
Journal of the Marine
Biological Association of the
United Kingdom

cambridge.org/mbi

Marine Record
Cite this article: Macrina L, Terraneo TI,
McFadden CS, Chimienti G, Pieribone V,
Qurban M, Duarte CM and Benzoni F (2025)
The first record of ring sea anemones from
the Saudi Arabian Red Sea mesophotic zone.
Journal of the Marine Biological Association of
the United Kingdom 105, e122, 1–10. https://
doi.org/10.1017/S0025315425100787

Received: 29 June 2025
Revised: 20 September 2025
Accepted: 15 October 2025

Keywords:
marine animal forests, mesophotic coral
ecosystems, octocorallia, Peronanthus,
vulnerable marine ecosystems

Corresponding author: Laura Macrina;
Email: laura.macrina@kaust.edu.sa

© The Author(s), 2025. Published by
Cambridge University Press on behalf of
Marine Biological Association of the United
Kingdom. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution-NonCommercial-
NoDerivatives licence (http://
creativecommons.org/licenses/by-nc-nd/4.0),
which permits non-commercial re-use,
distribution, and reproduction in any
medium, provided that no alterations are
made and the original article is properly
cited. The written permission of Cambridge
University Press must be obtained prior to
any commercial use and/or adaptation of the
article.

The first record of ring sea anemones from
the Saudi Arabian Red Sea mesophotic zone

Laura Macrina1 , Tullia I. Terraneo1, Catherine S. McFadden2,
Giovanni Chimienti3,4, Vincent Pieribone5, Mohammed Qurban6,
Carlos M. Duarte1 and Francesca Benzoni1

1Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal, Saudi Arabia; 2Department of Biology, Harvey Mudd
College, Claremont, CA, USA; 3Department of Biosciences, Biotechnology and Environment, University of Bari
Aldo Moro, Bari, Italy; 4Consorzio Nazionale Interuniversitario per le Science del Mare (CoNISMa), Piazzale
Flaminio, Roma, Italy; 5OceanX, New York, NY, USA and 6National Center for Wildlife Development, Riyadh,
Saudi Arabia

Abstract
Ring sea anemones (Cnidaria, Actiniaria) engage in symbiotic associations with octocorals
by attaching to their branches and surrounding them with tissue junctions, causing a signifi-
cant reduction of the host’s coenenchyme.They have previously been reported from the North
Atlantic, Western Indian, and Pacific Oceans, from 30 m to aphotic depths, colonising species
of sea fans and sea pens in potentially parasitic relationships. Here, we report the first record
of ring sea anemones from the Saudi Arabian Red Sea mesophotic waters, living on an octo-
coral host of the family Ellisellidae at 97 m depth. Through morphological and phylogenetic
analyses based on the sequencing of the 12S small subunit rRNAregion,we confirmed the iden-
tification of these ring sea anemones as Peronanthus sp. (Actiniaria, Amphianthidae). While
expanding our knowledge on the geographic range of this genus, this finding emphasises the
importance of explorations of coral-associated fauna at mesophotic depths, to better under-
stand their diversity, their relationships with their hosts, and their potential ecological roles
within these ecosystems.

Introduction

Symbiotic relationships amongmarine organisms are widespread and diverse (Gittenberger and
Gittenberger 2011; Rouzé et al., 2017), and a wide array of associations has been described
in the literature, from shallow to deep waters, involving two or multiple organisms (Brown
et al., 2025; Hoeksema 2017; Maggiorni et al., 2022a; Mercier and Hamel 2008). For instance, in
shallow-water tropical reefs, coral-associated fauna representsmost of the invertebrate diversity
(Montano 2022), with the highest levels found for crustaceans andmolluscs (Stella et al., 2011).
Such interactions are fundamental for the survival of benthic communities, promoting produc-
tivity (Rodríguez-Troncoso et al., 2019), structural complexity (Bergsma and Martinez 2011),
and survival of the partners (Appril 2020), while potentially influencing each other’s evolution
(deVienne et al., 2013). However, despite the abundance and importance of symbiotic asso-
ciations, many of the interactions occurring in the marine environment remain poorly known
(Stella et al., 2011).This is especially remarkable considering those occurring atmesophotic and
aphotic depths (Turner et al., 2017), where often obligate symbioses are necessary for the sur-
vival of both partners (Osman andWeinnig 2022). In fact, although coral associationswith other
invertebrates are fairly well explored in shallow-water hard corals (e.g., Bähr et al., 2025, 2023;
Macrina et al., 2024a; Maggioni et al., 2022a; Stella et al., 2010; van der Schoot and Hoeksema
2024; Xu et al., 2025), many symbiotic relationships involve octocoral hosts (Anker et al., 2023;
Lau et al., 2020) at greater depths. Octocorals are major components of benthic environments,
providing habitat and shelter to a variety of organisms across the water column (Schubert et al.,
2017), and forming dense communities known as marine animal forests (MAFs; Orejas et al.,
2022; Rossi et al., 2017). Accordingly, various taxa have been reported in association with octo-
corals, establishing symbiotic relationships that can be very intricate (Fourreau et al., 2024;
Lourie and Randall 2003).

Mesophotic coral ecosystems (MCEs), particularly those dominated by MAFs, are increas-
ingly recognised as biodiversity hotspots due to their structural complexity and the specialised
taxa they support (Radice et al., 2024; Rossi et al., 2017). These ecosystems host organisms
with unique adaptations to low light, high pressure, and nutrient-poor conditions (Denis et al.,
2024) and are listed as vulnerable marine ecosystems by the Food and Agriculture Organization
of the United Nations (FAO), given their ecological value and susceptibility to impacts from
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fishing activities (FAO 2009). Nevertheless, our current under-
standing of the biodiversity and symbiotic relationships occurring
in these ecosystems remains scarce (Radice et al., 2024), although
their characterisationwould be critical for both biodiversity assess-
ments and effective conservation planning (Diaz et al., 2023; Nolan
et al., 2025, 2024; Rossi et al., 2017).

Sea anemones can engage in symbioses with a variety of
marine taxa, including the well-known association with anemone-
fish (Roux et al., 2020), but also, with hermit crabs (Ross and
Zamponi 1982), gastropods (Mercier and Hamel 2008), black
corals (Gress and Kaimuddin 2021), and octocorals (Ocaña et al.,
2004). However, their associations with the latter are still under-
studied (e.g., Ocaña et al., 2004; Riemann-Zürneck and Griffiths
1999). Actiniarian species such as Amphianthus dohrnii (Koch,
1878), Calliactis palliata (Müller, 1776), or Stephanauge impedita
(Gravier 1918), attach to octocoral branches by maintaining their
standard pedal disc structure and surrounding the colony with it
(Carlgren 1934; Gravier 1918). In contrast, other species, such as
those commonly known as ring sea anemones (RSA), appear to
have modified their morphology into a pedal ring constituted of
totally fused tissue surrounding the branches of octocoral colonies
in a ring-like structure (Ocaña et al., 2004).

The first description of RSA belongs to Hiles (1899), who, while
analysing octocoral colonies from the family Ellisellidae Gray,
1859, collected from Papua New Guinea by A. Willey, found and
described the new sea anemone species Peronanthus verrucellae
Hiles, 1899. Subsequently, Carlgren (1936) described Stephanauge
annularis Carlgren, 1936, which was then recognised as another
species of RSA (see Rodríguez et al., 2025) associated with sea
pens of the genusBalticinaGray, 1870 (formerlyHalipterisKölliker,
1870). Thereafter, Ocaña et al. (2004) provided an overview of
the known RSA and, based on morphology, assigned them to
two groups: the first encompassing small RSA with a remarkable
dimorphism between the upper part and the pedal ring (i.e., P. ver-
rucellae, Peronanthus sp. 1 – sp. 3, and S. annularis), and the second

including bigger RSA with a thick mesoglea (i.e., Peronanthus sp.
4). Finally, a potential fifth species of Peronanthus (sp. 5) was doc-
umented by Ocaña et al. (2007) and assigned to the first of the two
morphological groups.

To date, RSA are known to occur in associations with octo-
coral hosts of the genera Keratoisis Wright, 1869, Ellisella Gray,
1858,VerrucellaMilne Edwards &Haime, 1857,AnthothelaVerrill,
1879, and Balticina, from 30 m to aphotic depths in the Atlantic,
Indian, and PacificOceans (Ocaña et al., 2004, 2007;WoRMS 2024;
Figure 1). However, there are no records of RSA from the Red Sea,
a basin where geological factors and environmental extremes are
tightly linked to the diversity, evolution, and endemism of marine
fauna as well as their symbiotic relationships (Berumen et al., 2019;
DiBattista et al., 2016; McFadden et al., 2025).

In this study, we report the first record of RSA living on an octo-
coral colony from the Saudi Arabian Red Sea mesophotic zone.
By combining morphological and molecular analyses, we provide
an identification at the genus level and establish its phylogenetic
position through DNA barcoding.

Materials and methods

Sampling

During the Red Sea Decade (RSDE) expedition onboard the M/V
OceanXplorer, Remotely Operated Vehicle (ROV) and submersible
dives occurred along the Saudi Arabian Exclusive Economic Zone
of the Red Sea in mesophotic and aphotic waters from February
to May 2022. Sampling for this study was carried out using a
Triton 3300/3 submersible (Neptune), equipped with a Schilling
T4 hydraulic manipulator. During a submarine survey on 2 March
2022, an octocoral colonywas observed and collected at 97mdepth
in the central Saudi Arabian Red Sea (20.73865 °N, 39.265010 °E)
(Figure 1). Once at the surface, RSAwere observed on the collected
colony (octocoral colony voucher KAUST NTN0127BIO20). The

Figure 1. Map showing the sampling locality of the octocoral colony and symbiotic RSA in the central Saudi Arabian Red Sea (red dot). Blue dots indicate other locations
where RSA are known from previous studies. A summary with coordinates of the previously known records is reported in Supplementary Table S1. The map was created with
QGIS v3.32.2 (QGIS Development Team 2025).
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octocoral specimen and associated anemones were processed
aboard the research vessel and the apical part of one colony
branch, including RSA, was subsampled and fixed in 99% ethanol
immediately after collection for subsequent molecular analyses.
The rest of the octocoral colony was air-dried out of direct
sunlight for 24 hours and stored for subsequent morphological
examination.

Morphological analyses and identification

At the King Abdullah University of Science and Technology
(KAUST, Thuwal, Saudi Arabia), the octocoral dry colony and
ethanol-preserved branches, as well as the anemones, were pho-
tographed using a Nikon D7500 camera with a Nikkor 18–55 mm
lens. Detailed microscopical images of the anemones, of the octo-
coral polyps, and of the disposition and morphology of the octo-
coral’s skeletal elements were taken using a Leica M205A stere-
omicroscope equipped with a Leica DMC 5004 camera (Leica
Microsystems, Wetzlar, Germany). Octocoral sclerites were char-
acterised using a Quattro S Environmental Scanning Electron
Microscope (Thermo Fisher Scientific, Wilmington, USA) at
KAUST Imaging Core Laboratories (Thuwal, Saudi Arabia), fol-
lowing the workflow for sclerite preparation outlined in Macrina
et al. (2024b).

Both the actinians and the octocoral colony were identified
based on morphological characters used in traditional taxonomy
and reported in original descriptions and subsequent revisions
(e.g., Milne-Edwards and Haime 1857; Hiles 1899; Bayer and
Grasshoff 1994; Ocaña et al., 2004). The octocoral dry colony and
the ethanol-preserved samples, including the symbiotic anemones,
are stored at KAUST.

DNA extraction, amplification, and sequencing

Total DNAwas extracted from one of the symbiotic anemones (sea
anemone voucher KAUST NTN0127BIO20A) using a DNeasy®
Blood and Tissue Kit (Qiagen Inc., Hilden, Germany), follow-
ing the manufacturer’s protocol. Polymerase chain reaction (PCR)
was used to amplify a portion of the small subunit of ribosomal
RNA (rRNA) 12S using the primer couple ANTMT12SF (5′ –
AGCCACACTTTCACTGAAACAAGG – 3′) and ANTMT12SR
(5′ – GTTCCCYYWCYCTYACYATGTTACGAC – 3′) (Chen and
Yu 2000). The amplification was performed in a 15 μL volume
obtained with 7.5 µL 2X Multiplex PCR Master Mix (Qiagen Inc.,
Hilden, Germany), 1.5 µL of each primer (2 μM), 3.3 µL of H2O,
and 1.2 µL of raw DNA.The thermal profile used for the amplifica-
tion of the 12S rRNA region consisted of 95 °C for 15min, followed
by 4 cycles of 95 °C for 30 sec, 50 °C for 1 min, and 72 °C for 2 min,
followed by 30 cycles of 95 °C for 30 sec, 55 °C for 1 min, and
72 °C for 2 min (Chen et al., 2002). Success of the amplification
was tested using a QIAxcel Advanced System (Qiagen Inc., Hilden,
Germany).The amplified product was then purified using lllustra™
ExoProStar™ (Global Life Sciences Solutions Operations UK Ltd,
Buckinghamshire, UK), following themanufacturer’s protocol, and
directly sequenced in both forward and reverse directions using
an ABI 3730xl DNA analyser (Applied Biosystems, Massachusetts,
USA) at KAUST BioSciences Core Laboratories (Thuwal, Saudi
Arabia). Raw DNA is stored at KAUST. A barcode sequence for
the octocoral host is available in Macrina et al. (2025) (GenBank
Accession Number: PV707296).

Phylogenetic analyses

Chromatograms of the forward and reverse sequences were man-
ually checked, edited and assembled using Geneious® v10.1.3
(Biomatters Ltd, Auckland, New Zealand). To infer the phyloge-
netic position of the newly produced sequence, it was aligned with
69 previously deposited sequences available on GenBank database
(https://www.ncbi.nml.nih.gov/genbank/) and representing speci-
mens belonging to the order Actiniaria (Supplementary Table S2)
using MAFFT v7.490 (Katoh and Standley 2013) through the E-
INS-i settings. The alignment was manually inspected and edited
using the software AliView v1.28 (Larsson 2014). The newly pro-
duced sequence was deposited in GenBank database (Accession
number: PQ481953).The alignments’ statistics were checked using
MEGA v11 (Tamura et al., 2021). Prior to running phyloge-
netic analyses, evolutionary models were checked through jMod-
elTest2 (Darriba et al., 2012) on CIPRES (Miller et al., 2010),
under the Akaike Information Criterion (AIC), which selected the
model GTR+G. Phylogenetic trees were then inferred using both
Maximum Likelihood (ML) with RAxML-HPC2 on XSEDE v8
(Stamatakis 2014) and Bayesian Inference (BI) through MrBayes
on XSEDE v3.2.7a (Ronquist et al., 2012) on the CIPRES portal.
ML analyses were run using the default parameters and 1,000 boot-
strap replicates. For Bayesian analyses, two independent runs for
four Monte Carlo Markov Chains (MCMC) were conducted for
10 million generations, with trees sampled every 1000th genera-
tion, and burn-in set to 25%. Phylogenetic trees were visualized
using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/)
and rooted to Relicanthus daphneae (Daly, 2006) based on a
previously published Actiniaria phylogeny (Rodríguez et al., 2014;
Supplementary Table S2).

Results

Morphological results

The octocoral host (KAUST NTN0127BIO20) consisted of a
densely branched colony, with short and thick branches presenting
anastomoses (Figure 2A). Polyps were monomorphic, contrac-
tile, but not retractile, and arranged around the branches (Figure
2A–2I). Surface sclerites were orange, while subsurface sclerites
were colourless. Sclerites consisted of symmetrical spindles and
double-headed clubs (Figure 3). Based on these morphologi-
cal characters, the octocoral colony was assigned to the family
Ellisellidae and to an unidentified species in the genus Verrucella.

Upon examination, the Verrucella sp. branches appeared to be
covered in white RSA (Figure 2B) which surrounded the host
branches through a pedal ring (Ocaña et al., 2004) constituted
by the pedal disk tissue and part of the column (Figure 2A,
2B, 2H, 2I), which had to be broken to be detached from the
octocoral colony. Most of the anemones’ tissue was arranged in
their upper part, grouping the oral disc, tentacles, pharynx, and
mesenteries, while their pedal rings surrounded the branches
of the octocoral colony and appeared as a thin tissue junc-
tion with sparse external scars (Figure 2H, 2I). Based on these
morphological characters, the RSA were assigned to the genus
Peronanthus given their correspondence with the features of the
first of the two morphological groups reported by Ocaña et al.
(2004), and shared characters with Peronanthus sp. 3 (Ocaña et al.,
2004).
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Figure 2. Details of the analysed octocoral colony (voucher KAUST NTN0127BIO20) and associated RSA: (A) Full dry colony; (B) Portion of the freshly collected octocoral
colony with associated RSA; (C) Branch of the ethanol-preserved colony; (D–E) Microscopic pictures of the octocoral skeleton showing the polyps and the marks from the RSA
on its branches (indicated by arrowheads); (F) Microscopic picture of a branch of the colony showing the marks left by the RSA on the host (indicated by arrowheads) and the
axis of the octocoral left exposed by the epibiont (indicated by the arrow); (G) Microscopic picture of a portion of a colony branch showing the marks left by the RSA on the
host coenenchyme (indicated by arrowheads); (H–I) Ethanol-preserved octocoral polyps and associated RSA (indicated by arrowheads). Scale bars: A, 5 cm; B, C, 1 cm; D-I,
1 mm.

Molecular results

The newly generated 12S rRNA sequence (RSA voucher KAUST
NTN0127BIO20A) was analysed along with 69 previously pub-
lished Actiniaria sequences (Supplementary Table S2), in a final
alignment of 974 bp. The alignment included 373 conserved sites,

539 variable sites, 391 parsimony-informative sites, and 142 sin-
gletons. The tree topologies resulting from the BI and ML analy-
ses were concordant and confirmed that the sequenced specimen
belongs to the superorder Enthemonae, superfamily Metridioidea
Carlgren, 1893, family Amphianthidae Hertwig, 1882, and genus
Peronanthus (Figure 4).
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Figure 3. Sclerites of the Verrucella sp. colony characterised through scanning electron microscopy (SEM): (A) Symmetrical spindles; (B) Double-headed sclerites. Scale bars:
100 µm.

Discussion

Morphological andmolecular analyses confirmed that the actiniar-
ian specimens associated with the octocoral colony sampled at
97 m in the central Saudi Arabian Red Sea belonged to the
genus Peronanthus. Identification at the genus level was con-
firmed by our integrative analyses, and the RSA reported here
correspond to the first morphological group established by Ocaña
et al. (2004). However, species level assignment could not be con-
firmed at this stage due to the specimens being fixed in ethanol,
which made their study difficult for histological and taxonomic
purposes, and the geographical distance from the original col-
lection locations of previously reported Peronanthus specimens
(Supplementary Table S1; Hiles 1899; Ocaña et al., 2004, 2007).
Further and more detailed taxonomic studies aiming at clarify-
ing the actual diversity of these organisms may overcome these
limitations by preserving specimens for histological examination

and internal anatomy (Fautin 2009), and by comparing freshly col-
lected RSA with the type material of P. verrucellae and related taxa
(Carlgren 1936; Hiles 1899; Ocaña et al., 2004, 2007). Moreover,
sequencing additional loci (e.g., Yap et al., 2020) or employing
next-generation sequencing techniques may offer insights into the
evolutionary relationships of these organisms in the context of
the order Actiniaria’s systematics (Fautin 2016; Fautin et al., 2007;
Rodríguez et al., 2014) and help refine the phylogenetic placement
of the specimen reported here beyondwhat was possible to achieve
by sequencing the 12S rRNA marker alone. Such an integrated
approach would be critical for resolving species-level relationships
within the genus Peronanthus as well as to clarify whether any
of the organisms reported to date represent undescribed species.
Nevertheless, the RSA record reported here represents the first
one known from the Red Sea, marking a significant expansion
of the known distribution of the genus Peronanthus, beyond its
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Figure 4. Bayesian Inference phylogenetic reconstruction of Actiniaria inferred from the sequencing of the small subunit 12S rRNA region, showing the phylogenetic position of
one of the newly sampled Red Sea RSA (voucher KAUST NTN0127BIO20A in red). Node circles correspond to Bayesian posterior probability (≥0.8) and node values correspond
to ML bootstrap values (≥80). The tree was rooted to Relicanthus daphneae.

previously observed range in the North Atlantic, Western Indian,
and PacificOceans (Hiles 1899; Ocaña et al., 2004; Rodríguez et al.,
2025).

The finding of RSA associated with a Verrucella sp. colony at
mesophotic depths is particularly relevant as octocorals of the fam-
ily Ellisellidae can provide habitat and three-dimensional structure
in MAF ecosystems (Chimienti et al., 2021; Moccia et al., 2020).
Hence, it underscores the importance of characterising the bio-
diversity of these communities at both the host and symbiont
levels, particularly in MCEs, where obligate associations may be
key to species survival (Kahng et al., 2014). Symbiotic interactions

involving actiniarians and octocorals are rare but biologically
intriguing, especially those comprising Peronanthus, whose mor-
phological adaptation suggests a high degree of host specificity and
functional integration, potentially reflecting a long coevolutionary
history. Unlike many shallow-water anemones that retain a free-
living capacity or use loosely attached pedal discs (e.g., Calliactis
spp. with hermit crabs), RSA are obligately epibiotic and appear to
be structurally dependent on their hosts (Ocaña et al., 2004). The
evolution of the ring-like pedal morphology may have arisen as a
species-specific adaptation to the host colonies (see, e.g., van der
Schoot and Hoeksema 2024 for other examples) or as a strategy to
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exploit specific ecological niches (such as the gorgonian branches)
and avoid habitat competition (Ocaña et al., 2004). In fact, this
modification mirrors similar adaptations seen in other symbionts
of octocorals and black corals at depth, such as ovulid gastropods
and zoantharians, which often exhibit host-specific tissue mod-
ifications to maintain long-term attachment and access to host
resources (Ocaña andBrito 2004; Reijnen et al., 2010). Accordingly,
the ring morphology could represent a parallel evolutionary strat-
egy to ensure stability in exposed habitats, by maximising the
contact with the host tissues and ensuring epibiotic attachment.
Furthermore, the structural integration seen in Peronanthus may
drive selective pressures on both partners’ morphology and phys-
iology (Appril 2020; Dimijian 2000). Comparative research on
other mesophotic coral symbioses, such as the sponge-octocoral
associations in the Caribbean, revealed that such interactions are
often shaped by a combination of environmental constraints and
evolutionary patterns (Lourie and Randall 2003). As such, the
highly specialised Peronanthus-octocoral association may serve
as a valuable model for exploring host-symbiont coevolution in
MAFs.

Although the nature of the symbiosis between octocorals and
RSA has not been fully clarified to date, the latter are known
to engage in complex interactions with their hosts, including
mutualistic and commensal relationships (Ocaña et al., 2004).
Nevertheless, Morton (1989) advanced the hypothesis that the
genus Peronanthus may be an octocoral parasite, harming the
host colonies, and this may be the case of the association
reported in this study. In fact, RSA were clearly causing dam-
age to the collected octocoral host, by reducing the thickness
of its coenenchyme (Figure 2D–2G) and removing polyps to
reach the colony’s axis (Figure 2H–2I), in a relationship that
could be linked to a metabolic dependence of the parasite
on the host (Ocaña et al., 2007). However, such interactions
may also vary depending on environmental conditions and the
health of the corals, with potential for mutualistic or commen-
sal associations under different circumstances (Goulet and Goulet
2021).

In the Red Sea, a basin known for its extreme environmen-
tal conditions (Berumen et al., 2019), clarifying the mechanisms
behind the symbioses ofPeronanthus sea anemones andEllisellidae
octocorals could offer insights into their relationship and roles in
MCEs and MAFs (Cuecuecha-Pérez and Ávila-García 2025). At
these depths in the warm waters of the Red Sea, organisms like
Peronanthus may have evolved specialized adaptations to secure a
stable substrate for survival, as shown for instance in hydrother-
mal environments (Zhou et al., 2023). With ongoing explorations
at depth, this finding contributes to the growing body of evidence
highlighting the mesophotic zone of the Red Sea (Loya et al.,
2019) as a reservoir of undocumented biodiversity (e.g., Anker et
al., 2023; Benayahu et al., 2018a, 2018b; Chimienti et al., 2022;
Macrina et al., 2025; Maggioni et al., 2022b; Nolan et al., 2025;
Terraneo et al., 2023; Vicario et al., 2024; Vimercati et al., 2023),
underscoring the ecological complexity andbiogeographic unique-
ness of these underexplored ecosystems. Given the higher diversity
found in the mesophotic zone of the Red Sea compared to the
euphotic and aphotic counterparts for organisms such as octoco-
rals (Macrina et al., 2025) and black corals (Vicario et al., 2024), this
record warrants further examination of the patterns of evolution
and coevolution among octocorals and symbiotic taxa in the basin,
especially considering the Ellisellidae and associated symbionts at
depth.

Conclusions

Records of invertebrate associations such as the one reported in
this study can be useful to elucidate the occurrence and establish-
ment of symbioses amongbenthic taxa inMAFs, providing insights
into the nature of these interactions andmechanisms of host selec-
tion. This new record of Peronanthus sp. in the Saudi Arabian Red
Sea mesophotic zone not only extends the known range of this
genus but also emphasizes the significance of mesophotic habi-
tats in supporting complex ecological relationships. It is therefore
crucial to continue the investigation of the diverse and often intri-
cate symbioses existing in these environments, as theymay provide
valuable clues to the evolutionary dynamics and ecological pro-
cesses shaping the biodiversity, resilience, and long-term dynamics
of mesophotic ecosystems.

Supplementary material. The supplementary material for this article can
be found at 10.1017/S0025315425100787.
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