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Abstract This paper dealswith the problemof autonomous
exploration of unknown areas using teams of Autonomous
X Vehicles (AXVs)—with X standing for Aerial, Underwa-
ter or Sea-surface—where the AXVs have to autonomously
navigate themselves so as to construct an accurate map of
the unknown area. Such a problem can be transformed into
a dynamic optimization problem which, however, is NP-
complete and thus infeasible to be solved. A usual attempt
is to relax this problem by employing greedy (optimal one-
step-ahead) solutions which may end-up quite problematic.
In this paper, we first show that optimal one-step-ahead
exploration schemes that are based on a transformed opti-
mization criterion can lead to highly efficient solutions to
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the multi-AXV exploration. Such a transformed optimiza-
tion criterion is constructed using both theoretical analysis
and experimental investigations and attempts to minimize
the “disturbing” effect of deadlocks and nonlinearities to the
overall exploration scheme. As, however, optimal one-step-
ahead solutions to the transformed optimization criterion
cannot be practically obtained using conventional optimiza-
tion schemes, the second step in our approach is to combine
the use of the transformed optimization criterion with the
cognitive adaptive optimization (CAO): CAO is a practica-
bly feasible computational methodology which adaptively
provides an accurate approximation of the optimal one-
step-ahead solutions. The combination of the transformed
optimization criterion with CAO results in a multi-AXV
exploration scheme which is both practically implementable
and provides with quite efficient solutions as it is shown both
by theoretical analysis and, most importantly, by extensive
simulation experiments and real-life underwater sea-floor
mapping experiments in the Leixes port, Portugal.

Keywords Path planning for multiple mobile robot
systems · Trajectory generation · Cognitive robotics ·
Mapping · Marine robotics

1 Introduction

Recent technological advances havemade the usage of teams
of Autonomous X Vehicles (AXVs)—where X can stand
for Aerial, Underwater or Sea-surface—more appealing in a
variety ofmissions (Birk et al. 2012), whichmay include har-
bor security (Reed et al. 2010; Rodningsby and Bar-Shalom
2009; Kessel and Hollett 2006), post-disaster infrastructure
inspection (Murphy et al. 2009), underwater archaeology
(Roman and Mather 2010), continuous infrastructure moni-
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toring to prevent accidents (DeVault 2000), habitat mapping
(Blondel 2008), spy missions, unmanned weapon and other
military activities (Khurshid and Bing-rong 2004) as well as
agricultural activities such as example paddy monitoring and
spraying (Samad et al. 2013). In all the aforementioned mis-
sions there are several factors that affect the performance of
the AXV (in the case of a single vehicle) or of the overall
team (in the case of a team of AXVs operating simultane-
ously). These are related with the technological limitations
of the hardware which is used and the methodologies that
process and fuse data to obtain valid conclusions related with
the actual AXV performance. A key element of success in
almost every mission is the ability to produce valid maps by
utilizing all the available resources.

There are, basically, two different problems that the team
of AXVs faces when deployed in missions such as the ones
mentioned above. The first of these problems has to do with
the ability of the AXVs to process their sensor measurements
so as they create accurate maps of the environment. As cre-
ation of accurate maps requires the AXVs to “know where
they are”, such a problem is also known as the Simultaneous
Localization and Mapping (SLAM) problem, i.e., the prob-
lem of processing the AXVs sensor measurements so as to
simultaneously identify “where they are” and create the map
of the external environment. The second of the problems has
to do with “which trajectories the AXVs have to follow”, i.e.,
the problem1 of trajectory generation for the AXVs so as to
maximize SLAM efficiency.

Most of the researchworkhas concentratedon the problem
of SLAM (in case of single-AXVs) or Cooperative SLAM
(C-SLAM) in case where a team of AXVs is deployed. Very
powerful SLAM and C-SLAM methodologies have been
proposed recently and have successfully demonstrated in
real-life situations. Despite, however, these advances, the
vast majority of missions rely on pre-specified AXV trajec-
tories. In other words, the trajectory the AXV has to follow
is designed off-line, before its actual deployment. As the
AXV is called to map a partially known or, in some cases, a
totally unknown area, off-line designing of the AXV trajec-
tories may become quite problematic: first of all, the off-line
design is quite likely to “miss” areas of crucial information;
moreover, it may lead the AXV to “waste” time mapping
areas of little information. For this reason, in practice, AXV-
based mapping is accomplished by employing a costly and
tedious repetitive procedure: firstly, an original trajectory is
designed off-line, the AXV is then deployed and maps the
area following to the off-line designed trajectory, then based
on the created map a new trajectory is designed off-line

1 The problem of multi-robot trajectory generation for maximizing
SLAM efficiency is also referred in the literature as exploration or opti-
mal motion strategy. In the rest of this paper, these terms will be used
interchangeably.

again, the AXV is deployed according to this new trajec-
tory, and so on. Apart from the fact that such a procedure is
costly and tedious, it renders prohibitive the deployment of
AXV in time-critical mapping missions or in cases where
there are limited resources available, such as detection of
sunken drums leaking chemicals or search-and-rescue mis-
sions. Most importantly, off-line generation of the AXV
trajectories cannot take advantage and exploit the cooperative
capabilities in case a team of AXVs is employed. Typically,
multi-AXV deployment for mapping purposes employ again
pre-specified trajectories with no or little interaction between
the AXVs or, in the best case, the AXVs communicate with
each other so as to improve their localization estimates and/or
to make sure that they are moved in certain formation. How-
ever, full exploitation of the cooperative capabilities of a
multi-AXV system cannot be accomplished by having the
AXVs moving along pre-specified trajectories or in forma-
tion: the cooperation betweenmore than oneAXVs can speed
up considerably the overall mapping process, by having the
AXVs coming closer in areas of high importance and by hav-
ing the AXVs sharing sensor measurements and mapping
information.

Toovercome the shortcomings of off-line trajectory gener-
ation, many different approaches have been proposed which
attempt to generate in real-time the AXVs trajectories so
as to maximize the overall C-SLAM efficiency, see Sect. 2
for more details. There are, however, several theoretical
and practical limitations that prevent these approaches from
becoming a generic and practicable tool thatwill provide effi-
cient trajectory generation: the fact that trajectory generation
for maximizing SLAM efficiency is a difficult-to-be-solved
optimization problem, the strong reliance of trajectory gen-
eration to the particular SLAM methodology employed, the
highly non-linear nature of sensor noise and the limited com-
munication capabilities of the AXVs are among the most
important of such limitations. In this paper, we propose
and evaluate both using theoretical analysis and simulations
as well as real-life experiments a new methodology that
attempts to overcome such limitations.

One of the most severe limitations of multi-robot trajec-
tory generation for maximizing SLAM efficiency is the fact
that such a problem is an NP-hard optimization problem.
Most of the existing approaches employ one-step-ahead opti-
mization or relaxed versions of the NP-hard trajectory gen-
eration optimization problem to overcome such a limitation.
Such approaches, however, may end-up being quite problem-
atic. First of all, the closed-form (i.e., analyticalmathematical
form) that relates the SLAM efficiency to the overall multi-
robot team dynamics is not easy to be calculated. However,
calculating of the analytical form of SLAM efficiency is the
least of the problems encountered: themost severe problem is
due to the fact that optimizing the SLAM efficiencymay lead
to severe deadlocks or, mathematically speaking, to getting
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stuck into local maxima. As a matter of fact, as we report in
the next sections, one-step-ahead optimization of the SLAM
efficiency can lead to situations where the AXVs get stuck to
deadlocks even after they have accomplished only 10–20%
of their mapping mission. A similar situation is also present
if relaxations to the original NP-hard problem are employed.
Moreover, any approach used for optimizing the SLAM effi-
ciency has to deal with another problem: as, typically SLAM
algorithms are based on linearized or approximatemodels for
the sensor dynamics, optimizing the SLAM efficiency does
not guarantee that poor performance or, even, divergence of
the SLAM procedure is avoided.

To overcome all the above shortcomings and limita-
tions, a new approach is employed and analyzed in this
paper. According to this new approach, the AXVs tra-
jectories are calculated so as to optimize a transformed
version of SLAM efficiency: such a transformation guar-
antees that deadlocks are avoided and, moreover, that the
AXVs move towards minimizing the effect of sensor non-
linearities which, in turn, implies minimizing the problem of
poor performance/divergence of the SLAM procedure. The-
oretical analysis establishes these properties and, moreover,
simulation experiments exhibit that the use of such a trans-
formed version can improve significantly the performance of
the exploration scheme.

As in the case of SLAM efficiency, it is difficult—if
not possible—to obtain an analytical form for the trans-
formed version of the SLAM efficiency. To overcome such
a problem, we employ Cognitive Adaptive Optimization
methodology (CAO), an adaptive optimization approach that
does not require the availability of analytical forms of the
function to be optimized (Kosmatopoulos et al. 2007; Kos-
matopoulos 2009; Kosmatopoulos and Kouvelas 2009). It
has to be emphasized that CAO—successfully implemented
to the problem of multi-robot optimal surveillance cover-
age (Renzaglia et al. 2012)—is computationally simple and
thus scalable. Both simulation experiments and theoretical
analysis establish that the use of CAO, combined with the
transformed version of the SLAM efficiency, guarantees effi-
cient performance of the overall exploration.

Apart from the limitations of existing approaches that have
to do with the complexity of the overall exploration problem,
it has to be emphasized that most of these approaches suffer
from other shortcomings that render their application in real-
life quite difficult: for instance, some of these approaches
impose certain requirements for the AXV communica-
tion/sensing system and/or they strongly rely on a particular
SLAM method. The development of the proposed approach
is performed so as to avoid the above-mentioned shortcom-
ings.As amatter of fact, rather than imposing requirements in
the communication/sensing system and the SLAM method-
ology employed, the philosophy of the proposed approach

is “to do the best it can” given the communication/sensing/
SLAM system, allowing even cases where the multi-robot
team comprises AXVs with mutually different sensing capa-
bilities or operating different SLAM algorithms. In such a
way, the addition/removal of an AXV (with probably differ-
ent sensing capabilities than the existing ones or operating
a different SLAM technique than the other AXVs) is per-
formed “automatically”.

We close this section by mentioning that real-life under-
water sea-floor mapping experiments were conducted using
two AUV (Autonomous Underwater Vehicles) in the port
of Porto, Portugal. The experiments exhibit the practicabil-
ity and “ease-to-operate” of the proposed approach. Despite
the fact that, the theoretical approach (Sect. 3) along with
the simulation results have been made under communication
constraints, where at each time-step, every AXV has to be
at most a maximum distance from its closest AXV (Mar-
tijn 2007), in real-life experiments, it is assumed that the
AXVs modems can transmit/receive from the whole opera-
tion area. This limitation is not unrealistic (at least until a
specific order of magnitude in the square meters of the oper-
ation area), taking for granted that in the exhibited real-life
experiments, the AXVs are able to transmit in each time-step
their measurements back to central station. Additionally, the
communication protocol that is used is well established in
terms of the modern communication methods (Pfingsthorn
et al. 2010; Johnson et al. 2009; Rajala and Edwards 2007)
available bandwidth. The last remark regarding to the com-
munications is that the theoretical approach along with the
simulation results have beenmade independently on the place
where the new waypoints calculation is taking place (either
on a central command station or assuming a processor on one
of the AXVs). This feature leverage the proposed approach
with the ability of a broader appliance in AXVs mapping
missions.

The rest of the paper is organized as follows. In Sect. 2 we
provide a short literature review concerning the methodolo-
gies used to generate trajectories for the task of multi-robot
exploration, while in Sect. 3 we attempt to provide a descrip-
tion of the set-up of map construction using a team of
AXVs. In Sect. 4 we formulate the problem of autonomous
navigation/exploration of a team of AXVs as an optimiza-
tion problem, while in Sect. 5 we present the proposed
CAO based approach which allows the autonomous nav-
igation/exploration of a team of AXVs. Finally details
simulations that present the applicability of our approach
are presented in Sect. 6 while in Sect. 7 we present how our
approach was implemented as a plug-and-play tool for the
navigation of a set of real autonomous underwater vehicles
in the area of Oporto’s Harbor in Portugal. Some conclud-
ing remarks and ideas for future research are discussed in
Sect. 8.
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2 Related work and positioning

2.1 Optimal control/dynamic-programming techniques

Mathematically speaking, single- or multi-robot exploration,
i.e., the on-line generation of robot trajectories so as to
maximize SLAM accuracy and efficiency is an NP-hard
(Donald et al. 1993; Pasqualetti et al. 2012) or, equivalently,
a non-convex dynamic optimization problem. As a result,
any attempt to generate the globally optimal solution is not
possible to end up with a computationally and practically
feasible solution. For this reason, many different classes of
approaches have been proposed whose main idea is based on
solving, instead of the original NP-hard problem, a simplified
or relaxed version of it. In such a way, a computationally fea-
sible solution is possible to be constructed at the expense, of
course, of sacrificing global optimality. For instance, there
are several methodologies which are based on relaxed or
linearized version of the exploration problem when it is
formulated as an optimal-control or dynamic-programming
problem, see e.g., Ny and Pappas (2009),Milam et al. (2000),
Kelly and Nagy (2003), Low et al. (2011), and Tabuada and
Pappas (2005). In all these approaches, the original optimal
control or dynamic programming problem for optimizing the
SLAM accuracy/efficiency is simplified, relaxed and/or lin-
earized so as to come up with a—suboptimal—solution that
is computationally feasible.

2.2 Optimal one-step-ahead/Greedy approaches

In another class of approaches, instead of relaxing the opti-
mal control or the dynamic programmingproblemover a time
horizon, relaxed versions of the optimal one-step-ahead opti-
mization problem are pursued. In this family of approaches,
the next AXVs poses are chosen greedily so as to optimize
an appropriately defined quality/objective function that is
related to the SLAM accuracy and efficiency. Some of these
approaches are constructed by analyzing the EKF equations
(Msechu et al. 2008; Zhou and Roumeliotis 2011) or by
relaxing the mathematical models (Zhou and Roumeliotis
2011) that carry out the aspects of the trajectories generation
problem (e.g., sensor model). In this subgroup a common
practice (Feder et al. 1999; Bourgault et al. 2002; Stachniss
and Burgard 2003) is to choose the next action χ that maxi-
mizes the expected information gain, e.g., argminχ (tr (P)),
where tr (P) is the trace of the EKF error covariance matrix.
Another subset of approaches (John 2003; Beard et al. 2002)
optimizes a quality function that en-captures, in the best pos-
sible way, the goals of the trajectory generation problem
without any prior knowledge about the terrain morphology
or the underlying dynamics. The trajectories are chosen so
as to optimize this quality function, using in most of the
casesmodel-freeGradient-decent-like approaches (Nesterov

2007). The selection of the adequate quality function is not
trivial.

Both dynamic programming/optimal control and optimal
one-step-ahead approaches suffer from the following draw-
backs:

– it is not easy to be evaluated, whether the relaxed solu-
tions do indeed provide a solution to the robot exploration
problem that is actually efficient.

– the nonlinearities (such as in cases where the noise does
not follow the Additive Gaussian White Noise model)
may give rise to undesirable estimator’s divergence.

– in many cases, they get stuck to deadlocks or, equiva-
lently, to local minima (see our discussion in Sect. 4).

Researchers of the field, perceiving these disadvantages,
have established and successful evaluated using numerous
of experiments results, deadlock recovery mechanisms for
greedy approaches (egMartijn (2007) and Rathnam and Birk
(2013)) which are resistant to the aforementioned shortcom-
ings

Unfortunately, these are not the only problems, and this
is where this work aims to contribute. In order to attack the
problem at hand, the vast majority of the optimal/dynamic
programming approaches do not take into account the non-
linear characteristics of the AXVs sensors. For example, it
is usually considered that an AXV can accurately estimate
the positions of a landmark/cell as soon as it “sees” it. This
simplifying assumption is crucial for most of the existing
approaches so as to be able to calculate in real-time the cost
function to be optimized as well as the next AXV locations
that greedily optimize such a cost function. Moreover, such
an assumption is crucial for overcoming deadlocks (local
minima) which are frequently encountered when greedy
approaches are employed. The main contribution of the
proposed approach is to alleviate the above-mentioned sim-
plifying assumption by introducing a more realistic one that
takes the nonlinear sensor characteristics into account (in
which case, for instance, the accurate estimation of a land-
mark depends on the distance and the time theAXV“spends”
when sensing it). The removal of the above-mentioned
assumption renders the existing approaches not practicable
as it is not possible anymore to calculate in real-time the cost
function as well as the locations of the AXVs that greedily
optimize it.Moreover, it renders not practicable the use of the
techniques used in the existing approached for avoiding or
escaping deadlocks. For this reason, the proposed approach
introduces a newmethodology for (a) estimating in real-time
the cost function and (b) avoid deadlocks.

A large worth-mentioned variation of this optimal one-
step-ahead, class exploits the idea of the frontier cell
navigation (Fox et al. 2006; Martijn 2007; De Hoog et al.
2009; Rathnam and Birk 2013; Freda and Oriolo 2005; Bur-
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gard et al. 2000) firstly introduced by Yamauchi (1998).
The majority of the one-step-ahead (greedy), path planning
approaches utilize that fundamental idea and in the most
cases they augment their solutions upon the frontier cell con-
cept. Our approach is not an exception, as the omission of this
concept would seriously compromise the overall successful-
ness of the mission. Over-and-above, the proposed approach
introduces a supplementary improvement, regarding to fron-
tier cell concept. In the proposed approach the next AXVs
positions are at most a predefined distance (which is directly
related to the maximum possible speed of the AXVs). This
constraint in AXVs movement adds an extra layer of effi-
ciency in the sense that it strictly bounds the waiting time for
each AXV, from the moment it reaches the desired waypoint
until the new one. Additionally, and in correspondence to the
majority of the members of this class, we further investigate
the construction of the objective function (Sect. 4), adding
secondary terms in order to avoid undesirable deadlocked
situations. But the development of another optimal one-step-
ahead technique is not the main contribution of the paper.
This paper attempts to prove that even more complicated
and unknown problems of the ones that belong to the target
group of that class can be adequately addressed, problems
where the objective/reward function is not a metric that can
be computed a-priori. Overall, the theoretical contribution of
this paper should be classified as an approximately optimal
one-step-ahead approach and in particular in the model-free
class.

2.3 Sampling-based approaches

Another widely-spread trajectory generation approach, is the
sampling-based ones, including the Probabilistic RoadMaps
(PRMs) (Kavraki et al. 1996, 1998; Prentice and Roy 2009)
and Rapidly-exploring Random Trees (RRTs) (Kuffner and
LaValle 2000; LaValle 2006). These approaches construct
a graph (the roadmap), which represents a random set of
collision-free (obstacle avoidance) trajectories, and then by
computing the shortest path that connects the initial statewith
a final state through the roadmap, provides the near-optimum
trajectory.Given this graph, a feasible, collision-free path can
be found using a standard graph search algorithm from the
start node to the goal node. Besides the fact that the trajec-
tories are almost optimal, the above approach has some vital
drawbacks:

– Thewhole process strongly relies on the prior knowledge
about the morphology, rendering the method unsuitable
for exploration of unknown territories.

– These algorithms provide the best trajectories strictly
among the starting and ending point.

– Both theoretical analysis and real-world experiments
(Valencia et al. 2011) are limited mostly to single-robot
approaches.

An interesting variation (Birk and Carpin 2006) of this
class, utilizes the occupancy-grid concept (Burgard et al.
2000) under real-life communication constraints, to achieve
cooperative exploration.

2.4 Simulation-based approaches

Finally, we mention that another class of approaches for
the development of robot exploration approaches employs
simulation-based optimization, see e.g. Kollar and Roy
(2008), Martinez-Cantin et al. (2009), Peng et al. (2005),
and Doucet (1998). In simple words, the idea behind these
approaches is the following: first a parametrized decision-
making mechanism is devised for generating on-line the
robot trajectories, with different choices for its parameters
leading to different exploration decision-making mecha-
nisms. Then, realistic simulations or similar tools are used
in order to optimize the parameters of the decision-making
mechanism. Thus, conceptually, many of the optimization
computations that otherwise would take place on-line are
“moved” off-line. The problem with such approaches is that,
first, the simulations need to cover a wide range of different
realistic scenarios (and thus they may become “expensive”)
and, moreover, since the dimensionality of the optimization
problem is quite high, a large number of parameters is needed
in order to come up with an efficient decision-making mech-
anism. To overcome such problems, most of the proposed
approaches assume sufficient a priori knowledge of the map
to be explored, in which case practicable solutions can be
devised.

3 The set-up

In this section, we describe with the set-up assumed in this
paper, for map construction using a multi-robot team of NR

AXVs, where NR denotes the number of AXVs.

3.1 Optimal quantized map

Without loss of generality, let us assume that the area to
be mapped is constrained within a rectangle in the (x, y)-
coordinates, i.e., the AXVs are called to map the area
constrained in the (x, y)-coordinates as follows:

U =
{
x, y : x ∈ [xmin, xmax ], y ∈ [ymin, ymax ]

}
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where xmin, xmax , ymin, ymax are real numbers that define
the “borders” of the area to be mapped. Using the defini-
tion of U , the area can be then defined as a function that
corresponds each point (x, y) ∈ U to a point z = z(x, y)
[height of map at (x, y)]. Let us also consider a fixed set
of NL pairs (x�, y�), � = 1, . . . , NL that are distributed in
U [typically (xi , yi ) are uniformly distributed in U] and let
z(x�, y�) denote map’s value at the point (x�, y�). Typically,
the map construction problem can be transformed to the one
of finding the “best grid” (x�, y�, zL ,�), � = 1, . . . , NL such
that the quantized map

zq(x, y) =
NL∑
�=1

zL ,�φi (x, y, x�, y�)

approximates the actual map z(x, y) as accurately as possi-
ble, i.e., the map construction problem is transformed into
the problem of finding the parameters zL ,�, � = 1, . . . , NL

that minimize the following criterion:

∫
(x,y)∈U

‖ z(x, y) −
NL∑
�=1

zL ,�φ�(x, y, x�, y�) ‖2 dxdy (1)

The functionsφ�(·) ∈ [0, 1] in the above equation correspond
to the so-called basis functions. Typical choices for φ�(·) is
the piecewise constant function:

φ�(x, y, x�, y�)

=

⎧⎪⎨
⎪⎩
1 if

√
(x − x�)2 + (y − y�)2

= min j=1,...,L

√
(x − x j )2 + (y − y j )2

0 otherwise

(2)

or, the Gaussian function:

φ�(x, y, x�, y�) = exp(−(x − x�)
2 − (y − y�)

2) (3)

Let also

XL =
⎡
⎢⎣

x1, y1, zL ,1(x1, y1)
...

xNL , yNL , zL ,NL (xNL , yNL )

⎤
⎥⎦

Hereafter, we will defineXL to be the matrix ofmap land-
marks associated with the map z(x, y).

We close this section by mentioning that in the experi-
ments described in this paper, the basis functionswere chosen
to be the ones given in (3).

3.2 AXVs sensors

Before we continue on the map construction problem, let
us first provide with some necessary preliminaries as far as

the AXV sensors are concerned. The AXVs are equipped
with sensors that provide proprioceptive measurements (e.g.,
from GPS labels or inertial sensors) to propagate their state
(position and orientation) estimates as well as exteroceptive
measurements (e.g., cameras, sonars, bathymeters, etc) that
enable them to measure their distance or bearing from points
of interest. Let x Ri denote the position(in a 3-D space) of the
i th AXV 2 and

XR =
⎡
⎢⎣

x R1
τ

...

x RNR

τ

⎤
⎥⎦

denote the matrix of all AXVs positions (team configura-
tion). Furthermore, let Y denote the vector of all AXVs’
sensor measurements. In the most general case, the sensor
measurements are related to the matricesXL andXR through
a nonlinear function that admits the form

Y = H(XL ,XR, Ξ)

where H is the nonlinear vector sensor function and Ξ is the
sensor measurement noise vector.

The design for map construction using AXVs will have to
take into account the—sometimes severe—limitations of the
environment the AXVs operate on: nonlinear sensor noise
characteristics, limited communication range, and limited
visibility of the AXVs sensors are some of the limitations
that render multi-AXV map construction a very challenging
task. Below, these limitations are described in more detail:
(NL-Noise) The typical assumption made in most robotic
applications that the sensor noise is additive Gaussian noise
is very restrictive and not realistic in many AXV applica-
tions as the sensor noise affects the sensor measurements in
a Non-linear fashion. For instance, in the case of sonar or
vision sensors, the noise affecting such sensors is propor-
tional to the sensor-to-sensing point distance, i.e., the larger
is the AXV-to-sensing point distance, the larger is the sensor
noise. Similarly, in the case of localization-related sensors,
the larger is the time theAXV is operatingwithoutGPS recal-
ibration, the larger is the localization noise. As a result, it is
more realistic to assume a multiplicative sensor noise model
that takes the form:

y = h(x R, q) + hξ (x
R, q, tuw)ξ (4)

where y is the sensor measurement, x R, q are the positions
of the AXV and the sensing point, respectively, h(x R, q)

2 For simplicity, we assume that the orientation of the AXVs is fixed
and constant all the time. All the results of this paper can be easily
extended in the case where the orientation changes by the navigation
algorithm.
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is the sensor model in the noise-free case, hξ (x R, q, tuw)

is the multiplicative sensor noise term, tuw is the time the
AXV iswithoutGPS connection and ξ is a standardGaussian
noise.
(LimComRange) In order to establish the required com-
munication connection for the data transferring between
the AXVs, an additional constraint is needed. For ease of
comprehension, and without loss of generality, it can be con-
sidered that all AXVs have the same communication range,
represented as comR . As a result, an AXVmust make sure—
at each time-instant—that there is at least one other AXV that
is within comR distance from it.
(LimVis) In addition to the aforementioned limitations, the
AXV exteroceptive sensors are of limited visibility. As a
result, additionally to the nonlinear sensor noise assumption
(4), the sensor model for the exteroceptive sensors should
be augmented to count for the limited visibility constraint.
Moreover, the sensor model must be augmented to count for
the case where there is no line-of-sight between the AXV
and the sensing point (e.g., there is an obstacle in between).
As a result, the actual sensor model becomes:

yx R−q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

undefined if ‖x R − q‖ ≥ thres
undefined if there is no line-of-

sight between x R and q
h(x R, q)+
hξ (x R, q, tuw)ξ otherwise

(5)

where yx R−q denotes the sensor measurement from an AXV
at position x R to a sensing point at position q, thres denotes
the visibility threshold beyond which the sensor does not
“see” and ‖ · ‖ denotes the Euclidean norm.

3.3 Aperiodic AXV navigation/communication under
communication constraints

Having defined the limitations the AXV sensors are facing,
we now proceed by describing the way that the multi-robot
team of AXVs is operating while performing the map con-
struction task. More precisely, consider that the AXVs are
initially deployed at the time instant t0 with the AXVs ini-
tial positions being equal to x R1 (t0), . . . , x RNR

(t0) [or, in a
more compact notation, the overall multi-robot of AXVs ini-
tial position is XR(t0)]. Then, by employing an autonomous
navigation/exploration algorithm (to be described in next sec-
tions), the next desired location (waypoint) for each AXV is
calculated and each AXV is navigated to this next desired
location. Apparently, the time needed for each AXV to reach
its desired location is not the same for all AXVs. As a result,
some of the AXVs will have to wait (after they have reached
their desired location), so as for the rest of AXVs to reach
their respective next desired location. Please note that while
executing the task of navigating to the next desired location,

the different types of AXV sensors operate using different
activation frequencies: for instance, the IMU sensors may
be activated many times while the AXVs are accomplish-
ing their navigation task, while the exteroceptive sensors,
such as sonars, cameras and bathymeters are typically acti-
vated once and as soon as the AXVs reach and stabilize at
their desired location. Let Δt1,nav denote the time required
for all of the AXVs to reach their next desired location as
well as to accomplish the activation of their exteroceptive
sensors. Then, as soon as activation of all exteroceptive sen-
sors is accomplished, the AXVs communicate their sensor
measurements—typically after some pre-processing—to a
central station and receive back their next desired locations.
Let Δt1,com denote the time required for all AXVs to com-
municate their sensormeasurements and to receive back their
next desired locations.

Using the above procedure we have that all of the AXVs
have accomplished their navigation, sensing and communi-
cation tasks at the time-instant t1 = t0 + Δt1,nav + Δt1,com .
At this time instant, the navigation/exploration algorithm
calculates the new desired locations for the AXVs and
the above-described procedure is repeated again. In a nut-
shell, the AXVs receive at the time-instances t1, t2, t3, . . .
their new desired locations (waypoints) where t1 = t0 +
Δt1,nav + Δt1,com , t2 = t1 + Δt2,nav + Δt2,com , t3 =
t2 + Δt2,nav + Δt2,com, . . .. As explained above, the time-
intervals [t0, t1), [t1, t2), [t2, t3), . . . are not of the same
length.

Please also note, that the overall exploration/ navigation
process must be accomplished under severe communication
constraints: due to these constraints, not all of the AXV sen-
sor measurements can be communicated to the rest of the
team. Moreover, due to these constraints, one or more AXVs
must not be able to communicate with the others (and, with
the central station) at certain time-instances, which renders
the overall exploration/navigation problem more challeng-
ing. For these reasons, the information to be communicated
by each AXVs must be such that :

(C1) It exploits to the maximum the cooperation capabilities
of the system by making sure that mapping information
received by one AXV that is useful to the other AXVs
must be communicated.

(C2) Moreover, it must be able to efficiently operate when
communication of one or more AXVs is lost at some
time-instances or when the addition of a new member
of the team is required “on-the-fly”, i.e., when the team
is in operation.

In the next sections, we will describe how we address
these two issues that are related to the severe communication
constraints of the operation environment.
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3.4 Distributed cooperative estimation (SLAM) under
communication limitations

The proprioceptive and exteroceptive sensor measurements
are processed so as to perform both the map construction
as well as the localization of the AXVs. Accurate localiza-
tion is a prerequisite for accurate map construction and, as
a result, the overall estimation procedure requires the effi-
cient simultaneous localization and mapping (SLAM). As
alreadymentioned in the Introduction, there exists quite pow-
erful methodologies for single-AXV SLAM. Our approach is
to develop a system that can take any of these single-AXV
approaches and appropriately enhance them so as to develop
a cooperative-AXV SLAM which will substantially increase
the efficiency of single-AXV SLAM by embedding within it
with cooperative information while, of course, making sure
that the two objectives (C1), (C2) related to the communica-
tion constraints are satisfied. More precisely, our approach
comprises enhancing single-AXVSLAMapproaches by pro-
viding themwith the “optimal” possible information received
by theotherAXVs.Below,wedescribe howsuch an approach
is embedded within the proposed system.

Let us fix the number NL of landmarks and let X̂L(0)
denote an initial estimation of the map landmarks. Let also
X̂R(0) denote the estimate of the initialAXVpositions. Then,
in general, a single-AXV SLAM system can be mathemati-
cally represented as follows:

[
X̂( j)

L (ti+1), c
( j)
L (ti+1), x̂

( j)
R (ti+1), c

( j)
R (ti+1)

]

= EST j

(
X̂( j)

L (ti ), c
( j)
L (ti ), x̂

( j)
R (ti ), c

( j)
R (ti ), y

( j)(ti+1)
)
(6)

where

– EST j (·) denotes the overall dynamics of the single-AXV
SLAM system for the j-th AXV.

– X̂( j)
L (ti+1) denotes the estimated landmarks as generated

by the single-AXV SLAM system for the j-th AXV.
– c( j)

L (ti+1) is an NL -dimensional vector that corresponds
to the confidence level of estimation of landmarks, i.e.,
the �-th entry of the vector c( j)

L (ti+1) indicates the degree
to how accurately the �-th landmark has been estimated.
For instance, in the case anExtendedKalman filter (EKF)
is employed for performing the landmark estimation, the
confidence level vector typically corresponds to the diag-
onal elements of the EKF error covariance matrix.

– x̂ ( j)
R (ti+1) denotes the position estimate of the j-th AXV.

– c( j)
R (ti+1) is a positive number indicating the confidence

level of estimation of the AXV position.
– y( j)(ti+1) is a vector comprising all sensormeasurements

that are available to the j-th AXV.

Note that in case of single-AXVmissions, the sensormea-
surement vector y( j)(ti+1) comprises of the proprioceptive
and exteroceptive sensor measurements of the single-AXV.
In the case, however, of cooperative AXV missions, this
vector can be augmented by using information that is com-
municated by the other AXVs. In other words, in the case of
cooperative AXV missions the sensor measurement vector
y( j)(ti+1) can be augmented as follows:

y( j)(ti+1) = [local sensor info of the j-th AXV, sensor
info from the other AXVs communicated to the j-th AXV ].

The problem at hand becomes, then, to design the signals
contained in sensor info from the other AXVs communicated
to the j-th AXV so as to substantially improve the estimator’s
(6) efficiency by fully exploiting the cooperation capabilities
[objective (C1)] by taking into account the restrictions and
possiblemalfunctions [objective (C2)] of the communication
system. Before, we proceed on how to design the signals
contained in sensor info from the other AXVs communicated
to the j-th AXV, we need some definitions, provided next.

Definition 1 Wesay that the�-th landmarkXL
� = (x�, y�, z�)

is visible if there exists at least one AXV so that

– the AXV and XL
� are connected by a line-of-sight;

– the AXV and the point XL
� are at a distance smaller

than the threshold value thres defined in Eq. (5) [which
corresponds to the maximum distance the AXVs’ exte-
roceptive sensors can “see”].

Given a particular team configuration XR(ti ), we let
V(XR(ti )) denote the set of all indices � for which XL

� is
visible at time-instant ti . Similarly, we let V( j)(XR(ti )) to
denote the set of all landmarks that are visible by the j-th
AXV.

In simple words, the subsets V( j)(XR(ti )) and V(XR(ti ))
provide us with information on the number of landmarks that
are currently visible by the j-thAXVand by the overall AXV
team, respectively.

Definition 2 We say that the �-th landmark XL
� (ti ) is

accurately-estimated at the time-instant ti , if the �-th entry of
the confidence level vector c( j)

L (ti+1) of at least one AXV is
less than a given threshold3. Moreover, we define as AL(ti )
the set of all indices � for which XL

� is accurately-estimated
at time-instant ti . Similarly, we define A(L , j)(ti ) as the set
of all indices � for whichXL

� is accurately-estimated at time-
instant ti by the j-th AXV, i.e.,A(L , j)(ti ) corresponds to the

3 Additionally, it might be useful to set an upper limit (big enough) in
the times that a landmark can be estimated by at least one AXV with
any accuracy. This limit will serve as deadlock avoidance meachnism
in cases of a landmark cannot be accurately estimated, due to the local
morphology of the area to be mapped. We would like to thank one of
the reviewers who pointed that out.
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landmarks that have become accurately estimated due to the
j-th AXV.

Definition 3 We say that the �-th landmark XL
� (ti ) is

inaccurately-estimated but visible at the time-instant ti , if
XL

� (ti ) ∈ V(XR(ti )) and XL
� (ti ) /∈ AL(ti ). Moreover, we

define as BL(ti ) the set of all indices � for which XL
� is

inaccurately-estimated but visible at time-instant ti . Simi-
larly, we define B(L , j)(ti ) as the set of all indices � for which
XL

� is currently visible by the j-th AXV but have not yet
become accurately estimated.

Definition 4 We say that the AXV XR
j (ti ) is accurately-

estimated at the time-instant ti , if the confidence level
c( j)
R (ti+1) is less than a given threshold. Moreover, we define

asAR(ti ) the set of all indices j for which XR
j is accurately-

estimated at time-instant ti .

In simple words, the subsets AL(ti ),AR(ti ) provide us
with information on the number of landmarks and AXVs,
respectively, whose locations (positions) are currently accu-
rately estimated, while the subset BL(ti ) provides with
information on the number of landmarks that are currently
visible but have not yet been accurately estimated. Please
note that, in the case of the subset AL(ti ), if a particular
index � becomes a member of this set at some time, then it
remains in this set for ever (once a landmark becomes accu-
rately estimated, it remains accurately estimated for ever).
This is not true for the setAR(ti ) as an AXV whose position
is currently accurately estimated may become inaccurately
estimated later on.Moreover, please note that it suffices for at
least one AXV to estimate accurately a landmark.It is worth
noticing that the aforementioned concepts are graphically
illustrated in Fig. 3.

Wenow return back to the problemof designing the signals
contained in sensor info from the other AXVs communicated
to the j-th AXV. As a first point, please notice that at the
time-instant ti , the j-th AXV SLAM estimator may produce
a number of new accurately estimated landmarks as well as
a number of new visible but not accurately estimated land-
marks. Mathematically speaking, during the aforementioned
time-instant the j-th AXV accurately estimates the land-
marks that belong to the set A(L , j)(ti ) \ A(L , j)(ti−1) while
the landmarks that belong to the set B(L , j)(ti ) are the ones
that become visible but not accurately estimated by the j-th
AXV. In the ideal case of infinite communications resources,
the following information should become available from the
j-th AXV to the rest of the team:

– The set of landmarks that have become accurately esti-
mated at time-instant ti by the j-th AXV, i.e., the set
A(L , j)(ti )\A(L , j)(ti−1). Information of this set is needed
by the other AXVs so as to know which landmarks have
been accurately estimated by the j-th AXVs so as for

them not to spend time estimating landmarks already
accurately estimated. In other words, this information
is needed by the AXVs so as not to spend time explor-
ing areas that have been already efficiently explored by
some other AXV.

– The current position estimate x̂ ( j)
R (ti ) of the j-th AXV,

the confidence level c( j)
R (ti ) as well as the sensor mea-

surements that correspond to the B(L , j)(ti ). Note that if
this information were available to the other than the j-th
AXV, they could include in their SLAM scheme sensor
measurements acquired by the j-th AXV. In other words,
if this information were available each of the AXVs could
use sensor information received by other AXVs as if it
has been received by its own. In such a way, the coop-
erative capabilities of the team could be exploited to the
maximum extend.

As the team of AXVs has to operate under limited com-
munication resources, exchanging the information described
above is not possible. However, one can attempt to reduce
the amount of the information described above by (i) tai-
loring this information so as it meets the communication
requirements and (b) keep the information that can have the
most significant impact to the SLAMestimators. This is done
within the proposed system as follows:

– As afirst step, for eachAXV, themembers of the team that
belong to the reachable exploration area of the particu-
lar AXV are identified. The reachable exploration area for
each AXV is estimated as follows: take any two AXVs,
say the j-th and the k-th one. Let P denote the closest
landmark [in the (x, y)-plane] to the k-th AXV that is
currently visible by the j-th AXV. Then, the k-th AXV
belongs to the reachable exploration areaof the j-thAXV,
if the distance in the (x, y)-plane between P and the
position estimate of the k-th AXV is less than a thresh-
old which corresponds to the distance the k-th AXV can
travel in the time interval [ti , ti+1]. In other words, if the
k-th AXV does not belong to the reachable exploration
area of the j-th AXV, then it is not possible for the k-th
AXV to “see” any of the landmarks currently “seen” by
the j-th AXV.

– The landmarks that belong to the sets A(L , j)(ti ) \
A(L , j)(ti−1) and B(L , j)(ti ) are sorted in ascending order
according to their distance to the AXVs that belong
to the reachable area of the j-th AXV. Then, the j-th
AXV communicates to the rest of the system its position
estimate and the sorted landmark information up to the
maximum communication capacity [in case where there
are—estimations of—landmarks that are very close to
each other, e.g., their distance is less than a pre-specified
threshold, then only one of these landmarks is kept in the
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sorted list so as to avoid sending landmarks that contain
similar information]. In return, the j-th AXV receives its
next way point, the position estimates of the AXVs that
belong to its reachable exploration area as well as the
sorted landmark information from the other AXVs up to
themaximumcommunication capacity,where the sorting
of the landmarks is done with respect to their (x, y)-
distance from the j-th AXV (and quantized by removing
landmarks that carry similar information). By “landmark
information” we mean (i) the index of the landmark in
case this landmark belongs to the set AL (i.e., in case it
is an accurately estimated landmark), its estimated value
(ẑL ,�) and a binary signal indicating that it corresponds
to an accurately estimated landmark (b) the index of the
landmark and the respective sensor measurement in case
this landmark is a currently visible but not accurately
estimated landmark and a binary signal indicating that
it corresponds to a visible but not accurately estimated
landmark. Moreover, by “up to the maximum commu-
nication capacity” we mean that the packet to be sent or
received is filledwith asmany landmarks as itsmaximum
capacity allows.

By using the above logic for designing the signals to be
communicated, useless sensor information is not communi-
cated (i.e., information about landmarks that it not possible
for the AXVs to “see” in the next time-step as these land-
marks are quite far from the current positions of the AXVs)
while sensor information that can and should be used by
the AXVs is quantized and prioritized by giving priority to
landmarks that are more likely to be “seen” and, moreover,
by removing information about landmarks that carry similar
information.

We close this section by mentioning that in the simula-
tion and experimental results detailed in later sections, the
particular single-SLAM estimator used was a standard non-
linear least-squares solver for estimating the landmarks and
a cooperative EKF-based scheme for localization.

4 Autonomous multi-robot AXV
navigation/exploration as an optimization
problem

The distributed SLAMprocedure as described in the previous
section can be successful only if the trajectories of the AXVs
are designed in real-time, so as to optimize the estimators’
performance. In other words, a real-time navigation proce-
dure for themulti-AXVsystem is neededwhichwill optimize
the performance of the overall estimation procedure. Apart
from that, special emphasis must be given so as the naviga-
tion procedure is fault-tolerant, i.e., it is still working in case
where one or more AXV has lost connection to the rest of

the team. In the next sections, we describe and analyse the
navigation procedure developed within the proposed system.

4.1 Optimal navigation/exploration

By using all the preliminaries and definitions described
previously, the optimal AXV team navigation/exploration
problem can be cast as a dynamic optimization problem as
follows:

max
XR(t1),XR(t2),...,XR(tN ),N

N∑
i=1

J (ti )

s.t. C(XR(ti )) ≤ 0, i = 1, . . . , N (7)

J (ti ) =
∣∣AL(ti )

∣∣ − ∣∣AL(ti−1)
∣∣

(ti − ti−1)
(8)

where N denotes the time-instant where all landmarks have
been accurately estimated, |A| denotes the cardinality of the
set A and C(·) is a non-linear function of the AXV posi-
tions. The incorporation of the non-linear function C(·) is
used in order to constrain the AXV waypoints XR(ti )) to
the rectangle U as well as to incorporate obstacle avoidance
and maximum speed constraints. Standard algebraic manip-
ulations can be employed to cast all these constraints in the
form C(XR(ti )) ≤ 0. Note that the instantaneous cost J (ti )
corresponds to the rate of number of landmarks that are accu-
rately estimated per time unit. It is not difficult for someone
to see that maximizing the criterion

∑N
i=1 J (ti ) is equivalent

of minimizing the time to accomplish the map construction
procedure. It is worth noticing that the above formulation is
not unique and other, different formulations can be applied
as well. All the results of the proposed approach can be easily
extended to the case where different formulations are used
than the one above [by simply replacing the term J (ti ) in
Eq. 7 by the respective term of the different formulation].
Also, note that the accurate estimation of the AXV positions
(localization) is not directly used in the above formulation.
However, accurate estimation of the AXV positions is a
prerequisite for accurate map construction and, as a result,
the optimal solution of (7) requires that optimal waypoints
XR(t1),XR(t2), . . . ,XR(tN ) are chosen so that AXVs are
optimally localized whenever it is necessary.

4.2 Optimal one-step-ahead navigation/exploration

There are many different reasons that render the solution of
the dynamic optimization problem (7–8) practically infea-
sible. First of all, the complexity of the overall system
dynamics renders practically very difficult to obtain closed-
form (analytic) expressions for most of the terms in (7–8)
which is a prerequisite, for applying most of the available
tools from optimization theory. Most importantly and even if
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it were possible to obtain closed-form expressions, still the
problem (7–8) would be impossible to be practically solved
as it is a NP-complete problem. To overcome these two prob-
lems we adopt a two step approach:

Step 1 In the first step, we assume that it is possible to obtain
closed-form expressions for the terms in (7–8) and
then attempt to modify the overall problem so as to
come up with an approach that overcomes the NP-
complete issue, on the one hand, but provides an
efficient solution to the navigation/exploration prob-
lem, on the other. To do so, we adopt an approach
where the problem is to construct—based on the
dynamic optimization problem (7–8)—an appropri-
ate objective function J (ti )—different than J (ti ) in
Eq. (7)—so that optimizing one-step-ahead the func-
tionJ (ti ) leads to an efficient solution to the naviga-
tion/exploration problem. In other words, we attempt
to construct a function J (ti ) such that, choosing
the waypoints XR(ti+1) that optimize J (ti+1), pro-
vides an efficient solution to navigation/exploration
problem. Both theoretical analysis and simulation
experiments are used towards such a purpose. In the
simulation experiments, to overcome the problem
that closed-form expressions are not available, we
employ the optimal-one-step-ahead random semi-
exhaustive search (OSARSES), an approach which
approximates the optimal-one-step-ahead exhaustive
search algorithm. Please note that OSARSES is a
very “heavy” computational algorithm which cannot
be implemented in real-life applications and is used
only for analysis purposes.

Step 2 In order to overcome the problem that closed-form
solutions of the terms involved in the optimization
problem, we employ the Cognitive Adaptive Opti-
mization (CAO) algorithm initially introduced in
Kosmatopoulos et al. (2007), Kosmatopoulos (2009),
and Kosmatopoulos and Kouvelas (2009). CAO has
successfully been implemented to a similar—but sig-
nificantly less complex—problem, this of navigating
a team of autonomous robots when they are deployed
to perform optimal surveillance coverage (Renza-
glia et al. 2012; Doitsidis et al. 2012; Renzaglia
et al. 2013). As in the case of navigation/exploration
for map construction, the problem of optimal sur-
veillance coverage involves optimization of terms
for which closed-form expressions are not available.
However, the problem of optimal surveillance cov-
erage is a static optimization problem and, thus, less
complex than the dynamic optimization problem of
exploration treated here.

4.3 Transforming the optimization problem

An iterative approach was used in order to accomplish the
first step described above:

Candidates for the objective functionJ were evaluated by
employing multi-AXV exploration using OSARSES for two
different simulation environments. These two different sim-
ulation environments used two different quite complex maps
(referred hereafterMap #1 andMap #2). The first map (Map
#1) depicts an area located in Zurich, Switzerland. This map
was generated using a state-of-the-art visual-SLAM algo-
rithm (Doitsidis et al. 2012) which tracks the pose of the
camerawhile, simultaneously and autonomously, building an
incremental map of the surrounding environment. The sec-
ondmap (Map#2) is an artificially generatedone, constructed
using S-plines interpolation in such a way to represent sharp
morphological variations in order to be used as worst case
mapping scenario. Both maps are illustrated in Fig. 1

For each of the candidate forms of J and for both of
the simulation environments, the AXVs were navigated so
as to optimize J by employing OSARSES: at each time-
instant ti , different sets of feasible candidate next waypoints
XR,cand(ti+1) for the AXVs were randomly generated and
the overall system was simulated until the time-instant ti+1;
several such candidate sets were generated/simulated and the
best [i.e., the one that provides the best J (ti+1)] is chosen to
be the next waypoints for the AXVs. The overall procedure
of applying OSARSES is exhibited in Algorithm 1.

Algorithm 1 One time-stamp of OSARSES Algorithm

Randomly Generate XR,cand (ti+1)

Exclude the ones that violates the environmental and communication
constraints XR,cand

valid (ti+1) ⊆ XR,cand (ti+1)

c ← 0
while c ≤ |cand| do
Deploy the action XR,cand(c)

valid (ti+1)

Jc← J (ti+1) //Calculate the objective function value for this valid
movement
c ← c + 1

end while
imax ← argmax(J )

XR, f inal(ti+1) ← XR,cand(imax)
valid (ti+1)

Using the above described procedure, an iterative design
procedure was adopted for the design of J : at each step of
this iterative procedure, the function J was modified, based
on both observations on the system simulated performance
and theoretical analysis.

In order to evaluate the performance under different
choices for J we performed two different types of com-
parison. First, we compared the performance among these
different choices as explained in the previous subsection.
Secondly, we used an approximate solution to the dynamic
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Fig. 1 The simulation
environment. a Map #1. b Map
#2

optimization problem (7–8) and compared its performance
with that of the proposed approach. More precisely, by
employing the so-called The parametrized cognitive adaptive
optmization (PCAO)— approach was employed in order to
approximately solve the dynamic optimization problem (7–
8). By doing so, we concluded that the globally optimal—but
practically not feasible— navigation/exploration algorithm
forMap #1 can accomplish the overall map constructionmis-
sion in less than 400 time-units, while the globally optimal
navigation/exploration algorithm for Map #2 can accom-
plish the overall map construction mission in less than 450
time-units. It is worth noticing that the PCAO approach can
provide a non-practically feasible solution as the number of
computations required for implementing such a solution is
huge. Moreover, as the exact solution to the dynamic opti-
mization problem (7–8) is not possible to be obtained, these
performance numbers correspond to upper bounds for the
performance of the globally optimal solution.

However, as PCAO did not exhibit and any further sig-
nificant improvement on these numbers as its approximation
accuracy is increased, these upper bounds seem to be quite
close to the performance bounds of the globally optimal

performance.Having this inmind, all of the simulation exper-
iments for both Map #1 and Map #2 were executed for 500
time-units and the performance index we adopted for eval-
uating the different choices for J as well as the proposed
CAO-based approach was themap error at t=500 (where by
“map error” we define the percentage of landmarks that have
not been accurately estimated). A solution that provides a
small map error at t = 500, although it is not the globally
optimal, is very close to it.

Below, we describe the iterative procedure used for devis-
ing the objective functionJ . Initially, the functionJ (ti )was
selected to be the instantaneous cost J (ti+1) for the dynamic
optimization problem (7–8). This is a typical choice in many
different practical applications and it is the most straightfor-
ward choice forJ . However, the use of such a choice exhibits
a very poor performance as shown in Table 1. More precisely
and as shown in Table 1, this particular choice for J leads to
a very poor performance (less than 15%4 of the total number
of landmarks are accurately estimated, for all different cases).

4 Table 1 presents the performance using the average percentage of
the Non-Accurately estimated landmarks, so as to be in-line with the
upcoming results.
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Table 1 Average percentage of non-accurately estimated landmarks at
t = 500 for J (ti ) = J (ti+1)

Landmarks 1100 All

Candidates 5 50 500 5 70

Map #1 (%) 91.9 88.9 85.3 84.9 85

Map #2 (%) 87.5 89.6 89.8 87.8 86.3

The poor performance of the choice J (ti ) = J (ti+1) is
due to the fact that such a choice leads the overall algo-
rithm to get stuck in deadlocks (or, mathematically speaking,
the algorithm gets stuck in local maxima). To avoid such an
unexpected situation, we modify the J (ti ) = J (ti+1) by
adding more terms, the maximization of which lead to a bet-
ter performance. By employing the above-described iterative
approach, the results of which are presented in the following
subsections, the final form of the function J (ti ) is shown
below:

J (ti ) = J (ti+1) + J1(ti+1) + J2(ti+1) + J3(ti+1) (9)

This enhanced version of the objective function retains
only the terms that actually attribute to the general objective
of the problem (seeSect. 4.3.4 andFig. 2).Below,wedescribe
each of the terms in (9), as well as the reasoning behind
choosing these terms.

4.3.1 Move towards the closest unexplored areas

The choice for the term J1 is based on the observation that
when there are no further landmarks that can be accurately
estimated by some AXVs, the objective function can be
augmented so as to “motivate” these AXVs to increase the
number of visible but non-accurately estimated landmarks.
The idea behind such an augmentation is simple: whenever
someAXVs cannot estimate further landmarks, then they are
“moved” to the closest unexplored areas. The particular form
for J1 that realizes such a reasoning is as follows:

J1(ti ) =
NR∑
j=1

s1, j (ti )

∣∣BL , j (ti )
∣∣

ti − ti−1
(10)

where BL , j (ti ) denotes the set of indices of visible, but
non-accurately estimated landmarks by the j-th AXV—see
Definition 3—and the term s1, j denotes a switching function
that is zero when there are no deadlocks and becomes equal
to a user-defined parameter K1, otherwise:

s1, j (ti ) =
{
0 if

∣∣AL , j (ti−1)
∣∣ − ∣∣AL , j (ti−2)

∣∣ ≤ ε1
K1 otherwise

(11)

Fig. 2 Comparison of the average percentage of non-accurately estimated Landmarks on two different maps and two different sets of landmarks
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where ε1 is a small positive design constant. As it can be
seen in Fig. 2, the augmentation of the objective function
with the term J1 leads to dramatic improvements to the nav-
igation/exploration task.

4.3.2 Avoid poor estimation

Additionally to the augmentation using the term J1, a further
augmentation is used that takes into account the distances
between every visible, non-accurately estimated landmark
and its closest AXV. More precisely, the objective function
is augmented with the term J2 which is used to force the
AXVs to come closer to landmarks that are currently visible
but not yet estimated, in order to complete their estimation
process. Such a term takes into account the non-linear effect
of the sensor noise [cf. Eq. 4]: as the effect of sensor noise
depends on the distance between the AXV and the landmark,
the estimation of the landmark becomes “better” when the
AXV moves closer to the landmark. Such an observation is
realized by including the term J2 defined as follows:

J2(ti ) = −
NR∑
j=1

s2, j (ti )

∑
j∈BL (ti )

mini=1,...,NR y
2
x Ri −XL

j
ti−ti−1

(12)

where s2, j is a switching function defined similarly to s1, j :

s2, j (ti ) =
{
0 if

∣∣AL , j (ti−1)
∣∣ − ∣∣AL , j (ti−2)

∣∣ ≤ ε1
K2 otherwise

(13)

where K2 is a positive design constant. In other words, the
term J1 is responsible for moving the AXVs closer to the
landmarks that “have not seen before” (or “have been poorly
seen”), while the term J2 is responsible formoving theAXVs
closer to landmarks so that they reduce the sensor noise effect
and they can “see them better”. Due to the trade off between
the two terms, the constant K1 and K2 are used that serve as
weights for giving less or more priority to one of the terms
J1, J2.

4.3.3 The “curse” of full knowledge of a local region

After performing several experiments by using the cost crite-
rion J (ti ) = J (ti+1) + J1(ti+1) + J2(ti+1), it was observed
that the use of such a criterion possessed the disadvantage
that, in quite a few of instances, the AXVs get trapped in
a sub-region that has been fully explored and there are no
further non-accurately estimated landmarks that are or can
become visible. As a result, any possible movement of the
AXVs within the sub-region does not cause any change in
the cost function. Consequently, the AXVs are “trapped” in
a dead-lock. To avoid this undesirable situation, the term J3

is introduced. Ideally, this term would attempt to minimize
the distance between every AXV and its closest landmark
that is currently invisible and not accurately-estimated, so
as to force the AXVs to move closer to landmarks that are
non-visible and not-accurately estimated. As the calculation
of this distance can not be practically performed (as the exact
position of this landmark is not known), firstly, the currently-
invisible, non accurately-estimated landmarks that have been
visible at some time in the past are examined. If no such a
landmark exists (i.e., all of the landmarks that were visible
at some point, were accurately estimated), then the distances
between theAXVs and the estimates of landmark positions is
taking into account. Evidently, the term J3 aims to move the
AXVs in the “borders” between known and unknown areas
and is defined as follows:

J3(ti ) = −
NR∑
j=1

s3, j (ti )

∑
j∈B̂L (ti )

mini=1,...,NR y2
x Ri −XL

j

ti − ti−1

(14)

The set B̂L(ti ) denotes the set of indices of landmarks that
were visible in the past but have not been accurately estimated
and, if no such landmarks exist, the set B̂L(ti ) denotes the set
of all landmark estimates that are or have not been visible and
accurately estimated. The switching function s3, j becomes
equal to 1 only when none of the terms J, J1, J2 can lead to
a further improvement due to the j-th AXV, i.e.,

s3(ti ) =
{
0 if(Condition <>)

K3 otherwise
(15)

Condition <>= ∣∣AL , j (ti−1)
∣∣ − ∣∣AL , j (ti−2)

∣∣ ≤ ε1
and
|J1,i (ti−1) − J1, j (ti−2)| ≤ ε2
and
|J2, j (ti−1) − J2, j (ti−2)| ≤ ε3

4.3.4 Performance of the final form of the objective function

Figure 2 highlights the impact of each term of the objective
function. It’s worth noting that the simulation setup was kept
the same for all the experiments, as explained in Sect. 4.3.
A conclusion that arises through the study of the results is
the observation that the second term (see “Move towards the
closest unexplored areas”) strongly improves the overall per-
formance. The rest of the terms are employed to guarantee the
overall system’s robustness, making it less vulnerable to the
system’s uncertain parameters such as the terrain’s morphol-
ogy and/or the initial arrangement of the landmark estimates.
It is remarkable that in certain experiments, e.g. the one with
1100 landmarks on Map #1 with 500 candidate vectors for
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OSARSES, the exploration process managed to accurately
estimate the 98.2% of the required landmarks, obtaining an
improvement of 700% as compared to the choice J = J .
Summarizing, the non-practically feasiblemethodOSARSES
under the choice (9) for the objective function can provide
with quite efficient solutions under the condition that the
number of candidate vectors for OSARSES is sufficiently
large.

4.3.5 Theoretical analysis of J

Apart from the numerical results that exhibit the efficient
performance under the choice (9), it can be seen that such
a choice leads to deadlock-free solutions and, moreover,
the solutions obtained by one-step-ahead maximization this
function are efficient. Such a claim is formally stated in the
next Theorem.

Theorem 1 The objective function J as defined in (9)
attains one and only maximum (i.e., it is free of local max-
ima). More precisely, its global maximum is attained when
all the landmarks have been accurately estimated (i.e., when
the overall map construction mission is successfully accom-
plished). Moreover, one-step-ahead maximazation of this
function guarantees efficient performance of the overall nav-
igation/exploration mission. More precisely, let us consider
the three different sub-teams of the overall AXV team:

– the sub-team (A) which includes all AXVs of the team for
which there are landmarks within their vicinity that can
be accurately estimated;

– the sub-team (V) which includes all AXVs of the team
for which there are landmarks within their vicinity that
cannot become accurately estimated but they can become
visible;

– the sub-team (I) which includes all AXVs of the team for
which there are neither landmarks within their vicinity
that can become accurately estimated nor landmarks that
can become visible.

Then, one-step-ahead maximization of J implies that (a)
the sub-team (A) will be cooperatively navigated so as to
maximize the number of landmarks to become estimated;
(b) the sub-team (V) will be cooperatively navigated so as
to maximize the estimation accuracy of the landmarks to
become accurately estimated; (c) the sub-team (I) will be
cooperatively navigated to the closest to each AXV non-
explored areas.

The proof of the above Theorem is straightforward as the
functions J, J1, J2, J3 were designed so as to satisfy the per-
formance mentioned in the Theorem.

5 Cognitive adaptive optimization for autonomous
multi-robot AXV navigation/exploration

Apart from the theoretical contribution about the construc-
tion of an objective function, the approximation ofwhichwill
be sufficient enough to navigate a team of AXVs in order
to accurately map an unknown environment, our advantage
against the majority of one-step-ahead optimal algorithms is
that we utilize a more realistic approach where the actual
evaluation of the objective function is not available at each
timestep, only an approximation of it based on historical
values. In essence, the actual objective/reward function at
each timestep is highly depended on the morphology of the
unknown (to be mapped) area and its evaluation without the
actual movement should not considered trivial.

5.1 Preliminaries: problem conceptualization

Having defined the active exploration criterion, we will
now proceed on presenting the proposed algorithm for
autonomously navigating the AXVs towards maximizing
such a criterion. The algorithm to be used is based on the
so called Cognitive-based Adaptive Optimization (CAO)
approach originated in the references Kosmatopoulos et al.
(2007), Kosmatopoulos (2009), and Kosmatopoulos and
Kouvelas (2009).CAOhas beenused in the past in a variety of
robotics related applications, including implementations in
aerial and ground robots, as described in details in Renzaglia
et al. (2012), Doitsidis et al. (2012), and Amanatiadis et al.
(2013). The version of the CAO algorithm used within the
proposed approach, takes the same form and extends the one
presented and formaly analysed in Renzaglia et al. (2012).

Below, we provide the main details of the CAO algorithm
as employed in the framework of the active exploration prob-
lem. Please note that the only difference between the CAO
approach used for the multi-robot optimal surveillance cov-
erage problem (Renzaglia et al. 2012; Doitsidis et al. 2012)
and the one used here lies in the use of a different optimiza-
tion criterion which, in turn, leads to different performance
metrics (as detailed in Theorem 2 below).

We start by noticing that the active exploration criterion
(Eq. 9) is a function of the AXVs positions, i.e.,

jti = J
(
XR
ti

)
(16)

where t1, t2, t3, . . . denotes the time-index, jti denotes the
value of the active exploration criterion at the ti -th time-step,
XR
ti denote the position vectors of the AXVs (see Sect. 3.2),

and J is a non-linear function which depends—apart from
the AXVs positions – on the particular environment where
the AXVs operate (e.g., position of landmarks).
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Due to the dependence of the function J on the par-
ticular environment characteristics, the explicit form of the
function J is not known in practical situations; as a result,
standard optimization algorithms (e.g., steepest descent) are
not applicable to the problem in hand.However, inmost prac-
tical cases, like the one treated in this paper, the current value
of the active exploration criterion can be estimated from the
AXVs sensor measurements. In other words, at each time-
step ti , an estimate of jti is available through AXVs sensor
measurements,

jnti = J
(
XR
ti

)
+ ξti (17)

where jnti denotes the estimate of jti and ξti denotes the noise
introduced in the estimation of Jti due to the presence of noise
in the AXVs sensors. Please note that, although it is natural
to assume that the noise sequence ξti is a stochastic zero-
mean signal, it is not realistic to assume that it satisfies the
typical Additive White Noise Gaussian (AWNG) property
even if the AXVs sensor noise is AWNG: as J is a non-
linear function of the AXVs positions (and thus of the AXVs
sensor measurements), the AWNG property is typically lost.

Apart from the problem of dealing with a criterion for
which an explicit form is not known but only its noisy
measurements are available at each time, efficient AXV nav-
igation algorithms have additionally to deal with the problem
of restricting the AXVs positions so that obstacle avoidance
and communication constraints are met. In other words, at
each time-instant ti , the vector XR

ti should satisfy a set of
constraints which, in general, can be represented as follows:

C
(
XR
ti

)
≤ 0 (18)

where C is a set of non-linear functions of the AXVs posi-
tions. As in the case of J , the function C depends on
the particular environment characteristics (e.g., location of
obstacles, terrain morphology) and an explicit form of this
function may be not known in many practical situations;
however, it is natural to assume that the active exploration
algorithm is provided with information whether a particular
selection of AXVs positions satisfies or violates the set of
constraints (18).

Given the mathematical description presented above, the
active exploration problem can be mathematically described
as the problem of movingXR

ti to a set of positions that solves
the following constrained optimization problem:

maximize jti
subject to C (

XR
ti

) ≤ 0 .
(19)

As already noticed, the difficulty in solving, in real-time
and in real-life situations, the constrained optimization prob-
lem (19) lies in the fact that explicit forms for the functionsJ

andC are not available. To circumvent this difficulty, theCAO
approach of Kosmatopoulos (2009), appropriately modified
the original CAO algorithm so as to be applicable to the prob-
lem in hand.

5.2 Main steps of CAO approach

Algorithm 2 One time-stamp of Cognitive Adaptive Opti-
mization Algorithm

jnt(i)
− XR

t(i)
//update look-up/history tables with the previously eval-

uated pair

ϑti+1 = argmin
ϑ

1
2

∑ti
�=�ti

(
jn� − ϑτ φ

(
XR

�

))2
//Recalibrate the estima-

tor’s characteristics
Randomly Generate XR,cand (ti+1)

Exclude the ones that violates the environmental and communication
constraints XR,cand

valid (ti ) ⊆ XR,cand (ti+1)

c ← 0
while c ≤ |cand| do
Ĵc ← ϑτ

ti+1
φ

(
XR,cand(c)

valid (ti+1)
)
//Approximate the objective func-

tion value for every valid movement
c ← c + 1

end while
imax ← argmax(Ĵ )

XR, f inal(ti+1) ← XR,cand(imax)
valid (ti+1)

As a first step, the CAO approach, which its pseudo-code
is illustrated in Algorithm 2, makes use of function approxi-
mators for the estimation of the unknown objective function
J at each time-instant k according to

ĵti

(
XR
ti

)
= ϑτ

ti φ
(
XR
ti

)
. (20)

Here ĵti
(
XR
ti

)
denotes the approximation/ estimation of J

generated at the ti -th time-step, φ denotes the non-linear vec-
tor of L regressor terms, ϑti denotes the vector of parameter
estimates calculated at the ti -th time-instant and L is a pos-
itive user-defined integer denoting the size of the function
approximator (20). The vector φ of regressor terms must be
chosen so that it is a universal approximator, such as poly-
nomial approximators, radial basis functions, kernel-based
approximators, etc.

The parameter estimation vector ϑti is calculated accord-
ing to

ϑti = argmin
ϑ

1

2

ti−1∑
�=�ti

(
jn� − ϑτφ

(
XR

�

))2
(21)

where �ti = max{0, ti −L−Th}with Th being a user-defined
nonnegative integer. Standard least-squares optimization
algorithms can be used for the solution of (21).
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As soon as the estimator (jn� is constructed according
to (20), (21), the set of new AXVs positions is selected as
follows: firstly, a set of N candidate AXVs positions is con-
structed according to5

xi, jti = x (i)
ti + αti ζ

i, j
ti , i ∈ {1, . . . , NR}, j ∈ {1, . . . , N } ,(22)

where xi, jti denotes the i-th element of XR
ti , ζ

i, j
ti is a zero-

mean, unity-variance random vector with dimension equal
to the dimension of XR

ti and αti is a positive real sequence
which satisfies the conditions:

lim
i→∞ αti = 0,

∞∑
i=1

αti = ∞,

∞∑
i=1

α2
ti < ∞ . (23)

Among all N candidate new positions x1, jti , . . . , xNR , j
ti , the

ones that correspond to non-feasible positions—i.e., the ones
that violate the constraints (18)—are neglected and then the
new AXVs positions are calculated as follows:

[
XR
ti+1

]
= argmax

j ∈ {1, . . . , N }
XR, j
ti not neglected

Ĵti

(
XR, j
ti+1

)

The idea behind the above logic is simple: at each time-
instant a set of many candidate new AXVs positions is
generated. The candidate, among all feasible ones, that pro-
vides the best estimated value ĵti of the objective function
is selected as the new set of AXVs positions. The random
choice for the candidates is essential and crucial for the effi-
ciency of the algorithm, as such a choice guarantees that Ĵti
is a reliable and accurate estimate for the unknown function
J ; seeKosmatopoulos (2009), andKosmatopoulos andKou-
velas (2009) for more details. On the other hand, the choice
of a slowly decaying sequence αti , a typical choice of adap-
tive gains in stochastic optimization algorithms is essential
for filtering out the effects of the noise term ξti [cf. (17)].
The next summarizes the properties of the CAO algorithm
described above; the proof is among the same lines as this of
Theorem 1 of Renzaglia et al. (2012).

Theorem 2 Let XR,opt
ti+1 denote the “step-ahead-optimal”

AXV waypoints, i.e., the feasible waypoints that maximize
J (ti ). Then, the above-described CAO algorithm satisfies:

XR
ti+1 = XR,opt

ti+1 + ε(ti ) + ν

5 According to Kosmatopoulos (2009) and Kosmatopoulos and Kou-
velas (2009) it suffices to choose N to be any positive integer larger
or equal to 2×[the number of variables being optimized by CAO]. In
our case the variables optimized are the robot positions XR

ti and thus it
suffices for N to satisfy N ≥ 2NR × dim

(
XR
ti

)
.

where ε(ti ) vanishes to zero exponentially fast and the term
ν is a constant term that depends on the approximator φ (and
can become as small as desired at the expense of making the
convergence of ε(ti ) slower).

In simple words, the above Theorem states that the CAO-
based approaches become (after some time due to learning)
approximately equal to the optimal-step-ahead ones.

6 Simulation results

In this section, we describe the simulation set-up used for the
analysis presented in Sect. 4 as well as the evaluation of the
proposed CAO-based approach as compared to the practi-
cally infeasible OSARSES-based approach. The simulation
environment for the experiments is described below:

– Simulations conducted using the two different maps
described in detail in 3.4 and presented in 1. For simplifi-
cation the operation area is restricted in the cube [−1, 1]3,
so any value, that is afterwards mentioned, including the
maps, has been casted to this cube.

– The number of AXVs is equal to NR = 3 for the first
set of experiments (Fig. 5) and NR = 10 for the second
(Fig. 6).

– For the communication capacity, we assumed that each
AXV can send and receive up to 10 landmark measure-
ments according to the procedure described in Sect. 3.4.

– For the number of landmarks twodifferent scenarioswere
evaluated. First, we assume that each map consists only
of NL = 1100 landmarks. In the second scenario, we
assume that every point (pixel) of the height-map is a
landmark. In this case,Map #1 includes NL = 7542 land-
marks while Map #2 includes NL = 10500 landmarks.

– The main constraints imposed to the AXVs are that
they remain within the terrain’s limits, i.e., within
[Xmin, Xmax ] and [Ymin,Ymax ] in the x- and y-axes,
respectively. At the same time, AXVs remain within
[z + d, zMax ] along the z-axis, in order to avoid hitting
the terrain. The value of d was equal to 0.05.

– The communication range is set to comRange = 0.3.
– All AXVs were assumed to have range sensors, mea-
suring the AXV distance from the landmark, using the
following equation:

yx R−q =

⎧⎪⎪⎨
⎪⎪⎩

undefined if ‖x R − q‖ ≥ thres
undefined if there is no line-of-

sight between x R and q
‖x R − q‖ (1 + ξ) otherwise

(24)
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Fig. 3 Multi-AXV
navigation/exploration process:
the green area corresponds to
currently visible landmarks, the
brown area (with morphological
characteristics) corresponds to
landmarks that have been
accurately estimated and the red
area corresponds to landmarks
that have never been seen
before. The three big spheres
indicate the communication
range of each AXV (located at
the center of the spheres). a
T = 50. b T = 200. c T = 350.
d T = 500

– Standard weighted least-squares (Ruppert and Wand
1994) was employed for estimated the landmarks, while
perfect localization accuracy was assumed.

– As an overall evaluation criterion for the exploration pro-
cedure (Figs. 5a,c, 6a,c), the number of the Remaining
Landmarks, ie the total number of landmarks that are not
accurately-estimated after the completion of the experi-
ment, will be used. Additionally to that term, and in order
to obtain a better picture about the system’s performance,
we employed an extra evaluation criterion. The objec-
tive of this term is to distinguish between experiments
where their final total number of the Remaining Land-
marks was the same but their estimation progress was

not. This criterion rewards performances that havegreater
landmarks’ estimation ratio over the simulation time,
ensuring to reward performances that achieved a satisfac-
tory function from their early steps of the execution. This
parameter (Figs. 5b, d, 6b,d) corresponds to the summa-
tion of the error in the estimation of total landmarks from
the first time-step to the last one, according to the Eq. 25

Sum_of_Error =
Tmax∑
i=1

||X̂L(ti ) − XL(ti )|| (25)
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Fig. 4 The recorded
trajectories. a The trajectories
recorded during the navigation
on map #1. b The trajectories
recorded during the navigation
on map #2

A set of experiments has been conducted in order to evalu-
ate the performance of the proposed approach. One instance
of the above experiments, using 3 AXVs, has been illustrated
in details, in Fig. 3, where the green area corresponds to
currently visible landmarks, the brown area (with morpho-
logical characteristics) corresponds to landmarks that have
been accurately estimated and the red area corresponds to
landmarks that have never been seen before. The three big
spheres indicate the communication range of each AXV
(located at the center of the spheres). Figure 4 depicts the
trajectories of the 3 AXVs in both maps, with their starting
and ending positions, as theywere calculated by the proposed
CAO approach6.

Overall the results are presented in Fig. 5 for 3 AXVs
and Fig. 6 for 10 AXVs. The results from OSARSES are
marked with the blue bars while the corresponding results of
the CAO-based proposed approach with green ones. In each
figure, the x-axis represents the number of real configurations
that are evaluated at each timestep from the AXVs, before
the finalmovement selection. It is worth highlighting that, the

6 A video footage of this experiment can be found on https://www.
youtube.com/watch?v=menK5tMRw-s.

proposed approach is only located on the bar that corresponds
to 0 real evaluations, as it does not need any actual movement
in order to be able to make its decisions (see Sect. 5).

The results indicate clearly that the CAO approach, can
obtain better performance even from the OSARSES algo-
rithm which uses five real positions before being able to
produce its control decision. Regarding to the 3AXVs exper-
iment (Fig. 5), an improvement of about 79.7 and 24.1% in
MAP#1 aswell as 147.3 and 9% inMAP#2map is achieved,
compared to the OSARSES with 0 and with 5 candidate set
of waypoints ( XR,cand ) respectively. The study of the sum-
mation of error, has further strengthened the conclusions that
the proposed approach outperforms the performance of the
OSARSES in cases of zero and 5 candidate set of waypoints.
Inevitably, in case where the OSARSES uses a large number
of candidate set of real waypoints, it performs better than
CAO. As it is seen in Fig. 6, in case of ten AXVs with
1100 landmarks, the proposed algorithm can scale up well,
retaining its improvements’ levels. Concretely, it achieves an
improvement of about 80.2 and 71.4% in each map respec-
tively (Fig. 6a), with a corresponding improvement in the
summation of error (Fig. 6b). Interestingly, in the scenario
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Fig. 5 Conducted experiments
for three AUVs, for both the
algorithms with 1100 landmarks
and every point as landmark. a
% remaining landmarks. b
Summation of error. c %
remaining landmarks. d
Summation of error

where everypoint of themap is considered as landmark and as
a result afine-grainedmapping is required, the proposed algo-
rithm is able not only to outperform the 0 and 5 real evaluation
cases of OSARSES (acquiring the impressive improvement
of 88.4 and63.8% inMap#1 aswell as 72.3 and40% inMAP
#2 respectively), but also to approximate the performance of
OSARSES with 70 real evaluation per timestep.

The aforementioned result is not out of the blue. As the
number of AXVs and the landmarks is increasing, the 70
real evaluation became a rather insufficient number for the
OSARSES algorithm. Unfortunately, the further increasing
is prohibited even in the simulation test-bed and it will take
forever to statistically remove the randomness of the results.
On the contrary, in the case of CAO approach we are able to
efficiently/securely increase the number of candidates, due
to the fact that

– these candidates are not actually evaluated, so the oper-
ational cost is zero

– even the computational cost to test the candidates on the
CAO’s estimator (Eq. 20) is extremely inferior compared
to the one of OSARSES which has to calculate all the
terms of Eq. 9 for every single candidate configuration.

7 Experimental results

The proposed methodology has been also evaluated through
real-life tests concerning sea-floor mapping of unknown
areas using two autonomous underwater vehicles (AUVs).
The tests were conducted in the Leixes Por, located in the
city of Oporto, Portugal. Next we describe the details of the
experiments.

7.1 System details

Aschematic diagramof the systemdeveloped for implement-
ing the proposed approach is illustrated in Fig. 7.

The entire procedure can be separated into 2 parts: a web-
service one and the client-side part. The web-based interface
undertakes the role of coordinating the AUVs. This service
requires from the operators minimum amount of information
such as the number of the vehicles, so as to begin the pro-
cedure. The web-application was designed to provide the
operators with a general purpose tool through which the
progress of mission is streamlined in real-time. It is worth
noticing that the web-service is compatible with the exist-
ing systems and can be adopted so as to navigate any type
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Fig. 6 Conducted experiments
for 10 AUVs, for both the
algorithms with 1100 landmarks
and every point as landmark. a
% remaining Landmarks. b
Summation of error. c %
remaining landmarks. d
Summation of error

Fig. 7 Flowchart of system
used in the experiments
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of AUV. The web-service produces in every time step the
next optimal position (waypoint) for each AUV, based on the
proposed approach, the landmarks estimates, and the current
position of the AUVs. Next, the new waypoints are trans-
ferred to the client-side part of the application.

The client-side part consists of 2 software: NEPTUS [56]
and DUNE [57]. NEPTUS is a command and control soft-
ware that can be used to plan, simulate, monitor and review
missions executed by AUVs. DUNE is the runtime environ-
ment for vehicle on-board software. It is used towrite generic
embedded software at the heart of the vehicle, e.g. code
for control, navigation, communication, sensor and actuator
access, etc. Through these tools, AUVs receive the informa-
tion about the next waypoint.

When the AUVs reach their respective desired location
and stabilize, they activate their exteroceptive sensors. In
the sequel, the AUVs communicate their sensor measure-
ments together with their exact positions through NEPTUS
and DUNE to the web-service.

Subsequently, the web-service incorporates the actual
positions of the AUVs into the proposed model as well as
updates the landmarks estimates, based on the sensor infor-
mation received. A non-linear least squares algorithm is used
perform such an estimation (SLAM) procedure. At the same
time the web-service, based on the sensor measurements and
by a employing a Gaussian based interpolation algorithm,
builds the detailed map. It has to be emphasized here that the
overall procedure fully relies on each AUV “local” localiza-
tion system (i.e., the localization system of each AUV does
not incorporate measurements from the other AUVs) and,
thus, the SLAM system only performs landmark estimation.

7.2 Ground truth: usual practice

Through earlier measurements, observations and calcula-
tions, a detailed map of each region we want to capture
is available. Hereafter, we will refer to this version of the
map as ground truth. To obtain a ground truth map, sev-
eral AUVs have to operate –in a non-cooperative fashion–
for many hours using multi-beam sensors, following a pre-
defined iterative procedure, collecting an enormous amount
of measurements. Apparently, this is a very time consuming
and expensive task. The ground truthmap, mainly due to the
fact that it is considered the best available perception about
the morphology of the seabed, constitutes the reference map,
the one that is going to be used in order to evaluate, in terms
of accuracy, the exploration’s results of alternative, feasible
methodologies

Simultaneously, several usual practice versions of each
map are also available. These maps were captured using the
today’s usual practice for the exploration of unknown under-
water environments. According to this approach, the AUVs
are following a predefined trajectory collecting data from the

seabed using a specific sampling rate, until a predefine time.
This methodology despite its simplicity, holds many advan-
tages, that have established its usage in the most real-life
exploration/coverage missions:

– predictability (a-priori information about the morphol-
ogy of the area can be easily incorporated in the global
plan by designer).

– it does not require any online communication link -the
paths are predefined and the measurements are gathered
at the completion of the experiment - between them or
ground/vessel station, minimizing the energy consump-
tion.

– fully-coverage is guaranteed.
– The navigation-scheme (straight lines) enhances the
localization accuracy.

On the other hand, the usual practice has some vital draw-
backs that limit its performance:

– The navigation scheme is constant, dealing the same way
(number of samples), sub-areas with different height dis-
crepancies or in more abstract terms with different kind
of importance.

– For realistic time/energy consuming missions, there is
always a risk of completely missing some important sub-
part of the area, which is located between the AUV’s
paths.

– The coordination/cooperation of more than one AUV is
not trivial and in the most cases does not taking into
consideration the initial positions of the AUVs.

– Human intervention is necessary to appropriately define
the multi-robots’ not-overlapping routes.

It is emphasized that the proposed approach does not use
any information from the ground truthmap or the usual prac-
tice map. Both these two maps (usual practice and ground
truth) are needed for evaluation purposes.

7.3 Experiments in Oporto’s harbor

The objective of the experiments is to build a detailed map of
two different sub-areas of the Oporto’s harbor (Fig. 8a). To
accomplish such a mission, in each case, 2 AUVs (Fig. 8c)
are deployed equipped with single beam bathymeter sensor.
It’s worth mentioning that such sensors provide us a small
amount of information about the sub-region where the AUVs
are deployed, practically only one point.

The experimental environment can be described as fol-
lows:

– In both cases the map is a square area with dimensions
equal to 100 × 100 meters.
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Fig. 8 The available
modules(hardware/software) for
real-word experiment. a
Deploying area, Oporto harbor.
b Neptus—Command and
Control Software. c
Autonomous underwater
vehicle. d AUV in operation
mode

– The number of AUVs is equal to NR = 2.
– The AUVs are moving within the terrain’s limits, i.e.,
within [Xmin, Xmax ] and [Ymin,Ymax ] in the x- and y-
axes, respectively. Each AUV remain in constant z so as
to neglect any collision possibility.

– Experiment contacted for T = 500 time-steps.

In each time step, the web-service navigates the AUVs
to the next desired position through the NEPTUS (Fig. 8b)
application and builds the detailed map. Overall, upon com-
pletions of the procedure, 500 × 2 single beam bathymeter
sensor measurements are available, in order to form the high
detailed version of the observable area. Figures 9 and 10
illustrate the ground truth, the usual practice, as well as the
generated, from the Proposed CAO-based Approach, version
of the maps for the 2 areas on with we performed the exper-
iments respectively. The first map, will be referred hereafter
as #Sharp_Surface while the second one as #Slop_Surface.7

In order to evaluate the effectiveness of the proposed
approach, we calculate the L2-Norm8, between the ground
truth and the usual practice map as well as between the

7 Please note that both interpolated versions of usual practice present
some ridges along the constructed terrain. These ridges correspond to
the areas where the AUVs traversed and therefore the samples’ concen-
tration is greater than the rest of the terrain.
8 In order to implement this, at first we discretize, with a sufficient small
step, the areas to be compared and afterwords we apply the L2-Norm
on the vectorized versions of the sampled areas.

ground truth and the Proposed Approach map. Alongside
the accuracy of the Proposed Approach map, we also eval-
uate the reliance of the proposed approach on the number
of measurements. The results are depicted in Tables 2 and
3. Apart from the estimation-accuracy, expressed in terms of
euclidean norm, we display the number of points (measure-
ments) that were used, to present an overview about the total
work that is needed in each case.

As one can see, the proposed approach, using only 1000
measurements (86.7% reduction in the #Sharp_Surface and
77.8% in the #Slop_Surface), is able to construct a map with
more than 32% accuracy in the first case and 2.1% in the
second, as compared to the today’s usual practice.

8 Conclusions

A novel method for dealing the problem of exploring an
unknown area using multi-AXV teams under environmen-
tal and communication constraints, while simultaneously
building a detailed map of the environment has been pro-
posed.Based on this approachwe are transforming a standard
trajectory generation problem so as to optimize a trans-
formedversionof trajectorygeneration efficiency, employing
CAO algorithm. The methodology proposed is independent
of requirements regarding operational characteristics of the
robots like communication range and type of sensors.
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Fig. 9 Ground truth, usual
practice and produced by the
proposed approach map
employing two AUVs for
#Sharp_Surface Map. a Ground
truth Map. b Usual Practice
Map. c proposed approach Map
based on 1000 samples
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Fig. 10 Ground truth, usual
practice and produced by the
proposed approach Map
employing 2 AUVs for
#Slop_Surface. a Ground truth
Map. b usual practice Map. c
proposed approach Map based
on 1000 samples
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Table 2 L2-Norm and number of samples, between the ground truth
version of the #Sharp_Surface map vs the proposed approach (cao-
generated) map and the usual practice map

Approach Number of
samples

% of samples, w.r.t.
ground truth (27961
samples)

L2-norm
accuracy

Proposed 1000 3.58 609.88

Usual 7503 26.83 900.27

Table 3 L2-Norm and number of samples, between the ground truth
version of the #Slop_Surface map vs the proposed approach (cao-
generated) map and the Usual Practice map

Approach Number
of samples

% of samples, w.r.t.
ground truth
(35846 samples)

L2-norm
accuracy

Proposed 1000 2.79 828.17

Usual 4509 12.58 846.24

Additionally, the proposed scheme, in relation to the vast
majority of the optimal/dynamic programming approaches,
takes into account the non-linear characteristics of the AXVs
sensors and the fact that the operation area is unknown. In
a nutshell, the proposed methodology aims to bridge the
gap between the state-of-the-art algorithms and the actual
practices, by successfully navigating theAXVs through envi-
ronments, where the objective/reward function cannot be
calculated a-priori, due to the afore-mentioned reasons.

The applicability and adaptability of our approach in real-
istic scenarios has been demonstrated through simulated and
real-life underwater sea-floor mapping experiments in the
port of Porto, Portugal using a team of AUVs. The pro-
posed approach is independent of the SLAM methodology
employed since it is based on the approach “to do the best
it can be done” based on the current configuration, given
the communication/sensing/SLAM system, allowing even
cases where the multi-robot team comprises of vehicles with
mutually different sensing capabilities or operating different
SLAM algorithms.

With an outlook to the future work, we consider incor-
porating the localization problem to our decision making
mechanism. The proposed approach can be safely classi-
fied under the spectrum of the optimization based ones.
These algorithms allow to interface additionally/secondary
objectives, by appropriately modifying/revising the perfor-
mance criterion. Moreover, we will focus our efforts on the
development of an approach that will primarily retain all
the achievements of the proposed method (operate under
unknown terrain, without actual evaluate the candidate con-
figurations, etc.), but at the same time will able to provide
near-globally-optimal solutions for all the experiment’s hori-
zon and not only for the next timestep. In order to build

such a non-greedy algorithm, we should apply an offline
learning scheme where the algorithm will translate the sen-
sors’ measurements into new commands/AXVs directions,
by applying some transformation on them, that has been
learnt from numerus simulation or/end real-life experiments.

Acknowledgments The research leading to these results has received
funding from the European Communities Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant Agreement No. 270180 (NOP-
TILUS).

References

Birk, A., Pfingsthorn, M., & Bülow, H. (2012). Advances in under-
water mapping and their application potential for safety, security,
and rescue robotics. In IEEE International Symposium on Safety,
Security, Rescue Robotics (SSRR). IEEE Press.

Reed, S., Wood, J., & Hawort, C. (2010). The detection and disposal
od ied devices within harbor regions using auvs, smart rovs and
data processing/fusion technology. In 2010 international Water-
side Security Conference (WSS), (pp. 1–7).

Rodningsby, A., & Bar-Shalom, Y. (2009). Tracking of divers using
probabilistic data association filter with a bubble model. IEEE
Transactions on Aerospace and Electronic Systems, 45(3), 1181–
1193.

Kessel, R. T., & Hollett, R. D. (2006). Underwater intruder detection
sonar for protection: State of the art review and implementations.
In IEEE International Conference on Technologies for Homeland
Security and Safety.

Murphy, R., Steimle, E., Hall, M., Lindemuth, D., Trejo, D., Hurlebaus,
Z.,Medina-Catina, Z.,&Slocum,D. (2009). Robot-assisted bridge
inspection after hurricane ike. In 2009 International Workshop on
Safety, Security and Rescue Robotics (SSRR), (pp. 1–5).

Roman, C., & Mather, R. (2010). Autonomous underwater vehicles as
tools for deep-submergence archaeology. Proceedings of the Insti-
tution of Mechanical Engineers, Part M: Journal of Engineering
for the the Maritime Environment, 224, 327–340.

DeVault, J. (2000). Robotic system for underwater inspection of bridge
piers. IEEE Instrumentation and Measurement Magazine, 3(3),
32–37.

Blondel, P. (2008). A review of acoustic techniques for habitatmapping.
Hydroacoustics, 11, 29–38.

Khurshid, J., & Bing-rong, H. (2004). Military robots—a glimpse from
today and tomorrow. In ICARCV 2004 8th International Confer-
ence on Control, Automation, Robotics and Vision Conference,
2004, (Vol. 1, pp. 771–777).

Samad, A. M., Kamarulzaman, N., Hamdani, M. A., Mastor, T. A.,
& Hashim, K. A. (2013). The potential of unmanned aerial vehi-
cle (uav) for civilian and mapping application. In 2013 IEEE 3rd
International Conference on System Engineering and Technology
(ICSET), (pp. 313–318).

Kosmatopoulos, E. B., Papageorgiou, M., Vakouli, A., & Kouvelas,
A. (2007). Adaptive fine-tuning of nonlinear control systems with
application to the urban traffic control strategy tuc. IEEE Transac-
tions on Control Systems Technology, 15(6), 991–1002.

Kosmatopoulos, E. B. (2009). An adaptive optimization scheme with
satisfactory transient performance. Automatica, 45(3), 716–723.

Kosmatopoulos, E. B., & Kouvelas, A. (2009). Large-scale nonlinear
control system fine-tuning through learning. IEEE Transactions
Neural Networks, 20(6), 1009–1023.

Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B.
(2012).Multi-robot three-dimensional coverage of unknownareas.
The International Journal of Robotics Research, 31(6), 738–752.

123



Auton Robot

Martijn, N. (2007). Rooker and Andreas Birk. Multi-robot exploration
under the constraints of wireless networking.Control Engineering
Practice, 15(4), 435–445.

Pfingsthorn, M., Birk, A., & Bulow, H. (2010). An efficient strategy for
data exchange in multi-robot mapping under underwater commu-
nication constraints. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), (pp. 4886–4893). IEEE.

Johnson, B., Hallin, N., Leidenfrost, H., O’Rourke, M., & Edwards, D..
(2009). Collaborative mapping with autonomous underwater vehi-
cles in low-bandwidth conditions. In OCEANS 2009-EUROPE,
(pp. 1–7). IEEE.

Rajala, A., & Edwards, D. (2007). Allocating auvs for mine map devel-
opment in mcm. IEEE.

Donald, Bruce, Xavier, Patrick, Canny, John, &Reif, John. (1993). Kin-
odynamic motion planning. Journal of the ACM (JACM), 40(5),
1048–1066.

Pasqualetti, Fabio, Franchi, Antonio, & Bullo, Francesco. (2012). On
cooperative patrolling: Optimal trajectories, complexity analysis,
and approximation algorithms. IEEE Transactions on Robotics,
28(3), 592–606.

Ny Le J., & Pappas, G. J. (2009). On trajectory optimization for active
sensing in gaussian process models. In Proceedings of the 48th
IEEE Conference on Decision and Control, 2009 held jointly with
the 2009 28th Chinese Control Conference. CDC/CCC 2009, (pp.
6286–6292). IEEE.

Milam, M. B., Mushambi, K., & Murray, R. M. (2000). A new compu-
tational approach to real-time trajectory generation for constrained
mechanical systems. In Proceedings of the 39th IEEE Conference
on Decision and Control, 2000, (Vol. 1, pp. 845–851). IEEE.

Kelly, Alonzo, & Nagy, Bryan. (2003). Reactive nonholonomic trajec-
tory generation via parametric optimal control. The International
Journal of Robotics Research, 22(7–8), 583–601.

Low, K. H., Dolan, J. M., & Khosla, P. (2011). Active markov
information-theoretic path planning for robotic environmental
sensing. In The 10th International Conference on Autonomous
Agents and Multiagent Systems, Vol. 2, (pp. 753–760). Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.

Tabuada, Paulo, & Pappas, George J. (2005). Hierarchical trajectory
refinement for a class of nonlinear systems. Automatica, 41(4),
701–708.

Msechu, Eric J, Roumeliotis, Stergios I, Ribeiro, Alejandro, &
Giannakis, Georgios B. (2008). Decentralized quantized kalman
filtering with scalable communication cost. IEEE Transactions on
Signal Processing, 56(8), 3727–3741.

Zhou, Ke, & Roumeliotis, Stergios I. (2011). Multirobot active target
tracking with combinations of relative observations. IEEE Trans-
actions on Robotics, 27(4), 678–695.

Feder,Hans Jacob S, Leonard, John J,&Smith, Christopher M. (1999).
Adaptive mobile robot navigation and mapping. The International
Journal of Robotics Research, 18(7), 650–668.

Bourgault, F., Makarenko, A., Williams, S. B., Grocholsky, B., &
Durrant-Whyte, H. F. (2002). Information based adaptive robotic
exploration. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2002, (Vol. 1, pp. 540–545). IEEE.

Stachniss, C., & Burgard,W. (2003). Exploring unknown environments
with mobile robots using coverage maps. In Proceedings of the
International Conference on Artificial Intelligence (IJCAI).

Spletzer, J. R., & Taylor, C. J. (2003). Dynamic sensor planning and
control for optimally tracking targets. The International Journal
of Robotics Research, 22(1), 7–20.

Beard, Randal W, McLain, Timothy W, Goodrich, Michael A, &
Anderson, Erik P. (2002). oordinated target assignment and inter-
cept for unmanned air vehicles. IEEE Transactions on Robotics
and Automation, 18(6), 911–922.

Nesterov, Y. (2007). Gradient methods for minimizing composite
objective function. CORE Discussion Papers 2007076, Univer-
sit catholique de Louvain, Center for Operations Research and
Econometrics (CORE).

Rathnam, Ravi Kulan, &Birk, Andreas. (2013). A distributed algorithm
for cooperative 3d exploration under communication constraints.
Paladyn, Journal of Behavioral Robotics, 4(4), 223–232.

Fox, Dieter, Ko, Jonathan, Konolige, Kurt, Limketkai, Benson, Schulz,
Dirk, & Stewart, Benjamin. (2006). Distributed multirobot explo-
ration and mapping. Proceedings of the IEEE, 94(7), 1325–1339.

DeHoog, J., Cameron, S.,&Visser, A.. (2009). Role-based autonomous
multi-robot exploration. In Future Computing, Service Computa-
tion, Cognitive, Adaptive, Content, Patterns, 2009. COMPUTA-
TIONWORLD’09. Computation World:, (pp. 482–487). IEEE.

Freda, L., & Oriolo, G. (2005). Frontier-based probabilistic strategies
for sensor-based exploration. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, 2005, (pp.
3881–3887). IEEE.

Burgard, W., Moors, M., Fox, D., Simmons, R., & Thrun, S. (2000).
Collaborative multi-robot exploration. In Proceedings of the 2000
IEEE International Conference on Robotics and Automation,
ICRA’00, (Vol. 1, pp. 476–481). IEEE.

Yamauchi, B. (1998). Frontier-based exploration using multiple robots.
In Proceedings of the Second International Conference on
Autonomous Agents, (pp. 47–53). ACM.

Kavraki, Lydia E, Svestka, Petr, Latombe, J.-C., & Overmars,
Mark H. (1996). Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on Robotics
and Automation, 12(4), 566–580.

Kavraki, E. E., Kolountzakis, Mihail N, & Latombe, J.-C. (1998).
Analysis of probabilistic roadmaps for path planning. IEEE Trans-
actions on Robotics and Automation, 14(1), 166–171.

Prentice, S.,&Roy,N. (2009). The belief roadmap: Efficient planning in
belief space by factoring the covariance. The International Journal
of Robotics Research.

Kuffner, J. J., LaValle, S. M. (2000). Rrt-connect: An efficient approach
to single-query path planning. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, 2000, Proceed-
ings. ICRA’00, (Vol. 2, pp. 995–1001). IEEE.

LaValle, Steven Michael. (2006). Planning algorithms. Cambridge:
Cambridge university press.

Valencia, R., Andrade-Cetto, J., & Porta, J. M. (2011). Path planning in
belief space with pose slam. In 2011 IEEE International Confer-
ence on Robotics and Automation (ICRA), (pp. 78–83). IEEE.

Birk, Andreas, & Carpin, Stefano. (2006). Merging occupancy grid
maps frommultiple robots. Proceedings of the IEEE, 94(7), 1384–
1397.

Kollar, Thomas,&Roy,Nicholas. (2008). Trajectory optimization using
reinforcement learning for map exploration. The International
Journal of Robotics Research, 27(2), 175–196.

Martinez-Cantin, Ruben, de Freitas, Nando, Brochu, Eric, Castel-
lanos, José, & Doucet, Arnaud. (2009). A bayesian exploration-
exploitation approach for optimal online sensing and planningwith
a visually guided mobile robot. Autonomous Robots, 27(2), 93–
103.

Peng, Wu, Suzuki, Hiromasa, & Kase, Kiwamu. (2005). Model-based
simulation system for planning numerical controlled multi-axis 3d
surface scanning machine. JSME International Journal Series C,
48, 748–756.

Doucet, A. (1998). On sequential simulation-based methods for
bayesian filtering. Technical report.

Doitsidis, L.,Weiss, S., Renzaglia,A.,Achtelik,M.W.,Kosmatopoulos,
E. B., Siegwart, R., et al. (2012). Optimal surveillance coverage for
teams of micro aerial vehicles in gps-denied environments using
onboad vision. Autonomous Robots, 33(1–2), 173–188.

123



Auton Robot

Renzaglia, A., Doitsidis, L., Chatzichristofis, S. A., Martinelli, A., &
Kosmatopoulos, E. B. (2013). Distributed multi-robot coverage
using micro aerial vehicles. In 21st Mediterranean Conference on
Control and Automation (pp. 963–968). MED13 Greece: Chania.

Agile project’s website.
Amanatiadis, A., Chatzichristofis, S. A., Charalampous, K., Doitsidis,

L., Kosmatopoulos, E. B., Tsalides, P., et al. (2013). A multi-
objective exploration strategy for mobile robots under operational
constraints. IEEE Access, 1, 691–702.

Ruppert, D., &Wand, M. P. (1994). Multivariate locally weighted least
squares regression. The Annals of Statistics, (pp. 1346–1370).

LSTS lab. Neptus Command and Control Software. http://lsts.fe.up.pt/
software/neptus.

LSTS lab.DUNE: Unified Navigation Environment. http://lsts.fe.up.pt/
software/dune.

Athanasios Ch. Kapoutsis
graduated from the Department
of Electrical andComputer Engi-
neering of the Democritus Uni-
versity of Thrace (D.U.Th.)
(2007–2012). He is currently a
PhD candidate at the Automatic
Control Systems and Robotics
Lab at the same department, as
well as research assistant with
the Centre for Research and
Technology Hellas, Information
Technologies Institute, Thessa-
loniki, Greece. During the past
years, he has been involved in

several EU FP7 and H2020 funded IP Research and Development
projects. His research is mainly focused on robotics, machine intel-
ligent, nonlinear and adaptive control, pattern recognition and image
processing.

Savvas A. Chatzichristofis
received the Diploma and Ph.D.
degrees from the Department of
Electrical and Computer Engi-
neering, Democritus University
of Thrace, Xanthi, Greece, in
2005 and 2010, respectively.
He is currently a postdoctoral
researcher with the Democritus
University of Thrace, as well as
a post-doctoral researcher with
the Centre for Research and
Technology Hellas, Information
Technologies Institute, Thessa-
loniki, Greece. During the past

years, he has been involved in several EU FP6, FP7 and H2020 funded
IP and STReP Research and Development projects.

Lefteris Doitsidis received his
diploma degree from the Produc-
tion Engineering and Manage-
ment Department of the Techni-
cal University of Crete, Chania,
Greece, in 2000, 2002 and 2008,
respectively. From 2002 to 2008,
he has been a researcher at the
Intelligent Systems and Robotics
Laboratory of the same depart-
ment. From August 2003 to June
2004 he was a visiting scholar at
theDepartment ofComputer Sci-
ence and Engineering, Univer-
sity of South Florida, FL, USA.

He was a member of the Center of Robot Assisted Search and Rescue.
He was an adjunct senior researcher at the Informatics & Telematics
Institute of Greece, CERTH, from 2010 until 2013. Currently he is
an Assistant Professor at the Department of Electronic Engineering of
the Technological Educational Institute of Crete, Greece. During the
past years he has been involved in various research projects related
to multi robot teams applications, funded by the EU. His research
interests lie in the areas of multi robot teams, design of novel control
systems for robotic applications, autonomous operation and navigation
of unmanned vehicles, cooperative control and optimization. He is also
active in the areas of fuzzy logic and evolutionary computation.

João Borges de Sousa is a lec-
turer at the Electrical and Com-
puter Engineering Department
at Porto University in Portugal
and the director of the Under-
water Systems and Technologies
(LSTS) Laboratory at Porto Uni-
versity. He received the M. Sc.
degree in Electrical and Com-
puter Engineering from Porto
University in 1992. He did his
Ph.D. studies under the supervi-
sion of Prof. Pravin Varaiya from
the University of California at
Berkeley. His research interests

include unmanned vehicle systems, networked control, control and
coordination of multiple dynamic systems, hybrid systems, systems
engineering, and control architectures for multi-vehicle systems. Since
1997 he has been leading the design, implementation and deployment
of advanced unmanned vehicle systems in projects funded by the Por-
tuguese Foundation for Science and Technology, Nato and the EU, in
Europe, and by ONR and DARPA in the US. In 2006 he received the
national BES Innovation National Award for the design of the Light
Autonomous Underwater Vehicle. In 2007 he received an outstanding
teaching award from Porto University. He authored more than 200 pub-
lications, including 30 journal papers.

123

http://lsts.fe.up.pt/software/neptus
http://lsts.fe.up.pt/software/neptus
http://lsts.fe.up.pt/software/dune
http://lsts.fe.up.pt/software/dune


Auton Robot

Jose Pinto has a B.Sc. in Com-
puter Science a postgraduate
diploma in Software Engineer-
ing both from Porto Univer-
sity. Currently he is pursuing
a Ph.D. degree on the topic
“multi-robot coordination and
planning”. His main research
activities at LSTS (Underwater
Systems and Technology Lab-
oratory) are on mixed-initiative
planning interfaces, onboardplan
deliberation andmulti-agent sys-
tems.

Jose Braga has a M.Sc. in
EletronicsEngineering fromUni-
versity of Porto (FEUP). He
works as a software devel-
oper/reseacher at LSTS (Under-
water Systems and Technology
Laboratory) in FEUP, Portugal.
His main activities focus on
autonomous vehicles on-board
software, navigation and sen-
sor integration. In recent years
José was involved in several
experiments at sea using LSTS
unmanned autonomous systems.

EliasB.Kosmatopoulos received
the Diploma, M.Sc. and Ph.D.
degrees from the Technical Uni-
versity of Crete, Greece, in 1990,
1992, and 1995, respectively. He
is currently an Associate Pro-
fessor with the Department of
Electrical and Computer Engi-
neering, Democritus University
of Thrace, Xanthi, Greece. Pre-
viously, he was a faculty mem-
ber of the Department of Pro-
duction Engineering and Man-
agement, TechnicalUniversity of
Crete (TUC), Greece, a Research

Assistant Professor with the Department of Electrical Engineering-
Systems, University of Southern California (USC) and a Postdoctoral
Fellow with the Department of Electrical & Computer Engineering,
University of Victoria, B.C., Canada. Dr. Kosmatopoulos’ research
interests in the areas of nonlinear and adaptive control, robotics, energy-
efficient buildings and intelligent transportation systems. He is the
author of over 40 journal papers. He has been currently leading many
research projects funded by the European Union with a total budget of
about 10 Million Euros.

123

View publication statsView publication stats

https://www.researchgate.net/publication/284068926

	Real-time adaptive multi-robot exploration with application to underwater map construction
	Abstract
	1 Introduction
	2 Related work and positioning
	2.1 Optimal control/dynamic-programming techniques
	2.2 Optimal one-step-ahead/Greedy approaches
	2.3 Sampling-based approaches
	2.4 Simulation-based approaches

	3 The set-up
	3.1 Optimal quantized map
	3.2 AXVs sensors
	3.3 Aperiodic AXV navigation/communication under communication constraints
	3.4 Distributed cooperative estimation (SLAM) under communication limitations

	4 Autonomous multi-robot AXV navigation/exploration as an optimization problem
	4.1 Optimal navigation/exploration
	4.2 Optimal one-step-ahead navigation/exploration
	4.3 Transforming the optimization problem
	4.3.1 Move towards the closest unexplored areas
	4.3.2 Avoid poor estimation
	4.3.3 The ``curse'' of full knowledge of a local region
	4.3.4 Performance of the final form of the objective function
	4.3.5 Theoretical analysis of mathcalJ


	5 Cognitive adaptive optimization for autonomous multi-robot AXV navigation/exploration
	5.1 Preliminaries: problem conceptualization
	5.2 Main steps of CAO approach

	6 Simulation results
	7 Experimental results
	7.1 System details
	7.2 Ground truth: usual practice
	7.3 Experiments in Oporto's harbor

	8 Conclusions
	Acknowledgments
	References


