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Abstract

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead
to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxy-
genation of the ocean often results in the formation of Oxygen Minimum Zones (OMZ): large
domains where the abundance of oxygen is much lower than that in the surrounding ocean
environment. Factors and processes resulting in the OMZ formation remain controversial. We
consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plank-
ton growth and the oxygen production by phytoplankton, also accounts for the difference in the
timescales for phyto- and zooplankton (making it a “slow-fast system”) and for the implicit effect
of upper trophic levels. The model is investigated using a combination of analytical techniques
and numerical simulations. We show that the system does not allow for persistent relaxation
oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen
depletion. For the spatially explicit model, an initial non-uniform perturbation can lead to the
formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large
timescale separation, the spread of the OMZ can result in global anoxia.
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1 Introduction

Plankton is a vital element in the complex marine food webs and biochemical cycles. Phyto-
plankton is the primary producer standing at the base of the marine food web. As a by-product
of the primary production, phytoplankton produces oxygen in the process called photosynthe-
sis. The produced oxygen is then used by marine fauna, e.g. zooplankton and fish. The level of
dissolved oxygen is a crucial indicator of the marine ecosystem health, as its depletion may lead
to a mass mortality of aquatic species [1-3]. Furthermore, a considerable part of the oxygen
produced in the ocean goes to the atmosphere through the ocean surface. It is estimated that
around 50-80% of atmospheric oxygen originates in the ocean. Phytoplankton therefore plays a
critical role in producing and maintaining oxygen levels needed for survival both of aquatic and
terrestrial species [4}/5].

Over the last few decades, the level of the dissolved oxygen in the ocean has shown a trend
to decrease [6-10]. This is believed to be a result of the global warming, in particular because
warmer water contains less dissolved oxygen [6,|11]. Also, the warming leads to a stronger
stratification of the upper ocean, which reduces the Os fluxes through the ocean surface |12}[13].
Apart from the above purely physical mechanisms, there can be more subtle effects of the global
warming driven by a biological feedback. An increase in the water temperature may slow down
the oxygen production by phytoplankton [14H17], potentially resulting in a regime shift and a
global oxygen depletion [18-20]. Ocean anoxia is thought to be the factor that can trigger a mass
extinction and this has indeed happened several times during the deep past [3,21-23]. Thus,
better understanding of the pathways leading to the global anoxia as well as the identification
of possible early signs of the approaching catastrophe are obviously problems of literally vital
importance. In turn, it requires a better understanding of the coupled plankton-oxygen dynamics
in the ocean and, arguably, mathematical modelling is a powerful research approach to facilitate
it.

Mathematical models of plankton dynamics are abundant in the literature, e.g. see [24-31].
Earlier modelling studies of the plankton dynamics were mostly concerned with the temporal
and spatio-temporal dynamics of the coupled phytoplankton-zooplankton system [28,32-34],
with a particular focus on plankton patchiness and plankton blooming [24.31,35-37]. In [38-
42|, conceptual two- and three-component mathematical models were considered to reveal the
role of various internal and external factors and to demonstrate different routes to plankton
pattern formation. More recently, there has been growing attention to possible links between the
dissolved oxygen, plankton dynamics and the climate change [43,/44], which facilitated further
progress in mathematical modelling of marine ecosystems [45]. In particular, it was shown
in [18,[19,|46] that sustainable oxygen production by marine phytoplankton can be severely
disrupted by a gradual increase in the average water temperature. In turn, this may eventually
lead to a global anoxia and it was argued in [47] that the observed decrease in the oxygen stock
in the ocean [6,(7,48] and the slow gradual decrease in the amount of atmospheric oxygen [49]
that has occurred over the last few decades may be early signs of the approaching catastrophe.

Remarkably, the amount of dissolved oxygen does not only change with time, it also depends
on space. The spatial distribution of oxygen in the ocean is distinctly heterogeneous [50L/51],
sometimes resulting in the formation of large stable areas or ‘patches’ where the dissolved oxygen
concentration is much lower than the average. Such a patch is referred to as Oxygen Minimum
Zone (OMZ) or the dead zone [2,7,/52]. They were discovered in different parts of the world
ocean, e.g. in the subsurface waters of the Arabian Sea and in the eastern boundary upwelling
regions of the tropical oceans of California, Peru, and Namibia [52,[53]. The existence of OMZ



has a significant effect on the marine species abundance and the aquatic food chains [54]. There
is evidence that some zooplankton species may have a capacity to adapt to oxygen-deficient
environments [55]. However, a significant drop in the dissolved oxygen level eventually results
in the formation of a dead zone, so that the majority of marine life either dies or leaves the
area [2,54].

Interestingly, over the last several decades the OMZs have been growing in size. In particular,
a rapid expansion in OMZs in the eastern Pacific and northern Indian oceans is well documented
[752]. Because of the OMZ’s detrimental effect on the corresponding local marine ecosystem, this
is becoming a grave concern for ecology and conservation as well as some industries, e.g. fishery.
Moreover, there is some theoretical evidence that the OMZ expansion may be an early warning
signal of the approaching global anoxia [56]. The expansion of OMZ is thought to be caused
by various factors, ultimately linking it to the global warming and to the human interference
through the perturbation of the ocean’s biogeochemical cycles, in particular the COy cycle,
although the issue as a whole remains controversial [8.|57].

In this study, we address the phenomena of the OMZ formation and growth theoretically
based on the earlier conceptual modelling approach that considers the variations (in particular,
a decrease) in the dissolved oxygen level as a inherent property of the coupled plankton-oxygen
dynamics in the ocean, not necessarily an effect of exogenous factors [18-20]. Our updated
mathematical model incorporates two important factors that were overlooked in the earlier
studies. One such factor is the nonlinear mortality of zooplankton; it takes into account a
combined effect of the zooplankton intraspecific competition, cannibalism, and the zooplankton
consumption by its predators from a higher trophic level (e.g. fish) [28]/38]. It is well known that
the nonlinear mortality rate can change the system’s dynamical properties significantly [31,58,59]
but its potential effect on the plankton-oxygen dynamics has never been investigated.

The second factor is the existence of different timescales in the plankton-oxygen dynamics.
Indeed, it is a common observation that the zooplankton growth rate is usually much lower
than that of phytoplankton. Correspondingly, the typical time (timescale) of changes in the
phytoplankton density is considerably shorter (sometimes by an order of magnitude) than that
of zooplankton. In this study, we therefore assume that the production of oxygen and the
phytoplankton growth, on the one hand, and the zooplankton response, on the other hand,
happen on fast and slow timescales, respectively. The presence of different timescales in a
dynamical system can make its properties much more complicated, e.g. to bring bifurcations,
coexistence of multiple attractors, complex oscillations, long transients and pattern formation
that would not be there otherwise [60-64]. It is therefore a very relevant question as to how the
existence of multiple timescales can modify the plankton-oxygen dynamics, in particular in the
context of the OMZ formation and growth.

The paper is organised as follows. In the next section, we describe our mathematical model
and investigate its basic properties such as the existence and stability of the steady states. In
Sections [3] and [4 we consider the properties of the nonspatial model to reveal, respectively,
the effect of the nonlinear mortality and the different timescales. We identify conditions when
the system can undergo a regime shift that may correspond to catastrophic changes in the real
world. In Section [5, we consider the properties of the spatially explicit system, with a special
focus on the dynamical regimes resulting in the pattern formation, in particular those that can
be interpreted as the formation and/or expansion of Oxygen Minimum Zones. Finally, in Section
[6] we summarise and discuss our results.



2 The non-spatial system

We consider a conceptual mathematical model that explicitly includes only phytoplankton, zoo-
plankton, and dissolved oxygen. Oxygen is produced by phytoplankton in photosynthesis and
consumed by both phytoplankton and zooplankton as needed for their metabolism. In the
zero-dimensional (nonspatial) case, the model is given by the following three equations |18}|19]:

de Au duc vev

ac _ _ _ —e=F 1
- orl ote ore c (c,u,v), (1a)
du Be uv

PR _ — — =G 1b
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where ¢, u and v denote, respectively, the concentration of dissolved oxygen, phytoplankton, and
zooplankton densities in appropriately chosen dimensionless variables [18,/19] and ¢ is dimension-
less time. The first term in Eq. describes the rate of oxygen production in photosynthesis
(see [19] for more details) and the second and third terms describe the oxygen consumption
by phyto- and zooplankton, respectively, which is assumed to be described by the Monod type
kinetics. The first term in Eq. describes the phytoplankton multiplication; based on earlier
work [28,/65,(68], we consider it as the logistic growth. The second term in Eq. quantifies the
phytoplankton grazing by zooplankton [68], and the third term describes the phytoplankton nat-
ural mortality. In Eq. , the first term in the brackets describes the zooplankton growth (with
the food assimilation efficacy being assumed to depend on the level of dissolved oxygen [19)]),
the second term describes the zooplankton natural mortality and the third (quadratic) term
describes a combined effect of the competition and the predation by species from higher trophic
levels (not included into the model explicitly) [30]. Here parameter A is the per capita oxygen
production rate, B is the per capita phytoplankton growth rate, o and p; are natural mortality
rates for phyto- and zooplankton, respectively, uo quantifies the strength of nonlinear zooplank-
ton removal. The meaning of other parameters in Egs. is straightforward. For more details,
including biological justification of all terms in the right-hand side of Egs. , see [18.[19].

For the reasons mentioned in the introduction, we introduce additional parameter 0 < e < 1
that quantifies the difference in the phyto- and zooplankton characteristic timescales; in most
cases below, we will assume ¢ < 1. Note that, compared to the original model proposed
in [18,/19], Egs. include two essentially new elements, i.e. the quadratic term and a small
parameter (cf. Eq. ), which makes model somewhat more realistic.

2.1 Steady States Analysis

To explore the dynamics of the temporal model, we study all possible equilibrium points (steady
states) of the system and their stability. The system has a total extinction state given by
Ey = (0,0,0). To study the dynamics of the system around Fy we linearize around Fjy and
obtain the Jacobian matrix

-1 A 0
Jes=10 —o 0 |. (2)
0 0 —&Uq

All the eigenvalues of the above matrix Jg, are real and negative. Therefore, the total extinction
state Ey is always stable. In [19] the authors showed that under some parametric restrictions,



the system can have two zooplankton free equilibria. Since the introduction of the quadratic
term in does not affect the zooplankton free equilibrium states, as the zooplankton free
state is the form (¢, @w,0) where ¢ is the root of the quartic equation

&= (8(c—B)—(c1+c2+1)E - (AB —0)+ (60 —cog — 1)c1 — BS + 60 — ¢2)& —

3
((B—=o0)cg —oc1)A+ docy — cica)e+ Aociea =0, 3)

and
¢(B—o0)—cio

c+

U= (4)
Since the above equation is a fourth-order polynomial, analytical determination of the equi-
librium points is nearly impossible. We choose suitable numerical values of the parameters to
obtain feasible zooplankton free equilibrium states. Throughout the paper, we fix the parameter
values at

A=4,B=3,0=01,¢,=07,c0=1,c5=1,c4=1,7=07,6=1,~v=0.01, h=0.1. (5)

and suitably vary pi, po, and . For all the values of p; and po and parameters fixed at
the two feasible zooplankton free equilibrium points are given by F; = (0.0258,0.0067,0) and
Ey = (1.712,2.029,0). Among the two zooplankton free equilibrium points, one is always a
saddle point while the other can be either stable or unstable depending on the parameter values.
For our choice of parameter values both E; and Fs are unstable (saddle) with a 2-dimension
stable manifold and a 1-dimensional unstable manifold. We plot the c-component of E; and F»
in Fig. [1) with red broken lines. Note the lines are horizontal, because the corresponding steady
state values do not depend on 1 or ue, as is obvious from Egs. . The system does not
possess any other feasible boundary equilibria in this parametric regime. Note that a nontrivial
oxygen free equilibrium is not possible in our model (which agrees with biological reasons).
Indeed, setting ¢ = 0 in Eq. (1a) immediately leads to u = 0, which in turn leads to z = 0.
The coexistence equilibrium of the system is denoted by Ey = (cx, us, vx) where

1 ( nc? U )
Ve = — _——
poNcz+cius+h i

and ¢y, u, can be obtained by simultaneously solving the quartic and quadratic equations re-
spectively

4 (us +vv, + o+ 3+ 1)@ — (A= 6(1+ 3)us — (14 co)vv, — (c2(1 + ¢3) 4+ ¢3))c?
—(Auy(ca + c3) — (Juscs + vuees + cacs))e — Augcacs = 0,
u(ci +c1) — (B—h—0)ex — (h+0)er)us — (Bh — ho — vi)ex + (ho + vy)er = 0.

Because of the complexity of the simultaneous algebraic equations we obtain the coexistence
equilibrium points using numerical simulations. The parameter values are fixed at and we
choose 1, po as the bifurcation parameters. Note that for pu; > 0, uo = 0, the model was
rigorously studied in [19]. However, we deal with other cases in this work. For uy = 0, pa > 0,
we found that the system has two coexistence equilibrium points which disappears via saddle-
node bifurcation for sufficiently smaller values of uo. If we denote the saddle-node bifurcation
threshold by ,ugL, then for o > ,ugL the system has two coexistence equilibrium points and for
o < ,ugL there are no feasible coexistence equilibrium. For py, pa > 0, the system has a unique



coexistence equilibrium throughout the parametric regime of ps, whenever they are feasible. The
number of coexistence equilibrium points and their stability is determined by the combination
of the parameters pu; and po. The Jacobian matrix evaluated at the coexistence equilibrium F,
is

Jun Jiz Jis
Je, = | Ja Jao Jos (6)
J31 J32 J33

and the corresponding characteristic equation is given by
A+ A+ pid +po = 0.
The coefficient are
po = —tx(Jp.), pr =i\ + I3 + 5y, po = —det(Jp.)

where J;; is the (4, j)-th entry of Jg,, and Ji[::] is the cofactor of J;;. By Routh-Hurwitz conditions
the coexistence equilibrium point FE, is stable if the following conditions hold

po > 0, p2 > 0 and p1p2 > po.

To observe the change in system’s dynamics with the introduction of intraspecific competition
among the zooplankton, we choose po to be the bifurcation parameter. Thus keeping all the
parameters fixed, p1, p2, po are functions of us only. The coexistence equilibrium F, loses its
stability and exhibits oscillatory dynamics through Hopf bifurcation at ,ug, which is obtained
by solving

p1(p8)p2(py) = po(ph)-

This expression is not mathematically tractable, thus we numerically obtain the Hopf bifurcation
threshold ,uQH = 0.35405 (upto five decimal place) for the parameter values , and pu; = 0.05, e =
1. The Hopf bifurcation can be either supercritical or subcritical depending on the magnitude
of the parameters p; and po. For a fixed pq, with an increase in the intraspecific competition
(as quantified by ps2), the equilibrium state of the system changes its stability from unstable
to stable. The broken line in Fig. [I| represents the unstable branch of the equilibrium and the
continuous line represents the stable branch. The red and blue dots on the equilibrium branch
are the subcritical and supercritical Hopf bifurcation thresholds, respectively. For a relatively
higher value of uo, both the extinction state Fy and the coexistence state F, is stable, and
the system exhibits bi-stability. For p; = 0 the lower branch of the coexistence equilibrium is
saddle and it acts as a separatrix between the basin of attraction of E, and Ey. However, for
w1 > 0, their basins are separated by the unstable manifold of the saddle boundary equilibrium
point. For a fixed uo we observe an increase in the oxygen concentration with an increasing
mortality rate of the zooplankton (see Fig. Therefore, an increase in the zooplankton linear
mortality rate (as quantified by p;) and an increase in the nonlinear mortality rate (due to the
intraspecific competition and/or predation by higher trophic levels [67], as quantified by us9)
lead to an increase in the stable oxygen level.

3 Local and global dynamics

The dynamics of the system is determined by its local and global bifurcation structure.
However, any comprehensive analytical analysis of the bifurcations is hardly possible for this
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Figure 1: The plot of c-component of the coexistence equilibrium for the parameter values given
in as a function of parameter pgy for a few different values of p1: py; = 0 (blue), pu; = 0.05
(magenta), u1 = 0.25 (green), and p; = 0.3 (black). The black dot represents the saddle-node
bifurcation threshold (c°F, u5%). The inset shows the nature of the equilibrium branch near
the saddle-node bifurcation threshold in log-log scale. The red horizontal lines represent the
c-component of the two zooplankton-free equilibrium points. The red dots on the equilibrium
branches represent subcritical Hopf bifurcation threshold, while the blue dots on the equilibrium
branches represents supercritical Hopf bifurcation threshold.

model due to its algebraic complexity. Instead, we choose p; and po as bifurcation parameters
and obtain two corresponding one parametric bifurcation diagrams; see Fig. [2] These diagrams
readily reveal the various Hopf bifurcation scenarios of the coexistence equilibrium. We further
show the possibility of the heteroclinic bifurcation and saddle-node bifurcation of limit cycles.

0
0.38 0.39 0.405
&3

(a) p2 =0

Figure 2: Bifurcation diagram of the system at the parameter values for different combi-
nation of p; and po. The stable equilibrium and limit cycles are marked in blue. The unstable
cycle and coexistence equilibrium are marked in red (continuous and broken respectively). The
c-component of the boundary equilibrium points is shown by broken black lines. The global
bifurcation thresholds are marked in vertical broken green line. The black dot represents the
Hopf bifurcation threshold (subcritical and supercritical).

In Figure [2, the Hopf bifurcation thresholds (supercritical and subcritical) are marked by
black dots and the thresholds for the global bifurcations (heteroclinic and saddle-node bifurcation
of limit cycles) are marked by green vertical broken lines. The stable and unstable cycles (and
equilibrium) are shown in blue and red colour, respectively. We choose 1 or uy as bifurcation



parameters to observe the change in the system’s dynamics. Note that, the zooplankton free
equilibrium points £7 and Fs are independent of the bifurcation parameters. Thus, the stability
of these equilibrium points does not depend on p; and po. For our investigation, we choose other
parameters as in , so that that both F; and Ey are unstable. we plot the é-components of
the unstable zooplankton free equilibrium points of the form (¢, u,0) in a black broken line.

In the absence of intra-specific competition among the zooplankton and neglecting the effect
of higher trophical levels (that is, for pe = 0), the system has a unique coexistence equilibrium,
which loses its stability through Hopf bifurcation at u? = 0.398 (considering all the other pa-
rameters are fixed at ) The Hopf bifurcation is supercritical as the first Lyapunov coefficient
is [; = —0.358(< 0). The unique coexistence equilibrium point is stable for p; > M{I and unsta-
ble for y1 < pil. A small amplitude stable limit cycle originates from p'. The amplitude of the
stable cycle increases with decreasing pp till it hits the boundary equilibrium points and disap-
pears via a heteroclinic bifurcation (marked in green). Beyond this threshold, the coexistence
equilibrium is unstable and the extinction state Ey is the only global attractor. On decreasing
the mortality rate from ,ulf the concentration of the zooplankton increases. This increases the
oxygen consumption by zooplankton and also decreases phytoplankton production such that
beyond a threshold the system collapse.

On the contrary, if we consider the case where the zooplankton mortality is primarily due
to the combined effect of the competition and predation by species from higher trophic levels,
then one could neglect the natural mortality |67, so that ;1 = 0. Using other parameter values
as in , the Hopf bifurcation occurs at pll = 0.408. Since the first Lyapunov coefficient is
l1 = 1.065(> 0), the Hopf bifurcation is subcritical. Among the two coexistence equilibria as
obtained in Fig. |1} one is always saddle, the other is unstable for us < pdl and stable for g > il
An unstable cycle emerges from the subcritical Hopf bifurcation, increases in size in a narrow
domain for pp > pfl, till it disappears via global bifurcation (see Fig. (2)(b)). Beyond this,
the stable extinction state Ey coexists with a stable coexistence equilibrium. We now choose
p1 = 0.24. Then, the subcritical Hopf bifurcation occurs at pil = 0.1577. Here the unstable
cycle that emerged through Hopf bifurcation is surrounded by a stable limit cycle. The stable
and unstable cycle exists in a narrow range of uo and collides at saddle-node bifurcation of limit
cycle (p2 = 0.1578). On the other hand, for us < pdl, the unstable equilibrium is surrounded
by a stable limit cycle. The amplitude of the stable cycle increases and disappears through
heteroclinic bifurcation at pi2 = 0.15715 (see Fig. (2)(c)).

4 Slow and fast dynamics

The system for 0 < ¢ <« 1 is referred to as the singularly perturbed system. The timescale
parameter ¢ signifies a clear distinction between two timescales: slow and fast. The change in
the zooplankton density occurs at a much slower rate as compared to the change in oxygen and
phytoplankton density. We denote the time ‘¢’ in system as the fast time and the system
is with respect to the fast timescale.

Introducing the slow timescale 7 = €t, we obtain the following slow subsystem:



dc Au duc vev

[ _ —_ —c=F
“dr c+1 c+c cH+cy ¢ (e u, ),

du Be U

= _ — — =G
“dr <C+Cl u> “Turn % (e u,v), (7)
dv ( ne?  ww 2) H )

=t —_ v — v = C, U,V

dr C2+C42u+h M1 2 s Wy V),

We analyze the above slow and fast systems with the help of geometric singular perturbation
theory [61,69]. The basic idea behind this approach was to decompose the slow and fast systems
in its limiting systems (i.e for ¢ = 0) and study the dynamics of the respective subsystems. In
the singular limit € — 0, we obtain the fast subsystem (oxygen-phytoplankton) of system as
follows

dc Au duc vevg
dt c+1_c—|—02_c+63 (8)
du Be UVQ
o <C+Cl—u>u—u+h—au,

with v = vy (constant zooplankton density). Also, letting ¢ = 0, in we obtain the slow
subsystem or the reduced system as

dv

F = ==
(c,u,v) =0, G(c,u,v) =0, 7

= H(c,u,v), (9)
where F, G, H are given above. The set
Co = {(c,u,v) € R3: F(c,u,v) =0 = G(c,u,v)}.

is called critical manifold, which is the collection of all equilibrium points or curves of the fast
subsystem. It can be divided into two parts: trivial critical manifold CJ and non-trivial critical
manifold C’& such that Cy = Cg U C(}. The trivial critical manifold is given by the line

ng{(c,u,v) €R32020,u:0,ve]1{{}
and the non-trivial critical manifold C’& is the curve of intersection of two surfaces given by

Be
c+

(C+C3)< Au duc _c).

= h —
v=(ut )< c+1 c+e

—u— O’), v =

v
The slow subsystem @D represents the slow change in the zooplankton density over the critical
manifold. Considering the slow variable v as the bifurcation parameter, we numerically obtain
the critical manifold (black) as shown in Fig. . Therefore, along the critical manifold, the
zooplankton density changes slowly. Since the two surfaces intersect along a curve, we find the
extrema (fold point) of the curve (if any). A point P € Cj is a fold point of the critical manifold
if the fast subsystem exhibits a fold bifurcation. In other words, if we consider the Jacobian

F. F,

then at the fold point P, rank(7) = 1 and the critical manifold is non-hyperbolic. It divides the
critical manifold into two halves namely attracting Cf and repelling C{j sub-manifold. A point
p € Cf if both the eigenvalues of the matrix J evaluated at p has negative real parts, whereas

matrix of the fast subsystem



a point g € C if atleast one of the eigenvalues of the matrix J evaluated at p has positive real
part. To determine the stability of the trivial manifold, we evaluate the matrix 7 along 6’8 and

thus obtain
Too = -6 A (11)
Cg - 0 v :

g
Since all the parameters involved in the system are positive, the eigenvalues are given by
S1-Z o, 2 s <,
C3 h
for v > 0. Thus the trivial manifold C{ is stable for v > 0. Fenichel’s theorem [69] state that the
normally hyperbolic attracting and repelling sub-manifolds, C§ and Cjj respectively, obtained for
e = 0, perturb to locally invariant attracting and repelling sub-manifolds C¢ and C? respectively,
for € > 0. Therefore, the dynamics of the full system or can be approximated by studying
the dynamics of the subsystems obtained for € = 0.
The slow flow on the critical manifold C{ is given by the slow subsystem @D We differentiate
F(e,u,v) = 0 and G(c,u,v) = 0 implicitly with respect to ‘7" along the critical manifold, and
obtain the dynamics on the critical manifold. This is governed by the following system of

equations

dc F,G,— F,G, du _ F.G.— F.G, dv _
dr = FE.G,— F,G. H, dr ~  G.F, — GuFCH’ dr — H, (12)

with suitable initial condition (cg, ug,vo) € C&. The slow flow has a singularity whenever G.F}, —
Gy F. =0, which holds at the fold point P. Thus, the solution blows up at this point. Whenever
rG,—F,G, # 0or F,G.— F.G, # 0, the fold point is called the jump point, and the trajectory
jumps from the proximity of the fold point to another attracting critical manifold. However,
when both F,G, — F,,G, = 0 and F,G.— F.G, = 0, the fold point is called canard point. At this
point, the trajectory can pass through the proximity of the fold point and follow the repelling
manifold for O(1) time.

The coexisting equilibrium loses its stability and exhibits oscillatory dynamics through Hopf
bifurcation (supercritical or subcritical), which we discussed in the previous section. In a classical
slow-fast setting, the small cycles originating from Hopf bifurcation bifurcates to canard cycles
(with or without head) and further to relaxation oscillation, thus exhibiting canard explosion
[70]. These cycles are composed of slow and fast segments, where the slow flow occurs along
both attracting and repelling sub-manifold of the critical manifold. It exhibits fast flow when
the trajectory jumps to another stable portion of the critical manifold. However, for the system
, small canard cycles (without head) emerge from Hopf bifurcation. The amplitude of the
cycles increases in a narrow parametric range, eventually leading to complete extinction. We
prove this fact in the following theorem.

Theorem 4.1. Assume the fold point P is a canard point for € > 0. Then the system has
small amplitude canard cycles (without head) originating from Hopf bifurcation but there does
not exist any relaxation oscillation.

Proof. In the slow-fast setting, we denote the Hopf bifurcation as singular Hopf bifurcation since
the eigenvalues of the Jacobian matrix of the system evaluated at E,. has purely imaginary
complex eigenvalue of the form

)\172 =+ iw(,uIQ{,E)

such that lim._,ow (i, €) = 0. The singular Hopf bifurcation occurs at O(e) from the fold point
P. We assume F,G, — F,G, = 0 and F,G. — F.G, = 0 such that the fold point is the canard
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point. The small limit cycle originating from Hopf bifurcation grows in size through a sequence
of canard cycles. With the decrease in ¢, the amplitude of the cycle increases, and after a certain
threshold, the trajectory jumps from the vicinity of the fold point P close to C§). The equilibrium
point Ey lies on the trivial critical manifold. The eigenvalues of the Jacobian matrix Jg, are
—1, —o, —epq and the corresponding eigenvectors are

]__
(1,0,0), (1,;,0), and (0,0,1).

Therefore the critical manifold C§ coincides with the eigenvector. Thus, any trajectory on C{
converges to Ey. We cannot construct any singular orbit consisting of concatenated slow segments
on C’é and 08 , and fast fibers while leaving the respective manifolds. Hence, the global return
mechanism, which is necessary for the existence of classical relaxation oscillation, fails as all the
trajectories converge to the stable equilibrium FEj. O

05

0 0 L
0.1638 0.164 0.1642 0.0985 0.099  0.0995 0.1 0.1005  0.101
H2 H2

(a) (b)

Figure 3: The change in the amplitude of the canard cycle emerging from the singular Hopf
bifurcation with varying po is shown for (a) pu; = 0.24, ¢ = 0.5, and (b) u; = 0.3, ¢ = 0.5. The
blue lines show the steady state value of of the coexistence equilibrium when it is stable and the
maximum and minimum amplitude of the stable canard cycle when the equilibrium is unstable.
The horizontal red (broken) line shows the steady state value of the coexistence equilibrium when
it is unstable. The vertical black (broken) line marks the singular Hopf bifurcation threshold
(occurring at pg = 0.1007) and the vertical green (broken) line at ps = 0.099171 indicate the
threshold for the system collapse (plankton extinction and oxygen depletion). Other parameters
of the system are given in .

We illustrate this phenomenon with the help of a numerical example in Fig. [3| We use the
parameter values as in along with ¢ = 0.5. Consider a hypothetical value p; = 0.24. The
effect of € on the dynamics of the system can be observed if we compare the Fig. [3(a) with
Fig. (c) The singular Hopf bifurcation occurs at ud! = 0.1638 is subcritical (I; = 0.037). Small
unstable canard cycles emerge from the canard point P (1.24,1.01,0.89), which grows in size with
a slight increase in uo (Fig. |3/ (a)). A large amplitude stable cycle emerges from a heteroclinic
bifurcation that coexists with the stable equilibrium, separated by an unstable canard cycle. We
observe that the size of the stable cycle shrinks in an extremely narrow parameter interval and
disappears at a saddle node bifurcation of limit cycles.

We now consider p; = 0.3 and € = 0.5, then the singular Hopf bifurcation occurs at ug =
0.1007. The first Lyapunov coefficient is [y = —1.1818, hence the singular Hopf is supercritical.
From the canard point P (1.255,1.035,0.898), small stable canard cycles originate. We show
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Figure 4: (a) A trajectory (blue) converging to the origin (extinction) after oscillations of increas-
ing amplitude obtained for p; = 0.3, o = 0.09917 and € = 0.5. The other system parameters
are mentioned in equation . The surfaces F' = 0 and G = 0 are shaded in green and brown,
respectively. The black curve on the intersection of these surfaces is the critical manifold C&.
The single and double arrows represent slow and fast motion, respectively. (b) The correspond-
ing dependence of the phytoplankton density on time.

the change in the amplitude of the canard cycles with decreasing values of u9 in Fig. (b) This
depicts that the system becomes unstable with a decrease in the strength of the intra-specific
competition among the zooplankton. The transition from the stable, steady state to the oxygen-
free state, indicating complete population collapse, takes place in an extremely narrow interval of
the rate of intraspecific competition. That is, for uy € (0.099171,0.1007). At py = 0.09917, when
the size of the limit cycle explodes, the trajectory converges to the origin, which is illustrated
in Fig. [4[(a). The time series of the trajectory is shown in Fig. [f{b). This implies that the
system cannot further sustain any large amplitude oscillations. The rise in the amplitude of
the phytoplankton level beyond a threshold can act as an indicator of population collapse. The
system can therefore be driven to total extinction by pushing it far enough to reach the fold point.
Along with us, the timescale separation plays a critical role in identifying this narrow parametric
regime. For a larger timescale separation (i.e. smaller ¢), the coexistence of oxygen-plankton
occurs in a significantly narrower interval, and the system is more vulnerable to perturbation.

5 The spatial system

In the real world ocean environment, the spatial distribution of both plankton and dissolved
oxygen is remarkably heterogeneous, sometimes showing the variability by an order of magnitude
of even more [27,37,50,51,/71]. Correspondingly, in this section, we consider a spatially extended
model where the oxygen concentration and the phytoplankton and zooplankton densities vary
with both time and space. The ocean system is three-dimensional; however, in this paper, for
the sake of simplicity, we only consider one horizontal spatial dimension. We regard it as the
position along the ocean surface. In terms of ocean observations, it corresponds to a transect
across the study area.

Trying to keep the model as simple as possible, we avoid using explicit dependence on the
vertical dimension (i.e. the depth). Correspondingly, we use the well-mixed layer approxima-
tion [28,65,68] to assume that the vertical distribution of plankton and oxygen is approximately
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uniform within the photic (upper) ocean layer where most of photosynthetic oxygen production
takes place.

The transport of any substance in the ocean takes place primarily due to the water movement.
The movement in the horizontal direction occurs either due to an ocean current or marine
turbulence (or their combination). Here we chose to focus on the effect of unbiased (isotropic)
movement, hence taking into account only the effect of turbulence, which we describe as the
turbulent diffusion quantified by a certain diffusion coefficient |72.[73].

We, therefore, arrive at the following equations:

dc &%c Au duc vev

JE— Dci + _ _ —c,

dt 0r2 c¢+1 c+cy cHtecs

ou 0%u Bce uv

2 _ D _ — — 13
dt " 92 <c+wn u)” uth °® (13)
ov D 0%*v ( nct ww 2)

— = — —_———— e — U — 20" ).

dt Y 0x2 cZ+ci2u+h H1 H2

Here c(z,t), u(x,t), and v(z,t) are, respectively, the oxygen concentration and the phytoplank-
ton and zooplankton densities at the (horizontal) location = and time ¢; D., D,, and D, denote
the diffusion coefficients for oxygen, phytoplankton, and zooplankton. Note that phytoplankton
and the dissolved oxygen can be regarded as a ‘passive substance’, i.e. their spatial transport
is entirely determined by the water flows; hence D, = D, = Dp where Dy is the turbulent
diffusion coefficient. However, zooplankton has a certain ability to self-motion. Combined with
the effect of turbulent mixing, it can result in a value of D, # Dp. Whether D, is larger or
smaller, then depends on the zooplankton movement pattern. In case zooplankton movement is
entirely random (e.g. can be regarded as Brownian motion), then one can expect that D, > Drp.
In case zooplankton exhibits a homing behavior, then it is likely that D, < Dr.

Along with the temporal parameters, we now non-dimensionalize the space as T = \/%.
Removing the tilde for the simplicity of the notation, we obtain the following dimensionless

spatial model:
Jc d%c Au duc vev

dt @—i_c—l—l_c—i—q c+cg

)

ou 9%u Be uv (14)
—_— = — — —u|u-—- —ou

dt Ox2 c+cq u-+h ’

v 0%v nc? uv

- pZZ (77 _ _ 2)7

dt 8:1:2+€ 2+cilu+h fv = fi2v

where D = %z. Equations are considered inside the spatial domain Q = {x € (0, L)} where
L is thus the length of the domain.

Equations must be complemented with the initial conditions, which we consider in the
following form:

c(z,0) = {

L +05, |[z—L/2| <1 402, |z—-L/2 <1
e +0.5, |z —L/2] < 0, M%O)_{1L+0 lz — L/2| < 0’ (15)

Cy, otherwise U, otherwise

v(z,0) =v,, Vae.

That is, at ¢t = 0 the steady state densities are perturbed within a small area at the center of
the domain 2.
For the boundary conditions, we consider the zero-flux conditions:

cz(0,t) = cp(Lyt) = uy(0,t) = uy(L,t) = v,(0,t) = vy (L,t) = 0, t > 0. (16)
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The model is solved numerically with L = 500. We use the Euler method for the temporal
part and five points central difference scheme for the diffusion part along with Az = 1 and
At = 0.01.

5.1 Turing instability

To study the spatial distribution of oxygen and plankton, we start our analysis in a neighborhood
of a homogeneous steady-state solution of . Time-independent or a steady state solution
(c(z),u(z),v(x)) of the system (14)-(16) satisfies the following system of equations

d%c Au duc vev

—+ - = —c=0,

ox c+1 c+ex cHeg

0%u Be UV

22 —u)u— —ou=0 17

8m2+<c+61 u>u uth 4T (17
v nc? U

p&Y ( ~ o — 2) —0.
8:c2+6 2+clu+h H1U = fi2v

The coexistence equilibrium F, of system corresponds to a homogeneous steady state
solution of the above system. To study the dynamics of the above system near the homogeneous
steady-state solution E,, we give small heterogenous perturbation as

c(z,t) = ey + E1eM coska, u(z, t) = us + E2eM coskx, v(x,t) = v, + EzeM coskz  (18)

with 0 < &,&2,& < 1. The parameter k is the wavenumber of the eigenfunction, and A is
the eigenvalue determining the temporal growth of the corresponding k" mode. We obtain the

linearized system as
Z,=Jg,Z+DAZ (19)

where Z = (21, 22, 23), D = diag(1,1, D). For the non-trivial solution of the above system ,
the eigenvalues A\ are determined by the roots of the characteristic polynomial det(Al — Jg, +
Dk?) = 0, which is written explicitly as

N+ pa (k)N + pr(B)A + po(k?) = 0, (20)
where

pg(k‘2) = (24 D)k:2 —tr(Jg,),
p1(k?) = (1+2D)k* — ((Ja2 + J33) + (Ji1 + Js3) + D(Ji1 + Joo))k* + (J1[11] + J2[22] + J:@)’

po(k?) = DES — ((Ji1 + Ja2)D + Jag)k* + (JE + T+ JEIDYR? — det(Js,),
(21)
and J;; and Ji[;] are the same as obtained during the analysis of the temporal part. We, therefore,
obtain the necessary and sufficient conditions for Turing instability as

p2(0) > 0, po(0) >0, p1(0)p2(0) > po(0) and po(k?) < 0, for some k. (22)

Therefore, the Turing instability occurs at a critical wave number, k = kr, where po(k?)
achieves a minimum and po(k%) = 0. This gives

Ji1 + Joo

4 (V) (23)

ky =
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where
A= (J + I3 — JinJos + 3J12J21) D? + D (3J13J31 + 3Jog T2 — Ji1Jsg — JooJs3) + J33,

where J;; are the elements of the Jacobian matrix, cf. Eq. @ Because of the complexity
of the expression and the large number of parameters involved, the critical wave number kr
corresponding to the Turing bifurcation has to be computed numerically. For a feasible k7, the
model describes the formation of spatial patterns, as is shown below.

5.2 Impact of diffusion on Oxygen Minimum Zone

We now look into the spatio-temporal dynamics of the system with the initial conditions
. Our goal is to reveal typical dynamical regimes (in particular, pattern formation scenarios,
if any) for parameters inside and outside of the Turing domain. In a pure Turing domain all the
Turing instability conditions as discussed above holds. However, in a Turing-Hopf domain, the
homogeneous steady state is unstable under both temporal and spatio-temporal perturbations.

We fix the parameter values as in and let p; = 0, po = 0.41 and consider different values of
the diffusivity ratio D.

Fig. [p|shows typical patterns in the distribution of oxygen for different diffusivity rates. Here
Fig. Bh,b and Fig. are obtained, respectively, for parameters outside and inside the Turing
instability domain. We notice that, in all three cases, the evolution of the initial conditions
soon leads to the formation of a patch where the oxygen concentration is much lower than its
steady state value. We interpret this dynamics as the formation of an OMZ. Further evolution
of the emerging OMZ can be significantly different depending on D. When the diffusivity ratio
is small, i.e. D < 1, the OMZ created at the early stage grows with time and eventually spreads
over the entire domain. Interestingly, the growing OMZ has a fine structure. A closer look
at the dynamics shown in Fig. reveals that, at any time ¢ during the transient stage of the
OMZ expansion, it consists of three or four subdomains with very low oxygen level separated
by narrow spatial intervals where the oxygen level is larger than its steady state value c,. This
fine structure disappears after the expanding OMZ hits the domain boundaries; at a later time
the oxygen level is low over the entire domain, which can be interpreted as the global anoxia.

An increase in the diffusivity ratio to D = 1 results in a qualitative change in the dynamics;
see Fig. (b) In this case, the OMZ formed at an early stage of the system dynamics show
almost no spatial growth remaining localised around the centre of the domain. At any spatial
position inside the OMZ, the oxygen level distinctly oscillates with time between a very low level
(approximately 0.1c,) to a high level (of about 1.3c,).

A further increase in D leads to another qualitative change in the dynamical pattern. Figure
(c) shows the results obtained for D = 5. In this case, the system satisfies the Turing instability
condition with the critical wavenumber /@% = 0.1095. The evolution of the initial conditions leads
to the formation, inside a certain subdomain, of a periodic spatial pattern where low oxygen
patches alternate with high oxygen patches. The subdomain containing this periodic structure
grows with time and eventually occupies the whole domain, so that at a large time the periodic
spatial distribution becomes stationary.

We note here that the pattern of the OMZ formation and spread is relatively robust to the
initial conditions. For instance, if at ¢ = 0 the spatial distribution of oxygen is perturbed along
with that of phytoplankton, the emerging patterns are similar to the ones shown in Fig. |5 One
example is shown in Fig. @ In this case, the initial conditions are slightly modified, so
that, at the center of the domain both ¢(x,0) and u(z,0) are less than their steady state values.
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It is readily seen that the top and the bottom of Fig. [f] show very similar patterns, with the
only difference that the spatial size of the emerging OMZ becomes larger for the modified initial
conditions.

5.3 Impact of timescale separation on Oxygen Minimum Zone

From the mathematical analysis in the subsection [5.1} we obtain that the critical wavenumber
kr for Turing instability depends on the timescale separation ¢, as the elements J3;, J3s and
Js3 of the Jacobian matrix in Eq. depend on . Thus, one can expect that the boundaries
of the parameter ranges where the Turing and the Turing-Hopf instability occur (resulting in
pattern formation) can shift with a decrease in ¢, i.e. with an increase in the timescale separation.
Numerical simulations confirm that this is indeed the case. Having fixed p; = 0, us = 0.41,
D = 5 and other parameters as in and only varying €, we obtain stationary patterns in both
the Turing domain and in the Turing-Hopf domain for ¢ > 0.18. A typical pattern is shown
in Fig. (c) With a decrease in ¢, the emerging stationary pattern has a similar nature of
alternating patches of high and low oxygen level as for ¢ = 1 (cf. Fig. ) but the size of the
patches becomes larger; e.g. see Fig. (a). Also, the emergence of the stationary periodic pattern
is preceded by rather long transient dynamics when the oxygen concentration and the plankton
densities exhibit irregular oscillations (see Fig. [7}(d)).

With a further decrease in €, the dynamics becomes qualitatively different. The emerging
pattern is not spatially periodic any more; see Fig. m(b) Apart from the large OMZ formed
around the centre of the domain at the early stage of system’s dynamics, there are two large
OMZs at the sides of the domain. At a later time, these patches of low oxygen level break to a
number of smaller patches of variable size. The dynamics is not becoming stationary at any time
as the patches keep changing their size (and some of them also their location). The dependence
of spatially average densities is distinctly irregular (see Fig. [fj(e)) suggesting chaotic dynamics.
This kind of dynamic pattern is observed for 0.07 < ¢ < 0.18.

With a further decrease in ¢ (below € = 0.07), the system’s dynamics undergo a regime shift.
For ¢ < 0.07, the transient apparently chaotic dynamics only last for a finite time. After a
sufficiently long time, the system experiences a catastrophic change when over a short transition
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Figure 5: Transition of spatio-temporal dynamics of oxygen from non-Turing (panels (a) and
(b)) to Turing (panel (c)) pattern formation for g3 = 0, uz = 0.41, ¢ = 1 and different values of
D. All other parameters are given in ; the corresponding steady state value ¢, ~ 1.2. The
auxiliary red lines help to reveal the properties the oxygen distribution of oxygen at a given
moment of time (as in panels (a) and (c)) or at a given location in space (as in panel (b)); see
details in the text.
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Figure 6: (Top) Zoomed plot of Figl5|(a), which is obtained using the initial condition (5]
(Bottom) The initial conditions are of the form but with ¢(z,0) = ¢, — 0.5 and u(z,0) =
uy, — 0.2 for |z — 5| < 10. All the parameters are same as in Fig. (a). The modified initial
conditions therefore result in the formation of the OMZ of a larger size.

time the oxygen concentration fast drops to a very small value (and eventually to zero) over
the entire spatial domain. An example of such regime shift is shown in Fig. (c,f) (obtained
for ¢ = 0.06). The entire area becomes a dead zone (with low or no oxygen), which can be
interpreted as the global anoxia. Along with oxygen, the phyto- and zooplankton densities go to
zero as well (after several irregular oscillations of increasing amplitude, cf. Fig. m(f)), obviously
signifying their extinction.
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Figure 7: (a,b,c) Spatial distribution of oxygen; (d,e,f) spatial average density of oxygen, phy-
toplankton, and zooplankton for the parameter values with 3 =0, pue = 0.41, and D = 5.

For both g1 > 0 and ps > 0, the system’s dynamics becomes different and exhibits a
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somewhat greater variety of dynamical regimes. As one example, Figs. a,e) shows the spa-
tiotemporal dynamics for p; = 0.24, pus = 0.1575, D = ¢ = 1 and other parameters the same as
in Fig.[p(b.e). It is readily seen that, in this particular case, the evolution of the initial condition
does not lead to formation of OMZ. It only leads to small fluctuations in the oxygen level and
plankton densities around the location of the initial perturbation, with the spatial distribution
being uniform in the rest of the domain.

A decrease in ¢ leads to the emergence of the OMZ. It first appears at the position of the
initial perturbation (i.e. near the centre of the domain); see the bottom of Figs. b,c). At a later
time, it breaks to several patches that fast spread over the entire domain. The spatiotemporal
dynamics is apparently chaotic for e = 0.5 but becomes more regular for ¢ = 0.25, cf. Figs. (f,g).

A further decrease in € below a certain critical value results in a regime shift, e.g. see
Figs. d,h) obtained for ¢ = 0.2. In this case, a large OMZ is formed at an early stage
of system’s dynamics (see the bottom of Fig. [§(d)). However, after a relatively short time
the oxygen concentration fast drops to zero over the entire domain: the global anoxia occurs
accompanied by the plankton extinction.

(e, a)s ()

Figure 8: (a,b,c,d) Transition of spatial distribution of oxygen and (e,f,g,h) spatial average
density of oxygen, phytoplankton, and zooplankton for the parameter values and p; =
0.24, o = 0.1575, D = 1 and different values of ¢.

6 Conclusion

Over the last few decades, there has been growing evidence of a decline of the dissolved oxygen
concentration in the ocean ﬂ§|, This has not only been recognized as a catastrophic threat
to the marine ecosystems but also as a potential threat to mankind and to terrestrial
ecosystems, as marine phytoplankton contributes about 70% to the total atmospheric oxygen.
Any significant decline in the global phytoplankton abundance and/or a decrease in the oxygen
production rate in phytoplankton photosynthesis will inevitably lead to a decline in the global
stock of the atmospheric oxygen ,. Thus, marine ecosystems, phytoplankton in particular,
play a crucial role in maintaining the habitable Earth .
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In spite of the apparent importance of the above issues, mathematical models addressing
the change in the oxygen concentration as a component of the coupled phytoplankton-oxygen
dynamics are rare in the literature. As one exception, a generic three-component oxygen-phyto-
zooplankton model was developed in [19] (and further investigated in [18,20,74]). It has been
shown that the formation of areas with a low oxygen concentration (i.e. OMZs) is in fact an
inherent property of the self-organised plankton-oxygen spatiotemporal dynamics, but it can be
exacerbated by the effect of global warming, potentially leading to global anoxia.

The model developed in |18}19], however, missed several important features of the marine
ecosystem’s dynamics, hence making the prediction of emerging global anoxia somewhat ques-
tionable. In this paper, we have considered a nontrivial extension of the original model that
includes factors such as zooplankton inherent competition, cannibalism and/or the effect of
zooplankton’s consumers from upper trophic layers, e.g. fish. Another important factor is the
existence of different timescales for phyto- and zooplankton growth, as the latter is usually much
slower than the former.

The properties of the extended model have been analysed in much detail using a combi-
nation of analytical and numerical tools. We first consider a non-spatial version of the model
described by a system of three nonlinear ODEs (for oxygen, phytoplankton, and zooplankton,
respectively) to study the variation in oxygen level and plankton densities over time. In addition
to the results earlier obtained in [19,/46], we have shown that the number of coexisting steady
states depends both on the linear mortality rate (u1) and the rate of zooplankton intraspecific
competition/consumption (quantified by coefficient pg). For p; = 0, there exists two feasible
coexisting steady states where the lower oxygen level is always unstable, and the higher state
changes its stability with increasing po. Whereas for p1 # 0, we obtain a unique feasible steady
state which changes its stability from unstable to stable for a strong intraspecific competition.
Along with this, the extinction state is always stable. We also found that an increase in the
rates of zooplankton linear mortality (¢;) and nonlinear mortality (u2) leads to an increase in
the oxygen abundance.

In order to better understand the relative importance of the linear and nonlinear mortality
and their effect on the temporal dynamics of the system, we have considered three cases: (a)
w1 # O,p2 = 0, (b) g = 0,u2 # 0, and (¢) p1 # 0,u2 # 0. Because of the complexity of
the system, this has mostly been done through numerical simulations. For case (a), the unique
steady state is stable for higher values of p1, and it loses its stability through supercritical Hopf
bifurcation. Small stable cycles originate, increasing its size in a small interval of py. Beyond
that, the system cannot further withstand an increase in the amplitude of the cycle leading to
complete collapse (see Fig. [2h). However, for case (b), the Hopf bifurcation is subcritical, and
the system converges to stable steady state for higher values of uo. In this case, an unstable
cycle is formed (see Fig. [2b). Case (c) is a combination of the above two cases. Here, in a very
narrow domain, the system exhibits tri-stability, with a stable steady state, a stable cycle, and
the extinction state. The two cycles appear through saddle-node bifurcation of limit cycle, and
the disappearance of the unstable cycle is through subcritical Hopf, and that of the outer stable
cycle is through heteroclinic bifurcation (see Fig. )

Having analysed the effect of different timescales (cf. “slow-fast system”), we obtained the
critical manifold of the slow subsystem. The extremum (the fold point) of the critical mani-
fold acts as an extinction threshold: if the system is pushed beyond the fold point (e.g. by the
choice of the initial conditions), the dynamics will eventually lead to plankton extinction and
oxygen depletion, although the extinction/anoxia can be preceded by a long period of oscilla-
tions (cf. Fig. . Note that a decrease in the nonlinear mortality rate puo has a similar effect
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on the system’s persistence. A decrease in s below a certain critical value first destabilises
the coexistence steady state resulting in oscillatory dynamics (see Fig. . A further decrease
(below another critical value) leads to the canard explosion. However, no relaxation oscillations
emerge (see Theorem 4.1); instead, the system’s trajectory goes to the origin, which obviously
corresponds to the extinctions and anoxia.

We then considered the spatially explicit system to study the distribution and spatiotemporal
dynamics of oxygen and plankton. The spatially explicit model consists of three reaction-
diffusion equations where the diffusion terms account for the effect of lateral turbulent mixing
for the dissolved oxygen and phytoplankton and for the combined effect of turbulence and
self-motion for zooplankton. Note that, because of the latter, zooplankton diffusivity can be
expected to differ from that of phytoplankton and oxygen. Moreover, it can differ significantly.
The interplay between the ordinary Fickian diffusion (in our case “biodiffusion” resulting from
zooplankton random movement) and the turbulent mixing is known to be highly nonlinear
[73,/75]. The ordinary diffusion, although itself often being orders of magnitude less intensive
than the turbulent mixing, accelerates the turbulent diffusion significantly [73.|75]. In turn, for
the diffusivity ratio being greater than one, the model can exhibit pattern formation due to the
Turing instability; see Sections [5.1] and [5.2]

Due to its mathematical complexity, the spatially explicit reaction-diffusion model is not
analytically tractable. Therefore, we have investigated its properties through extensive numerical
simulations, with a special attention to regimes that result in the formation of patterns containing
areas with low oxygen level and/or regimes resulting in global oxygen depletion. Using the initial
condition as a localised perturbation of the spatially uniform steady state, we have obtained
that the system dynamics typically lead to the formation of strongly heterogeneous spatial
distribution that includes one or several areas (patches) with a very low oxygen level, which
we interpret as the formation of OMZ. Interestingly, the patterns emerge both in and outside
of the Turing domain and hence, for different parameter values (e.g. the diffusivity ratio being
larger or smaller than one) can be attributed to different dynamical mechanisms, i.e. Turing or
non-Turing. Except for some rare cases (cf. Fig. [fp), the OMZ formed at an early stage of the
system dynamics fast spreads over the entire domain, often generating multiple patches, e.g. see
Figs. (a,c), (a,b,c) and (b,c,d), the size and number of the emerging smaller OMZs varying
with the parameter values.

The spread of the emerging pattern (a mixture of patches with high and low oxygen level)
can lead to a different outcome. It can result in a self-sustained pattern, which, in the large
time limit, can be stationary (cf. Figs. [5c and ) or dynamic (Fig. ) Alternatively, it may
eventually lead to an unsustainable pattern — a regime shift — when, after a certain time, the
oxygen concentration fast drops to very small values over the entire domain (cf. Fig. , @7 and
). Arguably, this may be interpreted as the onset of the global anoxia.

Note that there is a subtle interplay between the zooplankton linear mortality rate pu; and
the difference in the timescales. In the special case of the same timescales (¢ = 1), the effect
of a non-zero zooplankton linear mortality makes the system somewhat more sustainable: while
an initial perturbation leads to the formation of deoxygenated patch (OMZ) at the center of the
domain in case u; = 0 (Fig. ), it only leads to small fluctuations in the oxygen level in case
w1 > 0 (Fig. ) However, for ¢ < 1 and with a further increase in the timescale separation
(i.e. for a smaller ¢), the effect of zooplankton mortality becomes rather opposite making the
system less sustainable. For instance, for u; > 0 the global anoxia occurs already for ¢ = 0.2
(see Fig.[8d) but for 11 = 0 the dynamics remains sustainable (i.e. no global anoxia) for & = 0.1.

For a fixed value of p1, an increase in the timescale separation alone makes the dynamics less
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sustainable. A decrease in ¢ tends to lead to a larger size of the initially formed OMZ; e.g. see
Fig. (b,c,d), eventually resulting in global anoxia and extinctions when € becomes sufficiently
small. That happens both for 11 = 0 and 1 > 0, cf. Figs. [[c) and [§(d), although the succession
of spatial patterns preceding the onset of anoxia is different between the two cases.

Apparently, our study leaves open questions. Firstly, recall that our model is conceptual;
it only takes into account the interaction between oxygen and plankton but not with other
components of the complicated marine food web. It has been shown in [1§] that, in case of a
trophic chain, the effect of higher trophic levels only makes the regime shift — the catastrophe
of oxygen depletion and plankton extinction — more likely as the three-component model
provides an upper bound for a longer trophic chain. An open question however remains as to how
the dynamics may change in case of a web rather than chain, for instance to account for effect of
bacteria or detritus. Secondly, the description of turbulent mixing as the turbulent diffusion is
somewhat simplistic; in particular, it completely disregards the fact that the turbulent mixing
is multiscale and nonlocal [73,75]. Although the model with the turbulent diffusion is arguably
a sensible first step, a more advanced approach should involve a more realistic description of
turbulence. These issues will become a focus of future work.
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