mapping campaign
demonstrates how the image quality score defined in sec-
tion II and forwarded to AUV pilots via the workflow
explained in section IV provides a robust way to make
informed over-horizon operational decisions for following
dives to acquire raw data in the quality suitable for ex-
tracting usable and useful information in post-processing.
The proposed measure adds minimal computation overhead
and a small amount of payload data that needs to be trans-
mitted via satellite communication, but provides sufficient
information to adjust mission parameters and at the same
time provides information about the correct functioning of
lighting and cameras. As the algorithm directly works on
the raw images, it does not conflate the image quality with
the performance of the image reconstruction algorithm or
its parameters. Compared to transmitting compressed or
uncompressed images, the image scores reduce both the time
an AUV needs to spend at the surface for transmitting data,
as well as the energy consumed for that, as table 4 shows.
AUV mission planners and pilots take many factors including
vehicle dynamics and sensor properties into consideration
for balancing the quality and amount of collected data with
potential risks to the mission. The in-field vehicle perfor-
mance details and payload data quality information provided
by the proposed method delineates how well this balance is
kept. It assists remote piloting of AUVs by providing the

VOLUME

necessary feedback for making informed decisions, which
with traditional approaches to AUV surveys used to be
available only after recovery of the vehicle. It enables multi-
week offshore campaigns without a support vessel to collect
similar quality data as previously done on surveys with a
research ship to support AUV operations.

Collecting data in the North Sea at sites up to 170 km from
the launch site without a support vessel led to significant
savings of fuel and emitted greenhouse gases, as well as
reducing operational logistics and cost. Additionally, the
AUV could be deployed despite a large storm approaching
and make progress on its way to the survey site without
being affected — by staying at depth during the time window
when the storm passed, something that would not be possible
with a small surface vessel. To the best knowledge of the
authors this was the first time that a former offshore drill
site has been visually mapped without a support vessel. The
collected imagery gave valuable insights on the distribution
of seafloor organisms, infrastructure and seafloor sediments
in the mapped areas. Acting upon the transmitted scores
led to a clear improvement of the raw data, reflected in
the clarity of the processed images from the Miller site,
where the transmitted data after the first dive showed good
vehicle performance, but flagged low image quality. The
decisions taken by the AUV operators based on this led to
the collection of better raw data and ultimately to higher
quality output from the survey. While the method has been
demonstrated with sheet lasers, it could potentially also be
applied in a similar fashion on camera systems with laser
pointers, such as scaling lasers. However, the narrower beam
would make it more susceptible to occlusions, and further
studies would have to be conducted to determine potential
applications.

Pressure to save costs and to progress towards the net
zero goals motivate the development of non-invasive, eco-
nomical and environmentally sustainable survey practises.
While these are not likely to fully replace traditional survey
methods, increasing the range of ship-free data acquisition
methods that can gather useful information can reduce the
duration or frequency of traditional surveys. While satellite
communication has seen the coverage and communication
speed increase, the significantly higher data acquisition rate
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Altitude 5m 4.6m
Image quality
score 464 506 498 780

FIGURE 11. Top view of the reconstruction of the Miller dive site with strobed colour photos from different altitudes (5 m: dive M93, 4.6 m: dive M94, 4 m:
dive M95) showing the same areas. There is a clear reduction in image noise and improvement of image detail in the photos taken from the lower

altitudes, which is reflected in the image score.

(8.3 MB/s for the system used in this research) compared to
satellite transmission rate (1.1kB/s for the system used in
this research) for compact, deep dive compatible antennae
means that full, uncompressed data cannot be transmitted in
the foreseeable future and methods for compressing data will
continue to play an important role. The proposed method
also has potential real time applications where the AUV
could change the altitude or lighting and camera settings
as a function of the returned score, without the human in
the loop.
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FIGURE 12. 3D reconstruction of the seafloor at the North West Hutton site mapped during dives M78 to M82 with texture and microbathymetry maps at
different zoom levels. The image in the centre at the top shows the georeferenced classification of the seafloor photos and the pie chart to its right the
portion of each class within the mapped area for different distances from the former location of the platform.

TABLE 4. Comparison of data volume and theoretical transmission time and associated energy consumption per image for different formats. The JPG
and JPEG XL data size were determined for a quality setting of 40, and the BPG data size for a quality setting of 30 applied on set of images from the
DY152 cruise. The transmission times assume Iridium SBD messaging with one 1960 byte SBD message being sent every 20 s (optimistic estimate in
ideal conditions). The associated energy consumptions assume a power consumption of 10 W for the satellite modem and does not account for the
power consumption of any other sensors or actuators.

Data format Data size Transmission time Energy (J)
Raw (16 bit per pixel) 10.5MB 1day 7h 23 min 49s 1130286
PNG (lossless compression) 92MB 1day 3h 15min 26s 981265
JPG (lossy compression) 328.2KB 57 min 10s 34297
BPG (lossy compression) 283.7KB 49 min 24 s 29640
JPEG XL (lossy compression) 181.6 KB 31 min 37s 18975
Image scores 4B 0.041s 0.408
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