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A two-timescale model of plankton-oxygen dynamics

predicts formation of Oxygen Minimum Zones and

global anoxia
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Abstract

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead

to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxy-

genation of the ocean often results in the formation of Oxygen Minimum Zones (OMZ): large

domains where the abundance of oxygen is much lower than that in the surrounding ocean

environment. Factors and processes resulting in the OMZ formation remain controversial. We

consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plank-

ton growth and the oxygen production by phytoplankton, also accounts for the difference in the

timescales for phyto- and zooplankton (making it a “slow-fast system”) and for the implicit effect

of upper trophic levels. The model is investigated using a combination of analytical techniques

and numerical simulations. We show that the system does not allow for persistent relaxation

oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen

depletion. For the spatially explicit model, an initial non-uniform perturbation can lead to the

formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large

timescale separation, the spread of the OMZ can result in global anoxia.

Keywords: slow-fast dynamics; pattern formation; extinction; ocean anoxia; transients
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1 Introduction

Plankton is a vital element in the complex marine food webs and biochemical cycles. Phyto-

plankton is the primary producer standing at the base of the marine food web. As a by-product

of the primary production, phytoplankton produces oxygen in the process called photosynthe-

sis. The produced oxygen is then used by marine fauna, e.g. zooplankton and fish. The level of

dissolved oxygen is a crucial indicator of the marine ecosystem health, as its depletion may lead

to a mass mortality of aquatic species [1–3]. Furthermore, a considerable part of the oxygen

produced in the ocean goes to the atmosphere through the ocean surface. It is estimated that

around 50-80% of atmospheric oxygen originates in the ocean. Phytoplankton therefore plays a

critical role in producing and maintaining oxygen levels needed for survival both of aquatic and

terrestrial species [4, 5].

Over the last few decades, the level of the dissolved oxygen in the ocean has shown a trend

to decrease [6–10]. This is believed to be a result of the global warming, in particular because

warmer water contains less dissolved oxygen [6, 11]. Also, the warming leads to a stronger

stratification of the upper ocean, which reduces the O2 fluxes through the ocean surface [12,13].

Apart from the above purely physical mechanisms, there can be more subtle effects of the global

warming driven by a biological feedback. An increase in the water temperature may slow down

the oxygen production by phytoplankton [14–17], potentially resulting in a regime shift and a

global oxygen depletion [18–20]. Ocean anoxia is thought to be the factor that can trigger a mass

extinction and this has indeed happened several times during the deep past [3, 21–23]. Thus,

better understanding of the pathways leading to the global anoxia as well as the identification

of possible early signs of the approaching catastrophe are obviously problems of literally vital

importance. In turn, it requires a better understanding of the coupled plankton-oxygen dynamics

in the ocean and, arguably, mathematical modelling is a powerful research approach to facilitate

it.

Mathematical models of plankton dynamics are abundant in the literature, e.g. see [24–31].

Earlier modelling studies of the plankton dynamics were mostly concerned with the temporal

and spatio-temporal dynamics of the coupled phytoplankton-zooplankton system [28, 32–34],

with a particular focus on plankton patchiness and plankton blooming [24, 31, 35–37]. In [38–

42], conceptual two- and three-component mathematical models were considered to reveal the

role of various internal and external factors and to demonstrate different routes to plankton

pattern formation. More recently, there has been growing attention to possible links between the

dissolved oxygen, plankton dynamics and the climate change [43, 44], which facilitated further

progress in mathematical modelling of marine ecosystems [45]. In particular, it was shown

in [18, 19, 46] that sustainable oxygen production by marine phytoplankton can be severely

disrupted by a gradual increase in the average water temperature. In turn, this may eventually

lead to a global anoxia and it was argued in [47] that the observed decrease in the oxygen stock

in the ocean [6, 7, 48] and the slow gradual decrease in the amount of atmospheric oxygen [49]

that has occurred over the last few decades may be early signs of the approaching catastrophe.

Remarkably, the amount of dissolved oxygen does not only change with time, it also depends

on space. The spatial distribution of oxygen in the ocean is distinctly heterogeneous [50, 51],

sometimes resulting in the formation of large stable areas or ‘patches’ where the dissolved oxygen

concentration is much lower than the average. Such a patch is referred to as Oxygen Minimum

Zone (OMZ) or the dead zone [2, 7, 52]. They were discovered in different parts of the world

ocean, e.g. in the subsurface waters of the Arabian Sea and in the eastern boundary upwelling

regions of the tropical oceans of California, Peru, and Namibia [52, 53]. The existence of OMZ
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has a significant effect on the marine species abundance and the aquatic food chains [54]. There

is evidence that some zooplankton species may have a capacity to adapt to oxygen-deficient

environments [55]. However, a significant drop in the dissolved oxygen level eventually results

in the formation of a dead zone, so that the majority of marine life either dies or leaves the

area [2, 54].

Interestingly, over the last several decades the OMZs have been growing in size. In particular,

a rapid expansion in OMZs in the eastern Pacific and northern Indian oceans is well documented

[7,52]. Because of the OMZ’s detrimental effect on the corresponding local marine ecosystem, this

is becoming a grave concern for ecology and conservation as well as some industries, e.g. fishery.

Moreover, there is some theoretical evidence that the OMZ expansion may be an early warning

signal of the approaching global anoxia [56]. The expansion of OMZ is thought to be caused

by various factors, ultimately linking it to the global warming and to the human interference

through the perturbation of the ocean’s biogeochemical cycles, in particular the CO2 cycle,

although the issue as a whole remains controversial [8, 57].

In this study, we address the phenomena of the OMZ formation and growth theoretically

based on the earlier conceptual modelling approach that considers the variations (in particular,

a decrease) in the dissolved oxygen level as a inherent property of the coupled plankton-oxygen

dynamics in the ocean, not necessarily an effect of exogenous factors [18–20]. Our updated

mathematical model incorporates two important factors that were overlooked in the earlier

studies. One such factor is the nonlinear mortality of zooplankton; it takes into account a

combined effect of the zooplankton intraspecific competition, cannibalism, and the zooplankton

consumption by its predators from a higher trophic level (e.g. fish) [28,38]. It is well known that

the nonlinear mortality rate can change the system’s dynamical properties significantly [31,58,59]

but its potential effect on the plankton-oxygen dynamics has never been investigated.

The second factor is the existence of different timescales in the plankton-oxygen dynamics.

Indeed, it is a common observation that the zooplankton growth rate is usually much lower

than that of phytoplankton. Correspondingly, the typical time (timescale) of changes in the

phytoplankton density is considerably shorter (sometimes by an order of magnitude) than that

of zooplankton. In this study, we therefore assume that the production of oxygen and the

phytoplankton growth, on the one hand, and the zooplankton response, on the other hand,

happen on fast and slow timescales, respectively. The presence of different timescales in a

dynamical system can make its properties much more complicated, e.g. to bring bifurcations,

coexistence of multiple attractors, complex oscillations, long transients and pattern formation

that would not be there otherwise [60–64]. It is therefore a very relevant question as to how the

existence of multiple timescales can modify the plankton-oxygen dynamics, in particular in the

context of the OMZ formation and growth.

The paper is organised as follows. In the next section, we describe our mathematical model

and investigate its basic properties such as the existence and stability of the steady states. In

Sections 3 and 4, we consider the properties of the nonspatial model to reveal, respectively,

the effect of the nonlinear mortality and the different timescales. We identify conditions when

the system can undergo a regime shift that may correspond to catastrophic changes in the real

world. In Section 5, we consider the properties of the spatially explicit system, with a special

focus on the dynamical regimes resulting in the pattern formation, in particular those that can

be interpreted as the formation and/or expansion of Oxygen Minimum Zones. Finally, in Section

6 we summarise and discuss our results.

3



2 The non-spatial system

We consider a conceptual mathematical model that explicitly includes only phytoplankton, zoo-

plankton, and dissolved oxygen. Oxygen is produced by phytoplankton in photosynthesis and

consumed by both phytoplankton and zooplankton as needed for their metabolism. In the

zero-dimensional (nonspatial) case, the model is given by the following three equations [18,19]:

dc

dt
=

Au

c+ 1
− δuc

c+ c2
− νcv

c+ c3
− c = F (c, u, v), (1a)

du

dt
=

(
Bc

c+ c1
− u

)
u− uv

u+ h
− σu = G(c, u, v), (1b)

dv

dt
= ε

( ηc2

c2 + c42
uv

u+ h
− µ1v − µ2v

2
)
= εH(c, u, v), (1c)

where c, u and v denote, respectively, the concentration of dissolved oxygen, phytoplankton, and

zooplankton densities in appropriately chosen dimensionless variables [18,19] and t is dimension-

less time. The first term in Eq. (1a) describes the rate of oxygen production in photosynthesis

(see [19] for more details) and the second and third terms describe the oxygen consumption

by phyto- and zooplankton, respectively, which is assumed to be described by the Monod type

kinetics. The first term in Eq. (1b) describes the phytoplankton multiplication; based on earlier

work [28,65,68], we consider it as the logistic growth. The second term in Eq. (1b) quantifies the

phytoplankton grazing by zooplankton [68], and the third term describes the phytoplankton nat-

ural mortality. In Eq. (1c), the first term in the brackets describes the zooplankton growth (with

the food assimilation efficacy being assumed to depend on the level of dissolved oxygen [19]),

the second term describes the zooplankton natural mortality and the third (quadratic) term

describes a combined effect of the competition and the predation by species from higher trophic

levels (not included into the model explicitly) [30]. Here parameter A is the per capita oxygen

production rate, B is the per capita phytoplankton growth rate, σ and µ1 are natural mortality

rates for phyto- and zooplankton, respectively, µ2 quantifies the strength of nonlinear zooplank-

ton removal. The meaning of other parameters in Eqs. (1) is straightforward. For more details,

including biological justification of all terms in the right-hand side of Eqs. (1), see [18,19].

For the reasons mentioned in the introduction, we introduce additional parameter 0 < ε < 1

that quantifies the difference in the phyto- and zooplankton characteristic timescales; in most

cases below, we will assume ε ≪ 1. Note that, compared to the original model proposed

in [18, 19], Eqs. (1) include two essentially new elements, i.e. the quadratic term and a small

parameter (cf. Eq. (1c)), which makes model (1)somewhat more realistic.

2.1 Steady States Analysis

To explore the dynamics of the temporal model, we study all possible equilibrium points (steady

states) of the system (1) and their stability. The system has a total extinction state given by

E0 = (0, 0, 0). To study the dynamics of the system (1) around E0 we linearize around E0 and

obtain the Jacobian matrix

JE0 =

−1 A 0

0 −σ 0

0 0 −εµ1

 . (2)

All the eigenvalues of the above matrix JE0 are real and negative. Therefore, the total extinction

state E0 is always stable. In [19] the authors showed that under some parametric restrictions,
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the system can have two zooplankton free equilibria. Since the introduction of the quadratic

term in (1c) does not affect the zooplankton free equilibrium states, as the zooplankton free

state is the form (c̄, ū, 0) where c̄ is the root of the quartic equation

c̄4 − (δ(σ −B)− (c1 + c2 + 1))c̄3 − (A(B − σ) + (δσ − c2 − 1)c1 −Bδ + δσ − c2)c̄
2−

(((B − σ)c2 − σc1)A+ δσc1 − c1c2)c̄+Aσc1c2 = 0,
(3)

and

ū =
c̄(B − σ)− c1σ

c̄+ c1
. (4)

Since the above equation is a fourth-order polynomial, analytical determination of the equi-

librium points is nearly impossible. We choose suitable numerical values of the parameters to

obtain feasible zooplankton free equilibrium states. Throughout the paper, we fix the parameter

values at

A = 4, B = 3, σ = 0.1, c1 = 0.7, c2 = 1, c3 = 1, c4 = 1, η = 0.7, δ = 1, γ = 0.01, h = 0.1. (5)

and suitably vary µ1, µ2, and ε. For all the values of µ1 and µ2 and parameters fixed at (5)

the two feasible zooplankton free equilibrium points are given by E1 = (0.0258, 0.0067, 0) and

E2 = (1.712, 2.029, 0). Among the two zooplankton free equilibrium points, one is always a

saddle point while the other can be either stable or unstable depending on the parameter values.

For our choice of parameter values (5) both E1 and E2 are unstable (saddle) with a 2-dimension

stable manifold and a 1-dimensional unstable manifold. We plot the c-component of E1 and E2

in Fig. 1 with red broken lines. Note the lines are horizontal, because the corresponding steady

state values do not depend on µ1 or µ2, as is obvious from Eqs. (3-4). The system does not

possess any other feasible boundary equilibria in this parametric regime. Note that a nontrivial

oxygen free equilibrium is not possible in our model (which agrees with biological reasons).

Indeed, setting c ≡ 0 in Eq. (1a) immediately leads to u ≡ 0, which in turn leads to z ≡ 0.

The coexistence equilibrium of the system (1) is denoted by E∗ = (c∗, u∗, v∗) where

v∗ =
1

µ2

( ηc2∗
c2∗ + c24

u∗
u∗ + h

− µ1

)
and c∗, u∗ can be obtained by simultaneously solving the quartic and quadratic equations re-

spectively

c4∗ + (δu∗ + νv∗ + c2 + c3 + 1)c3∗ − ((A− δ(1 + c3))u∗ − (1 + c2)νv∗ − (c2(1 + c3) + c3))c
2
∗

−(Au∗(c2 + c3)− (δu∗c3 + νv∗c2 + c2c3))c−Au∗c2c3 = 0,

u2∗(c∗ + c1)− ((B − h− σ)c∗ − (h+ σ)c1)u∗ − (Bh− hσ − v∗)c∗ + (hσ + v∗)c1 = 0.

Because of the complexity of the simultaneous algebraic equations we obtain the coexistence

equilibrium points using numerical simulations. The parameter values are fixed at (5) and we

choose µ1, µ2 as the bifurcation parameters. Note that for µ1 > 0, µ2 = 0, the model was

rigorously studied in [19]. However, we deal with other cases in this work. For µ1 = 0, µ2 > 0,

we found that the system (1) has two coexistence equilibrium points which disappears via saddle-

node bifurcation for sufficiently smaller values of µ2. If we denote the saddle-node bifurcation

threshold by µSL
2 , then for µ2 > µSL

2 the system has two coexistence equilibrium points and for

µ2 < µSL
2 there are no feasible coexistence equilibrium. For µ1, µ2 > 0, the system has a unique
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coexistence equilibrium throughout the parametric regime of µ2, whenever they are feasible. The

number of coexistence equilibrium points and their stability is determined by the combination

of the parameters µ1 and µ2. The Jacobian matrix evaluated at the coexistence equilibrium E∗
is

JE∗ =

J11 J12 J13
J21 J22 J23
J31 J32 J33

 (6)

and the corresponding characteristic equation is given by

λ3 + p2λ
2 + p1λ+ p0 = 0.

The coefficient are

p2 = −tr(JE∗), p1 = J
[1]
11 + J

[2]
22 + J

[3]
33 , p0 = −det(JE∗)

where Jij is the (i, j)-th entry of JE∗ , and J
[i]
ii is the cofactor of Jii. By Routh-Hurwitz conditions

the coexistence equilibrium point E∗ is stable if the following conditions hold

p0 > 0, p2 > 0 and p1p2 > p0.

To observe the change in system’s dynamics with the introduction of intraspecific competition

among the zooplankton, we choose µ2 to be the bifurcation parameter. Thus keeping all the

parameters fixed, p1, p2, p0 are functions of µ2 only. The coexistence equilibrium E∗ loses its

stability and exhibits oscillatory dynamics through Hopf bifurcation at µH
2 , which is obtained

by solving

p1(µ
H
2 )p2(µ

H
2 ) = p0(µ

H
2 ).

This expression is not mathematically tractable, thus we numerically obtain the Hopf bifurcation

threshold µH
2 = 0.35405 (upto five decimal place) for the parameter values (5), and µ1 = 0.05, ε =

1. The Hopf bifurcation can be either supercritical or subcritical depending on the magnitude

of the parameters µ1 and µ2. For a fixed µ1, with an increase in the intraspecific competition

(as quantified by µ2), the equilibrium state of the system changes its stability from unstable

to stable. The broken line in Fig. 1 represents the unstable branch of the equilibrium and the

continuous line represents the stable branch. The red and blue dots on the equilibrium branch

are the subcritical and supercritical Hopf bifurcation thresholds, respectively. For a relatively

higher value of µ2, both the extinction state E0 and the coexistence state E∗ is stable, and

the system exhibits bi-stability. For µ1 = 0 the lower branch of the coexistence equilibrium is

saddle and it acts as a separatrix between the basin of attraction of E∗ and E0. However, for

µ1 > 0, their basins are separated by the unstable manifold of the saddle boundary equilibrium

point. For a fixed µ2 we observe an increase in the oxygen concentration with an increasing

mortality rate of the zooplankton (see Fig.1). Therefore, an increase in the zooplankton linear

mortality rate (as quantified by µ1) and an increase in the nonlinear mortality rate (due to the

intraspecific competition and/or predation by higher trophic levels [67], as quantified by µ2)

lead to an increase in the stable oxygen level.

3 Local and global dynamics

The dynamics of the system (1) is determined by its local and global bifurcation structure.

However, any comprehensive analytical analysis of the bifurcations is hardly possible for this
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Figure 1: The plot of c-component of the coexistence equilibrium for the parameter values given

in (5) as a function of parameter µ2 for a few different values of µ1: µ1 = 0 (blue), µ1 = 0.05

(magenta), µ1 = 0.25 (green), and µ1 = 0.3 (black). The black dot represents the saddle-node

bifurcation threshold (cSL, µSL
2 ). The inset shows the nature of the equilibrium branch near

the saddle-node bifurcation threshold in log-log scale. The red horizontal lines represent the

c-component of the two zooplankton-free equilibrium points. The red dots on the equilibrium

branches represent subcritical Hopf bifurcation threshold, while the blue dots on the equilibrium

branches represents supercritical Hopf bifurcation threshold.

model due to its algebraic complexity. Instead, we choose µ1 and µ2 as bifurcation parameters

and obtain two corresponding one parametric bifurcation diagrams; see Fig. 2. These diagrams

readily reveal the various Hopf bifurcation scenarios of the coexistence equilibrium. We further

show the possibility of the heteroclinic bifurcation and saddle-node bifurcation of limit cycles.

(a) µ2 = 0 (b) µ1 = 0 (c) µ1 = 0.24

Figure 2: Bifurcation diagram of the system (1) at the parameter values (5) for different combi-

nation of µ1 and µ2. The stable equilibrium and limit cycles are marked in blue. The unstable

cycle and coexistence equilibrium are marked in red (continuous and broken respectively). The

c-component of the boundary equilibrium points is shown by broken black lines. The global

bifurcation thresholds are marked in vertical broken green line. The black dot represents the

Hopf bifurcation threshold (subcritical and supercritical).

In Figure 2, the Hopf bifurcation thresholds (supercritical and subcritical) are marked by

black dots and the thresholds for the global bifurcations (heteroclinic and saddle-node bifurcation

of limit cycles) are marked by green vertical broken lines. The stable and unstable cycles (and

equilibrium) are shown in blue and red colour, respectively. We choose µ1 or µ2 as bifurcation
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parameters to observe the change in the system’s dynamics. Note that, the zooplankton free

equilibrium points E1 and E2 are independent of the bifurcation parameters. Thus, the stability

of these equilibrium points does not depend on µ1 and µ2. For our investigation, we choose other

parameters as in (5), so that that both E1 and E2 are unstable. we plot the c̄-components of

the unstable zooplankton free equilibrium points of the form (c̄, ū, 0) in a black broken line.

In the absence of intra-specific competition among the zooplankton and neglecting the effect

of higher trophical levels (that is, for µ2 = 0), the system has a unique coexistence equilibrium,

which loses its stability through Hopf bifurcation at µH
1 = 0.398 (considering all the other pa-

rameters are fixed at (5)). The Hopf bifurcation is supercritical as the first Lyapunov coefficient

is l1 = −0.358(< 0). The unique coexistence equilibrium point is stable for µ1 > µH
1 and unsta-

ble for µ1 < µH
1 . A small amplitude stable limit cycle originates from µH

1 . The amplitude of the

stable cycle increases with decreasing µ1 till it hits the boundary equilibrium points and disap-

pears via a heteroclinic bifurcation (marked in green). Beyond this threshold, the coexistence

equilibrium is unstable and the extinction state E0 is the only global attractor. On decreasing

the mortality rate from µH
1 the concentration of the zooplankton increases. This increases the

oxygen consumption by zooplankton and also decreases phytoplankton production such that

beyond a threshold the system collapse.

On the contrary, if we consider the case where the zooplankton mortality is primarily due

to the combined effect of the competition and predation by species from higher trophic levels,

then one could neglect the natural mortality [67], so that µ1 = 0. Using other parameter values

as in (5), the Hopf bifurcation occurs at µH
2 = 0.408. Since the first Lyapunov coefficient is

l1 = 1.065(> 0), the Hopf bifurcation is subcritical. Among the two coexistence equilibria as

obtained in Fig. 1, one is always saddle, the other is unstable for µ2 < µH
2 and stable for µ2 > µH

2 .

An unstable cycle emerges from the subcritical Hopf bifurcation, increases in size in a narrow

domain for µ2 > µH
2 , till it disappears via global bifurcation (see Fig. (2)(b)). Beyond this,

the stable extinction state E0 coexists with a stable coexistence equilibrium. We now choose

µ1 = 0.24. Then, the subcritical Hopf bifurcation occurs at µH
2 = 0.1577. Here the unstable

cycle that emerged through Hopf bifurcation is surrounded by a stable limit cycle. The stable

and unstable cycle exists in a narrow range of µ2 and collides at saddle-node bifurcation of limit

cycle (µ2 = 0.1578). On the other hand, for µ2 < µH
2 , the unstable equilibrium is surrounded

by a stable limit cycle. The amplitude of the stable cycle increases and disappears through

heteroclinic bifurcation at µ2 = 0.15715 (see Fig. (2)(c)).

4 Slow and fast dynamics

The system (1) for 0 < ε ≪ 1 is referred to as the singularly perturbed system. The timescale

parameter ε signifies a clear distinction between two timescales: slow and fast. The change in

the zooplankton density occurs at a much slower rate as compared to the change in oxygen and

phytoplankton density. We denote the time ‘t’ in system (1) as the fast time and the system (1)

is with respect to the fast timescale.

Introducing the slow timescale τ = εt, we obtain the following slow subsystem:
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ε
dc

dτ
=

Au

c+ 1
− δuc

c+ c2
− νcv

c+ c3
− c = F (c, u, v),

ε
du

dτ
=

(
Bc

c+ c1
− u

)
u− uv

u+ h
− σu = G(c, u, v),

dv

dτ
=

( ηc2

c2 + c42
uv

u+ h
− µ1v − µ2v

2
)
= H(c, u, v),

(7)

We analyze the above slow and fast systems with the help of geometric singular perturbation

theory [61,69]. The basic idea behind this approach was to decompose the slow and fast systems

in its limiting systems (i.e for ε = 0) and study the dynamics of the respective subsystems. In

the singular limit ε → 0, we obtain the fast subsystem (oxygen-phytoplankton) of system (1) as

follows

dc

dt
=

Au

c+ 1
− δuc

c+ c2
− νcv0

c+ c3
− c,

du

dt
=

(
Bc

c+ c1
− u

)
u− uv0

u+ h
− σu,

(8)

with v = v0 (constant zooplankton density). Also, letting ε = 0, in (7) we obtain the slow

subsystem or the reduced system as

F (c, u, v) = 0, G(c, u, v) = 0,
dv

dτ
= H(c, u, v), (9)

where F,G,H are given above. The set

C0 = {(c, u, v) ∈ R3 : F (c, u, v) = 0 = G(c, u, v)}.

is called critical manifold, which is the collection of all equilibrium points or curves of the fast

subsystem. It can be divided into two parts: trivial critical manifold C0
0 and non-trivial critical

manifold C1
0 such that C0 = C0

0 ∪ C1
0 . The trivial critical manifold is given by the line

C0
0 = {(c, u, v) ∈ R3 : c = 0, u = 0, v ∈ R}

and the non-trivial critical manifold C1
0 is the curve of intersection of two surfaces given by

v = (u+ h)
( Bc

c+ c1
− u− σ

)
, v =

(c+ c3)

ν

( Au

c+ 1
− δuc

c+ c2
− c

)
.

The slow subsystem (9) represents the slow change in the zooplankton density over the critical

manifold. Considering the slow variable v as the bifurcation parameter, we numerically obtain

the critical manifold (black) as shown in Fig. (4). Therefore, along the critical manifold, the

zooplankton density changes slowly. Since the two surfaces intersect along a curve, we find the

extrema (fold point) of the curve (if any). A point P ∈ C0 is a fold point of the critical manifold

if the fast subsystem exhibits a fold bifurcation. In other words, if we consider the Jacobian

matrix of the fast subsystem

J =

(
Fc Fu

Gc Gu

)
, (10)

then at the fold point P , rank(J ) = 1 and the critical manifold is non-hyperbolic. It divides the

critical manifold into two halves namely attracting Ca
0 and repelling Cr

0 sub-manifold. A point

p ∈ Ca
0 if both the eigenvalues of the matrix J evaluated at p has negative real parts, whereas

9



a point q ∈ Cr
0 if atleast one of the eigenvalues of the matrix J evaluated at p has positive real

part. To determine the stability of the trivial manifold, we evaluate the matrix J along C0
0 and

thus obtain

JC0
0
=

(
−1− νv

c3
A

0 − v
h − σ

)
. (11)

Since all the parameters involved in the system are positive, the eigenvalues are given by

−1− νv

c3
< 0, −v

h
− σ < 0,

for v ≥ 0. Thus the trivial manifold C0
0 is stable for v ≥ 0. Fenichel’s theorem [69] state that the

normally hyperbolic attracting and repelling sub-manifolds, Ca
0 and Cr

0 respectively, obtained for

ε = 0, perturb to locally invariant attracting and repelling sub-manifolds Ca
ε and Cr

ε respectively,

for ε > 0. Therefore, the dynamics of the full system (1) or (7) can be approximated by studying

the dynamics of the subsystems obtained for ε = 0.

The slow flow on the critical manifold C1
0 is given by the slow subsystem (9). We differentiate

F (c, u, v) = 0 and G(c, u, v) = 0 implicitly with respect to ‘τ ’ along the critical manifold, and

obtain the dynamics on the critical manifold. This is governed by the following system of

equations
dc

dτ
= −FvGu − FuGv

FcGu − FuGc
H,

du

dτ
= −FvGc − FcGv

GcFu −GuFc
H,

dv

dτ
= H, (12)

with suitable initial condition (c0, u0, v0) ∈ C1
0 . The slow flow has a singularity whenever GcFu−

GuFc = 0, which holds at the fold point P. Thus, the solution blows up at this point. Whenever

FvGu−FuGv ̸= 0 or FvGc−FcGv ̸= 0, the fold point is called the jump point, and the trajectory

jumps from the proximity of the fold point to another attracting critical manifold. However,

when both FvGu−FuGv = 0 and FvGc−FcGv = 0, the fold point is called canard point. At this

point, the trajectory can pass through the proximity of the fold point and follow the repelling

manifold for O(1) time.

The coexisting equilibrium loses its stability and exhibits oscillatory dynamics through Hopf

bifurcation (supercritical or subcritical), which we discussed in the previous section. In a classical

slow-fast setting, the small cycles originating from Hopf bifurcation bifurcates to canard cycles

(with or without head) and further to relaxation oscillation, thus exhibiting canard explosion

[70]. These cycles are composed of slow and fast segments, where the slow flow occurs along

both attracting and repelling sub-manifold of the critical manifold. It exhibits fast flow when

the trajectory jumps to another stable portion of the critical manifold. However, for the system

(1), small canard cycles (without head) emerge from Hopf bifurcation. The amplitude of the

cycles increases in a narrow parametric range, eventually leading to complete extinction. We

prove this fact in the following theorem.

Theorem 4.1. Assume the fold point P is a canard point for ε > 0. Then the system (1) has

small amplitude canard cycles (without head) originating from Hopf bifurcation but there does

not exist any relaxation oscillation.

Proof. In the slow-fast setting, we denote the Hopf bifurcation as singular Hopf bifurcation since

the eigenvalues of the Jacobian matrix of the system (1) evaluated at E∗ has purely imaginary

complex eigenvalue of the form

λ1,2 = ± iω(µH
2 , ε)

such that limε→0 ω(µ
H
2 , ε) = 0. The singular Hopf bifurcation occurs at O(ε) from the fold point

P. We assume FvGu − FuGv = 0 and FvGc − FcGv = 0 such that the fold point is the canard

10



point. The small limit cycle originating from Hopf bifurcation grows in size through a sequence

of canard cycles. With the decrease in ε, the amplitude of the cycle increases, and after a certain

threshold, the trajectory jumps from the vicinity of the fold point P close to C0
0 . The equilibrium

point E0 lies on the trivial critical manifold. The eigenvalues of the Jacobian matrix JE0 are

−1, −σ, −εµ1 and the corresponding eigenvectors are

(1, 0, 0) ,

(
1,

1− σ

A
, 0

)
, and (0, 0, 1) .

Therefore the critical manifold C0
0 coincides with the eigenvector. Thus, any trajectory on C0

0

converges to E0.We cannot construct any singular orbit consisting of concatenated slow segments

on C1
0 and C0

0 , and fast fibers while leaving the respective manifolds. Hence, the global return

mechanism, which is necessary for the existence of classical relaxation oscillation, fails as all the

trajectories converge to the stable equilibrium E0.

(a) (b)

Figure 3: The change in the amplitude of the canard cycle emerging from the singular Hopf

bifurcation with varying µ2 is shown for (a) µ1 = 0.24, ε = 0.5, and (b) µ1 = 0.3, ε = 0.5. The

blue lines show the steady state value of of the coexistence equilibrium when it is stable and the

maximum and minimum amplitude of the stable canard cycle when the equilibrium is unstable.

The horizontal red (broken) line shows the steady state value of the coexistence equilibrium when

it is unstable. The vertical black (broken) line marks the singular Hopf bifurcation threshold

(occurring at µ2 = 0.1007) and the vertical green (broken) line at µ2 = 0.099171 indicate the

threshold for the system collapse (plankton extinction and oxygen depletion). Other parameters

of the system are given in (5).

We illustrate this phenomenon with the help of a numerical example in Fig. 3. We use the

parameter values as in (5) along with ε = 0.5. Consider a hypothetical value µ1 = 0.24. The

effect of ε on the dynamics of the system can be observed if we compare the Fig. 3(a) with

Fig. 2(c). The singular Hopf bifurcation occurs at µH
2 = 0.1638 is subcritical (l1 = 0.037). Small

unstable canard cycles emerge from the canard point P (1.24, 1.01, 0.89), which grows in size with

a slight increase in µ2 (Fig. 3 (a)). A large amplitude stable cycle emerges from a heteroclinic

bifurcation that coexists with the stable equilibrium, separated by an unstable canard cycle. We

observe that the size of the stable cycle shrinks in an extremely narrow parameter interval and

disappears at a saddle node bifurcation of limit cycles.

We now consider µ1 = 0.3 and ε = 0.5, then the singular Hopf bifurcation occurs at µH
2 =

0.1007. The first Lyapunov coefficient is l1 = −1.1818, hence the singular Hopf is supercritical.

From the canard point P (1.255, 1.035, 0.898), small stable canard cycles originate. We show

11



(a) (b)

Figure 4: (a) A trajectory (blue) converging to the origin (extinction) after oscillations of increas-

ing amplitude obtained for µ1 = 0.3, µ2 = 0.09917 and ε = 0.5. The other system parameters

are mentioned in equation (5). The surfaces F = 0 and G = 0 are shaded in green and brown,

respectively. The black curve on the intersection of these surfaces is the critical manifold C1
0 .

The single and double arrows represent slow and fast motion, respectively. (b) The correspond-

ing dependence of the phytoplankton density on time.

the change in the amplitude of the canard cycles with decreasing values of µ2 in Fig. 3(b). This

depicts that the system becomes unstable with a decrease in the strength of the intra-specific

competition among the zooplankton. The transition from the stable, steady state to the oxygen-

free state, indicating complete population collapse, takes place in an extremely narrow interval of

the rate of intraspecific competition. That is, for µ2 ∈ (0.099171, 0.1007). At µ2 = 0.09917, when

the size of the limit cycle explodes, the trajectory converges to the origin, which is illustrated

in Fig. 4(a). The time series of the trajectory is shown in Fig. 4(b). This implies that the

system cannot further sustain any large amplitude oscillations. The rise in the amplitude of

the phytoplankton level beyond a threshold can act as an indicator of population collapse. The

system can therefore be driven to total extinction by pushing it far enough to reach the fold point.

Along with µ2, the timescale separation plays a critical role in identifying this narrow parametric

regime. For a larger timescale separation (i.e. smaller ε), the coexistence of oxygen-plankton

occurs in a significantly narrower interval, and the system is more vulnerable to perturbation.

5 The spatial system

In the real world ocean environment, the spatial distribution of both plankton and dissolved

oxygen is remarkably heterogeneous, sometimes showing the variability by an order of magnitude

of even more [27,37,50,51,71]. Correspondingly, in this section, we consider a spatially extended

model (1) where the oxygen concentration and the phytoplankton and zooplankton densities vary

with both time and space. The ocean system is three-dimensional; however, in this paper, for

the sake of simplicity, we only consider one horizontal spatial dimension. We regard it as the

position along the ocean surface. In terms of ocean observations, it corresponds to a transect

across the study area.

Trying to keep the model as simple as possible, we avoid using explicit dependence on the

vertical dimension (i.e. the depth). Correspondingly, we use the well-mixed layer approxima-

tion [28,65,68] to assume that the vertical distribution of plankton and oxygen is approximately
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uniform within the photic (upper) ocean layer where most of photosynthetic oxygen production

takes place.

The transport of any substance in the ocean takes place primarily due to the water movement.

The movement in the horizontal direction occurs either due to an ocean current or marine

turbulence (or their combination). Here we chose to focus on the effect of unbiased (isotropic)

movement, hence taking into account only the effect of turbulence, which we describe as the

turbulent diffusion quantified by a certain diffusion coefficient [72,73].

We, therefore, arrive at the following equations:

∂c

dt
= Dc

∂2c

∂x2
+

Au

c+ 1
− δuc

c+ c2
− νcv

c+ c3
− c,

∂u

dt
= Du

∂2u

∂x2
+

(
Bc

c+ c1
− u

)
u− uv

u+ h
− σu,

∂v

dt
= Dv

∂2v

∂x2
+ ε

( ηc2

c2 + c42
uv

u+ h
− µ1v − µ2v

2
)
.

(13)

Here c(x, t), u(x, t), and v(x, t) are, respectively, the oxygen concentration and the phytoplank-

ton and zooplankton densities at the (horizontal) location x and time t; Dc, Du and Dv denote

the diffusion coefficients for oxygen, phytoplankton, and zooplankton. Note that phytoplankton

and the dissolved oxygen can be regarded as a ‘passive substance’, i.e. their spatial transport

is entirely determined by the water flows; hence Dc = Du = DT where DT is the turbulent

diffusion coefficient. However, zooplankton has a certain ability to self-motion. Combined with

the effect of turbulent mixing, it can result in a value of Dv ̸= DT . Whether Dv is larger or

smaller, then depends on the zooplankton movement pattern. In case zooplankton movement is

entirely random (e.g. can be regarded as Brownian motion), then one can expect that Dv > DT .

In case zooplankton exhibits a homing behavior, then it is likely that Dv < DT .

Along with the temporal parameters, we now non-dimensionalize the space as x̃ = x√
Dc

.

Removing the tilde for the simplicity of the notation, we obtain the following dimensionless

spatial model:
∂c

dt
=

∂2c

∂x2
+

Au

c+ 1
− δuc

c+ c2
− νcv

c+ c3
− c,

∂u

dt
=

∂2u

∂x2
+

(
Bc

c+ c1
− u

)
u− uv

u+ h
− σu,

∂v

dt
= D

∂2v

∂x2
+ ε

( ηc2

c2 + c42
uv

u+ h
− µ1v − µ2v

2
)
,

(14)

where D = Dv
Dc

. Equations (14) are considered inside the spatial domain Ω = {x ∈ (0, L)} where

L is thus the length of the domain.

Equations (14) must be complemented with the initial conditions, which we consider in the

following form:

c(x, 0) =

{
c∗ + 0.5, |x− L/2| < 10

c∗, otherwise
, u(x, 0) =

{
u∗ + 0.2, |x− L/2| < 10

u∗, otherwise
, (15)

v(x, 0) = v∗, ∀x ∈ Ω.

That is, at t = 0 the steady state densities are perturbed within a small area at the center of

the domain Ω.

For the boundary conditions, we consider the zero-flux conditions:

cx(0, t) = cx(L, t) = ux(0, t) = ux(L, t) = vx(0, t) = vx(L, t) = 0, t > 0. (16)
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The model is solved numerically with L = 500. We use the Euler method for the temporal

part and five points central difference scheme for the diffusion part along with ∆x = 1 and

∆t = 0.01.

5.1 Turing instability

To study the spatial distribution of oxygen and plankton, we start our analysis in a neighborhood

of a homogeneous steady-state solution of (14). Time-independent or a steady state solution

(c(x), u(x), v(x)) of the system (14)-(16) satisfies the following system of equations

∂2c

∂x2
+

Au

c+ 1
− δuc

c+ c2
− νcv

c+ c3
− c = 0,

∂2u

∂x2
+

(
Bc

c+ c1
− u

)
u− uv

u+ h
− σu = 0,

D
∂2v

∂x2
+ ε

( ηc2

c2 + c42
uv

u+ h
− µ1v − µ2v

2
)
= 0.

(17)

The coexistence equilibrium E∗ of system (1) corresponds to a homogeneous steady state

solution of the above system. To study the dynamics of the above system near the homogeneous

steady-state solution E∗, we give small heterogenous perturbation as

c(x, t) = c∗ + ξ1e
λt cos kx, u(x, t) = u∗ + ξ2e

λt cos kx, v(x, t) = v∗ + ξ3e
λt cos kx (18)

with 0 < ξ1, ξ2, ξ3 ≪ 1. The parameter k is the wavenumber of the eigenfunction, and λ is

the eigenvalue determining the temporal growth of the corresponding kth mode. We obtain the

linearized system as

Zt = JE∗Z+D∆Z (19)

where Z ≡ (z1, z2, z3), D ≡ diag(1, 1, D). For the non-trivial solution of the above system (19),

the eigenvalues λ are determined by the roots of the characteristic polynomial det(λI − JE∗ +

Dk2) = 0, which is written explicitly as

λ3 + p2(k
2)λ2 + p1(k

2)λ+ p0(k
2) = 0, (20)

where

p2(k
2) = (2 +D)k2 − tr(JE∗),

p1(k
2) = (1 + 2D)k4 − ((J22 + J33) + (J11 + J33) +D(J11 + J22))k

2 + (J
[1]
11 + J

[2]
22 + J

[3]
33 ),

p0(k
2) = Dk6 − ((J11 + J22)D + J33)k

4 + (J
[1]
11 + J

[2]
22 + J

[3]
33D)k2 − det(JE∗),

(21)

and Jij and J
[i]
ii are the same as obtained during the analysis of the temporal part. We, therefore,

obtain the necessary and sufficient conditions for Turing instability as

p2(0) > 0, p0(0) > 0, p1(0)p2(0) > p0(0) and p0(k
2) < 0, for some k. (22)

Therefore, the Turing instability occurs at a critical wave number, k = kT , where p0(k
2)

achieves a minimum and p0(k
2
T ) = 0. This gives

k2T =
J11 + J22

3
+

1

3D
(J33 +

√
Λ) (23)
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where

Λ =
(
J2
11 + J2

22 − J11J22 + 3J12J21
)
D2 +D (3J13J31 + 3J23J32 − J11J33 − J22J33) + J2

33,

where Jij are the elements of the Jacobian matrix, cf. Eq. (6). Because of the complexity

of the expression and the large number of parameters involved, the critical wave number kT
corresponding to the Turing bifurcation has to be computed numerically. For a feasible kT , the

model describes the formation of spatial patterns, as is shown below.

5.2 Impact of diffusion on Oxygen Minimum Zone

We now look into the spatio-temporal dynamics of the system (14) with the initial conditions

(15). Our goal is to reveal typical dynamical regimes (in particular, pattern formation scenarios,

if any) for parameters inside and outside of the Turing domain. In a pure Turing domain all the

Turing instability conditions as discussed above holds. However, in a Turing-Hopf domain, the

homogeneous steady state is unstable under both temporal and spatio-temporal perturbations.

We fix the parameter values as in (5) and let µ1 = 0, µ2 = 0.41 and consider different values of

the diffusivity ratio D.

Fig. 5 shows typical patterns in the distribution of oxygen for different diffusivity rates. Here

Fig. 5a,b and Fig. 5c are obtained, respectively, for parameters outside and inside the Turing

instability domain. We notice that, in all three cases, the evolution of the initial conditions

soon leads to the formation of a patch where the oxygen concentration is much lower than its

steady state value. We interpret this dynamics as the formation of an OMZ. Further evolution

of the emerging OMZ can be significantly different depending on D. When the diffusivity ratio

is small, i.e. D < 1, the OMZ created at the early stage grows with time and eventually spreads

over the entire domain. Interestingly, the growing OMZ has a fine structure. A closer look

at the dynamics shown in Fig. 5a reveals that, at any time t during the transient stage of the

OMZ expansion, it consists of three or four subdomains with very low oxygen level separated

by narrow spatial intervals where the oxygen level is larger than its steady state value c∗. This

fine structure disappears after the expanding OMZ hits the domain boundaries; at a later time

the oxygen level is low over the entire domain, which can be interpreted as the global anoxia.

An increase in the diffusivity ratio to D = 1 results in a qualitative change in the dynamics;

see Fig. 5(b). In this case, the OMZ formed at an early stage of the system dynamics show

almost no spatial growth remaining localised around the centre of the domain. At any spatial

position inside the OMZ, the oxygen level distinctly oscillates with time between a very low level

(approximately 0.1c∗) to a high level (of about 1.3c∗).

A further increase in D leads to another qualitative change in the dynamical pattern. Figure

5(c) shows the results obtained for D = 5. In this case, the system satisfies the Turing instability

condition with the critical wavenumber k2T = 0.1095. The evolution of the initial conditions leads

to the formation, inside a certain subdomain, of a periodic spatial pattern where low oxygen

patches alternate with high oxygen patches. The subdomain containing this periodic structure

grows with time and eventually occupies the whole domain, so that at a large time the periodic

spatial distribution becomes stationary.

We note here that the pattern of the OMZ formation and spread is relatively robust to the

initial conditions. For instance, if at t = 0 the spatial distribution of oxygen is perturbed along

with that of phytoplankton, the emerging patterns are similar to the ones shown in Fig. 5. One

example is shown in Fig. 6. In this case, the initial conditions (15) are slightly modified, so

that, at the center of the domain both c(x, 0) and u(x, 0) are less than their steady state values.
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It is readily seen that the top and the bottom of Fig. 6 show very similar patterns, with the

only difference that the spatial size of the emerging OMZ becomes larger for the modified initial

conditions.

5.3 Impact of timescale separation on Oxygen Minimum Zone

From the mathematical analysis in the subsection 5.1, we obtain that the critical wavenumber

kT for Turing instability depends on the timescale separation ε, as the elements J31, J32 and

J33 of the Jacobian matrix in Eq. 23 depend on ε. Thus, one can expect that the boundaries

of the parameter ranges where the Turing and the Turing-Hopf instability occur (resulting in

pattern formation) can shift with a decrease in ε, i.e. with an increase in the timescale separation.

Numerical simulations confirm that this is indeed the case. Having fixed µ1 = 0, µ2 = 0.41,

D = 5 and other parameters as in (5) and only varying ε, we obtain stationary patterns in both

the Turing domain and in the Turing-Hopf domain for ε ≥ 0.18. A typical pattern is shown

in Fig. 5(c). With a decrease in ε, the emerging stationary pattern has a similar nature of

alternating patches of high and low oxygen level as for ε = 1 (cf. Fig. 5c) but the size of the

patches becomes larger; e.g. see Fig. 7(a). Also, the emergence of the stationary periodic pattern

is preceded by rather long transient dynamics when the oxygen concentration and the plankton

densities exhibit irregular oscillations (see Fig. 7(d)).

With a further decrease in ε, the dynamics becomes qualitatively different. The emerging

pattern is not spatially periodic any more; see Fig. 7(b). Apart from the large OMZ formed

around the centre of the domain at the early stage of system’s dynamics, there are two large

OMZs at the sides of the domain. At a later time, these patches of low oxygen level break to a

number of smaller patches of variable size. The dynamics is not becoming stationary at any time

as the patches keep changing their size (and some of them also their location). The dependence

of spatially average densities is distinctly irregular (see Fig. 7(e)) suggesting chaotic dynamics.

This kind of dynamic pattern is observed for 0.07 < ε < 0.18.

With a further decrease in ε (below ε = 0.07), the system’s dynamics undergo a regime shift.

For ε < 0.07, the transient apparently chaotic dynamics only last for a finite time. After a

sufficiently long time, the system experiences a catastrophic change when over a short transition

(a) D = 0.8 (b) D = 1 (c) D = 5

Figure 5: Transition of spatio-temporal dynamics of oxygen from non-Turing (panels (a) and

(b)) to Turing (panel (c)) pattern formation for µ1 = 0, µ2 = 0.41, ε = 1 and different values of

D. All other parameters are given in (5); the corresponding steady state value c∗ ≈ 1.2. The

auxiliary red lines help to reveal the properties the oxygen distribution of oxygen at a given

moment of time (as in panels (a) and (c)) or at a given location in space (as in panel (b)); see

details in the text.
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Figure 6: (Top) Zoomed plot of Fig.5(a), which is obtained using the initial condition (15).

(Bottom) The initial conditions are of the form (15) but with c(x, 0) = c∗ − 0.5 and u(x, 0) =

u∗ − 0.2 for |x − L
2 | < 10. All the parameters are same as in Fig. 5(a). The modified initial

conditions therefore result in the formation of the OMZ of a larger size.

time the oxygen concentration fast drops to a very small value (and eventually to zero) over

the entire spatial domain. An example of such regime shift is shown in Fig. 7(c,f) (obtained

for ε = 0.06). The entire area becomes a dead zone (with low or no oxygen), which can be

interpreted as the global anoxia. Along with oxygen, the phyto- and zooplankton densities go to

zero as well (after several irregular oscillations of increasing amplitude, cf. Fig. 7(f)), obviously

signifying their extinction.

(a) ε = 0.18 (b) ε = 0.1 (c) ε = 0.06

(d) ε = 0.18 (e) ε = 0.1 (f) ε = 0.06

Figure 7: (a,b,c) Spatial distribution of oxygen; (d,e,f) spatial average density of oxygen, phy-

toplankton, and zooplankton for the parameter values (5) with µ1 = 0, µ2 = 0.41, and D = 5.

For both µ1 > 0 and µ2 > 0, the system’s dynamics becomes different and exhibits a
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somewhat greater variety of dynamical regimes. As one example, Figs. 8(a,e) shows the spa-

tiotemporal dynamics for µ1 = 0.24, µ2 = 0.1575, D = ε = 1 and other parameters the same as

in Fig. 5(b,e). It is readily seen that, in this particular case, the evolution of the initial condition

does not lead to formation of OMZ. It only leads to small fluctuations in the oxygen level and

plankton densities around the location of the initial perturbation, with the spatial distribution

being uniform in the rest of the domain.

A decrease in ε leads to the emergence of the OMZ. It first appears at the position of the

initial perturbation (i.e. near the centre of the domain); see the bottom of Figs. 8(b,c). At a later

time, it breaks to several patches that fast spread over the entire domain. The spatiotemporal

dynamics is apparently chaotic for ε = 0.5 but becomes more regular for ε = 0.25, cf. Figs. 8(f,g).

A further decrease in ε below a certain critical value results in a regime shift, e.g. see

Figs. 8(d,h) obtained for ε = 0.2. In this case, a large OMZ is formed at an early stage

of system’s dynamics (see the bottom of Fig. 8(d)). However, after a relatively short time

the oxygen concentration fast drops to zero over the entire domain: the global anoxia occurs

accompanied by the plankton extinction.

(a) ε = 1 (b) ε = 0.5 (c) ε = 0.25 (d) ε = 0.2

(e) ε = 1 (f) ε = 0.5 (g) ε = 0.25 (h) ε = 0.2

Figure 8: (a,b,c,d) Transition of spatial distribution of oxygen and (e,f,g,h) spatial average

density of oxygen, phytoplankton, and zooplankton for the parameter values (5) and µ1 =

0.24, µ2 = 0.1575, D = 1 and different values of ε.

6 Conclusion

Over the last few decades, there has been growing evidence of a decline of the dissolved oxygen

concentration in the ocean [6, 7]. This has not only been recognized as a catastrophic threat

to the marine ecosystems [55] but also as a potential threat to mankind [49] and to terrestrial

ecosystems, as marine phytoplankton contributes about 70% to the total atmospheric oxygen.

Any significant decline in the global phytoplankton abundance and/or a decrease in the oxygen

production rate in phytoplankton photosynthesis will inevitably lead to a decline in the global

stock of the atmospheric oxygen [18,47]. Thus, marine ecosystems, phytoplankton in particular,

play a crucial role in maintaining the habitable Earth [23].
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In spite of the apparent importance of the above issues, mathematical models addressing

the change in the oxygen concentration as a component of the coupled phytoplankton-oxygen

dynamics are rare in the literature. As one exception, a generic three-component oxygen-phyto-

zooplankton model was developed in [19] (and further investigated in [18, 20, 74]). It has been

shown that the formation of areas with a low oxygen concentration (i.e. OMZs) is in fact an

inherent property of the self-organised plankton-oxygen spatiotemporal dynamics, but it can be

exacerbated by the effect of global warming, potentially leading to global anoxia.

The model developed in [18, 19], however, missed several important features of the marine

ecosystem’s dynamics, hence making the prediction of emerging global anoxia somewhat ques-

tionable. In this paper, we have considered a nontrivial extension of the original model that

includes factors such as zooplankton inherent competition, cannibalism and/or the effect of

zooplankton’s consumers from upper trophic layers, e.g. fish. Another important factor is the

existence of different timescales for phyto- and zooplankton growth, as the latter is usually much

slower than the former.

The properties of the extended model have been analysed in much detail using a combi-

nation of analytical and numerical tools. We first consider a non-spatial version of the model

described by a system of three nonlinear ODEs (for oxygen, phytoplankton, and zooplankton,

respectively) to study the variation in oxygen level and plankton densities over time. In addition

to the results earlier obtained in [19, 46], we have shown that the number of coexisting steady

states depends both on the linear mortality rate (µ1) and the rate of zooplankton intraspecific

competition/consumption (quantified by coefficient µ2). For µ1 = 0, there exists two feasible

coexisting steady states where the lower oxygen level is always unstable, and the higher state

changes its stability with increasing µ2. Whereas for µ1 ̸= 0, we obtain a unique feasible steady

state which changes its stability from unstable to stable for a strong intraspecific competition.

Along with this, the extinction state is always stable. We also found that an increase in the

rates of zooplankton linear mortality (µ1) and nonlinear mortality (µ2) leads to an increase in

the oxygen abundance.

In order to better understand the relative importance of the linear and nonlinear mortality

and their effect on the temporal dynamics of the system, we have considered three cases: (a)

µ1 ̸= 0, µ2 = 0, (b) µ1 = 0, µ2 ̸= 0, and (c) µ1 ̸= 0, µ2 ̸= 0. Because of the complexity of

the system, this has mostly been done through numerical simulations. For case (a), the unique

steady state is stable for higher values of µ1, and it loses its stability through supercritical Hopf

bifurcation. Small stable cycles originate, increasing its size in a small interval of µ2. Beyond

that, the system cannot further withstand an increase in the amplitude of the cycle leading to

complete collapse (see Fig. 2a). However, for case (b), the Hopf bifurcation is subcritical, and

the system converges to stable steady state for higher values of µ2. In this case, an unstable

cycle is formed (see Fig. 2b). Case (c) is a combination of the above two cases. Here, in a very

narrow domain, the system exhibits tri-stability, with a stable steady state, a stable cycle, and

the extinction state. The two cycles appear through saddle-node bifurcation of limit cycle, and

the disappearance of the unstable cycle is through subcritical Hopf, and that of the outer stable

cycle is through heteroclinic bifurcation (see Fig. 2c).

Having analysed the effect of different timescales (cf. “slow-fast system”), we obtained the

critical manifold of the slow subsystem. The extremum (the fold point) of the critical mani-

fold acts as an extinction threshold: if the system is pushed beyond the fold point (e.g. by the

choice of the initial conditions), the dynamics will eventually lead to plankton extinction and

oxygen depletion, although the extinction/anoxia can be preceded by a long period of oscilla-

tions (cf. Fig. 4). Note that a decrease in the nonlinear mortality rate µ2 has a similar effect
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on the system’s persistence. A decrease in µ2 below a certain critical value first destabilises

the coexistence steady state resulting in oscillatory dynamics (see Fig. 3). A further decrease

(below another critical value) leads to the canard explosion. However, no relaxation oscillations

emerge (see Theorem 4.1); instead, the system’s trajectory goes to the origin, which obviously

corresponds to the extinctions and anoxia.

We then considered the spatially explicit system to study the distribution and spatiotemporal

dynamics of oxygen and plankton. The spatially explicit model consists of three reaction-

diffusion equations where the diffusion terms account for the effect of lateral turbulent mixing

for the dissolved oxygen and phytoplankton and for the combined effect of turbulence and

self-motion for zooplankton. Note that, because of the latter, zooplankton diffusivity can be

expected to differ from that of phytoplankton and oxygen. Moreover, it can differ significantly.

The interplay between the ordinary Fickian diffusion (in our case “biodiffusion” resulting from

zooplankton random movement) and the turbulent mixing is known to be highly nonlinear

[73, 75]. The ordinary diffusion, although itself often being orders of magnitude less intensive

than the turbulent mixing, accelerates the turbulent diffusion significantly [73, 75]. In turn, for

the diffusivity ratio being greater than one, the model can exhibit pattern formation due to the

Turing instability; see Sections 5.1 and 5.2.

Due to its mathematical complexity, the spatially explicit reaction-diffusion model is not

analytically tractable. Therefore, we have investigated its properties through extensive numerical

simulations, with a special attention to regimes that result in the formation of patterns containing

areas with low oxygen level and/or regimes resulting in global oxygen depletion. Using the initial

condition as a localised perturbation of the spatially uniform steady state, we have obtained

that the system dynamics typically lead to the formation of strongly heterogeneous spatial

distribution that includes one or several areas (patches) with a very low oxygen level, which

we interpret as the formation of OMZ. Interestingly, the patterns emerge both in and outside

of the Turing domain and hence, for different parameter values (e.g. the diffusivity ratio being

larger or smaller than one) can be attributed to different dynamical mechanisms, i.e. Turing or

non-Turing. Except for some rare cases (cf. Fig. 5b), the OMZ formed at an early stage of the

system dynamics fast spreads over the entire domain, often generating multiple patches, e.g. see

Figs. 5(a,c), 7(a,b,c) and 8(b,c,d), the size and number of the emerging smaller OMZs varying

with the parameter values.

The spread of the emerging pattern (a mixture of patches with high and low oxygen level)

can lead to a different outcome. It can result in a self-sustained pattern, which, in the large

time limit, can be stationary (cf. Figs. 5c and 7a) or dynamic (Fig. 7b). Alternatively, it may

eventually lead to an unsustainable pattern – a regime shift – when, after a certain time, the

oxygen concentration fast drops to very small values over the entire domain (cf. Fig. 5a, 7c and

8d). Arguably, this may be interpreted as the onset of the global anoxia.

Note that there is a subtle interplay between the zooplankton linear mortality rate µ1 and

the difference in the timescales. In the special case of the same timescales (ε = 1), the effect

of a non-zero zooplankton linear mortality makes the system somewhat more sustainable: while

an initial perturbation leads to the formation of deoxygenated patch (OMZ) at the center of the

domain in case µ1 = 0 (Fig. 5b), it only leads to small fluctuations in the oxygen level in case

µ1 > 0 (Fig. 8a). However, for ε < 1 and with a further increase in the timescale separation

(i.e. for a smaller ε), the effect of zooplankton mortality becomes rather opposite making the

system less sustainable. For instance, for µ1 > 0 the global anoxia occurs already for ε = 0.2

(see Fig. 8d) but for µ1 = 0 the dynamics remains sustainable (i.e. no global anoxia) for ε = 0.1.

For a fixed value of µ1, an increase in the timescale separation alone makes the dynamics less
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sustainable. A decrease in ε tends to lead to a larger size of the initially formed OMZ; e.g. see

Fig. 8(b,c,d), eventually resulting in global anoxia and extinctions when ε becomes sufficiently

small. That happens both for µ1 = 0 and µ1 > 0, cf. Figs. 7(c) and 8(d), although the succession

of spatial patterns preceding the onset of anoxia is different between the two cases.

Apparently, our study leaves open questions. Firstly, recall that our model is conceptual;

it only takes into account the interaction between oxygen and plankton but not with other

components of the complicated marine food web. It has been shown in [18] that, in case of a

trophic chain, the effect of higher trophic levels only makes the regime shift – the catastrophe

of oxygen depletion and plankton extinction – more likely as the three-component model (1)

provides an upper bound for a longer trophic chain. An open question however remains as to how

the dynamics may change in case of a web rather than chain, for instance to account for effect of

bacteria or detritus. Secondly, the description of turbulent mixing as the turbulent diffusion is

somewhat simplistic; in particular, it completely disregards the fact that the turbulent mixing

is multiscale and nonlocal [73,75]. Although the model with the turbulent diffusion is arguably

a sensible first step, a more advanced approach should involve a more realistic description of

turbulence. These issues will become a focus of future work.
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