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Abstract

The goal of this study is to generate high-resolution sea floor maps using a Side-Scan
Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows.
First, the raw sensor data is corrected by means of a physics-based SSS model. Second,
the data is projected to the sea-floor. The errors involved in this projection are thoroughfully
analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of
each sea-floor region to be observed. This probabilistic information is then used to weight
the contribution of each SSS measurement to the map. Because of these models, arbitrary
map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric
map building method is presented and combined with the probabilistic approach. The result-
ing map is composed of two layers. The echo intensity layer holds the most likely echo
intensities at each point in the sea-floor. The probabilistic layer contains information about
how confident can the user or the higher control layers be about the echo intensity layer
data. Experimental results have been conducted in a large subsea region.

Introduction
Overview

Acoustic sensors (sonars) are the modality of choice in underwater robotics [1-3]. One of these
sensors is the Side-Scan Sonar (SSS) which provides echo intensity profiles of the sea bottom.
Side-Scan Sonars are widely used in sea floor imagery, and should remain in the near future,
basically for economic reasons, but also because of its ease of deployment: in some cases they
have a towfish structure, so there is no need for complex mountings on Autonomous Underwa-
ter Vehicles (AUV), Remotely Operated Vehicles (ROV) or ships.

SSS is used for providing imagery to a wide variety of scientific applications in different
underwater scenarios including deep sea, shallow waters, lakes or rivers.

Geological aspects like tectonic, volcanic or hydrothermal structures, as well as sedimented
areas, among others, have been reported and studied in detail thanks to different sidescan
sonar campaigns carried out in the last twenty years. Blondel in [4] presents a detailed compila-
tion of representative examples using sidescan in such a scientific terrain.
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The extension from geology to biology applications stems from the fact that many studies
report a strong relation between benthic community structure and substrate type [5]. Thus,
marine scientists have used sidescan sonar to assist in mapping and understanding the spatial
extent of seabed habitats and benthic ecosystems.

Acoustic surveys typically cover tens or hundreds of square kilometers, thus conventional
sidescan imagery interpretation made by-eye is hardly feasible and prone to subjectivity. As a
consequence, different alternatives for automatic segmentation of benthic habitat using side-
scan data have been proposed [6-8]. Comparing the output of the algorithms with the habitat
ground truth from grab or video samplings indicates accuracies of the classification strategies
above 80%

Still, the SSS imagery has some properties that jeopardize automated analysis [9]. For exam-
ple, SSS provide misrepresented slices of the sea bottom [10], especially in non-flat terrains.
Moreover, joining these slices to produce dense acoustic maps require accurate sensor pose
data and significant interpolation in most cases. Additionally, SSS, as well as any other kind of
sonar, ensonify the observed region unevenly [11] and, thus, the sensor itself influences the
perception of the sea bottom.

The three aforementioned problems prevent, among others, the use of SSS data to build
large scale sea-floor maps involving complex robot trajectories [12]. In most cases, the AUV is
forced to move through straight transects to reduce the need for accurate localization and data
interpolation. Even in these constrained scenarios some problems arise when trying to fuse
data corresponding to overlapping regions.

A common approach to produce geometrically meaningful maps is the occupancy grid [13].
Although occupancy grids are aimed at distinguishing free and occupied regions, similar
approaches have been applied with relative success in the context of SSS mapping [14, 15].
Unfortunately, the occupancy grid techniques still present some problems when used to con-
struct dense SSS maps. These problems appear because most of the existing occupancy grid
algorithms decompose the high-dimensional mapping problem into a set of one-dimensional
problems, being the value of each cell estimated independently [16].

Proposal

Our goal is to generate high-resolution maps, beyond the SSS resolution, of large sea floor
regions using SSS by explicitly dealing with the aforementioned problems through the follow-
ing four steps.

The first step, the Swath Correction, consists in improving the individual data items pro-
vided by the SSS. This is achieved in three stages. During the first one, the effects of the uneven
ensonification pattern are removed using a physics-based sensor model [11]. Then, the central
region of each data item (the blind zone) is detected and removed as it does not provide useful
information. Afterwards, the data is projected to the actual sea floor. As, in most cases, bathym-
etry is not available, the floor is assumed to be flat to perform such projection. The error due to
this assumption is properly modelled and evaluated, showing at which extent it is affordable.

The second step, localization, consists in estimating the AUV or the SSS pose. To this end,
we use a Doppler Velocity Log (DVL) continuously and a Global Positioning System (GPS)
when the AUV surfaces. The data provided by both sensors is fused using an Extended Kalman
Filter (EKF). In order to deal with different sampling rates between the localization sensors and
the SSS, a constant velocity model is adopted in the EKF prediction step.

During the third step, Probabilistic Map Building, a probabilistic map of the sea floor is
built. This map does not hold information about the structure of the sea floor but about the
probability of each mapped region to be observed by the SSS. To this end, some probabilistic
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SSS models as well as a method to combine the probabilistic information due to different over-
lapping measurements is used. These models share some similarities with the ones presented
in [17] and used in [18, 19] with the following main differences. Our proposal focuses on fusing
probabilistic and echo intensity information whereas the previous proposals were aimed at dis-
carding useless data. Also, our proposal deals with echo intensity vectors whilst the previously
mentioned require a single TOF reading with no echo intensity data.

During the last step, Echo Intensity Map Building, the probabilistic information is combined
with the echo intensity information coming from the SSS to provide a meaningful representa-
tion of the sea floor. The proposed approach produces high resolution maps, even at higher res-
olutions than those of the SSS because it is able to combine the echo intensity information
coming from several SSS measurements gathered at different poses whenever they overlap.

The better the resolution and the precision of the sidescan sonar is, the more accurate are
the automatic classification algorithms results. Hence, the proposal here presented can benefit
scientific applications that use sidescan sonar for mapping and segmentation.

It is important to emphasize that these steps are not executed sequentially, but are sensor
driven: when a new SSS measurement is gathered, it is improved and used to ammeliorate the
probabilistic map and to extend the echo intensity map. When a new GPS or DVL measure-
ment arrives, it is used to update the localization data. Fig 1 summarizes the aforementioned
steps.

As a result of these steps, a map consisting of two layers is built. On the one hand, a probabi-
listic layer. The data in this layer is useful to, for example, help the user or the high-level control
layers to decide which areas have been properly mapped and which ones deserve further re-
observation. On the other hand, an echo intensity layer, which properly fuses all the obtained
echo intensities provided by the SSS.

The novelties in this proposal are the following. First of all, the combination of the afore-
mentioned techniques. For example, the proposed physics-based model to remove the uneven
ensonification pattern has never been used in the context of dense acoustic map building. Also,
the literature is scarce on models analysing the effects of assuming a flat floor. Thus, the pro-
posed analysis is also one of the novelties in this paper.

Additionally, the proposed approach to build the echo intensity map deals with the prob-
lems of occupancy grid building by adopting a technique based on forward sensor models [16].
This approach explicitly takes into account the horizontal SSS opening, which is usually not
considered in the literature. Finally, our proposal generates a two-layer map providing infor-
mation not only about the actual sea floor structure but also about how confident the user or
higher-level modules can be about that information.

Our proposal is tested using real SSS and DVL data gathered along a large subsea trajectory
in Port de Séller (Mallorca, Spain).

The paper is structured as follows. First, the SSS operation and the basic terminology is pre-
sented in Section The Side-Scan Sonar. Section The flat floor assumption models the effects of
the flat floor assumption. All the aforementioned processes to improve the SSS data are detailed
in Section Swath correction. Afterwards, Section Localization presents the specific EKF formu-
lation used to deal with DVL and GPS sensors.

The Side-Scan Sonar
Overview

Fig 2 illustrates the operation of a SSS mounted on a AUV navigating at an altitude h. An AUV
usually has two SSS heads, symmetrically placed on port and starboard with a fixed angle 6.
Each sensing head periodically generates an ultrasonic pulse which, after reaching the sea floor,
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Fig 1. System overview. The main steps are swath correction, in charge of improving the individual SSS swaths; probabilistic map building, whose task is
to generate a probability map estimating the likelihood of each pixel to be observed; echo intensity map building, which constructs a grid where each cell
holds the most likely echo intensity corresponding to that cell; and localization, whose task is to estimate the AUV pose. These steps are not executed
sequantially, but they are sensor-driven.

doi:10.1371/journal.pone.0146396.g001

is partially scattered back to the sensor. The SSS then analyses the received echo to obtain infor-
mation about the ensonified region (ER). The expansion of the sound wave with time is mod-
elled by the sensor opening o in the YZ plane and the sensor opening ¢ in the XY plane.

The sensor operation is as follows. After each ultrasonic pulse emission, the sensor records

the received echo intensities at fixed time intervals until a new pulse is emitted. Henceforth,
this recorded data vector will be referred to as a swath and each of its items, which store an
echo intensity providing information about the structure and reflectivity of the sea floor, will
be referred to as a bin. The Time Of Flight (TOF) corresponding to each bin determines the
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starboard

Rear view
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Fig 2. Side-scan sonar characterization. The AUV navigates at an altitude h with two SSS sensing heads
symmetrically placed on port and starboard with a fixed angle 6. The angles a and ¢ are known as the sensor
openings and model the sound expansion rate in the YZ and XY planes respectively. A point p in the
ensonified region is usually expressed in polar coordinates using its slant range rs and its grazing angle 6,
though sometimes the point altitude h,, is also used. Given this information, the point position can be
expressed as a range ry over the Y axis. Finally, due to the ¢ opening, the exact position of a point in the XY’
plane cannot be determined. Instead, the point can be anywhere over the arc g.

doi:10.1371/journal.pone.0146396.g002

slant range r, of a point p in the ER. The sampling period determines the slant range resolution
d, and the time between emitted pulses determines the maximum sensor range.

The acoustic echo intensity recorded in each bin is mainly influenced by the reflectivity of
the sea floor, but also it is attenuated depending on the travelled distance and corrupted by the
SSS ensonification pattern. Our proposal to reduce these undesired effects is referred to as the
intensity correction [11] and is described in Section Intensity correction.

The position of a point p in the ER is usually expressed using the polar coordinates (r,, 6,) in
the YZ plane. The angle 6; is known as the grazing angle and can computed as follows:

h—h
0, = arcsin ( p> (1)

r

s

where h,, is the altitude of p. If h, is unknown then 8 cannot be computed, and the point
responsible for the echo at r, may be anywhere in the angular interval [ — £, 0 + %]. Comput-
ing the elevation map of the points in the sea floor using only SSS data is a hard, time-consum-
ing and error prone task addressed by few researchers [10]. Because of that, if no bathymetry is
available through other sensors, a common approach is to assume that all the points in ER
have zero altitude (h, = 0). This assumption, which is known as the flat floor assumption, intro-
duces an error when building maps. The effects of the flat floor assumption will be analysed in
Section The flat floor assumption.

Because of the sensor opening ¢ a similar problem appears in the XY plane. The bin with
slant range 7, is due to the objects lying in an arc g, as shown in Fig 2. One or more objects
lying inside g may be responsible for the received echo intensity. This fact is usually neglected
in the literature, assuming a pencil-like thin beam in the XY plane because ¢ is very small in
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Fig 3. Single swath example. An example of a single swath corresponding to the port (bins 1 to 250) and starboard (bins 251 to 500) sensing heads of a

particular SSS. The Y axis shows the obtained echo intensities normalized to values between 0 and 1. The central region with low echo intensities
corresponds to the so-called blind zone and the first significant echo outside the blind zone is known as the First Bottom Return (FBR).

doi:10.1371/journal.pone.0146396.9003

most SSS. A novelty in this study is that the opening in the XY plane is not neglected, but prop-
erly used to fuse the information coming by overlapping ER.

The ground range ry of a point p is the projection over the Y axis of the vector — op joining
the AUV reference frame and the point p. The ground range is useful to properly map each bin
to its corresponding position in the sea floor. The process of computing the ground range for
every bin is the so called slant correction. Our approach to this process is described in Section
Slant correction.

The swath structure

A typical SSS has two synchronized sensing heads and, thus, the swaths are provided in pairs:
one provided by the port sensing head and one provided by the starboard sensing head. Let us,
for the sake of clarity, join each two simultaneously gathered swaths in a single vector. Hence-
forth, the term swath will refer to this new vector.

Fig 3 shows an example of a swath corresponding to the port (bins 1 to 250) and starboard
(bins 251 to 500) sensing heads of a particular SSS. The central region with low echo intensities
is the so called blind zone and it corresponds to those distances from the sensor where no sea
floor was detected. Thus, echo intensity values in the blind zone are due to sensor noise and
suspended particles in water. The first significant echo outside the blind zone is the First Bot-
tom Return (FBR) and corresponds to the first sea floor point that produced an echo.

Acoustic image formation

As the AUV moves, several swaths are gathered. By aggregating swaths, an acoustic image is
built. The most basic form of acoustic image building consists in putting the swaths together,
one next to the other. Fig 4 shows an example of this kind of images, where each echo intensity
is mapped to a grayscale level so that lower intensities are darker. The changes in the black
strip width, which is the blind zone, reflect changes in the AUV altitude: the higher the altitude,
the wider the blind zone.

As the blind zone does not hold useful information about the environment, but noise and
echoes due to suspended particles in water, it is desirable to detect and remove it. This process
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Fig 4. Acoustic image example. Example of acoustic image showing consecutively gathered swaths. Each column corresponds to a single swath and the
echo intensities are mapped to a grayscale where black denotes no echo received and white represents the maximum echo intensity.

doi:10.1371/journal.pone.0146396.g004

is known as blind zone removal. Our approach to the blind zone removal is described in Section
Blind zone removal.

Although this approach may be sufficient for human inspection, it provides a distorted
representation of the actual sea floor for two reasons. First, it does not take into account the
specific AUV motion between swaths. Second, the vertical axis does not represent the ground
range but the slant range. Solving the first problem involves AUV localization or SLAM tech-
niques, as well as the use of interpolation and blending techniques to fill gaps and combine
overlapping swaths. This is, precisely, the main goal of this paper and is going to be described
in detail in further sections. As for the second problem, properly mapping slant ranges to the
sea floor consists in performing the aforementioned slant correction.

The flat floor assumption
Overview

Properly projecting the SSS swaths to the sea floor is an error prone, complex and time con-
suming task [10]. Thus, unless bathymetry is available, it is common to assume that all the
objects in the ER have zero altitude (h, = 0) with respect to the point where the AUV altitude is
measured. This is the so called flat floor assumption.

At the extent of the authors knowledge, very few studies exist that explicitly analyse the
errors introduced by the flat floor assumption in SSS imagery. For example, [20] states the
problem but focuses on correcting its effects using bathymetry. [21] also states the problems
but mainly accounts for them when analysing acoustic images, neglecting their effects during
the acoustic image formation. In general it is assumed that if the terrain roughness is small
when compared to the AUV altitude, the errors are neglectable. This is the case of [2] or [11].
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In these studies, the ocean floor is assumed to be locally flat and experimentally shown that this
assumption is affordable in real underwater scenarios with relatively flat floors.

The goal of this Section is to model the errors due to the flat floor assumption in order to
quantify them and show with which kind of sensors and environments such assumption is
reasonable.

Error model

From Figs 2 and 5a it is easy to see that the ground range r, can be expressed as a function of
the measured slant range r,, the AUV altitude h and the altitude &, of the detected object as fol-
lows:

r(rohh) = \/r>—(h—h)’ (2)

Performing the flat floor assumption means using 4, = 0. Accordingly, we define the flat
floor assumption error e (see Fig 5a) as the difference between the true ground range and the
one corresponding to h, = 0 as follows:

e(r,h h,) = |r,(r, b h,) — 1, (1, h,0)] (3)

The slant range r, is computed from the TOF of each bin in the swath and the altitude can
be measured by sensors commonly available in underwater robots, such as DVL or the SSS
itself. Moreover, in case no sensor measuring h is available, it can be easily computed from the
FBR, as it will be shown later. To the contrary, hp is unknown. Thus, for a given bin and time,
the error only depends on the unknown object altitude.

We define an error to be fully neglectable if it is below the SSS resolution. That is, we assume
that errors below that resolution will not affect the acoustic image formation.

Minimum and maximum object altitudes

Given an altitude / and a slant range r, not all object altitudes /,, are possible, especially if the
opening o and the angle 0 are considered. From Figs 2 and 5b the minimum and maximum
possible object altitudes are as follows:

By (1) = B, sin (0+7) (4)

h o (r,h) = h—rs-sin<0—g> (5)

p,max
if 0 —% > 0and 0 + % < 5. These two conditions mean that the SSS is mounted on the AUV so
that the acoustic beam never crosses the Y or the Z axes, which happens in most SSS configura-
tions. Let the minimum and maximum object altitudes leading to fully neglectable errors be
denotedash! . (r.,h)andk, _ (r.,h) respectively.

p,min p,max

Across-track slope

There is a final consideration to be performed. Even if we assume that protuberances and holes
in the sea floor are within the fully neglectable error ranges, the ocean floor slope in the across-
track direction (Y axis) has also to be taken into account, as it may lead to significant changes
in h,. The minimum and maximum terrain slopes leading to fully neglectable errors can be
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Fig 5. The problems of the flat floor assumption. (a) Given a measured slant range rs and AUV altitude h,
if the height h,, of the object responsible for the echo is unknown and assumed to be zero following the flat
floor assumption, an error e appears in the estimated ground range ry. This error is defined as the difference
between the actual ground range and the one obtained if the detected object is assumed to have zero height.
(b) Given a slant range rs and knowing the angular sensor placement 6 and opening a the true object height
must be in the interval [h, min, R, maxl-

doi:10.1371/journal.pone.0146396.9005
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computed as follows:

(h) 100 h;mm (rs.ma)m h) (6)
Smin = . —/
rg(rs‘,mux, h, hpﬁmin)
1 e (T 1)
S,uc(h) = 100 2T C 7
rg(r&maxv h, h;.max) ( )

where 7 ... is the sensor range.

It should be noticed that slopes outside this range lead to not fully neglectable errors when
considering the absolute ground range, but the errors would be much smaller locally, leading
to almost locally perfect acoustic images for a much wider range of slopes.

As a conclusion, the models presented in this Section make it possible to quantify the errors
due to the flat floor assumption. These models will be configured with our particular sensor
parameters in Section Experimantal result, showing that the flat floor assumption is more than
reasonable with our specific AUV configuration and also affordable in similar missions. For
this reason, the flat floor assumption is going to be performed throughout this paper.

Swath correction
Intensity correction

It can be observed in Figs 3 and 4 that the echo intensities are much higher in the regions sur-
rounding the blind zone. This effect is due to a non homogeneous ensonification leading to
brightness variations in the resulting acoustic image that may difficult further automated pro-
cessing. Some studies deal with this problem, but mainly using some environment dependant
heuristics [9].

Our proposal has a well founded theoretical basis [11], as it relies on sea bed reflectivity and
sound propagation models. To remove the variable ensonification component from the acous-
tic image, we model the sea floor as a Lambertian surface [10, 22], which scatters incident
energy uniformly in all directions. Under this assumption, the echo intensity I'"'(p) returned by
a SSS measurement m from a sea floor point p = (r,, 6;) is modelled as follows:

"(p) = K- o(p) - R"(p) - cos (" (p)) (8)

where ¢(p) denotes the ensonification intensity, R™(p) is the reflectivity of the sea floor, 5 (p)
is the incidence angle, which coincides with the grazing angle 0, under the flat floor assump-
tion, and K is a normalization constant.

We derived the ensonification intensity model from the sensitivity pattern model proposed
by Kleeman and Kuc [23]. Accordingly, ¢ can be expressed as follows:

2n
Mfa! 2], (;asm (6 — BS))

72

2n
s —asin (0 —0
iasm( )

2

o(r,,0,) =

where M is a proportionality constant, J; is the Bessel function of the first kind of order 1, 4
and f are the emitted pulse wavelength and frequency respectively and a is the transducer
radius. This Equation accounts for the two main aspects that modify the intensity perceived at
a given point in the sea floor: its angular position with respect to the sensor acoustic axis and
its distance to the sensor origin, which is related to the sound attenuation with the travelled
distance.
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As it may be difficult to find an accurate value for the transducer radius a from the sensor
specs, we propose the following procedure. Let 6, be the first occurring 6, producing ¢(.) = 0.
Thus, 6, defines the main sonar lobe: the ensonification intensities corresponding to grazing
angles in the interval [6y, 26 — 6] are due to the main sonar lobe, whilst those outside the inter-
val are produced by the secondary lobes. The value of §, can be derived [23] from Eq 9 and is
as follows:

0, = 0 — arcsin <O'ih> (10)

Let us assume that the whole sensor opening a corresponds to the main lobe, which is rea-
sonable because manufacturers usually build sensors in this way. The grazing angle corre-
sponding to the positive boundary of the ensonified region according to the opening is 6 — a/2
(See Fig 2). Thus, using 0, = 0 — @/2 in Eq 10 leads to a fair approximation of the transducer
radius a:

0.614

n (%) (1)
2

a =

According to Eq 8, the measured echo intensities, that is, the bin values in each swath,
depend on the sea floor reflectivity, the ensonification intensity and the incidence angle. An
acoustic image taking only into account the sea floor reflectivity would be a more realistic
representation of the environment, as it discards the effects due to the sensor itself. As we have
an ensonification model and we know the incidence angles, we can express the corrected value
for each point p in the ER as follows:

I"(p)
o(p) - cos (B"(p))
where K’ = (K - M)~". Thus, the acoustic image built from R™(p) constitutes the intensity cor-

rected image of I'"'(p).
Further methods described in this paper make use of the corrected swath R™(p). However,

R™(p) = K'- (12)

all of them can also use the echo intensities I"'(p). Because of that, to ease notation, the terms
I"(p) and echo intensity will be used to refer to a swath and the meaning of the values it holds
respectively, either if they are actually echo intensities or the corresponding reflectivity values.

Slant correction

As stated previously, the process of projecting each bin to its corresponding position in the sea
floor is known as slant correction. Under the flat floor assumption, this can be easily achieved
through Eq 2 using h,, = 0. However, from an algorithmic point of view and to avoid gaps in
the slant corrected swath, it is preferable to to have the slant range as a function of the ground
range:

r(rohh) = /12 + (h—h,)’ (13)

In this way, for every possible ground range, the slant range can be computed and the corre-
sponding echo intensity value obtained. The ground range resolution 6, when performing the
slant correction can be chosen depending on the desired granularity. However, a good choice is
to use the same value as the slant range resolution J,, which is sensor dependant, and that is the
approach adopted in this paper. Also, as the slant range corresponding to a specific ground
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Algorithm 1. Slant correction.

Data: /'(-): Input swath. Vector containing the echo intensity for each bin.
Result: /7'(-): Corrected swath. Vector containing the echo intensity for each bin.
1 1g, min = rg(rs, min, h, 0);
2 1g, max = Ig(l's, max, h, 0);
36y — 0O
4for ry < rg, min tO Iy, max Step &g do

rs(rg:h0),
5 r— %,

6 wy—r—|rl;
7 wWo—1-wy;

8 (12l) —w. m(Ur) +w, (T
9 end
doi:10.1371/journal.pone.0146396.t001

range may lie between two bins, linear interpolation is used to obtain the echo intensity. Algo-
rithm 1 summarizes this process. The term I"'(-) denotes the input swath. It is a vector where
each value represents the echo intensity corresponding to a single bin. The term I}/(-) denotes
the corrected swath. It is a vector where each value represents the echo intensity corresponding
to a bin in the ground plane. The size of a bin in the ground plane is the ground range resolu-
tion .

For the sake of simplicity, henceforth the term swath will refer to the ground projected
swath I}’ (-) unless the contrary is stated.

Blind zone removal

Under the flat floor assumption, the AUV altitude / and the ground range corresponding to
the FBR (rppg) are related through 6 and the sensor opening « as follows:

Trpr = M (14)

If the altitude h is known at each time step, the rzpr can be computed and used to perform
the blind zone removal. Assuming that the two SSS sensing heads are symmetrically placed on
port and starboard, the blind zone removal consists in discarding all the bins whose ground
ranges lie between —rgpg and rgpg. If they are not symmetrically placed, two rpr should be
computed, one for each sensing head. As stated previously, these bins do not hold useful infor-
mation about the environment, but noise or echoes from suspended particles in water and thus
they shall be discarded.

It should also be noticed that, in the unlikely case that the altitude A is not available, the FBR
could be determined using some signal processing technique and the altitude & computed
using Eq 14.

Localization
Overview

From the localization perspective, the roll and pitch angles are assumed to be zero, which is
reasonable in most surveying missions where the robot control is designed to keep these angles
to that value. Thus, the localization problem is a 4DOF problem where x, y, z and the yaw angle
y have to be estimated.
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Without loss of generality, this Section focuses on the localization sensors used in our par-
ticular configuration: a DVL providing velocities over the three axes and a GPS providing abso-
lute pose when the AUV emerges. Additionally, our DVL provides altitude information and,
also, absolute heading by means of its internal compass. The proposed localization approach
relies on the standard EKF formulation, similarly to [14]. Accordingly, other sensor configura-
tions could be easily used.

It has to be taken into account that localization, in this study, is not the goal but only the
mean to produce accurate sea floor maps using SSS. Thus, the localization modules also have
to pay attention to the different sampling rates between the localization sensors and the SSS. In
our particular case, SSS provides data at higher rate than DVL and GPS. Thus, the proposed
localization approach has to be able to provide the best possible pose estimate even when no
DVL or GPS is available. To this end, DVL and GPS data are used in the EKF update step and a
constant velocity model is used in the prediction step.

The constant velocity model

The state vector is composed of the 3D AUV position and the yaw angle and the corresponding
velocities, which are mandatory because of the adopted constant velocity model and also to
allow using the DVL data during the update step:

X, = [ Yo 2o o %0 Jo 2o ]| (15)
According to the constant velocity model, the prediction is performed as follows:

Tx,_ + (%6 — V15 )ATT
Vo + (%8, +9,16)AT
z, ., +z, AT
Voo + i, AT

X1

L Vi .

where s, _ ; and ¢, _ ; denote sin(y, _ ;) and cos(y,_;) respectively. By means of this model,
when no sensor data is available, the prediction step will assume that velocities are the same as
the last time they were measured and provide a pose estimate accordingly.

The update step

The update step has to take into account the two aforementioned sensors (DVL and GPS), that
may provide data at different sampling rates. As a matter of fact, GPS updates are likely to be
very infrequent as they only happen when the AUV surfaces. As for used DVL device, it pro-
vides altitude, heading and velocities as follows:

. . . ] T
ZDVL = [ZDVL’ lpDVL’ xDVL7yDVL’ ZDVL’ ‘/JDVL] (17)

PLOS ONE | DOI:10.1371/journal.pone.0146396 January 28, 2016 13/41



el e
@ ' PLOS ‘ ONE High-Resolution Underwater Mapping Using Side-Scan Sonar

The GPS data, when available, is adapted to the following format:
Zops = [Xopss Yars: ZGPS]T (18)

Also, when the mission starts, the GPS position and the absolute heading are used to initial-
ize the state vector.

As these sensors provide data directly related to specific state vector items, the measurement
functions hpyy and hgps and associated Jacobian matrices Hpyy and Hps are straightforward:

hDVL = [Zﬂlpt’xt?))t?ét’ .t]T (19)
0O 01 0 0 0 0 07
00 01 0 0 0 O

000 01 00O
Hpy, = (20)

heps = [xn)’nzrf (21)
1 0 0

Hgps = |0 10 (22)
0 0 1

Localization is achieved by using the constant velocity model in the EKF prediction step and
the aforedescribed measurement vectors and functions in the update step.

Probabilistic map building
Overview

At this point, we have described how each individual swath can be improved after the SSS gath-
ers it and also how to properly estimate the AUV pose even at higher frequencies than those of
the localization sensors. Also, we have shown the extent at which the flat floor assumption is
affordable and, as the experimental results will corroborate, that it is reasonable to perform
such assumption in a wide range of scenarios including ours.

This Section describes how a high resolution and high quality map of the subsea floor can
be built using the improved swaths. This map is a 2D representation of the sea floor and, thus,
it focuses on the XY plane (Fig 2). Being our proposal based on probability theory, we first
describe the probabilistic SSS model and the probability map and, then, a method to combine
the probabilistic information with the swath data to build the map.

The SSS model

In the context of this paper, a map M is composed of two layers: the probability map Mp and
the echo intensity map Mr. Both are matrices of R rows and C columns where each cell repre-
sents a squared area of the sea floor of 85, x 8,y meters. For the sake of clarity, let the cells be
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referred to as pixels and &, as the map resolution. In the case of Mp each pixel holds informa-
tion about its own probability to be observed. As for M; each pixel holds information about the
echo intensity of the sea floor area it represents. We would like to emphasize that, as stated pre-
viously, the term echo intensity may refer to the raw echo intensity or to the corrected one pro-
cessed as described in Section Intensity correction.

Let us express a pixel g by the coordinates of its four corners g, g1, > and g;. Let g" =

m

(", 0;;) be the polar coordinates of the corner g; in the ground plane with respect to the refer-

ence frame of a specific SSS measurement m € S, where S denotes the set of all the gathered
measurements, projected to the ground plane. In order to compute the position of the map
pixel corners relative to the the SSS measurement, the position of the SSS measurement with
respect to the map is required. This position is provided by the localization modules and, as
described in Section Localization, it is available at the desired frequency thanks to the adopted
constant velocity model.

Let imin and imax be the indexes of two pixels corners so that 0", . and 0, are the right-

most and the leftmost angles. Finally, let r', , and ", denote the minimum and maximum

g.max
ground range, respectively, that the SSS can reach. Fig 6 illustrates these concepts.

The first step is to model the Probability Density Function (PDF) p of a point g; to be
observed by the SSS measurement. A realistic, physics-based, approach is to adapt Eq 9 to
model the probabilities so that the points in the ER receiving higher ensonification energy are
more likely to be observed. However, this approach is time consuming and the computation
requirements when building large maps may be extremely large. Instead, our proposal is to
model the probabilities as a Gaussian whose parameter is the angle 0, which captures the
shape of the acoustic main lobe. Accordingly, the PDF p(0") is defined as follows if the point

range is within the observable range:

—((};ﬁi>2
p(0") = Le<2(§) > (23)

j -
T U T
b | 22|+ Aronstic axist

Fig 6. The SSS model. Each map cell or pixel represents a squared area of &, x 6y, meters. Each cell can
be represented by the coordinates qo, g1, 2, gs Of its four vertexes. The terms 07, . and 07, denote the
angle with respect to the AUV reference frame of the rightmost and leftmost vertexes of a particular cell as
observed from the AUV. The terms ], and r}., denote the minimum and maximum ground range,

respectively, that the SSS can reach.

doi:10.1371/journal.pone.0146396.9006
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In this way the probability is maximum when the point lies on the acoustic axis and
decreases as the angular position gets farther from the acoustic axis. The standard deviation is
set to ¢ so that the 95% of the probability lies in the sonar main acoustic lobe.

The next step is to compute the probability of a pixel g to be observed by the measurement
m. In other words, the goal is to compute the probability of a squared region of the sea floor to
be observed by m. Taking into account that the PDF in Eq 23 only depends on the angle 0",

and that a pixel q lies in the angular interval [07, ., 0", 1, the probability P!(q) can be com-

q,imin® ~ q,imax

puted as follows:

Prta) = [ p(0)a0 (24)

q.imin

As this Equation refers to a whole pixel, it may happen that the pixel partially lies within the
observable range. Our proposal in this case is to compute the probability according to Eq 24 if
the pixel is either fully or partially inside the observable range and to assume the probability is
zero otherwise.

Unfortunately, using Eq 24 may be time consuming. It has to be taken into account that for
every pixel in the map the model has to be computed for each gathered measurement, as it will
be shown later. In order to reduce the computational cost, two additional models are proposed.

The first additional model consists in using a triangular PDF so that the probability is maxi-
mum when 0, = 0 and zero outside the angular interval [—£, 7], decreasing linearly when
approaching the interval boundaries. By integrating this PDF similarly to Eq 24, the probability
of a pixel g within the measurement range to be observed is:

—2(0y—07)-(0y+01—2b,
(09—01)-(60+01 (1)791§O

(by—b1)?

" 2(0p—01)-(0g+0; —2by)
Py (q) = : (]b(]—bl)zl 10,20 (25)

400 by +by (401 —4by ) —2(02+07)
(b0—b1)?

) 1, otherwise

where b, = — %, b, = £and 0, = max (9’" f§) < 0, = min (9'" "’).

q,imin? q,imax’ 2
The second additional model aimed at reducing the computational cost consists in using a
uniform PDF whose variable is ;. Accordingly, the probability of a pixel g within the mea-

surement range to be observed is:

Py(q) = (26)

In this Section three approaches to model the probability of a map cell g to be observed by a
particular measurement # have been proposed. Henceforward, these three approaches will be
referred to as the Gaussian Approach, the Triangular Approach and the Uniform Approach and
their associated probabilities as Py, Py and P}; respectively. Also, as they can be used inter-
changeably, depending on the desired accuracy and available computational resources, the
notation P™ will be used to refer to any of the three approaches to compute the probabilities.
Some examples involving the three approaches are shown in Section Experimental results.
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The probability layer

This Section focuses on building the probability layer Mp of the map. Given the set of SSS mea-
surements m € S, a pixel g € Mp may not have been observed by any measurement or it may
have been observed by one or more measurements.

Fig 7 illustrates the four situations in which a pixel can be. Pixels q0 and g1 have not been
observed by any measurement and, thus, their probability to be observed is zero. However,
when building the reflectivity map these two pixels have to be considered differently, as it will
be shown in Section Geometric map building.

Pixel g2 may have been observed by m1 with probability P™*'(¢2), as described in Section
The SSS model. As for pixel g3 it may have been observed by m0, m1, m2, m3 or m4 with prob-
abilities P"°(¢3), P"™'(g3), P"*(¢3), P"(q3) and P"*(¢3) respectively. Accordingly, the proba-
bility of g3 to be observed is:

P(q3) = P(Ejy UER UE UEY UEL) (27)

where E}' denotes the event pixel qj observed by measurement mi and has probability P™(gj).

In general,

P(q) = P( U E;") (28)

meS,

where S, C S is the set of measurements that may have observed g. That is,

S, = {m € S|P"(q) > e} (29)

As for &, its value depends on the SSS model. If the Triangular or the Uniform models are
used, then £ = 0. In the case of the Gaussian model £ should be greater than zero. Alternatively,
a geometric approach could be used by including in S, the set of measurements whose observed
sector, defined by v . r” and ¢, does contain g.

g.min> " g max

Fig 7. Possible pixel situations. A pixel may not be observed because it lies outside the maximum measurement range (q0) or because, due to the AUV
motion, it lies between two observed regions (q1). A pixel may be observed by a single measurement (g2) or by several measurements (g3).

doi:10.1371/journal.pone.0146396.9007
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Assuming that the events E;’ are mutually independent but not mutually exclusive, the

probability P(g) can be computed as:

Plg) = P( N <E;">C) 1[0 - P (30)

mes,
9 meSq

Algorithm 2 summarizes the process to build the probabilistic layer. For each pixel, the

coordinates g of its four corners with respect to a global reference frame are computed in line
3. Then, the set S, of measurements that may observe the current pixel is computed as follows.

For each measurement m, its global coordinates are requested to the localization modules in
line 7. Then, a fast check is performed in line 8: if the measurement does not intersect with the
map rectangle, it is discarded without further tests. This is crucial to reduce the execution time.
Otherwise, line 9 computes the polar coordinates of the four corners of the current pixel with
respect to the current measurement as well as the rightmost and leftmost angles (0, . and

q,imin

Algorithm 2. Probabilistic layer building.

Input: R, C: Map dimensions
O Map resolution
Mo, Myo: Global coordinates of the map origin
S: Set of SSS measurements

Result: M,: Probabilistic layer.
1 forrow =1to R do

2 forcol=1toCdo
3 ge < cell_to_global(row, col, &y, Myo, Myo);
4 Sq — 9;
5 Q«— 9;
//Build the set of measurements that may observe the current map cell.
6 foreach m € S do
7 mg < localization(m);
8 if in_map(mg, Mxo, M0, R, C, &) then
9 g < cell_to_local(gg, mg);
10 if observed(qg, m) then
11 Sq — Squ{imy});
12 Q — QU{g};
13 end
14 end
15 end
/| Compute the probability of the current map cell.
16 P—1,;
17 fori=1to [S,| do
18 m «— Sg(i);
19 g — Q();
20 P—P-(1-P7q));
21 end
22 Mpy(row, col) —1 - P;
23 end
24 end

doi:10.1371/journal.pone.0146396.t002
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0. ). Then, line 10 decides if the measurement m may observe the pixel g using either Eq 29
or a geometric criteria. If it may be observed, both 7 and g are stored in S, and Q respectively.

Afterwards, the probability of the current pixel is computed from line 16 to line 22 taking
advantage of the data previously stored in S, and Q. In the case of pixels not observed by any
measurements, line 22 assigns zero probability to them.

As it can be observed in the algorithm, line 7 and the check in line 8 are executed R - C - ||
times. As an example, in the particular experimental setup described in Section Experimental
setup, the number of measurements |S| is 68434, including the port and the starboard sensing
heads. If a map of 1000 x 1000 pixels is to be built, then the probabilistic model has to be evalu-
ated, in the worst case, 6.8434 - 10" times. Line 10 is also likely to be executed in a large num-
ber of iterations. As this may be extremely time consuming, it is crucial for these three lines to
be fast.

However, the most time consuming part of the algorithm lies in the loop between lines 16
and 22 because the probabilistic model P™(q) is evaluated there. As the number of iterations in
this loop depends on the measurements that are likely to observe the current pixel, having an
accurate rejection criteria when building S, is very important.

Finally, we would like to emphasize that it is not necessary to store the probability layer Mp
as the values for each pixel are never re-used after the corresponding cell in the echo intensity
layer M;is evaluated. However, the probability layer could also be used in other tasks to let the
user or other higher-level AUV functionalities know how confident it can be about the infor-
mation in every mapped region.

Some experiments showing the probability layer Mp using the three aforedescribed SSS
models with real data in a large subsea mission are provided in Section Experimental results.

The echo intensity layer

This section describes our approach approach to build the echo intensity layer M;. The first
step is to compute the echo intensity value V"(q) for a pixel g according to a measurement .
This is achieved by linearly interpolating the values in I;" for each pixel corner and then com-

puting the mean of the four obtained values as follows:

0, m¢S,
V™(q) = : [ T [ Tai 31
@ Z<w11g <f§1> ] <L§J)> .
i=( g g
1 ,meSs,
where w;, = r{;im‘ — [%J and w, = 1- wy. In case the pixel g is not observed by measurement i,
g 4

we assign it the arbitrary value of 0.

Our approach to compute the echo intensity value V(g) corresponding to a pixel g taking
into account all the measurements m € S, that may have observed it is to weight the individual
V™(g) according to the corresponding probability P"'(q). In this way, an echo intensity value
corresponding to one measurement is more influential in the final value if the measurement
has higher probability of having observed the pixel. That is:

Vig) =) _P"(q)V"(q) (32)

mESq

By computing V(g) for all the pixels in the map, the echo intensity layer M; is built. Some
experiments regarding the echo intensity layer are presented in Section Experimental results.

PLOS ONE | DOI:10.1371/journal.pone.0146396 January 28, 2016 19/41



@’PLOS ‘ ONE

High-Resolution Underwater Mapping Using Side-Scan Sonar

Geometric map building

Fig 7 shows that some pixels may not be observed according to the proposed probabilistic
model. In that example, neither pixel g0 nor pixel g1 were observed and, thus, the proposed
approach to build the echo intensity layer will assign them a value of zero.

However, these two pixels exemplify two different situations. As for pixel g0, its value
should be certainly set to zero or to any value denoting there is no information about it. Con-
trarily, the value of pixel g1 could be extrapolated from the surrounding measurements. By
doing so, although the probability to observe g1 is actually zero, the visual gaps in the resulting
map can be properly filled.

To perform the extrapolation, which is called the geometric map because it is based on pure
geometry, we start by representing the environment as a polygonal mesh. The four edges of
each polygon correspond to the acoustic axes of consecutively gathered measurements joined
by their extrema as illustrated in Fig 8, where each polygon p; is built by joining the acoustic
axes of measurements m; and m;, ;.

Then, every pixel in the map is checked against all the polygons to decide whether it is inside
any of them. A pixel is said to be inside a polygon if at least one of its corners is inside. If the
goal of the geometric map building is only to fill the gaps of the echo intensity layer, this step
can be extremely speed-up by checking only those pixels whose probability to be observed is
zero.

p4 75
m4
3
p W‘S
m2
p2
pl )
ml
pO
)
m0

Fig 8. A polygonal mesh is used to perform the extrapolation. Each polygon p; in the mesh is constructed
by joining the acoustic axes of the measurements m; and m;, 1.

doi:10.1371/journal.pone.0146396.g008
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If the pixel is inside, its four corners are projected to all of the involved acoustic axes and an
echo intensity value for each of them is computed through linear interpolation. Also, the per-
pendicular distance from each of these corners to all of the involved acoustic axes is computed.
The final value assigned to this pixel is a weighted mean of the obtained echo intensities whose
weights are inversely proportional to the corresponding perpendicular distance.

By means of this method, the gaps in the echo intensity layer can be filled. Also, this
approach can be used standalone to build an alternative representation of the sea floor.

Experimental results
Experimental setup

The experiments shown in this section have been performed using an Imagenex SportScan SSS
with two sensor heads attached to an EcoMapper AUV. The main parameters of this system
are shown in Table 1. As for the mean altitude being & = 5m, we would like to emphasize that
the true values during all the mission are almost constant and very close to the mean value,
which is a common situation in underwater surveying missions. The AUV was also endowed
with a DVL, providing dead reckoning and altitude, and a GPS providing position data when
in surface. Moreover, the DVL is also endowed with a compass and, thus, it provides absolute
heading data.

The AUV mission consisted of a sweeping trajectory along more than 4Km in Port de Soller
(Mallorca, Spain). During the straight transects, the AUV was underwater gathering SSS and
DVL data. During the turns, the robot emerged to obtain the GPS position. Fig 9 depicts the
AUV trajectory, computed using the localization approach described in Section Localization.

Port de Séller is a small bay in the North coast of Mallorca (Balearic archipelago, Spain).
The seafloor of the bay is sandy with little sea-grass meadows laid out quite regularly. Rock out-
crops are frequent at the mouth of the bay. The experimental area depth ranges from 12 to
22m and the significant points appearing on the sonar images mostly correspond to stones and
Posidonia Oceanica plants. Along some of the transects the sonar visualizes a 80cm diameter
pipe used for fresh water supply.

All the SSS measurements used in these experiments, both raw and processed, are available
in [24] together with some high-resolution maps and additional mission data.

Along the experiments, some data regarding the time consumption will be provided. In
these cases the measured times correspond to a Matlab implementation running on Ubuntu 14
and an Intel i7 CPU at 3.1GHz.

Table 1. Parameters of the SSS used in this paper.

a 30°

® 3°

C] 20°

f 800KHz

A 1.95mm

s, v 30m

Resolution &g 0.12m
Bins per swath 250 port, 250 starboard
Mean altitude 5m

The experiments have been performed using an Imagenex SportScan SSS with two sensor heads
attached to an EcoMapper AUV. This table shows its main parameters.

doi:10.1371/journal.pone.0146396.t003
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Fig 9. The mission. Trajectory followed by the AUV (red line) overlayed to a Google Maps view of the environment.

doi:10.1371/journal.pone.0146396.9009

The flat floor assumption

Let us evaluate the effects of the flat floor assumption by parametrizing the error models pre-
sented in Section The flat floor assumption with the specific SSS used in this paper.

Fig 10a shows the errors according to Eq 3. For each slant range, the minimum and maxi-
mum object altitude have been computed using Eqs 4 and 5. As for the AUV altitude, values
below the one shown in the figure have not been considered as in that cases it is not possible to
perform the flat floor assumption. Let the smallest possible slant range according to this criteria
be denoted by ;. The largest value 7, ,,,,, = 30m is one of the sensor parameters.

Fig 10b shows all the combinations of slant range and object altitude that lead to fully
neglectable errors. In the worst case, which appears with small slant ranges, object altitudes
between —16cm and 16cm lead to fully neglectable errors. In the best case, corresponding to
large slant ranges, the flat floor assumption leads to fully neglectable errors for objects with alti-
tudes ranging from —66cm to 71cm. If the reasonable mean slant range of 15m is considered,
then the flat floor assumption leads to no errors for object altitudes between —33cm and 32cm.

To illustrate this analysis, let us focus on some particular data in the dataset used in this
paper. To this end, let us first introduce one additional concept. It is well known that the height
of an object observed by a SSS can be computed by measuring the length of the projected
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Fig 10. Output of the error model. (a) Error model as a function of the unknown object height and the
measured slant range. The error is computed using Eq 3 and represents the difference, in meters, between
the actual ground range corresponding to a detected object, and the estimated ground range if the flat floor
assumption is performed. (b) Fully neglectable errors. The errors in (a) that are below the sensor resolution
are depicted here and considered neglectable.

doi:10.1371/journal.pone.0146396.g010
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shadow. This task is extremely difficult and error prone to be automated, but for some espe-
cially contrasted regions it can be done manually. Let r; be the slant range of the last non-
shadow point of the object whose height is to be computed. Let r, be the largest slant range of
the shadow projected by the object. It is straightforward to see that the object height is:

—h. (1"
hp_h (1 rsZ) (33)

By visual inspection, we found that the structure shown in Fig 11 is the one with the largest
projected shadow and, thus, the one with largest altitude. By means of Eq 33, the obtained
height is 1.51m. According to Eq 3 the flat floor assumption will, in this case, lead to an error of
0.7m. Thus, the error is not fully neglectable as it is larger than the sensor resolution. However,
as the error in this case is 5.8 times the sensor resolution, the highest point of the structure will
be misplaced less than 6 bins in the resulting acoustic image. As the acoustic image has 500

ro=14.5m

Y

Fig 11. Structure with the largest shadow in our dataset. The values rg; = 10.1m and rs = 14.5m have been found by manually selecting the shadow.
This example is used to determine the maximum ground range error e, in our dataset due to the flat floor assumption. This maximum error is 0.7m and is
not fully neglectable, but it leads only to a 1.16% of misplacement with respect to the whole SSS range.

doi:10.1371/journal.pone.0146396.9011
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Table 2. Flat floor assumption summary.

I's, max I's, min Is, avg
By in —66¢cm —16cm -33cm
By max 71cm 16cm 32cm
Smin —2.24%
Smax 2.39%
€max 1.16%

Results obtained by configuring the models related to the flat floor assumption with our particular sensor
parameters.

doi:10.1371/journal.pone.0146396.t004

bins, this means only a 1.16% of misplacement with respect to the whole SSS range. Let this
error corresponding to the highest structure in the dataset be denoted by e,, 5.

As for the effects of the across-track slope, computing Eqs 6 and 7 using our SSS parameters
shows that slopes within the interval s,,,;,, = —2.24% and s,,,,x = 2.39% lead to fully neglectable
errors.

The results obtained by configuring the models with our particular sensor parameters are
summarized in Table 2. This data shows that the flat floor assumption leads to small errors
and, in most cases, to fully neglectable errors in the scenarios where our AUV is deployed and
suggests that similar configurations and environments would lead to a similar conclusion.

Swath correction

This Section provides some experimental results showing the effects of the swath correction
methods presented in Section Swath correction. The sensor parameters used are those pre-
sented in Table 1, except for the altitude h. For the sake of clarity, regions where the AUV alti-
tude changed have been chosen here.

Fig 12a shows an example of the ensonification intensity for a whole swath according to the
model presented in Section Intensity correction parametrized for our sensor at an altitude
h = 6.54m. In this case, bins denote slant ranges. It provides a fair representation of the sensor
behavior, as it shows two main intensity peaks, one for each sensor head. The intensity peaks
correspond to the main acoustic lobes, but they are also influenced by the distance of each bin
to the sensor. Because of that, each peak is not symmetric with respect to its acoustic axis. The
central region clearly reflects low ensonification intensity of the blind zone because of its prox-
imity to the main lobe boundary.

Fig 12b shows a set of 1000 ensonification intensity curves corresponding to the the begin-
ning of a transect. During the first 330 swaths, the vehicle altitude descended from h = 9.4m to
h = 3.9m. From swath 331 onward, the vehicle altitude was almost constant and close to
h =3.9m. As the AUV descends, the two intensity peaks are getting closer and the region corre-
sponding to the blind zone becomes smaller, stabilizing when constant altitude is reached. This
is consistent with SSS imagery, in which the blind zone changes depending on the altitude.

By comparing Fig 12 and the swath examplified in Fig 3, it is clear that by removing the
ensonification intensity component the resulting swath will be a much more realistic represen-
tation of the sea floor.

Fig 13 shows the swath in Fig 3 corrected according to Eq 12. It can be observed how the
high intensity peaks have been removed and, thus, the corrected swath mainly holds informa-
tion about the sea floor.
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Fig 12. Estimated ensonification intensities according to the proposed model. (a) Intensities corresponding to a single swath involving both port and

starboard sensing heads. The intensities have been normalized to a value between 0 and 1. (b) Intensities corresponding to a transect. The swath axis
denotes consecutively gathered swaths.

doi:10.1371/journal.pone.0146396.9012
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Fig 13. Reflectivity corresponding to a single swath. The image shows the swath in Fig 3 corrected according to the modelin Eq 12.

doi:10.1371/journal.pone.0146396.9013

Fig 14 summarizes the whole swath correction processes using a set of 1000 consecutively
gathered swaths. The image in Fig 14a shows the raw data provided by the SSS. The effects of
the uneven ensonification can be clearly appreciated above and below the blind zone. Fig 14b
shows the slant corrected data as described in Section Slant correction. Fig 14c shows the effect
of removing the blind zone, as described in Section Blind zone removal, to the slant corrected
data. Fig 14d shows the effects of the intensity correction as described in Section Intensity cor-
rection. It can be observed how the bright regions close to the blind zone are almost completely

removed. Finally, Fig 14e shows the estimated ensonification intensity according to Eq 9.

Fig 15 shows an example to illustrate how the proposed approach generates imagery that
better captures the sea-floor geometry than the original SSS data. In particular, Fig 15a corre-
sponds to the raw SSS measurements gathered at an area where a straight underwater pipe was
observed. The pipe appears clearly distorted. Fig 15b shows the same data after applying slant
and intensity correction. As a result of the former process, the pipe shape is corrected to the

straight line it should be. The uneven brightness in the original image is also corrected in that
case thanks to the intensity correction.

There are several tasks in which properly knowing the geometry of underwater structures is
important. For example, in industrial tasks such as underwater cable or pipe inspection in which
wrong geometry estimates may lead to wrong defect detections. Also, in biological surveys to esti-
mate the growing of algae population a proper geometry reconstruction is crucial to obtain accu-
rate measurements. Moreover, in both cases, the structures to be analyzed, either biological or
industrial, are usually close to the sea floor, rendering the swath correction even more effective.

The SSS model

This Section provides some illustrative examples of the three approaches presented in Section
The SSS model to model the probability of a map cell to be observed.

Fig 16 exemplifies (a) the Gaussian approach, (b) the Triangular approach and (c) the Uni-
form approach by plotting the probabilities P (q), Py (q) and Pj(q) for all the map cells in the

image and a single SSS measurement. The SSS parameters used in this example do not corre-
spond to the SSS used in the other experiments, and they have been chosen to provide illustra-

tive examples.

PLOS ONE | DOI:10.1371/journal.pone.0146396 January 28, 2016
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(e)

Fig 14. Acoustic images. The columns correspond to consecutively gathered swaths, either corrected or
not. (a) Original. (b) Slant correction. (c) Slant correction + Blind zone removal. (d) Slant correction + Blind
zone removal + Intensity correction. (e) Ensonification intensity model. In this case, each column
corresponds to the model output for each swath.

doi:10.1371/journal.pone.0146396.9014
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Fig 15. Example of the improvements due to the swath correction. (a) Raw SSS data showing a distorted straight underwater pipe. (b) Corrected data.
The pipe image is corrected to its actual straight shape. The uneven brightness is also improved due to the intensity correction process. In both cases a red
line is overlayed to emphasize the geometric improvement.

doi:10.1371/journal.pone.0146396.9015

It can be observed how the Triangular approach leads to results quite similar to those of the
Gaussian approach, whilst the Uniform approach produces a very simplistic representation. In
all cases the probability decreases with distance because the angular range where the pixel lies
is smaller for farther pixels.

Table 3 shows the time spent in the probability computation when building the images in
Fig 16. As it can be observed, the Triangular model leads to a significant reduction of execution
time with respect to the Gaussian approach. Also, it is clear that, in terms of computation time,
the Uniform model provides the best results.

The probability map

This Section shows some experimental results obtained when building the probability layer Mp
using the approach described in Section The probability layer.

Fig 17 shows the probability layer Mp corresponding to a region of 180m x 90m observed by
the SSS in the real subsea environment using (a) P, (b) P}’ and (c) P}. As it can be observed, in
all cases the probability is large and very close to 1 for those pixels observed by several measure-
ments. Also, it can be observed that the three resulting probability maps are very similar. This
suggests that when several readings overlap, the specific model used to compute individual

PLOS ONE | DOI:10.1371/journal.pone.0146396 January 28, 2016 29/41



el e
@ ' PLOS ‘ ONE High-Resolution Underwater Mapping Using Side-Scan Sonar

(c)

Fig 16. SSS probabilistic models of two sensing heads. The parameters used are rg, min = 2.5m, rg, max = 10m, ¢ = 45° and &), = 0.05m. The picture
shows the observation probabilities involving a single SSS measurement according to (a) Gaussian PDF (PZ(q)), (b) Triangular PDF (P7(q)) and (c) Uniform
PDF (P}(q)). The gray levels have been re-scaled to 0—1 for the sake of clarity.

doi:10.1371/journal.pone.0146396.9016
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Table 3. Time spent by P/ (q), Py (q) and P;,(q) to build the example images in Fig 16.

P2 (a) P7(a) Py @
1.75s 1.09s 0.58s

Time spent in the probability computation when building the images in Fig 16.

doi:10.1371/journal.pone.0146396.t005

probabilities has almost no influence. Also, it has to be taken into account that the large size of pix-
els in this case (30cm x 30cm) lead to similar values when integrating the three proposed PDFs.

Fig 18 shows the probability layer of a region of 15m x 15m corresponding to the upper-left
corner of the images in Fig 17. The resolution is 5cm. In this case, the differences between the
three models are easily appreciable. For example, changes in probability between nearby pixels
are smooth in the Gaussian and the Triangular approaches, but not in the Uniform approach.
Also, the probability peak close to the acoustic axis is slightly more pronounced in the Triangu-
lar approach than in the Gaussian approach.

It can be observed that the probability values are different depending on the resolution. The
map can be seen as a discrete representation of a continuous probability field. Larger pixels,
thus, accumulate a wider range of probabilities and, thus, have larger values. That is why the
probability values are different between Figs 17 and 18.

Table 4 summarizes the time consumption when building the two previously shown groups
of maps. As it can be observed, the Gaussian approach always leads to the largest computation
times and the Uniform approach to the smallest ones. However, the ratio is different to the one
shown in Table 3. This suggests that the time spent to evaluate the probabilistic models is very
small when compared to the remaining tasks.

Also, the times spent in Scenario A and Scenario B are not proportional, as illustrated by the
time per pixel, which is significantly different in both cases. As stated previously, building the
map requires evaluating the probabilistic model |S,| times for every pixel, where S, is the set of
measurements in which the pixel g is contained. As Scenario B concentrates in a region much
smaller than the one of Scenario A, a very large amount of readings can be discarded with the
very simple and fast criteria of not overlapping the rectangle defined by the map. This clearly
shows that having fast criteria to discard non-informative measurements is crucial in terms of
time consumption.

As a conclusion, when building low resolution maps such as those in Fig 17 the specific
probabilistic model barely influences the probabilistic layer. Thus, in this case the Uniform
approach is a good choice as it is faster.

When building high resolution maps such as the ones in Fig 18, however, the situation
changes. On the one hand, the differences between the three models arise, being the Gaussian
one the preferred from this point of view. On the other hand, the influence in time consumption
due to the model evaluation is larger: in the low resolution map, using the Gaussian approach
leads to a 3% increase in computation time with respect to the Uniform approach, but in the
high resolution map the execution time increases an 8%. Thus, from the time consumption
point of view, the Uniform approach is to be considered. In these cases, deciding the model to
use depends on the available computational resources and the number of map cells to compute.

The echo intensity map

Fig 19a shows the echo intensity map built using a resolution of 30cm and corresponding to
the whole mapped area. As it can be observed, the approach successfully merges the swaths
when they overlap.
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(c)

Fig 17. Probability layer My of a region of 180m x 90m with significant overlapping between swaths.
The resolution 6, is 30cm. (a) Gaussian approach Pg. (b) Triangular approach P . (c) Uniform approach Py).

doi:10.1371/journal.pone.0146396.9g017
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Fig 18. Probability layer My of region of 15m x 15m with significant overlapping between swaths. The
resolution &y, is 5cm. (a) Gaussian approach Pg. (b) Triangular approach P7. (c) Uniform approach PJj.

doi:10.1371/journal.pone.0146396.g018
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Table 4. Summary of the time consumption.

Scenario
A (Time)
B (Time)
A (Time/pixel)
B (Time/pixel)

Gaussian Triangular Uniform
29.1 min 28.81 min 28.24 min
5.09 min 4.76 min 4.67 min
0.01 s/px 0.009 s/px 0.009 s/px

0.0034 s/px 0.0032 s/px 0.0031 s/px

Total time and time per pixel corresponding to the maps in Fig 17 (Scenario A) and Fig 18 (Scenario B).

doi:10.1371/journal.pone.0146396.t006

Fig 19b shows the region marked with a red rectangle in Fig 19a using the same resolution
as before (6,; = 30cm). The same region using a better resolution of §,; = 12¢m is shown in Fig
19c. The image quality is improved and more details can be observed. The resolution of 12cm
is chosen because is the one of the SSS sonar.

Fig 19d and 19e depict the area marked with the red rectangle in Fig 19c using resolutions
of 12cm and 5cm respectively, showing the ability of our proposal to achieve resolutions
beyond the physical SSS limitations. The additional details that can be observed when improv-
ing the resolution are due to the combination of several overlapping measurements.

Finally, Fig 19f shows the raw SSS data that lead to the two previous images. The raw data is
distorted with respect to the previous ones because it neither takes into account the actual
robot motion nor the slant correction: the columns are consecutively gathered swaths and the
rows are slant ranges not taking into account the changes in the AUV altitude. Thanks to all
the performed processes, the image in Fig 19e makes it possible to observe the true shape of the
sea bottom with finer detail than the unprocessed SSS data.

Fig 20 exempifies how the proposed map building successfully merges overlapping swaths
obtained from different viewpoints. Fig 20a and Fig 20b show two sets of SSS measurements
corresponding to the same area in the environment. As the AUV was moving in opposite direc-
tions when gathering each set of measurements, each image appears rotated 180° with respect
to the other. Also, the objects in the sea floor were ensonified from different angles leading to a
completely different imagery, although corresponding to the same area: some regions clearly
visible in one of the data sets are hidden in the second one.

Both viewpoints of the same objects in the space are merged in the map shown in Fig 20c
using our proposed approach, providing a more complete representation of the environment
and also correcting the geometry. As it can be observed, both sets of measurements have been
represented with respect to the same reference frame thanks to the localization modules. Also,
the main scene details are properly fused and visible in the resulting map. For example, the bot-
tom left region of Fig 20a contains almost no information, but that region is completed in the
final map with data coming from Fig 20b. Being the data in Fig 20b rotated and having that
image low echo intensities, some red markers have been added to emphasize the
correspondences.

The ability of the proposed approach to fuse echo intensities makes it possible to build visu-
ally consistent maps of the environment, helping the user to have a complete representation of
the observed sea floor from the partial views provided by each SSS measurement. This is espe-
cially relevant in scientific and industrial tasks in which the objects of interest may be perceived
in very different ways depending on the ensonification angle. In these cases, the ability to fuse
different object views into a consistent map is crucial to properly understand submerged geo-
logical or industrial structures or coral reefs, for example, where shadows may lead to very dif-
ferent echo intensity profiles depending on the ensonification angle.
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(f)

Fig 19. Echo intensity layer M,. (a) Region of 750m x 270m using a resolution &y, = 30cm. (b) Region of 30m x 20m using a resolution &, = 30cm
corresponding to the area inside the red rectangle in a). (c) The same region in b) using a resolution &,, = 12cm. (d) Region of 5.7m x 3.5m using a resolution
O = 12cm corresponding to the area inside the red rectalngle in c). (e) The same region in d) using a resolution &,, = 5cm. (f) Raw SSS data.

doi:10.1371/journal.pone.0146396.g019
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Fig 20. Example of data from the same sea-floor region gathered from different viewpoints. (a) Data gathered with the AUV moving south-east. (b)
Data gathered with the AUV moving north-west. (c) Resulting intensity map fusing the overlapping data. The resolution is 6, = 12cm and the mapped area is
24mx10m.

doi:10.1371/journal.pone.0146396.9020

(b)

Fig 21. Example of the echo intensity map built using the presented approach. (a) Raw SSS data. (b) Echo intensity map M, with a resolution 6y, =
0.09m.

doi:10.1371/journal.pone.0146396.9g021

Another example is provided in Fig 21. In this image both the raw data and the correspond-
ing echo intensity map are shown. The improvements in resolution as well as the benefits of
the echo intensity correction are clearly visible.

As for the time consumption, the results are shown in Table 5. As it can be observed, the
mean time per pixel in the largest scenario is smaller than in the other ones. This suggests that,
algorithmically, the time spent in operations not depending on the map size is predominant.

Table 5. Summary of the time consumption.

Region Resolution Total time Time per pixel
750m x 270m 30cm 3.78 h 0.0061 s/pix
30m x 20m 30cm 1.39 min 0.0129 s/pix
30m x 20m 12cm 8.87 min 0.0131 s/pix
5.7m x 3.5m 12cm 0.52 min 0.0124 s/pix
5.7m x 3.5m 5cm 3.07 min 0.0128 s/pix

Time consumption of the echo intensity map corresponding to the images in Fig 19.

doi:10.1371/journal.pone.0146396.t007
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Examples of operations not depending on the map size are discarding SSS measurements not
influencing the map or computing their coordinates with respect to the global map frame.
Also, the number of SSS measurements influencing the smaller regions is proportionally larger
than in the large map and so is |S,|, thus leading to proportionally larger time consumptions in
these particular smaller maps. The same explanation applies to the differences in time con-
sumption between these results and those shown in Section The probability map.

In the two shown smaller regions, it can be observed how the time consumption increases
with the resolution and the map size but the time per pixel is similar. This shows that, in similar
regions where |S,| is likely to be similar, the mean time per pixel barely changes.

Geometric map building

Fig 22a exemplifies a situation where some gaps appear when building the echo intensity map.
Whereas pixels outside the maximum range should be left to zero, the value of those map cells
between two measurements could be extrapolated to fill the visual gaps by means of the Geo-
metric approach described in Section Geometric map building.

We would like to emphasize that these gaps would be rarely observable under our particular
sensor configuration. For example, in order to build the image in Fig 22a a specific region
where the robot was performing a turn was selected and mapped using a resolution of 5cm.
Also, for the gaps to be clearly visible, the opening ¢ was set to 0.5°, six times below the actual
one. Using other sensors with lower measurement rate, the gaps may appear more frequently.

Fig 22b shows the same image where the gaps have been filled according to the geometric
approach. As it can be observed, there is a continuity in most cases between the echo intensity
map and the values assigned to gaps by the geometric approach.

Fig 23 provides two examples showing that the geometric approach can be used standalone
to build maps. Fig 23a and 23b correspond to the same regions and resolutions of Fig 19¢c and
19e. As it can be observed, the resulting maps clearly depict the environment. However, they
are significantly influenced by the SSS noise and almost no improvements can be observed
when increasing the resolution beyond the one of the SSS.

(b)

Fig 22. Some cells may remain unobserved due to the AUV motion. This situation corresponds to the pixel g1 in Fig 7. (a) Visual gaps due to unobserved
map cells. (b) Gaps filled with the Geometric map approach.

doi:10.1371/journal.pone.0146396.9022
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(b)

Fig 23. The geometric approach can also be used standalone to build the maps. This figure shows two examples build with (a) a resolution &y, = 12cm
and (b) a resolution &y, = 5cm.

doi:10.1371/journal.pone.0146396.9023
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As for the time consumption, building these two geometric maps spent 4.81 min and 1.16
min, far below the time required to build the echo intensity map corresponding to the same
regions (8.87 min and 3.07 min, as shown in Table 5).

Conclusion and Future Work

Three different models to built the probabilistic layer have been experimentally tested. Among
them, the Gaussian approach is the best in terms of model accuracy whilst the Uniform one
surpasses the other two when considering the computation time. Also, it has been shown that
for low resolution maps, the three models lead to similar results. Accordingly, it is reasonable
to use the Gaussian model for high resolution maps (i.e. resolutions below the SSS one) and the
Uniform or the Triangular otherwise.

The echo intensity map approach has shown to be able to provide accurate maps at better
resolutions than those of the SSS by combining overlapping measurements. However, if SSS
with low measurement rates are used, some gaps may appear in the map. To avoid this prob-
lem, the Geometric approach has been introduced as a method to fill such gaps.

The probabilistic layer Mp and the intensity layer M; can be used together to provide the
user or the navigation modules with information not only about the sea floor structure but also
about how good is that information. This could be used, for example, to decide which areas
have to be re-visited in order to reinforce the available information.

Fig 24 summarizes this idea. This figure shows the probabilistic map, built using the Gauss-
ian approach, and the echo intensity map of the whole explored area in our experimental setup
(750m x 270m) using a resolution &y, = 30cm. In this image, red areas denote regions with high
probability of being properly represented in the map and blue areas regions with lower
probability.

As for future work, our research is now focused on three key points. First, to improve the
presented models to deal with different observation angles. This is important as, depending on
the observation angle, the projected shadows change. The second key point is to use the results
of this study to perform underwater SLAM using SSS. This is a crucial task with very few
related studies providing satisfactory results. Additionally, we are focusing on purely algorith-
mic aspects in order to reduce the time consumption of the presented approaches.

Fig 24. Probabilistic and intensity maps overlayed. The probabilistic shows the probability of each cell to be observed, ranging from blue (low probability)
to red (high probability). The echo intensity layer shows the estimated sea floor structure.

doi:10.1371/journal.pone.0146396.9024
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