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Abstract
Recognition of ventilator-induced lung injury has led to the development of lung-protective ventilation strategies, 
significantly influencing the management of acute respiratory distress syndrome (ARDS). By the end of the 20th 
century, five randomized controlled trials had compared the survival benefits of low tidal volume (VT) ventilation 
with those of traditional high VT ventilation. Two studies demonstrated favourable outcomes, most notably the 
landmark ARDS Network trial, which established the widely recommended VT of 6 mL/kg predicted body weight. 
However, the universal application of a fixed VT has been controversial, with poor adherence in clinical practice. 
The two trials used a greater contrast in VTs (6 vs. 12 mL/kg) than did the others (7–11 mL/kg) and incorporated 
methodological extremes, including toleration of elevated airway pressures or encouragement of unnecessary 
increases. In addition, disparities in underlying aetiologies and ventilatory parameters, such as unbalanced 
positive end-expiratory pressure and respiratory rates, may have influenced the results. There is no conclusive 
evidence to support the superiority of 6 mL/kg over intermediate VTs (7–10 mL/kg). Many subsequent studies 
have suggested that VT requirements should be individualized on the basis of lung mechanics and physiological 
status. The benefits of the current recommendations may be limited by factors such as the severity of hypoxemia, 
lung compliance, dead-space fraction, and inaccuracies in formula-based lung volume estimation. The goal of 
mechanical ventilation in ARDS patients is supportive rather than curative; therefore, a moderate approach is 
recommended in clinical practice. Further studies are needed to establish an individualized, patient-centred 
approach that allows more flexible and moderate settings.
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Background
Acute respiratory distress syndrome (ARDS) is asso-
ciated with high mortality, although outcomes have 
improved with advancements in ventilatory strategies 
and overall supportive care [1]. Since its initial clinical 
description by Ashbaugh and Petty in 1967, mechanical 
ventilation (MV) has remained the cornerstone of ARDS 
management [2, 3]. Initially, high tidal volumes (VTs) of 
12–15 mL/kg were commonly used to compensate for 
the loss of functional lung units due to atelectasis and 
alveolar oedema [4]. However, the concept of ventilator-
induced lung injury (VILI) soon emerged and was sup-
ported by animal studies and clinical evidence in humans 
[5–7]. These insights prompted a paradigm shift towards 
lung-protective ventilation, emphasizing the limitation of 
VT and airway pressure to mitigate iatrogenic injury [8].

Towards the end of the 20th century, five randomized 
controlled trials (RCTs) were conducted to compare tra-
ditional high-VT ventilation directly with lung-protective 
low-VT strategies and evaluate the prognostic implica-
tions (Table 1) [9–13]. Of these, two studies demon-
strated a survival benefit, and the pivotal ARDS Network 
(ARDSNet) trial led to the recommendation of a VT of 6 
mL/kg predicted body weight (PBW) as the standard for 
ARDS management [13–15]. Furthermore, low-VT ven-
tilation has been increasingly applied in patients with-
out ARDS [16–18]. Efforts have been made to explore 
even lower VTs (< 6 mL/kg PBW) in the management of 
ARDS [19–21].

Adherence to the recommended VT of 6 mL/kg PBW 
has been consistently low, at 20–39%, with actual clinical 
practice often involving higher VTs [22–24]. This subop-
timal compliance has been attributed to multiple factors, 
including challenges in calculating and applying PBW 
accurately, limited clinician awareness or acceptance of 
permissive hypercapnia, concerns regarding increased 
sedation requirements, and the risk of hypoventilation 
and refractory hypoxemia [25–27]. Notably, deviations 
from guideline-recommended volumes should not always 
be interpreted as disregard for protocols. In many cases, 
clinicians may determine that the standardized VT is 
inappropriate or inadequate for a given patient’s physi-
ological condition and may elect to increase it for safety 
and individualized care considerations.

Methods
The primary candidates for this review were clinical stud-
ies that assessed outcome parameters on the basis of the 
VT settings used in the MV of patients with ARDS.

The five aforementioned RCTs are key articles in this 
review. Although those studies are somewhat outdated, 
having been published between 1998 and 2000, they 
continue to exert the most significant influence on cur-
rent ventilatory care in ARDS management because no 

comparable studies have been conducted since 2000 [9–
13] (Table 1).

Two uncontrolled, retrospective real-world analyses 
were also selected for this review because they provided 
comprehensive evaluations involving relatively large 
numbers of patients [26, 28].

Additionally, two articles that addressed the five RCTs 
were selected. In one study, a meta-analysis of the data 
was conducted [29]; in the other study, a secondary anal-
ysis was performed in which the original data was used as 
the basis for assessing the implications of the physiologi-
cal and mechanical ventilatory parameters [30].

In addition to these primary articles, various relevant 
clinical research and review papers were selected and 
analysed.

Integrated results and discussion
Reassessment of landmark studies on mechanical 
ventilation in ARDS
To evaluate the efficacy of lung-protective low-VT ven-
tilation compared to conventional high-VT ventilation, 
five RCTs have been conducted using comparable meth-
odologies. Of these, three studies reported no significant 
difference in survival outcomes, and two studies dem-
onstrated a survival benefit with the low-VT strategy. 
Notably, the ARDSNet trial received the greatest recog-
nition and established the foundation for current MV 
standards; its influence stems from its rigorous design as 
a well-controlled, multicentre study with superior statis-
tical power and a relatively large patient population [13].

Concerns have been raised regarding the fixed appli-
cation of low-VT ventilation, as the benefit thereof may 
vary according to mechanical parameters such as the 
driving pressure. It can also lead to air hunger and double 
triggering, requiring excessive sedation, and may be det-
rimental in patients with severe hypoventilation and aci-
dosis or obstructive lung disease [31–35]. Several studies 
have suggested that the benefits of low-VT ventilation 
may be limited in severe ARDS patients and that its effec-
tiveness can vary depending on the elastance or compli-
ance of the respiratory system [30, 36]. Accordingly, it 
has been proposed that VT should be individualized on 
the basis of driving pressure and the severity of hypox-
emia [37–39]. As there is no single, definitive method to 
quantify the ventilation requirements of any given indi-
vidual, integrated observations of vital physiology remain 
the best guide for moment-by-moment lung protection 
at the bedside. VILI risk varies not only inversely with the 
size of the aerated lung but also with the nature, sever-
ity, and stage of acute injury. Single numerical values for 
ventilation parameters, such as VT, pressure and positive 
end-expiratory pressure (PEEP), are not relevant for all 
individuals [8, 40, 41].
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There is no basis to regard the recommended VT of 6 
mL/kg PBW as optimal; this volume was directly com-
pared only to 12 mL/kg, without evaluation against inter-
mediate volumes of 7–11 mL/kg [33, 34]. The ARDSNet 
trial addressed this concern by comparing its results 
with those of three trials that did not demonstrate a sur-
vival benefit. In the ARDSNet study, the low-VT group 
received approximately 6 mL/kg PBW, whereas in the 
studies that did not show a benefit, the low VTs were 
closer to 7 mL/kg. Notably, the high-VT arms in both 
the ARDSNet and other trials were comparable, averag-
ing approximately 12 mL/kg PBW when adjusted using 
the PBW. On the basis of these comparisons, a possible 
inference was drawn: since 6 mL/kg yielded better out-
comes than 12 mL/kg in the ARDSNet trial did, and 12 
mL/kg resulted in outcomes similar to those of 7 mL/kg 
in the studies that did not show a benefit, 6 mL/kg was 
hypothesized to also be superior to the range of higher 
VTs of 7–12 mL/kg. However, this conclusion remains 
inferential because direct comparisons with intermediate 
volumes have not been systematically tested.

Several concerns have been raised regarding the inter-
pretation of the findings of the studies that reported a 
survival benefit. First, discrepancies in the adjustment of 
body weight across studies complicate direct compari-
sons. Of the three trials that did not show a benefit, two 
used ideal body weight (IBW), and one used dry body 
weight [10–12]. Although these methods are conceptu-
ally similar and are intended to reflect lean body mass and 
lung size, they were selected on the basis of prevailing 
trends or individual preferences. Furthermore, all weight 
estimates were calculated indirectly using height and sex 
rather than being obtained through direct measurement. 
In the ARDSNet trial, the PBW was calculated using the 
Devine formula, which is also widely used to determine 
IBW [11, 42]. Notably, IBW and PBW yield very similar 
values, regardless of the specific formula applied [43]. 
Dry body weight is typically estimated using formulas 
such as the Devine equation because accurate measure-
ment is challenging even when advanced technologies 
are used [44]. Thus, converting estimated body weights 
across studies offers limited value and may introduce 
unnecessary inconsistencies, and analysing the data using 
the originally reported values without adjustment may 
be more appropriate. The initial VTs in the ARDSNet 
trial were approximately 6.2 and 11.8 ml/kg, whereas in 
the three studies that did not show a benefit, they ranged 
from approximately 7–10.7 ml/kg (rather than 7–12 ml/
kg, as previously stated) (Table 1). Thus, the VT ranges in 
the ARDSNet study did not overlap with those in the tri-
als that did not show a benefit, thereby precluding direct 
and indirect comparisons between 6 mL/kg and higher 
VTs of 7–11 mL/kg. As a result, although the ARDSNet 
trial primarily demonstrated the harm of excessively high 

VTs, it did not definitively establish 6 mL/kg PBW as the 
optimal target. To date, no RCT has directly compared 
the ARDSNet-recommended low VT (6 mL/kg PBW) 
with intermediate volumes (7–10 ml/kg PBW). However, 
one multicentre retrospective study revealed no signifi-
cant difference in outcomes between groups receiving 
mean VTs of 6.7 ml/kg and 11.2 ml/kg PBW [28]. Simi-
larly, a retrospective review of 111 real-world ARDS 
patients revealed that a mean VT of 9.5 ml/kg PBW was 
not inferior to that of 6.1 ml/kg PBW in terms of 28-day 
or 1-year mortality [26].

Second, the two studies that demonstrated a survival 
benefit employed fixed VTs of 6 and 12 mL/kg PBW 
for the intervention and control groups, respectively. In 
contrast, the three studies that did not show a benefit 
adopted a more flexible approach, setting VTs within 
the 7–11 ml/kg range and adjusting them based on air-
way pressure parameters such as peak airway pressure 
(Ppeak) and plateau airway pressure (Pplat) (Table 1). 
Notably, in the ARDSNet trial, a lower limit Pplat thresh-
old of 45 cmH₂O was established in the high-VT group, 
below which the VT was titrated up to 12 mL/kg [13]. 
Another study applied a similarly rigid protocol, enforc-
ing fixed VTs without incorporating a pressure safety 
margin in the high-VT arm. This approach resulted in 
substantial differences in Pplat between groups, despite 
the small sample size [9]. Such protocols may not have 
reflected the prevailing standards of care at the time, 
particularly because the risks of VILI had been recog-
nized for more than a decade [5–7, 45–48]. These rigid 
and arguably excessive methodologies may have contrib-
uted to the poorer outcomes observed in the high-VT 
groups of the two studies showing a benefit. A meta-
analysis of the above five RCTs revealed that Pplat values 
in the high-VT groups were significantly higher in stud-
ies that showed a benefit than those that did not but did 
not specifically address the methodological issues [29]. 
The unregulated application of high VTs, irrespective of 
these pressure thresholds, may have led to exaggerated 
elevations in Pplat, contributing to the observed outcome 
disparities.

Third, respiratory rates were set unusually high in the 
low-VT groups to compensate for reduced minute ven-
tilation, whereas PEEP levels were lower in the high-VT 
groups [9, 13]. These discrepancies in ventilator param-
eters introduce significant confounding factors that 
undermine the fairness of the comparison and deviate 
from reasonable ventilation practices.

Another potential contributor to the outcome differ-
ences in the ARDSNet trial lies in the distribution of the 
underlying aetiologies of ARDS. Notably, trauma-related 
ARDS is associated with more favourable outcomes than 
ARDS due to pulmonary causes such as pneumonia [49, 
50]. A simple chi-square estimation based on published 
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data revealed that the number of pneumonia cases was 
slightly greater and that the number of trauma cases was 
significantly lower in the high-VT group than in the low-
VT group [13].

The ARDSNet trial suggested that the use of parenteral 
bicarbonate to mitigate acidosis may have influenced out-
comes. However, this rationale is unconvincing because 
all three studies that did not show a benefit explicitly 
reported the administration of sodium bicarbonate for 
acid‒base management [10–13] (Table 1).

Further considerations when low-tidal-volume ventilation 
is applied
The normal VT in mammals, including humans, is 
approximately 6.3 mL/kg IBW at rest [51]. Consider-
ing variation and changing demands, the physiological 
VT in healthy individuals is typically 6–8 mL/kg [13, 
52]. In ARDS, however, the number of functioning lung 
units is significantly reduced because of alveolar col-
lapse, oedema, or consolidation. To minimize regional 
overdistension and VILI, the VT must be proportionally 
decreased to match the diminished aerated lung volume 
[53, 54]. However, volume- and pressure-induced injuries 
are not the only factors that must be considered when 
ventilatory parameters are set in ARDS. The primary 
objective of MV is to maintain adequate gas exchange 
and avoid further damage to the lungs. In ARDS, the 
physiological dead-space fraction can rise dramati-
cally—often exceeding 0.5–0.6 compared with normal 
values < 0.3—and this increase is independently associ-
ated with greater mortality [55–58]. In patients with a 
significantly elevated dead space fraction, the application 
of a low-VT strategy may result in significant hypoven-
tilation and severe hypoxemia. To compensate for this 
impaired gas exchange, clinicians are often compelled to 
use excessively high respiratory rates and elevated PEEP 
levels. These compensatory measures carry potential 
drawbacks, such as intrinsic PEEP, and may contribute 
to the lack of consistent survival benefits associated with 
low-VT ventilation, particularly in patients with high 
respiratory system elastance or profound hypoxia [30, 
39].

Beyond these physiological concerns, the use of for-
mula-based estimations to determine VT introduces 
additional limitations. VT may be inappropriately set for 
individual patients because of inaccuracies in height mea-
surement, estimation errors, and interindividual vari-
ability in lung capacity [59, 60]. In critically ill patients, 
even a small degree of underestimation can have serious 
or catastrophic consequences. When life-support param-
eters, such as VT, are determined on the basis of crude 
estimations rather than direct physiological assessment, 
overly rigid adherence to calculated values—without 
allowance for individual variation—may be detrimental.

The result of the five RCTs discussed above show that 
the actual VTs administered to patients in the low-VT 
groups consistently exceeded the protocol-defined tar-
gets, including in the ARDSNet trial. This observation 
implies that the prescribed VTs may have been perceived 
as insufficient by the treating physicians, who likely 
adjusted them upwards in response to clinical needs, 
such as ensuring adequate ventilation or addressing 
safety concerns.

VILI arises from mechanical stress and biologically 
mediated processes, collectively referred to as “bio-
trauma” [61]. MV triggers the release of inflammatory 
mediators, such as cytokines [62, 63]. This cytokine surge 
has been associated with the development of multiorgan 
failure, a key determinant of poor outcomes in ARDS, 
although definitive evidence that inflammatory media-
tors are direct causative agents of multiorgan dysfunction 
remains lacking [64, 65]. These mediators may repre-
sent epiphenomena, which are byproducts of the disease 
process rather than primary drivers of pathology. More-
over, inflammatory cytokines play essential roles in host 
defence, tissue repair, and immune regulation [66, 67].

Back to basics and lessons from the past
The primary function of MV is to provide support-
ive care rather than to serve as a definitive therapeutic 
intervention. A prudent and restrained approach is war-
ranted when advanced respiratory support modalities are 
applied. Although numerous adjunctive strategies for MV 
have been investigated, their clinical outcomes have gen-
erally fallen short of initial expectations, and many are 
not routinely used in contemporary critical care practice. 
In particular, inhaled nitric oxide, which was once widely 
used, is no longer recommended, nor is high-frequency 
ventilation [68, 69].

Although the concepts of VILI and biotrauma from 
excessive ventilation are well known and have signifi-
cantly advanced the field of critical care medicine, para-
doxically, overly aggressive ventilatory strategies may 
lead to further harm.

Dr. David O. Ashbaugh, who first described ARDS, 
passed away in 2016. A surgeon by training, Dr. Ash-
baugh was not extensively involved in critical care 
research. However, he remains one of the most influen-
tial pioneers in the field of critical-care medicine, hav-
ing saved more lives than many of the most celebrated 
figures have. His discovery of the profound and immedi-
ate benefits of PEEP occurred somewhat serendipitously 
during a desperate attempt to save a young patient’s life. 
The clinical improvement was so dramatic and unequivo-
cal that conducting further trials to assess the necessity 
of PEEP was deemed unnecessary and ethically unjustifi-
able. Dr. Ashbaugh, together with the late Dr. Thomas L. 
Petty and colleagues, first reported cases of ARDS in The 
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Lancet after their manuscript had been rejected by lead-
ing American journals. Notably, one of the main reasons 
for rejection was the inclusion of PEEP, which at the time 
was considered potentially harmful during MV. This his-
torical episode highlights how seemingly rational judge-
ments, grounded in the prevailing knowledge of the time, 
may later be recognized as clear misjudgements. Simi-
larly, the current emphasis on low-VT ventilation may, in 
retrospect, be viewed as a misplaced endeavour. As previ-
ously discussed, life-sustaining interventions should not 
be based on overly rigid application of low-VT settings 
derived from crude conversion formulas without careful 
consideration of the physiological status of the patient 
and the mechanical parameters of the respiratory system. 
Low-VT ventilation, although beneficial in many cases, 
may function as a double-edged sword: further reduction 
in VT in pursuit of uncertain and marginal gains may 
pose significant risks, particularly in the absence of pre-
cise and individualized methods for determining optimal 
ventilatory requirements.

Conclusion
Lung protection strategies, including low-VT ventilation 
in ARDS patients, represent among the most significant 
advancements in critical care medicine. However, there 
is no definitive evidence to support the superiority of a 
fixed VT of 6 mL/kg PBW or lower over intermediate 
VTs. Both excessively high and overly low VTs may be 
harmful in patients with ARDS, particularly in the con-
text of severe hypoxia, markedly reduced pulmonary 
compliance, or a high dead-space fraction. To ensure safe 
and effective MV, existing protocols should be critically 
re-evaluated in light of emerging evidence. A therapeutic 
approach grounded in moderation, individualized assess-
ment, and clinical prudence is essential for the optimal 
management of ARDS.
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